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Preface

“Quantum computation is a new conceptual arena

for trying to come to a better understanding of quantum weirdness.”

— N. D. Mermin

THERE ARE MANY BOOKS on the subject of quantum information and, in particular, quan-

tum computation. The student or researcher can find the one he/she prefers according

to his/her own interests, ranging from the quantum algorithms to the physical implementa-

tions of quantum information processing and computation. In the “Suggested bibliography”

reported at the end of this preface, the reader can find the list of references I considered to pre-

pare the lectures on quantum computing I have been holding at the Department of Physics of

the University of Milan: each book has particular aspects that I appreciated and, therefore, I

wanted to communicate to my students. However, when the bibliography is always growing, it

is sometimes necessary to provide some useful tools to help the students to follow the lectures

and not to get lost into the flow of information coming from the suggested readings.

Motivated also by the requests of my students, I wrote these lecture notes that, year by year,

will be corrected (sic!), enhanced and improved with further comments to the old material and

by adding new topics concerning quantum computation. Nevertheless, the notes may contain

imprecisions and misprints: comments and suggestions are always welcome!

In order to further help the students, at the end of each chapter I put the references to the

corresponding chapters of the books or to the research articles that inspired my lectures and

should be considered the main resource to begin the advanced study in the field of quantum

computation.

I hope that these pages will bring the reader to better understand and appreciate some as-

pects of our world as described by quantum mechanics.

— Stefano Olivares
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Chapter 1
Basic concepts of classical logic

CLASSICAL INFORMATION is carried by numerical variables and it is extremely useful to use

the binary representation {0, 1} in order to encode it. An integer number x can be written

in binary notation as follows:

x → x3 x2 x1 x0,

= x3 × 23 + x2 × 22 + x1 × 21 + x0 × 20,

where xk ∈ {0, 1}, k = 0, . . . , 3. For instance, 1001→ 1× 23 + 0× 22 + 0× 21 + 1× 20 = 9.

The amount of information carried by the binary variable is called bit. Each binary variable

can take only two values, thus a sequence of n binary variables can be actually used to name

N = 2n different numbers. The length of a string tells us the space required to hold the number.

We can consider log2 N = log2 2n = n a measure of the information. Note that a single bit

carries log2 2 = 1 bit of information.

1.1 Abstract representation of bits

Instead of using the symbols “0” and “1”, we will use the abstract symbols |0〉 and |1〉, respec-

tively. By using this formalism, the binary string “1001” rewrites as1:

1001→ |1〉|0〉|0〉|1〉,

which represents the state of the four classical bit carrying the information. It is worth noting

that, in reality, each symbol |x〉, x = 0, 1, is associated with a physical entity. Therefore, we can

identify the numerical value of the classical bit with the bit itself. For the sake of simplicity, we

1We will se later on the mathematical framework of this formalism.
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2 Chapter 1: Basic concepts of classical logic

can also use the following notation:

|1001〉 ≡ |1〉|0〉|0〉|1〉

or also write:

|1001〉 ≡ |9〉4

where we used the decimal notation “9” to represent the binary value “1001” and the subscript

“4” refers to the four bits we used to encode the number (indeed, mathematically, the two binary

strings “1001” and “0000001001” represent the same digital number “9”, but, physically, the first

involves only four bits, the second emploies ten bits!!).

It is possible to associate with |0〉 and |1〉 two column vectors as follows:

|0〉 →
(

1

0

)
, and |1〉 →

(
0

1

)
.

We clearly see that the two vectors are orthonormal. Now, we note that the symbol |1〉|0〉|0〉|1〉
is a short-hand for the tensor product of four single-bit 2-dimensional vector, namely:

|1〉|0〉|0〉|1〉 ≡ |1〉 ⊗ |0〉 ⊗ |0〉 ⊗ |1〉.

Let’s focus on a 4-dimensional space, with orthonormal basis:

|0〉2 = |00〉 →


1

0

0

0

, |1〉2 = |01〉 →


0

1

0

0

, |2〉2 = |10〉 →


0

0

1

0

, |3〉2 = |11〉 →


0

0

0

1

 ,

where we explicitly evaluated the tensor product2. In this way it is possible to obtain the

2n-dimensional column vector representing any of the 2n possible states of n bits. If x =

(x0, x1, . . . , xn−1)
T , xk ∈ {0, 1}, k = 0, . . . , n− 1, is a column vector associated with the binary

representation of an integer 0 ≤ x < 2n, then x = ∑n−1
k=0 xk2k and we have3:

|x〉n = |xn−1〉 ⊗ · · · ⊗ |x0〉 = |xn−1 · · · x1 x0〉,

i.e., |x〉n is the tensor product of the single-bit states |xk〉.

1.2 Classical logical operations

Any logical or arithmetical operation can be obtained by the composition of three elementary

logical operations: “NOT”, “AND” and “OR”. The NOT operation acts on a single bit, while

AND and OR are two-bit operations. Their actions are summarized in the truth tables 1.1, 1.2

and 1.3.
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|x〉 |x〉

|0〉 |1〉
|1〉 |0〉

Table 1.1: NOT operation. We used the alternative notation NOT| x〉 = |x〉.

|x〉|y〉 |x ∧ y〉

|0〉|0〉 |0〉
|0〉|1〉 |0〉
|1〉|0〉 |0〉
|1〉|1〉 |1〉

Table 1.2: AND operation. We used the alternative notation AND|x〉|y〉 = |x ∧ y〉.

It is worth noting that the three logical operations introduced above are not independent:

given NOT and OR it is possible to obtain the operation AND; analogously, given NOT and

AND it is possible to obtain the operation OR. Thus, we can introduce the two universal opera-

tors “NOR” (i.e., NOT OR) and “NAND” (i.e., NOT AND):

NOR|x〉|y〉 ≡ |x ∨ y〉 = |x ∧ y〉,

NAND|x〉|y〉 ≡ |x ∧ y〉 = |x ∨ y〉.

Another useful operator is the XOR, or exclusive OR operator, which corresponds to the

modulo-2 sum. Its action is summarized in table 1.4. Note that |x〉 = |x⊕ 1〉. As a matter of

fact the XOR can be reduced to more elementary operations as:

|x⊕ y〉 =
∣∣∣(x ∨ y) ∧ (x ∧ y)

〉
.

1.2.1 Reversible logical operations and permutations

A logical function is reversible if each output arises from a unique input: it is possible to show

that a reversible function should be a permutation of the input bit states. The inspection of the

tables 1.1–1.4 shows that among the presented operations, only NOT is reversible. Reversibility

plays a relevant role in quantum computation, since, as we will see, the general computational

process can be modeled with a unitary operation that is indeed reversible.

� – Exercise 1.1 Prove that NOR and NAND are universal.

2The tensor product of the two column vectors (a1, . . . , aN)
T and (b1, . . . , bM)T is a NM-component vector with

components indexed by all the MN possible pairs of indices (ν, µ), whose (ν, µ)th component is just the product aνbµ.
3Note that the binary expansion of the column vector x = (x0, x1, . . . , xn−1)

T is x → xn−1 · · · x1 x0.
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|x〉|y〉 |x ∨ y〉

|0〉|0〉 |0〉
|0〉|1〉 |1〉
|1〉|0〉 |1〉
|1〉|1〉 |1〉

Table 1.3: OR operation. We used the alternative notation OR|x〉|y〉 = |x ∨ y〉.

|x〉|y〉 |x⊕ y〉

|0〉|0〉 |0〉
|0〉|1〉 |1〉
|1〉|0〉 |1〉
|1〉|1〉 |0〉

Table 1.4: XOR operation. We used the alternative notation XOR|x〉|y〉 = |x⊕ y〉.

1.3 Single-bit reversible operations

The NOT is the only reversible (classical) operation acting on single bits (excluding the identity

operator Î, which is a trivial operation). By using the matrix formalism, we can represent NOT

with the 2× 2 matrix:

X→
(

0 1

1 0

)
. (1.1)

Since X2 = Î → 12 = diag(1, 1) is the 2× 2 identity matrix, it follows that X is invertible and

X = X−1.

It is also instructive to introduce the operators N, the number operator, and N = Î−N:

N|x〉 = x|x〉, and N|x〉 = x|x〉, x ∈ {0, 1}.

The corresponding matrices are:

N→
(

0 0

0 1

)
, and N→

(
1 0

0 0

)
.

Classically, N and N are just mathematical operators and do not correspond to a physical oper-

ation, e.g. we cannot imagine the meaning of multiplying by 0 the state – not the numerical value

– of a bit. . . However, they could be useful from the formal point of view.
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� – Exercise 1.2 Verify that X|x〉 = |x〉.

� – Exercise 1.3 Verify that N2
= N and NN = NN = 0.

1.4 Two-bit reversible operations

1.4.1 SWAP

The SWAP operation exchanges the values x and y of the two bits |x〉|y〉:

S|x〉|y〉 = |y〉|x〉.

If we consider the n-bit state |x〉n, then we can define the operator Shk which acts on the bits h

and k, namely:

Shk|x〉n = Shk|xn−1〉 · · · |xh〉 · · · |xk〉 · · · |x0〉,

=|xn−1〉 · · · |xk〉 · · · |xh〉 · · · |x0〉.

Since ShkShk = Î, the SWAP is indeed unitary. It is also possible to represent the SWAP as

follows:

Shk = Nh ⊗Nk +Nh ⊗Nk + (Xh ⊗Xk)
(
Nh ⊗Nk +Nh ⊗Nk

)
, (1.2)

where Nk, Nk and Xk have been introduced in section 1.3 and act on the k-th bits. Sometimes,

we will drop the tensor product symbol and we will write:

Shk = NhNk +NhNk +XhXk
(
NhNk +NhNk

)
, (1.3)

The reader can verify the action of the left-hand-side member of Eq. (1.2) by exploiting the

properties of the tensor product and recalling that: (i) given two operators Ah and Bk, acting

on the h-th and k-th bits, respectively, one has Ah ⊗Bk|xh〉 ⊗ |xk〉 = Ah|xh〉 ⊗Bk|xk〉; (ii) (Ah ⊗
Bk)(Ch ⊗Dk) = (AhCh)⊗ (BkDk).

The matrix representation of Shk is just a single permutation matrix4.

1.4.2 Controlled NOT

The controlled NOT, CNOT, is a “workhorse for quantum computation”. This operation acts

on a target bit according to the value of a control bit. By definition, Chk flips the state of the k-th

bit (target state) only if the state of the h-th bit (control state) is |1〉. The action of C10 and C01 is

summarized in table 1.5: we can easily see that they act as permutations on the input basis in

which only two elements are exchanged.
4The explicit form of the permutation matrix associated with Shk can be obtained starting from the identity matrix

and exchanging the h-th and k-th columns.
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|x〉|y〉 C10 C01

|0〉|0〉 |0〉|0〉 |0〉|0〉
|0〉|1〉 |0〉|1〉 |1〉|1〉
|1〉|0〉 |1〉|1〉 |1〉|0〉
|1〉|1〉 |1〉|0〉 |0〉|1〉

Table 1.5: CNOT operation.

The matrix representations of C01 and C10 are:

C10 →


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , C01 →


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 , (1.4)

respectively.

Note that, in general, we can summarize the action of CNOT as follows:

Chk|x〉n = Chk|xn−1〉 · · · |xh〉 · · · |xk〉 · · · |x0〉,

=|xn−1〉 · · · |xh〉 · · · |xk ⊕ xh〉 · · · |x0〉,

where we used |xk ⊕ xh〉 = |xk〉 if and only if |xh〉 = |1〉. It is clear that CNOT acts as a

generalized XOR.

� – Exercise 1.4 Verify that:

Chk = Nh +NhXk,

where the subscripts refere to the bit affected by the operation.

� – Exercise 1.5 Show that the same action of the SWAP can be obtained by the

application of three CNOT operations, namely:

Shk = ChkCkhChk. (1.5)

Now, we introduce the operator:

Z = N−N→
(

1 0

0 −1

)
,

and XZ = −ZX. It is straightforward to see that:

Z|x〉 = (−1)x|x〉, x ∈ {0, 1}. (1.6)
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From a classical point of view the action of Z is meaningless: it multiplies by −1 the state |1〉 –

note that the state of the bit is multiplied by −1 and not its numerical value!

Since, N = 1
2 (Î−Z) and N = 1

2 (Î+Z) which directly follows from Eq. (1.6), we can write5:

Chk =
1
2
(Î+ Zh) +

1
2
(Î− Zh)Xk, (1.7a)

=
1
2
(Î+Xk) +

1
2
Zh(Î−Xk), (1.7b)

where we dropped the tensor product.

1.4.3 SWAP operator and Pauli matrices

Substituting Eqs. (1.7) into Eq. (1.5), one find the following interesting identity for the SWAP

operator:

Shk =
1
2
(Î+ ZhZk) +

1
2
XhXk(Î+ ZhZk),

which may be also written as:

Shk =
1
2
(Î+XhXk −YhYk + ZhZk),

where6:

Yk = ZkXk →
(

0 1

−1 0

)
.

If, however, we introduce the Pauli operators (and the corresponding 2× 2 Pauli matrices):

σ̂x → σx =

(
0 1

1 0

)
, σ̂y → σy =

(
0 −i

i 0

)
, σ̂z → σz =

(
1 0

0 −1

)
(1.8)

we have:

Shk =
1
2

(
Î+ σ̂

(h)
x σ̂

(k)
x + σ̂

(h)
y σ̂

(k)
y + σ̂

(h)
z σ̂

(k)
z

)
,

where the superscripts refere to the target bits.

Pauli matrices, together with the identity matrix, form a bais for the 2× 2 matrices and have

the following properties:

[σ̂x, σ̂y] = σ̂xσ̂y − σ̂yσ̂x = 2iσ̂z,

[σ̂y, σ̂z] = σ̂yσ̂z − σ̂zσ̂y = 2iσ̂x,

[σ̂z, σ̂x] = σ̂zσ̂x − σ̂xσ̂z = 2iσ̂y,

or, by introducing the totally antisymmetric tensor εhkl , [σ̂h, σ̂k] = 2iεhkl σ̂l .
5In order to simplify the formalism, we use the following convention:

Ah ⊗ Î(|xh〉 ⊗ |xk〉) ≡ Ah(|xh〉 ⊗ |xk〉),

i.e. Ah ⊗ Î ≡ Ah.
6It is worth noting that in our formalism if k 6= h we have AkBh = Ak ⊗Bh, since the two operators refer to different

physical entities; the symbol AkBk represents the composition of the two operators.
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1.4.4 The Hadamard transformation

The Hadamard transformation is defined as:

H =
1√
2
(X+ Z)→ 1√

2

(
1 1

1 −1

)
. (1.9)

Though, classically speaking, the action of H on |x〉 is meaningless, since H transforms a single-

bit state into a linear combination of states, namely:

H|x〉 = |0〉+ (−1)x|1〉√
2

,

or, explicitly:

H|0〉 = |0〉+ |1〉√
2

, H|1〉 = |0〉 − |1〉√
2

,

this transformation is useful when applied recursively to other operators, as the reader can see

from the exercises 1.6 and 1.7.

� – Exercise 1.6 Show that:

HXH = Z and HZH = X,

that is, the Hadamard transformation allows to transform X into Z and vice versa.

� – Exercise 1.7 Show that:

Chk = HhHkCkhHhHk, (1.10)

where the subscripts have the usual meaning – the Hadamard transformation allows

to exchange the roles of the target bit and of the control bit of a CNOT, i.e., Chk → Ckh.
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Chapter 2
Elements of quantum mechanics

IN THIS CHAPTER we briefly review the structure of quantum mechanics. In particular, the

reader can find the postulates of quantum mechanics and the description of the measure-

ment through the positive operator-valued measures (POVMs). The quantum operation will be

discussed in chapter 6.

2.1 Dirac notation (in brief)

Throughout this chapter we use the Dirac braket notation. An n-dimensional complex vector

(or state) is represented with the symbol |ψ〉n, that is called “ket”. Given two vectors |ψ〉n and

|φ〉n, we use the following symbol for the inner product (we drop the subscript n): 〈ψ|(|φ〉) ≡
〈ψ|φ〉 ∈ C. Indeed, 〈ψ|φ〉 can be seen as a linear functional associated with the vector |ψ〉 that

takes |φ〉 into a complex number. This functional is (|ψ〉)† = 〈ψ|, where the symbol (· · · )†

represents the adjoint operator, and 〈ψ| is called “bra”. As usual, the inner product satisfies the

following properties:

(i) 〈ψ|φ〉 = 〈φ|ψ〉∗;

(ii) 〈ψ|(α|φ〉+ β|γ〉) = α〈ψ|φ〉+ β〈ψ|γ〉, ∀α, β ∈ C;

(iii) 〈ψ|ψ〉 = 0⇔ |ψ〉 = 0.

We can expand the (2n-dimensional) vector |ψ〉 as follows:

|ψ〉 =
2n−1

∑
x=0

αx|x〉,

where 〈x|y〉 = δxy and δxy is the Kronecker delta. By using the same association between kets

9
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and vectors introduced in section 1.1, we have:

|ψ〉 →


α0

α1
...

α2n−1

 , and 〈ψ| →
(
α∗0 , α∗1 , . . . , α∗2n−1

)
,

where 〈x|ψ〉 = αx and the basis the vectors |x〉, 0 ≤ x < 2n, have been introduced in section 1.1.

It is now clear that, with this association, the inner product between bras and kets corresponds

to the standard inner product between the corresponding vectors.

Let us now consider the linear operator Â which acts on a ket |ψ〉 leading to a new vector,

namely Â|ψ〉 = |ψ′〉. We have (Â|ψ〉)† = 〈ψ|Â† and:

〈φ|Â|ψ〉 =
(
〈φ|Â

)︸ ︷︷ ︸(
Â†|φ〉

)†

|ψ〉 = 〈φ|
(

Â|ψ〉
)

.

The outer product between |ψ〉 and |φ〉 is an operator|ψ〉〈φ| whose action on |γ〉 reads:

|ψ〉〈φ|(|γ〉) = |ψ〉〈φ|γ〉 ≡ 〈φ|γ〉|ψ〉.

Furthermore, we have:

|ψ〉〈φ| →


α0

α1
...

α2n−1

 ·
(

β∗0, β∗1, . . . , β∗2n−1
)
≡M,

where M is a 2n × 2n matrix with entries [M]xy = αxβ∗y, and we wrote |ψ〉 = ∑x αx|x〉 and

|φ〉 = ∑y βy|y〉.
The operator P̂x = |x〉〈x|, 0 ≤ x < 2n, is called projector onto the vector |x〉 (indeed, one can

define a projector P̂ψ = |ψ〉〈ψ| onto the state |ψ〉). Since {|x〉} is an orthonormal basis for the

2n-dimensional vector space, we have the following completeness relation: ∑x |x〉〈x| = Î, that is

we have a resolution of the identity operator. The completeness relation may be used to express

vectors and operators in a particular orthonormal basis.

� – Exercise 2.1 Exploiting the completeness relation ∑x |x〉〈x| = Î, write the ex-

pansion of |ψ〉 in the basis {|x〉}.

� – Exercise 2.2 Exploiting the completeness relation ∑x |x〉〈x| = Î, write the ex-

pansion of a linear operator Â in the basis {|x〉}.
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2.2 Quantum bits - qubits

We consider the complex vector space generated by the two column vectors associated with the

bit states |0〉 and |1〉 (that is a 2-dimensional complex Hilbert space). Since the two states form

a basis for this space, any linear combination, or superposition:

|ψ〉 = α|0〉+ β|1〉 →
(

α

β

)
, (2.1)

where α, β ∈ C, belongs to the space. If |α|2 + |β|2 = 1, i.e., if |ψ〉 is normalized, we will refer

to the state (2.1) as quantum bit or simply qubit. Of course, if α = 0 or β = 0, then |ψ〉 = |1〉 or

|ψ〉 = |0〉, respectively1 The basis {|0〉, |1〉} is called computational basis and the information is

stored in complex numbers α and β: it follows that in a single qubit it is possible to encode an

infinite amount of information. At least potentially. . . In fact, in order to extract the informa-

tion we should perform a measurement on the qubit: as we will see in the next sections, it is a

fundamental aspect of Nature that when we observe a system in the superposition state (2.1),

we find it2 either in the state |0〉 or |1〉 with a probabilities p(0) = |α|2 and p(0) = |β|2, that’s

why |α|2 + |β|2 = 1.

Since |α|2 + |β|2 = 1, we can use the following useful parameterization for the amplitudes

of the qubit sate3:

α = cos
θ

2
, and β = eiφ sin

θ

2
,

obtaining:

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉. (2.2)

We will address in the chapters 8 and 9 some examples of the physical realization of qubits.

2.2.1 The Bloch sphere

We can associate with the qubit the following three real numbers:

rx = sin θ cos φ, ry = sin θ sin φ, rz = cos θ, (2.3)

which can be seen as the components of a 3-dimensional vector, i.e.:

r =


rx

ry

rz

 =


sin θ cos φ

sin θ sin φ

cos θ

 .

1The reader may observe that one should write |ψ〉 = eiφ|1〉 or |ψ〉 = eiφ|0〉, but we will see in section 2.3 that a global
phase, as eiφ, does not have a physical meaning.

2Here we are assuming that the measurement allows to observe as outcomes the state |0〉 or |1〉, i.e., the compu-

tational basis; of course one may choose a different basis for the measurement, for instance one can also use other

computational basis, e.g., {|+〉, |−〉}, where |±〉 = 2−1/2(|0〉+ |1〉).
3More in general one should have α = eiδ cos θ

2 and β = eiφ sin θ
2 , but this is equivalent to add a global phase to the

state and, thus, we can set δ = 0.
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Figure 2.1: The Bloch sphere is represented by the yellow unit sphere, while the red vector represents a

pure state, i.e., a state belonging to the surface of the sphere). We also show the two angles θ (magenta)

and φ (blue) which identify the quantum state.

Furthermore, since
√

r2
x + r2

y + r2
z = 1, r represents a point on the surface of the unit sphere,

that is the so-called Bloch sphere. In figure 2.1 we show the Bloch sphere and the vectorial

representation of a quantum state (the red vector).

In particular we have:

|0〉 ⇒


0

0

1

 , and |1〉 ⇒


0

0

−1

 ,

namely, |0〉 corresponds to the north pole of the Bloch sphere, whereas |1〉 to its south pole. The

state |ψ〉 = 2−1/2(|0〉+ eiφ|1〉), with φ ∈ [0, 2π), corresponds to equatorial states.

2.2.2 Multiple qubit states

A n-qubit state reads:

|Ψ〉n =
2n−1

∑
x=0

αx|x〉n, with
2n−1

∑
x=0
|αx|2 = 1,

as usual, the subscript n refers to the number of physical entities (qubits) used to encode the

information. In particular, the state of two qubits can be written as:

|Ψ〉2 = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉, (2.4)

with |α00|2 + |α10|2 + |α01|2 + |α11|2 = 1. In this case, each |αxy|2 corresponds to the joint proba-

bility to find the two qubits of the state (2.4) in the state |x y〉.

2.3 Postulates of quantum mechanics

In this section we introduce quantum mechanics more formally. The postulates of quantum

mechanics are a list of prescription to summarize: (1) how to describe the state of a physical
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system; (2) how to describe the measurement performed on a physical system; (3) how to describe

the evolution of a physical system.

Postulate 1 – States of a quantum system. Each physical system is associated with a com-

plex Hilbert spaceH with inner product. The possible states of the physical system correspond

to normalized vectors |ψ〉, 〈ψ|ψ〉 = 1, which contain all the information about the system. For a

composite system we have |ψ〉 = |ψ〉1⊗ . . .⊗ |ψ〉N ∈ H, whereH = H1⊗ . . .⊗HN is the tensor

product of the Hilbert spaces Hk associated with the k-th subsystem. If |ψ〉 and |φ〉 are possi-

ble states of a quantum system, then any normalized linear superposition |Ψ〉 = α|ψ〉+ β|φ〉,
〈Ψ|Ψ〉 = 1, is an admissible state of the system (note that, in general, 〈ψ|φ〉 6= 0, therefore one

may have 〈Ψ|Ψ〉 = 1 but |α|2 + |β|2 6= 1).

Postulate 2 – Quantum measurements. Observable quantities are described by Hermitian

operators Â, that is Â = Â†. The operator Â admits a spectral decomposition Â = ∑x ax P̂(ax)

in terms of the real eigenvalues ax, which are the possible values of the observable, where

P̂(ax) = |ux〉〈ux| and Â|ux〉 = ax|ux〉. Note that the orthonormal eigenstates {|ux〉} form a

basis for the Hilbert space. The probability of obtaining the outcome ax from the measurement

of Â given the state |ψ〉 is:

p(ax) = 〈ψ|P̂(ax)|ψ〉 = |〈ux|ψ〉|2, (2.5)

and the overall expectation value is:

〈Â〉 = 〈ψ|Â|ψ〉 = Tr
[
|ψ〉〈ψ| Â

]
. (2.6)

This is the Born rule, the fundamental recipe to connect the mathematical description of a quan-

tum state |ψ〉 to the prediction of quantum theory about the results of an experiment. It is now

clear that an overall phase has not a physical meaning: the two states |ψ〉 and eiϕ|ψ〉, when

inserted in Eqs. (2.5) and (2.6), lead to the same results and, thus, represent the same physical

state!

Postulate 3 – Dynamics of a quantum system. The dynamical evolution of a physical sys-

tem from an initial time t0 to a time t ≥ t0 is described by a unitary operator Û(t, t0), with

Û(t, t0) Û†(t, t0) = Û†(t, t0) Û(t, t0) = Î. If |ψt0〉 is the state of the system at time t0, then at

time t we have |ψt〉 = Û(t, t0)|ψt0〉. Furthermore, given Û(t, t0) there exists a unique Hermitian

operator Ĥ such that (Stone theorem):

Û(t, t0) = exp
[
−iĤ(t− t0)

]
, (2.7)

and the form of Ĥ can be obtained from its identification with the expression for the classical

energy of the system, that is the Hamiltonian of the system.
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� – Exercise 2.3 (Two-level system) Given the (quantum) Hamiltonian:

Ĥ = h̄[ω0|0〉〈0|+ ω1|1〉〈1|+ γ(|1〉〈0|+ |0〉〈1|)], (2.8)

where we used the computational basis {|0〉, |1〉}, find the eigenvalues and the eigen-

states of Ĥ and calculate:

Û(t)|1〉 = exp
(
−iĤt/h̄

)
|1〉.

(Hint: express the Hamiltonian in its matrix form. . .)

2.4 Quantum two-level system: explicit analysis

Since two-level systems are of extreme interest for quantum mechanics and, in particular, for

quantum computation, in this section we explicitly solve exercise 2.3 (however, we suggest the

reader to study and solve it before reading what follows!).

The 2× 2 matrix associated with the Hamiltonian of Eq. (2.8) is (without loss of generality

we assume the coupling constant γ ∈ R):

Ĥ →
(

E0 g

g E1

)

where Ek = h̄ωk, k = 0, 1, and g = h̄γ. The eigenvalues are:

E± =
(E0 + E1)±

√
(∆E)2 + 4g2

2
,

with ∆E = E1− E0, and the corresponding eigenvectors |ψ±〉, Ĥ|ψ±〉 = E±|ψ±〉, can be written

as:

|ψ±〉 = c0,±|0〉+ c1,±|1〉 ,

whose coefficients ck,±, k = 0, 1, satisfy the conditions:(
c0,±
c1,±

)
=

g
E± − E0

and |c0,±|2 + |c1,±|2 = 1 .

After few calculations we find:

c0,± =
g√

(E± − E0)2 + g2
and c1,± =

E± − E0√
(E± − E0)2 + g2

.

Since Û(t)|ψ±〉 = exp(−iω±t)|ψ±〉, where h̄ω± = E±, it is straightforward to calculate the

time evolution of the computational basis {|0〉, |1〉}. The time evolution of the generic state

|φ0〉 = c+|ψ+〉+ c−|ψ−〉, |c+|2 + |c−|2 = 1, reads:

|φt〉 ≡ Û(t)|ψ0〉 = e−iω+tc+|ψ+〉+ e−iω−tc−|ψ−〉.
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Figure 2.2: Probability p(t) given in Eq. (2.9) to find an evolved state in the corresponding initial state as

a function of ∆ωt for |c+|2 = 1/4 (red, solid line) and |c+|2 = 1/2 (blue, dashed line).

The probability p(t) = |〈φ0|φt〉|2 = |〈φ0|Û(t)|φ0〉|2 to find the evolved state in the initial state

|φ0〉 at the time t is given by:

p(t) = 1− 4|c+|2
(

1− |c+|2
)

︸ ︷︷ ︸
|c−|2

sin2
(

∆ω t
2

)
, (2.9)

where we introduced ∆ω = ω+ − ω− = h̄−1√(∆E)2 + 4g2 and we used |c+|2 + |c−|2 = 1. In

figure 2.2 we plot p(t) for two different choices of the coefficient c+. The last term of Eq. (2.9)

represents the interference of the probability amplitudes, whose visibility is:

V = 4|c+|2
(

1− |c+|2
)

. (2.10)

It is worth noting that the V reaches its maximum 1 if |c+|2 = |c−|2 = 1/2 (see the blue dashed

line in figure 2.2): the initial state should be a balanced superposition of the eigenstates |ψ±〉 of

the Hamiltonian (2.8), namely:

|φ0〉 =
|ψ+〉+ eiϕ|ψ−〉√

2
,

in this case at times tn such that ∆ω tn = 2nπ, n ∈ N, one has p(tn) = 0 and the evolved system

is in the state:

|φtn〉 ≡
∣∣∣φ⊥0 〉 =

|ψ+〉 − eiϕ|ψ−〉√
2

where 〈φ⊥0 |φ0〉 = 0.

In order to calculate the time evolution of the states |0〉 and |1〉, we rewrite them as functions

of |ψ±〉, namely:

|0〉 = (E+ − E0)
√
(E− − E0)2 + g2 |ψ−〉 − (E− − E0)

√
(E+ − E0)2 + g2 |ψ+〉

g(E+ − E−)
,

|1〉 =
√
(E+ − E0)2 + g2 |ψ+〉+

√
(E− − E0)2 + g2 |ψ−〉

g(E+ − E−)
,
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Figure 2.3: Visibility V = V1 = V2 of Eq. (2.11) as a function of the ratio ∆E/g.

or, in a more compact form:

|0〉 = a+ |ψ+〉+ a− |ψ−〉 and |1〉 = b+ |ψ+〉+ b− |ψ−〉,

where:

a± = ± (E± − E0)
√
(E± − E0)2 + g2

g(E+ − E−)
and b± = ± g a±

E± − E0
.

Exploiting Eq. (2.10) we can easily calculate the corresponding visibilities of the probability

amplitudes due to the time evolution, V0 = 4|a+|2 |a−|2 and V1 = 4|b+|2 |b−|2, which are the

same for both the computational basis states, namely:

V0 = V1 =

[
1 +

(
1
2

∆E
g

)2
]−1

, (2.11)

that are reported in figure 2.3.

� – Exercise 2.4 Prove Eq. (2.11) and plot the probabilities pk(t) = |〈k|Û(t)|k〉|2,

k = 0, 1, as functions of time.

2.5 Structure of 1-qubit unitary transformations

Any 2× 2 complex matrix M can be written as:

M = r01+ r · σ,

where r = (rx, ry, rz), with r0, rk ∈ C, σ = (σx, σy, σx)T , σk are the Pauli matrices introduced in

Eqs. (1.8), k = x, y, z, and r · σ = ∑k rkσk. Here we are interested in unitary transformations,

namely, M†M = MM† = 1, where M† = r∗01+ r∗ · σ. Since M is unitary, also eiθM is unitary,

thus we can assume r0 ∈ R without loss of generality.

We have:

M†M = (r01+ r∗ · σ)(r01+ r · σ)
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that is equivalent to write:

1 = r2
01+ r0(r∗ + r) · σ + (r∗ · σ)(r · σ).

By using the identity (a · σ)(b · σ) = a · b1+ i(a× b) · σ, ∀a, b ∈ C3, we obtain the following

two conditions:

r2
0 + r∗ · r = 1, (2.12a)

r0(r∗ + r) + i(r∗ × r) = 0. (2.12b)

Since we can write r∗ + r = 2<e[r] and i(r∗ × r) = −2<e[r] × =m[r], Eq. (2.12b) requires

r0<e[r] = <e[r]×=m[r], and we have two possibilities. If r0 = 0 and, thus, <e[r] is parallel to

=m[r], then r = eiφv with v ∈ R3 and, being M unitary, we can simply write r = iv. The second

possibility is r0 6= 0 and, in this case, <e[r] should be parallel to <e[r] × =m[r]. Therefore,

<e[r] = 0 and, again, r = iv. Summarizing, for an unitary 2× 2 matrix we have:

M = r01+ iv · σ,

where v ∈ R3. Furthermore, the condition in Eq. (2.12a) allows us to write:

M = cos γ1+ i sin γ n · σ,

with n = v/
√

v · v. Finally, we have following useful identity:

exp(iγ n · σ) = cos γ1+ i sin γ n · σ. (2.13)

� – Exercise 2.5 Prove Eq. (2.13) by using the expansion:

exp(iγ n · σ) =
∞

∑
k=0

(iγ)k

k!
(n · σ)k.

2.5.1 Linear transformations and Pauli matrices

The Pauli matrices introduced in Eqs. (1.8) are a basis for 2× 2 matrices. By using the prop-

erty 1
2 Tr[σhσk] = 2δhk, we have M = ∑3

k=0 Mkσk, where σ0 = 1 and (σ1, σ2, σ3) = (σx, σy, σz).

Furthermore, by using Tr[σhσk] = 2δhk, or, if separate the three Pauli matrices from the identity:

M =
1
2

{
Tr[M]1+ ∑

k
Mkσk

}
, (2.14)

that explicitly reads:

M =

(
m00 m01

m10 m11

)
, (2.15)

=
m00 + m11

2
1+

m01 + m10

2
σx + i

m01 −m10

2
σy +

m00 −m11

2
σz. (2.16)
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2.6 Quantum states, density operator and density matrix

Let us consider the following statistical ensemble {px, |ψx〉}, in which each state |ψk〉 is prepared

with probability pk. Given the observable Â and the orthonormal basis {|φs〉} we have:

〈Â〉 = ∑
x

px 〈ψx|Â|ψx〉

= ∑
x

px 〈ψx|Â
(

∑
s
|φs〉〈φs|

)
|ψx〉

= ∑
x,s

px 〈φs|ψx〉〈ψx|Â|φs〉

= ∑
s
〈φs|

(
∑
x

px |ψx〉〈ψx|
)

︸ ︷︷ ︸
$̂

Â|φs〉

= ∑
s
〈φs|$̂Â|φs〉 ≡ Tr[$̂ Â].

The linear operator $̂ is calles density operator. More in general a linear operator:

$̂ = ∑
n,m

$n,m|φn〉〈φm|,

with $n,m = 〈φn|$̂|φm〉, is a density operator describing a physical system if $̂ = $̂†, $̂ ≥ 0 and

Tr[$̂] = 1. The matrix $ of the coefficients $n,m is the density matrix of the physical system. Of

course, $ is diagonal if we write it in the basis of its eigenstates.

� – Example 2.1 The two density operators:

$̂a =
1
2
(|0〉〈0|+ |0〉〈1|+ |1〉〈0|+ |1〉〈1|) , and $̂b = |+〉〈+|, (2.17)

with |±〉 = 2−1/2(|0〉 ± |1〉), represent the same statistical ensemble written in

different basis. In fact the two orthonormal states |±〉 are obtained by applying the

Hadamard transformation, which is unitary, to the basis {|0〉, |1〉}.

� – Exercise 2.6 Write the density matrices of the states in Eqs. (2.17) in the com-

putational basis {|0〉, |1〉} and in the transformed basis |±〉.

� – Exercise 2.7 Write the density operator and the density matrix of the state

$̂c =
1
2
(|+〉〈+|+ |−〉〈−|) , (2.18)

in the computational basis {|0〉, |1〉} and in the transformed basis |±〉.
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2.6.1 Pure states and statistical mixtures

Note that $̂2
a = $̂a while $̂2

c 6= $̂c, where $̂a and $̂c are given in Eqs. (2.17) and (2.18), respectively.

Therefore we also have Tr[$̂a] = Tr[$̂2
a] = 1 but Tr[$̂2

c ] = 1/2 < 1. Given a density operator $̂, in

general one has:

µ[$̂] = Tr[$̂2] ≤ 1,

where the real, positive quantity µ[$̂] is the purity of the state $̂. In the case of a n-dimensional

state we find:
1
n
≤ µ[$̂] ≤ 1.

If µ[$̂] < 1 then the state is a “statistical mixture”, otherwise, i.e., if µ[$̂] = 1, it is “pure”. In fact,

in the latter case, we can always write $̂ = |ψ〉〈ψ|. It is now clear that the state $̂c of Eq. (2.18) is

the maximally mixed state for a qubit, i.e., a 2-dimensional state.

2.6.2 Density matrix of a single qubit

In the case of a single qubit the density matrix $ is a 2× 2 matrix and, thus, by means of Eq. (2.14)

we can write:

$ =
1
2
{

Tr[$]1+ Tr[$ σx] σx + Tr[$ σy] σy + Tr[$ σz] σz
}

.

A similar relation holds for the density operator:

$̂ =
1
2
{

Tr[$̂]Î+ Tr[$̂ σ̂x] σ̂x + Tr[$̂ σ̂y] σ̂y + Tr[$̂ σ̂z] σ̂z
}

.

From now on, we can focus on the matrix representation of the operators, but we have the same

result using the operator formalism. Since Tr[$̂] = 1, we find:

$ =
1
2
(1+ r · σ) ,

where we used the same formalism introduced in section 2.5. Note that, from the physical point

of view, the elements of the Bloch vector are the expectations of the Pauli operators, namely,

rk = 〈σ̂k〉 = Tr[$̂ σ̂k], k = x, y, z.

Let us now consider $2, which explicitly reads:

$2 =
1
4
[1+ 2r · σ + (r · σ)(r · σ)] .

Since (r · σ)(r · σ) = r · r1− i(r× r) · σ = |r|21we have the following expression for the purity:

µ[$̂] =
1
2

(
1 + |r|2

)
, (2.19)

and, being µ[$] ≤ 1, we have the following condition on the Bloch vector r:

|r| ≤ 1, (2.20)

which is needed in order to represent a physical state.



20 Chapter 2: Elements of quantum mechanics

2.7 The partial trace

Let |ψAB〉 ∈ HA ⊗HB and let us consider the measurement of the observable Â = ∑x ax P̂(ax)

on the system A. The overall observable measured on the global system A–B writes Â⊗ Î and

we have the following probability for the outcome ax (see the Postulate 2 in section 2.3):

p(ax) = TrAB
[
$̂AB P̂(ax)⊗ Î

]
, (2.21)

with $̂AB = |ψAB〉〈ψAB|. As a matter of fact, the Born rule should be valid also for the single

system A, thus neglecting system B, namely, we can write:

p(ax) = TrA
[
$̂A P̂(ax)

]
, (2.22)

where $̂A is the density operator describing the subsystem A. It is possible to show that the

unique map $̂AB → $̂A that allows to maintain the Born rule at the level of the whole system and

subsystem is the partial trace:

$̂A = TrB[$̂AB]. (2.23)

Note that TrA[$̂A] = TrAB[$̂AB] = 1. In fact, by introducing the orthonormal basis {|φ(K)
s 〉} of

the system K = A, B, we have:

p(ax) = TrBTrA
[
$̂AB P̂(ax)⊗ Î

]
= ∑

t

〈
φ
(B)
t

∣∣∣∑
s

〈
φ
(A)
s

∣∣∣$̂AB P̂(ax)⊗ Î
∣∣∣φ(A)

s

〉
︸ ︷︷ ︸

TrA[$̂AB P̂(ax)⊗ Î]

∣∣∣φ(B)
t

〉

= ∑
s

〈
φ
(A)
s

∣∣∣∑
t

〈
φ
(B)
t

∣∣∣$̂AB P̂(ax)⊗ Î
∣∣∣φ(B)

t

〉
︸ ︷︷ ︸

TrB[$̂AB P̂(ax)⊗ Î]

∣∣∣φ(A)
s

〉

= ∑
s

〈
φ
(A)
s

∣∣∣∑
t

〈
φ
(B)
t

∣∣∣$̂AB Î
∣∣∣φ(B)

t

〉
︸ ︷︷ ︸

$̂A ≡ TrB[$̂AB]

P̂(ax)
∣∣∣φ(A)

s

〉

= ∑
s

〈
φ
(A)
s

∣∣∣$̂A P̂(ax)
∣∣∣φ(A)

s

〉
≡ TrA

[
$̂A P̂(ax)

]
.

� – Exercise 2.8 Given the density operator $̂AB describing the state of a bipartite

system A–B and the observable Â = ∑x ax P̂(ax) on the system A, show that:

〈Â〉 = TrA
[
$̂A Â

]
,

where $̂A = TrB[$̂AB].
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x, P̂x
$̂AB

 $̂B(x) conditional state

Figure 2.4: Conditional measurement performed on one qubit of a two-qubit state $̂AB. See the text for

details.

2.7.1 Purification of mixed quantum states

Any quantum state $̂A can be written in the diagonal form choosing its eigenvectors
{∣∣∣ψ(A)

x

〉}
as the basis for the corresponding Hilbert space HA, that is $̂A = ∑x λx

∣∣∣ψ(A)
x

〉〈
ψ
(A)
x

∣∣∣, where

λx ≥ 0 are the eigenvalues. Let us now consider another Hilbert space HB with dimension at

least equal to the number of nonzero eigenvalues λx and let
{∣∣∣θ(B)

x

〉}
a basis of HB. We have

that the following pure state:

|ΨAB〉 = ∑
x

√
λx

∣∣∣ψ(A)
x

〉∣∣∣θ(B)
x

〉
,

is such that:

TrB [|ΨAB〉〈ΨAB|] = ∑
x

λx

∣∣∣ψ(A)
x

〉〈
ψ
(A)
x

∣∣∣ = $̂A,

that is |ΨAB〉 is a purification of $̂A.

2.7.2 Conditional states

The figure 2.4 shows a quantum circuit4 in which the qubit belonging to the system A of the input

state $̂AB undergoes a projective measurement P̂x. Given the outcome x from the measurement,

the conditional state of system B reads:

$̂B(x) =
TrA

[
P̂x ⊗ Î $̂AB P̂x ⊗ Î

]
p(x)

with p(x) = Tr[$̂AB P̂x ⊗ Î].

� – Exercise 2.9 Given the following 3-qubit state (the bit order 1-2-3 is from left to

right as usual):

|ψ〉 = α|010〉 − β|101〉+ γ|110〉,

with |α|2 + |β|2 + |γ|2 = 1, write the conditional state of qubits 2 and 3 and the cor-

responding probability of obtaining it, when one performs a measurement involving

only the qubit 1. (Note that the final state should be normalized!)

4The representation of quantum evolution and measurement by means of quantum circuits will be discussed in the

next chapter.
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2.8 Entanglement of two-qubit states

A pure state of two qubits belonging to the Hilbert spaceHA ⊗HB which can be written as the

tensor product of the two single-qubit states, namely, |ψA〉|φB〉 is called factorized or separable

state. A state which is not separable is called entangled, as the following state:

|ΨAB〉 =
|0A〉|0B〉+ |1A〉|1B〉√

2
, (2.24)

which cannot be written as a tensor product of the two single-qubit states. In particular the

state (2.24) is a maximally entangled state. Entanglement is a key ingredient in many quantum

protocols and the characterization of entangled states as well the quantification of this resource

is of extreme relevance. A measureME[$̂AB] of the entanglement of the state $̂AB should satisfy

the following two conditions:

• ME[$̂AB] = 0⇔ $̂AB = $̂A ⊗ $̂B (factorized state);

• given two local unitary operations ÛA and ÛB acting the sub-system A and B, respectively,

ME[ÛA ⊗ ÛB$̂ABÛ†
A ⊗ Û†

B] =ME[$̂AB].

2.8.1 Entropy of entanglement

In the presence of pure states, the simplest measure of entanglement is given by the entropy of

entanglement E($̂AB) = S [$̂A] = S [$̂B], where

S [$̂] = −Tr[$̂ log2 $̂]

is the von Neumann entropy. In the presence of a pure state $̂ = |ψ〉〈ψ|, one finds S [$̂] = 0.

On the other hand, given a N-level system the von Neumann entropy reaches its maximum

Smax = log2 N for $ = N−1Î, that is the maximally mixed state. Note that, because of the

definition of the von Neumann entropy, this measure is independent of the Hilbert space basis

and invariant under local unitary operations.

We focus on two two-level systems and start our analysis from the factorized state:

|ΨAB〉 =
1√
2
(|0A〉+ |1A〉)⊗

1√
2
(|0B〉+ |1B〉) =

1
2


1

1

1

1

 . (2.25)

Since the state (2.25) a tensor product of two pure states, its entropy of entanglement is null,

namely E(|ΨAB〉) = 0. Now we consider the two-qubit unitary operation CPh(ϕ) associated
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with the following 4× 4 matrix (we drop the null elements):

CPh(ϕ) =


1

1

cos ϕ/2 − sin ϕ/2

sin ϕ/2 cos ϕ/2

 ,

which corresponds to a controlled phase shift: a phase shift ϕ is applied to the qubit B is the

qubit A is is the state |1A〉. If ϕ = π, the action of CPh(π) is similar to that of the CNOT, up to

a phase [see Eq. (1.4)]. We have:

|ΦAB〉 ≡ CPh(ϕ)|ΨAB〉 =
1
2


1

1

c−
c+

 , (2.26)

where c± = cos ϕ/2± sin ϕ/2. The two sub-systems are described by the density matrices:

$A =
1
2

(
1 cos ϕ/2

cos ϕ/2 1

)
, and $B =

1
2

(
1− 1

2 sin ϕ cos2 ϕ/2

cos2 ϕ/2 1 + 1
2 sin ϕ

)
,

which both have the following eigenvalues: λ± = 1
2

(
1± 1

2 cos ϕ/2
)

. The corresponding en-

tropy of entanglement is:

E(|ΦAB〉) = −
1
2

(
1− 1

2
cos

ϕ

2

)
log2

[
1
2

(
1− 1

2
cos

ϕ

2

)]
− 1

2

(
1 +

1
2

cos
ϕ

2

)
log2

[
1
2

(
1 +

1
2

cos
ϕ

2

)]
,

which vanishes for ϕ = 0, 2π and reaches the maximum E(|ΦAB〉) = log2 2 = 1 for φ = π. It is

then clear that for ϕ 6= 0, 2π the operation CPh(ϕ) is an entangling gate.

2.8.2 Concurrence

Another measure of entanglement is given by the concurrence. Given the two-qubit pure state:

|ψAB〉 = ∑
x,y

αxy|xA〉|yB〉, (2.27)

with αxy ∈ C, x, y ∈ {0, 1}, and ∑x,y |αxy|2 = 1, the concurrence is defined as:

C(|ψAB〉) = 2|α00α11 − α01α10|. (2.28)

If C = 0, the state is factorized, whereas if C > 0, the state is entangled. Since:

4|α00α11 − α01α10|2 = 4
[
|α00α11|2 + |α01α10|2 − α00α11α∗01α∗10 − α∗00α∗11α01α10

]2

= 4
{(
|α00|2 + |α01|2

) (
|α10|2 + |α11|2

)
− |α00α∗01 + α01α∗11|2

}
≤ 4

(
|α00|2 + |α01|2

) [
1− |α00|2 +

(
|α01|2

)]
≤ 1,
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Figure 2.5: Plots of the entropy of entanglement E (red solid line) and concurrence C (blu dashed line) of

the state |ΦAB〉 of Eq. (2.26).

we have 0 ≤ C(|ψAB〉) ≤ 1.

The concurrence (2.28) can be written as a function of the purity of the sub-system states.

For instance, the density matrix of the sub-system A of the state in Eq. (2.27) reads:

$A =

 |α00|2 + |α01|2 α00α∗01 + α01α∗11

α∗00α01 + α∗01α11 |α10|2 + |α11|2

 ,

therefore we have C(|ψAB〉) = 2
√

det[$A]. Furthermore, using the results of section 2.6.2, we

can write $A = 1
2 (1+ rA · σ), where |rA|2 = 2Tr[$2

A] − 1, and, thus, we obtain the following

expression for the concurrence C(|ψAB〉) =
√

1− |rA|2.

In figure 2.5 we plot the entropy of entanglement and the concurrence of the state (2.26).

It is clear that the numerical values of the two entanglement measures are different, but they

reach the maximum (E = C = 1) in the presence of a maximally entangled state while they both

vanish fora factorized state.

Though the entropy of entanglement is a good measure only in the presence of pure two-

qubit states, the concurrence can be extended also to mixed states. In this case, given the two-

qubit density operator $̂AB, the concurrence is given by:

C($̂AB) = max(0, λ1 − λ2 − λ3 − λ4),

where λ1 ≥ λ2 ≥ λ3 ≥ λ4 are the eigenvalues of the operator:

R̂ =
√√

$̂AB $̂′AB

√
$̂AB,

with $̂′AB = σ̂y ⊗ σ̂y$̂∗ABσ̂y ⊗ σ̂y.
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2.9 Quantum measurements and POVMs

In the previous sections we have seen that a projective measurement with outcome x is described

by the operators P̂x = P̂2
x ≥ 0, that is P̂x is a positive operator. Given the state $̂, we have the

following expressions for the probability of the outcome x and the corresponding conditional

state $̂x:

p(x) = Tr
[
P̂x $̂ P̂x

]
= Tr

[
$̂ P̂2

x

]
= Tr

[
$̂ P̂x

]
,

and:

$̂x =
P̂x $̂ P̂x

p(x)
,

respectively.

A generalized measurement, not described by projectors, is a positive operator-valued mea-

sure (POVM), i.e., a set of positive operators {Π̂x}, Π̂x ≥ 0, such that ∑x Π̂x = Î. In this case

we can have Π̂2
x 6= Π̂x and the probability of the outcome x and the corresponding conditional

state $̂x read:

p(x) = Tr
[
$̂ Π̂x

]
= Tr

[
M̂x $̂ M̂†

x

]
,

where Π̂x = M̂†
x M̂x or M̂x =

√
Π̂x, and:

$̂x =
M̂x $̂ M̂x

p(x)
,

respectively.
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Chapter 3
Quantum mechanics as computation

IN THIS CHAPTER we introduce the basic framework of quantum computation as an abstract

extension of the classical logic. Quantum logic gates and their quantum circuit represen-

tations are given. Furthermore, we address the Deutsch, the Deutsch-Josza and the Bernstein-

Vazirani algorithms.

3.1 Quantum logic gates

A quantum logic gate transforms an input qubit state as that given in Eq. (2.1) into an output

state |ψ′〉 = α′|0〉 + β′|1〉. Since the condition |α′|2 + |β′|2 = 1 should be still satisfied, it is

possible to show that the action of any quantum logic gate can be represented by a linear unitary

transformation associated with the unitary operator Û, namely:

|ψ〉 →
∣∣ψ′〉 ≡ Û|ψ〉, (3.1)

where Û†Û = ÛÛ† = Î. Being Û unitary, not only the normalization of the qubit state is

preserved during the transformation, but the operation is intrinsically reversible. In figure 3.1

the unitary transformation (3.1) is schematically represented by means of a quantum circuit: the

horizontal lines are “wires” representing the time evolution (from left to right), and they connect

the “gates”, represented by means of boxes labeled by the corresponding unitary evolution.

|ψ〉 Û |ψ′〉
logic gate

Figure 3.1: Example of a simple quantum circuit involving a single input qubit |ψ〉 and a unitary (quan-

tum) logic gate U: |ψ′〉 correspond to the output state..

27
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(a) |x〉 σ̂x |x⊕ 1〉 ≡ |x〉

(b) |ψ〉 σ̂x α|1〉+ β|0〉

Figure 3.2: Quantum circuit for the NOT acting on: (a) the bit |x〉; (b) the qubit |ψ〉 = α|0〉+ β|1〉.

(a) |x〉 H
|0〉+ (−1)x|1〉√

2

(b) α|0〉+ β|1〉 H
(α + β)|0〉+ (α− β)|1〉√

2

Figure 3.3: Quantum circuit for the Hadamard transformation: (a) action of H on a single bit |x〉; (b) action

of H on the qubit α|0〉+ β|1〉.

3.1.1 Single qubit gates

In chapter 1 we explained that the only reversible classical operation is the NOT operation.

In the quantum logic scenario it is represented by the Pauli matrix σ̂x and the corresponding

quantum circuit is sketched in figure 3.2. Note that due to the linearity of the transformation

we have:

σ̂x(α|0〉+ β|1〉) = ασ̂x|0〉+ βσ̂x|1〉 = α|1〉+ β|0〉,

as represented in figure 3.2 (b).

In general, a single qubit gate is a linear combination of the Pauli operators. Since any

unitary transformation acting on a qubit can be seen as a quantum logic gate, we have infinite

single-qubit gates!

Hadamard transformation – In particular, the gate associated with the Hadamard transforma-

tion H = 1√
2
(σ̂x + σ̂z) defined in Eq. (1.9) not only makes sense (now superpositions of qubit

states are allowed!), but it transforms a bit |x〉 into a superposition and, as we will see, this is a

key ingredient of many quantum algorithms. In figure 3.3 we can see the schematic representa-

tion of the action of H on a bit and on a qubit, respectively.

Phase shift gate – The Pauli operator σ̂z adds a π phase shift between the computational states

|0〉 and |1〉, since σ̂z|x〉 = e−iπx|x〉. More in general, the phase shift gate acts as the phase shift

operator:

e−iφσ̂z = cos φ Î− i sin φ σ̂z →
(

e−iφ 0

0 eiφ

)
= e−iφ

(
1 0

0 ei2φ

)
,

which adds a relative phase shift 2φ between the computational basis states. Note that in the

last equality we can drop the global phase factor e−iφ.
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C10
|x〉 • |x〉

|y〉 σ̂x |y⊕ x〉
≡

C10
|x〉 • |x〉
|y〉 |y⊕ x〉

Figure 3.4: Two equivalent circuits representing the action of the CNOT gate C10. The filled circle is placed

on the control qubit wire, while the XOR symbol ⊕ recall the action of the gate on the target qubit.

T gate or π
8 gate – This gate, usually referred to as T gate, represents the action of a phase

shift gate with φ = π/8, namely:

T =

(
e−iπ/8 0

0 eiπ/8

)
≡
(

1 0

0 eiπ/4

)
. (3.2)

There are two important gates that can be built starting from the T gate, namely:

T2 =

(
1 0

0 i

)
, (phase gate)

and:

T4 =

(
1 0

0 −1

)
→ σ̂z.

3.1.2 Single qubit gates and Bloch sphere rotations

As a single-qubit pure state can be represented as point on they Bloch sphere (see section 2.2.1),

the action of a quantum gate maps point to point and, thus, can be written as the unitary trans-

formation U = eiαRn(θ), where Rn(θ) = exp(iθn · σ) is a rotation of 2θ around the unit vector

n. Due to the properties of the rotations, we can decompose Rn(θ) as the combination of rota-

tions around the principal axes z and y axis (or, analogously, x and y). Therefore, the unitary

transformation U can be written as:

U = eiαRz(β)Ry(γ)Rx(δ), (3.3)

where the values of the angles β, γ and δ depend on n and θ.

3.1.3 Two-qubit gates: the CNOT gate

In chapter 1 we have seen that any logical or arithmetical function can be computed from the

composition of NOR or NAND two-bit gates, which are thus universal gates. However, these

operators are not reversible and, thus, they cannot be represented by means of unitary opera-

tors. The irreversibility, in fact, can be seen as a loss of information.
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C01

|x〉 |x⊕ y〉
|y〉 • |y〉

Figure 3.5: Circuit representing the action of the CNOT gate C01.

SWAP
|x〉 × |y〉
|y〉 × |x〉

≡

C10 C01 C10

|x〉 • • |y〉

|y〉 • |x〉

Figure 3.6: Quantum circuit representing the SWAP operation acting on two qubits composed from three

CNOT gates.

The prototypical multiple qubit gate is the CNOT gate we introduced in section 1.4.2 and

whose quantum circuit is shown in figure 3.4 for what concerns the action of C10 and in fig-

ure 3.5 for C01. It is worth noting that CNOT is a reversible operation on two qubits. In the next

sections we will see how any multiple qubit gate may be composed from CNOT and single-

qubit gates. Figure 3.6 shows the quantum circuit of the SWAP operation and its equivalent

realization based on three CNOT gates [see also Eq. (1.5)].

The unitary matrix associated with the CNOT (from now on we consider the first qubit as

control) reads:

UCNOT =

(
1 0

0 σx

)
.

More in general, the unitary matrix cU describing the conditional application of a unitary trans-

formation U to a qubit, namely, cU|x〉|y〉 = 1⊗Ux|x〉|y〉 writes:

cU =

(
1 0

0 U

)
.

How can we implement the two-qubit gate cU with single-qubit gates and CNOT? We assume

that U can be recast in the form (3.3) and introduce the three auxiliary unitary gates:

UA = Rz(β)Ry

(γ

2

)
, UB = Ry

(
−γ

2

)
Rz

(
δ + β

2

)
, and UC = Rz

(
δ− β

2

)
.

sich that UAUBUC = 1. Furthermore, since σxσzσx = −σz and σx, σyσz = −σy, we also have:

σxUBσx = Ry

(γ

2

)
Rz

(
δ + β

2

)
,

and, thus, UAσxUBσxUC = e−iαU.
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|x〉 • • ei 1
2 (1−σz)α eixα|x〉

|y〉 UC UB UA (e−iα U)x|y〉

Figure 3.7: Quantum circuit acting as a cU, where UAσxUBσxUC = e−iαU.

|ψ〉 = α|0〉+ β|1〉

 p(0) = |α|2 → |0〉

p(1) = |β|2 → |1〉
measurement

Figure 3.8: Circuit representing the measurement on the qubit |ψ〉: though the input is a superposition

state, the outcome is either |0〉, with probability p(0) = |α|2, or |1〉, with probability p(1) = |β|2.

3.2 Measurement on qubits

As we mentioned, the measurement is a critical point. As sketched in figure 3.8, the result of

a measurement on the qubit (2.1) is a single bit |0〉 or |1〉 (the double line after the “meter”

represents the classical wire carrying one bit of classical information) with a probability given

by |α|2 and |β|2, respectively. As a matter of fact, during the measurement process performed

onto a qubit there is a (huge!) loss of information, which makes the measurement an irreversible

process.

3.3 Application and examples

3.3.1 CNOT and No-cloning theorem

One of the peculiar aspect of quantum information is that an unknown quantum state cannot

be perfectly cloned. This is a consequence of the linear nature of the operators acting on the

quantum states.

In figure 3.9 it is shown how a CNOT gate can be used to clone a (classical) bit |x〉, x = 0, 1.

In this case the state of the input bit |0〉 is converted into the state |x〉, so that the whole process

can be summarized as |x〉|0〉 → |x〉|x〉: we end up with two copies of |x〉. However, if we try to

|x〉 • |x〉

|0〉 |0⊕ x〉 ≡ |x〉

Figure 3.9: CNOT gate acting as a cloner of the classical bit |x〉.



32 Chapter 3: Quantum mechanics as computation

|x〉 H •
 ∣∣βxy

〉
=
|0 y〉+ (−1)x|1 y〉√

2|y〉

Figure 3.10: Quantum circuit to generate the Bell state
∣∣βxy

〉
from the separable state |x y〉.

• H |x〉∣∣βxy
〉 |y〉

Figure 3.11: Quantum circuit to perform the Bell measurement: the maximally entangled state
∣∣βxy

〉
is

transformed into the separable state |x y〉 and then measured.

use the same circuit to clone the qubit |ψ〉 of Eq. (2.1), we obtain:

C10|ψ〉|0〉 = α|00〉+ β|11〉,

which is indeed different form the state |ψ〉|ψ〉 = α2|00〉+ αβ(|01〉+ |10〉) + β2|11〉, unless α or

β vanishes, but this is exactly the classical case depicted in figure 3.9!

3.3.2 Bell states and Bell measurement

As we have seen in section 2.8 the pure state:

|β00〉 =
|00〉+ |11〉√

2
, (3.4)

is entangled since it cannot be written as a tensor product of the two single-qubit states. The

state (3.4) is one of the four maximally entangled “Bell states”:∣∣βxy
〉
=
|0 y〉+ (−1)x|1 y〉√

2
, (3.5)

which can be produced starting from the separable state |x y〉 as depicted in figure 3.10. Note

that the Bell states are a basis for the two-qubit space.

Indeed, the circuit to generate the Bell states is reversible and its inverse can be used to

transform the Bell basis into the usual two-qubit computational basis {|00〉, |01〉, |10〉, |11〉}, as

sketched in figure 3.11. We use both the Bell generation and the Bell measurement in the next

section to implement the so-called “quantum teleportation” protocol.

3.3.3 Quantum teleportation

As we pointed out, if we measure in the computational basis {|0〉, |1〉} a qubit in a unknown

quantum state, we will loose any information about it, obtaining as outcome just a classical bit
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Bell measurement

(1) |ψ〉 • H |M1〉 •

(2) |0〉 H • |M2〉 •

(3) |0〉 σ̂M2
x σ̂M1

z |ψ〉

Bell state generation

Figure 3.12: Quantum circuit to perform quantum teleportation.

|x〉 with a certain probability. However, it is sometimes necessary to transfer the state of a qubit

from one part of a quantum computer to another. In this case, the state can be teleported, i.e.,

the unknown state |ψ〉 = α|0〉+ β|1〉 of an input qubit can be reconstructed on a target qubit.

The teleportation protocol requires two bits of classical information and a maximally entangled

state.

In figure 3.12 we sketched the quantum circuit to implement quantum teleportation. The

protocol takes as input the three-qubit state |ψ〉|0〉|0〉. The first step is to create an entangled

state: following the procedure described in section 3.3.2, we create the Bell state |β00〉 on the

qubits 2 and 3 (see figure 3.12): this furnish the entanglement resource. At this stage the overall

three-qubit state reads:
|ψ〉|00〉+ |ψ〉|11〉√

2
.

Then we perform a Bell measurement (see again section 3.3.2) on qubits 1 and 2 by applying the

gate C12 followed by H acting on qubit 1. After these transformations (but before the measure-

ment!) the three-qubit state writes:

1
2
[α(|0〉+ |1〉)|00〉+ α(|0〉+ |1〉)|11〉+ β(|0〉 − |1〉)|10〉+ β(|0〉 − |1〉)|01〉]

that we can rewrite as (we used the properties of the tensor product; note that the order of the

qubits is left unchanged):

1
2
[|00〉(α|0〉+ β|1〉) + |01〉(α|1〉+ β|0〉) + |10〉(α|0〉 − β|1〉) + |11〉(α|1〉 − β|0〉)] (3.6)

Equation (3.6) is a superposition of four orthogonal states and can be written in the following

compact form:
1
2 ∑

M1=0,1
∑

M2=0,1
|M1 M2〉 ⊗

[
σ̂M2

x σ̂M1
z (α|0〉+ β|1〉)

]
, (3.7)

where σ̂M2
x σ̂M1

z acts on the qubit 3. It is now clear the a measurement carried out on qubits 1

and 2 with outcomes |M1〉 and |M2〉, respectively, leave the qubit 3 in the state:

σ̂M2
x σ̂M1

z (α|0〉+ β|1〉) ≡ σ̂M2
x σ̂M1

z |ψ〉. (3.8)
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Thus, in order to reconstruct the state of the input qubit onto the qubit 3 we should apply to

Eq. (3.8) the unitary transformation σ̂M2
x σ̂M1

z .

It is worth noting that:

• only information is teleported, not matter;

• the input state is lost during the measurement (no-cloning theorem holds);

• no information about the input state is acquired through the measurement (the four out-

comes |M1 M2〉 do not contain any information about α an d β since they occur with the

same probability, i.e., 25 %);

• the teleportation protocol is not instantaneous (one should send to the receiver by a clas-

sical channels the information about the two output classical bits |M1〉 and |M2〉);

• in order to reconstruct the state of a qubit we need two bits of classical information and

the entanglement resource.

3.4 The standard computational process

The goal of a computational process is to calculate the values f (x) of some specified function f

where 0 ≤ x < 2k is encoded, with an accuracy which increases with k, in the computational-

basis state of k qubits.

Since a quantum computer works with reversible operations, while f (x) in general isn’t, we

should specify x and f (x) as an n-bit and m-bit integers, respectively. Then we need at least

n + m qubits to perform the task. The set of n qubits, the input register, encodes x, the set of

m-qubits, the output register, represents the value f (x). Having separate registers for input and

output is standard practice in the classical theory of reversible computation.

In order to perform the calculation of f (x), we should apply a suitable unitary transforma-

tion Û f to our set of n + m qubits. The standard computational protocol defines the action of

Û f on every computational basis state |x〉n|y〉m of the n + m qubits making up the input and

output registers as follows:

Û f |x〉n|y〉m = |x〉n|y⊕ f (x)〉m,

where ⊕ can be seen as a generalized XOR acting on the single bits belonging to the two strings

of bits y and f (x). Indeed, Û f |x〉n|0〉m = |x〉n| f (x)〉m: by initializing the starting output register

to |0〉m, after the computation it represents the actual value f (x).

3.4.1 Realistic computation

The computation of f (x) may require more than the n + m qubit introduced in the section 3.4.

In figure 3.13 it is sketched a more realistic quantum circuit to carry out the calculation of f (x),
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|Ψ〉r
Ŵ f

|Ψ〉r
|x〉n |x〉n
|y〉m |y⊕ f (x)〉m

|Ψ〉r
V̂f

|Φ〉n+r−m
V̂†

f

|Ψ〉r
|x〉n | f (x)〉m

Cm
| f (x)〉m |x〉n

|y〉m |y⊕ f (x)〉m

Figure 3.13: Realistic view of the structure of an unitary transformation Ŵ f to carry out the calculation of

f (x). See the text for details.

where an additional register of r qubits and a unitary transformation Ŵ f acting on n + m + r

qubit is used. As shown in the lower circuit of figure 3.13, the unitary Ŵ f act as follows: the

additional r-qubit state |Ψ〉r interact with the input register |x〉n through the unitary operation

V̂f obtaining the evolution:

V̂f |Ψ〉r|x〉n = |Φ〉n+r−m| f (x)〉m.

Now, m controlled-NOT gates perform, bit by bit, the addition modulo 2 with the state of the

output register (the control qubits are in the state | f (x)〉m):

Cm| f (x)〉m|y〉m = | f (x)〉m|y⊕ f (x)〉m.

A final unitary V̂†
f is used to obtain the transformation V̂†

f |Φ〉n+r−m| f (x)〉m = |Ψ〉r|x〉n.

3.5 Circuit identities

In figure 3.14 we report useful circuit identities that can be used to better understand the

behavior of the quantum circuits described in the following sections. The reader can easily

verify them. Here we explicitly considerk the identity (f), namely, H ⊗ HC10H ⊗ H. Since

C10 = 1
2 (Î+ σ̂z)⊗ Î+ 1

2 (Î− σ̂z)⊗ σ̂x it is straightforward to verify that:

H⊗HC10H⊗H = Î⊗ 1
2
(Î+ σ̂z) + σ̂x ⊗

1
2
(Î− σ̂z) ≡ C01,

where we used the identities (b) and (c) of figure 3.14.

3.6 Introduction to quantum algorithms

As we have mentioned, a quantum algorithm involves two registers: the input register |x〉n
and the output register |y〉m. This is due to the reversibility of quantum operations: in general,
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(a) H H =

(b) H σ̂x H = σ̂z

(c) H σ̂z H = σ̂x

• •
(d) =

H H σ̂z

• σ̂z
(e) =

σ̂z •

H • H
(f) =

H H •

Figure 3.14: Useful circuit identities.

a logical operation is not reversible, while the unitary operations indeed are. In this view, a

quantum algorithm is similar to a classical reversible computation (of course, in the last case we

cannot exploit the quantum features of qubits!).

We recall that the standard computational process that calculates f (x), can be always rep-

resented as a suitable unitary operator Û f acting on the state |x〉n|y〉m, that is Û f |x〉n|y〉m =

|x〉n|y⊕ f (x)〉m.

Given a single qubit |x〉, x = 0, 1, the action of the Hadamard transformation H can be

summarized as:

H|x〉 = |0〉+ (−1)x|1〉√
2

=
1√
2

∑
z=0,1

(−1)xz|z〉.

Therefore, given an n-qubit state |x〉n, with 0 ≤ x < 2n and x = ∑n−1
k=0 xk2k with xk ∈ {0, 1}, we

have:

H⊗n|x〉n =

(
|0〉+ (−1)xn−1 |1〉√

2

)
⊗ · · · ⊗

(
|0〉+ (−1)x0 |1〉√

2

)
=

1
2n/2

2n−1

∑
z=0

(−1)x·z|z〉n,

where x · z = ⊕n−1
k=0 xkzk (mod 2).

It is also useful to note that:

Û f (Î⊗H)|x〉|1〉 = |x〉 | f (x)〉 − |1⊕ f (x)〉√
2

= (−1) f (x)|x〉 |0〉 − |1〉√
2

.
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|x〉 H
Û f

H |y〉

|1〉 H H |1〉

Figure 3.15: Quantum circuit to solve the Deutsch problem (Deutsch algorithm): if f (0) = f (1) then

|y〉 = |x〉, otherwise |y〉 = |x〉, thus measuring the input register after the query we can discriminate

between the two possible kind of functions.

We will see that the factor (−1) f (x) is extremely important for quantum algorithms.

3.6.1 Deutsch algorithm

The first pedagogical algorithm we consider has been proposed to solve the so-called Deutsch

problem. Given a function f : {0, 1} → {0, 1}, suppose we are not interested in the particular

values f (0) and f (1), but rather in a relational information, that is whether f (0) = f (1) or

f (0) 6= f (1). Form the classical point of view, the only way to solve this problem is to evaluate

f (x) twice. We are going to show that a quantum algorithm can tell us the answer by using just

one evaluation of the function. The circuit implementing the algorithm is shown in figure 3.15.

The first step of the algorithm is to apply the Hadamard transformations to the qubit initial

states:

H⊗H|x〉|1〉 = ∑
z

(−1)xz
√

2
|z〉
(
|0〉 − |1〉√

2

)
where z = 0, 1. Now we apply Û f :

Û f ∑
z

(−1)xz
√

2
|z〉
(
|0〉 − |1〉√

2

)
= ∑

z

(−1)xz+ f (z)
√

2
|z〉
(
|0〉 − |1〉√

2

)
.

Finally, we apply again the Hadamard transformations, obtaining the following whole evolu-

tion:

(H⊗H) Û f (H⊗H)|x〉|1〉 = ∑
s

c f (x, s)|s〉|1〉,

where s = 0, 1, and we introduced the coefficients:

c f (x, s) =
1
2
(−1) f (0)

[
1 + (−1)x+s(−1) f (1)− f (0)

]
.

After the computation the output register has been left unchanged, since it is still in the state

|1〉, while the input register has undergone the transformation:

|x〉 →∑
s

c f (x, s)|s〉.

It is straightforward to verify that:

– if f (1) = f (0)⇒ |c f (x, x)|2 = 1 and |c f (x, x)|2 = 0,

– if f (1) 6= f (0)⇒ |c f (x, x)|2 = 0 and |c f (x, x)|2 = 1,
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|0〉n / H⊗n

Û f

H⊗n |ψ〉n

|1〉 H H |1〉

Figure 3.16: Quantum circuit to solve the Deutsch-Josza problem.

therefore, if a measurement on the input register gives a result |x〉, we can conclude that f (1) =

f (0), if it leads to |x〉, we have f (1) 6= f (0). This happens after a single query of Û f . Note

that we do not know the actual value of f (1) and f (0): this is a typical quantum tradeoff that

scarifies particular information to acquire relational information.

3.6.2 Deutsch-Josza algorithm

Now our function is f : {0, 1}⊗n → {0, 1}, that is f (x) ∈ {0, 1} but 0 ≤ x < 2n. We assume to

know that f can only have the following two mutual exclusive properties:

• or f is constant: f (x) = f (0), ∀x;

• or f is balanced: f (x) = 1, for half of the possible 2n values of x, otherwise f (x) = 0.

The problem is to decide if f is balanced.

In the best case a deterministic classical computer may solve the problem with just two

queries [if f (0) 6= f (1) then f is indeed balanced]. However in the worst case it could hap-

pen that the first 2n/2 = 2n−1 queries give the same output, then we need one more query to

answer the problem: if we have still the same result f is constant, otherwise it is balanced.

A classical randomized algorithm can indeed do better. This algorithm randomly chooses

m ≤ 2n−1 values of x, obtaining the set {x(1), . . . x(m)}, and compare the value f (x(k)) with that

of f (x(1)), 1 < k ≤ m. Given a balanced f and the value f (x(1)), the probability that f (x(k)) =

f (x(1)) is 1/2. Therefore the probability of failure, that is the probability that f (x(1)) = f (x(k)),

∀k, is:

pfail(m) =
1
2
× 1

2
× . . .× 1

2︸ ︷︷ ︸
(m−1)-times

=
1

2m−1 ,

where we consider only m− 1values of x because the first one is used as control. We thus obtain

that after m queries, the probability of success, i.e., we find that f is balanced, is psucc(m) =

1− pfail(m).

In figure 3.16 we can see the quantum circuit to solve the Deutsch-Josza problem. The input

states is the n+ 1 qubit state |0〉n|1〉, and, after the application of the Hadamard transformations
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and the query of Û f , we have:

Û f (H
⊗n ⊗H)|0〉n|1〉 = Û f

2n−1

∑
x=0
|x〉n

(
|0〉 − |1〉√

2

)

=
1

2n/2

2n−1

∑
x=0

(−1) f (x)|x〉n
(
|0〉 − |1〉√

2

)
.

Now we should apply the Hadamard transformations:

(H⊗n ⊗H) Û f (H
⊗n ⊗H)|0〉n|1〉 =

1
2n

2n−1

∑
z=0

2n−1

∑
x=0

(−1)z·x+ f (x)|z〉n|1〉

= |ψ〉n|1〉,

where:

|ψ〉n =
2n−1

∑
z=0

c f (z)|z〉n, (3.9)

with

c f (z) =
1
2n

2n−1

∑
x=0

(−1)z·x+ f (x). (3.10)

We can focus on:

c f (0) =
1
2n

2n−1

∑
x=0

(−1) f (x). (3.11)

On the one hand, if f (x) is constant, namely f (x) = f (0), ∀x, we have c f (0) = (−1) f (0), and,

since |ψ〉n should be normalized, i.e., ∑z |c f (z)|2 = 1, we obtain c f (z) = 0, ∀z 6= 0. On the

other hand, if f (x) is balanced we get c f (0) = 0, since the sum in Eq. (3.11) contains 2n−1 times

the value “+1” and 2n−1 times the value “−1” and, thus, the corresponding state |ψ〉n does not

contain |0〉n.

Summarizing, the Deutsch-Josza algorithm leads to the following evolution of the n-qubit

input register:

|0〉n →

 |0〉n if f is constant,

∑2n−1
z=1 c f (z)|z〉n if f is balanced,

therefore, just after a single call of U f , a measurement of the evolved state of the input register

allows us to decide if f is constant (we obtain |0〉n) or balanced (in this last case we have |x〉n,

x 6= 0).

It is worth noting that: (i) there is not any known practical application of this kind of algo-

rithm; (ii) the method used to evaluate f (x) is different in the classical and in the quantum case;

(iii) the probabilistic algoritms can find the solution of the Deutsch-Josza problem with high

probability just after few (random) evaluations of f (x).

� – Exercise 3.1 Let us consider the Deutsch-Josza problem. Calculate the probabil-

ity of finding a given x 6= 0 in the case of balanced f .
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|x0〉

Û f

|x0〉
input register ...

...
|xn−1〉 |xn−1〉

|0〉 |a · x〉


Figure 3.17: The Bernstein-Vazirani problem.

3.6.3 Bernstein-Vazirani algorithm

Let a be an unknown integer number, 0 ≤ a < 2n and consider the function:

f (x) = a · x ≡ a0x0 ⊕ · · · ⊕ an−1xn−1. (3.12)

The problem is to find the unknown a given a subroutine that evaluates f (x) for an integer

0 ≤ x < 2n. Classically the only way to solve the problem is to evaluate f (2m) ≡ am for

m = 0, 1, . . . , n− 1, which, thus, requires n evaluations of f (x).

Figure 3.17 shows the quantum-circuit representation of the Bernstein-Vazirani problem.

The input register encodes the n-qubit state |x〉n = |xn−1〉 ⊗ . . .⊗ |x0〉while the output register,

which is initialized to |0〉, after the evolution through the unitary operator Û f associated with

the function defined in Eq. (3.12), becomes |a · x〉.
The quantum circuit we need to solve the present problem with just one call of Û f is the

same of the Deutsch-Josza problem (see figure 3.16). Since, now, the action of f is given in

Eq. (3.12), the coefficients of the state in Eq. (3.9) read:

c f (z) =
1
2n

2n−1

∑
x=0

(−1)z·x+a·x =
1
2n

2n−1

∑
x=0

(−1)(z+a)·x

=
1
2n

n−1

∏
k=0

∑
xk=0,1

(−1)(zk+ak)xk =
1
2n

n−1

∏
k=0

[
1 + (−1)zk+ak

]
.

Form the last equality we conclude that if there exists k such that zk 6= ak, then c f (z) = 0.

Therefore we have:

c f (z)→

 0 if z 6= a,

1 if z = a,

that is, the evolution of the input register can be summarized as:

|0〉n → |a〉n, (3.13)

and the measurement of the evolved input register in the computational basis directly gives the

unknown value of a.

A further investigation of the quantum circuit implementing Û f may explain the mechanism

underling the Bernstein-Josza algorithm. In particular, in figure 3.18 we illustrate the quantum
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|x0〉 a0 = 1 • |x0〉

|x1〉 a1 = 0 |x1〉

|x2〉 a2 = 1 • |x2〉

|x3〉 a3 = 1 • |x3〉

|y〉 |y⊕ a · x〉

Figure 3.18: The quantum circuit to implement the Bernstein-Vazirani problem for a = 1101: if ak = 1

then the bit k-th bit acts as control for the NOT operation on to the output register (lowest wire).

|0〉 H

Û f

H |a0〉
...

...
|0〉 H H |an−1〉

|1〉 H H |1〉

|0〉 a0 = 1 |a0〉

|0〉 a1 = 0 |a1〉

|0〉 a2 = 1 |a2〉

|0〉 a3 = 1 |a3〉
|1〉 • • • |1〉

Figure 3.19: (Top) Quantum solution of the Bernstein-Vazirani problem. (Bottom) The equivalent quan-

tum circuit to solve the problem for a = 1101: we used the identity Chk = HhHkCkhHhHk.

circuit, based on CNOT gates, used to calculate f (x) = a · x in the case of n = 4. It is clear that

the value y of the output register is flipped only if ak and xk are both equal to 1, since the CNOT

taking |xk〉 as control bit is present in the circuit only if ak = 1. As depicted in figure 3.19 (top),

the solution of the problem consists in the application of the Hadamard transformation before

and after the unitary U f . But since Chk = HhHkCkhHhHk (see exercise 1.7 and section 3.5), the re-

sulting circuit is equivalent to the one depicted in figure 3.19 (bottom): it is now straightforward

to see that by taking |0〉n and |1〉 as initial states of the input and output registers, respectively,

one has |0〉n → |a〉n
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|x〉|y〉|z〉 T|x〉|y〉|z〉

|0〉|0〉|0〉 |0〉|0〉|0〉
|0〉|0〉|1〉 |0〉|0〉|1〉
|0〉|1〉|0〉 |0〉|1〉|0〉
|0〉|1〉|1〉 |0〉|1〉|1〉
|1〉|0〉|0〉 |1〉|0〉|0〉
|1〉|0〉|1〉 |1〉|0〉|1〉
|1〉|1〉|0〉 |1〉|1〉|1〉
|1〉|1〉|1〉 |1〉|1〉|0〉

Table 3.1: The action of the Toffoli gate.

|x〉 • |x〉
|y〉 • |y〉
|z〉 |z⊕ xy〉

Figure 3.20: Quantum circuit for the Toffoli gate.

3.7 Classical logic with quantum computers

3.7.1 The Toffoli gate

Any arithmetical operation can be built up on a reversible classical computer out of three-bit

controlled-controlled-not (ccNOT) gates called Toffoli gates. The Toffoli gate, represented by

the unitary operator T, acts on a 3-bit state as follows:

T|x〉|y〉|z〉 = |x〉|y〉|z⊕ xy〉,

where xy corresponds to the arithmetical product between the values x and y. The action of

the Toffoli gate onto the the computational basis is summarized in table 3.1. As one can see,

T leaves unchanged the third bit, unless the state of the control bits are in the state |1〉|1〉, in

this case the value of the target bit is flipped (see the last two lines of the table). Of course T is

reversible and its action on the computational basis is a permutation. The quantum circuit for

Toffoli gate is shown in figure 3.20.

As we mentioned in chapter 1, all the logical and, thus, arithmetical operations can be built

up out of AND and NOT. By using the Toffoli gate one can calculate the logical AND of two

bits, which corresponds to the product of their values, and the NOT, namely:

AND→ T|x〉|y〉|0〉 = |x〉|y〉|xy〉 ≡ |x〉|y〉|x ∧ y〉,

NOT→ T|1〉|1〉|z〉 = |1〉|y〉|z⊕ 1〉 ≡ |1〉|1〉|z〉,
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|x〉 • • • |x〉
|y〉 • • |y〉

|z〉 Û Û† Û |z⊕ xy〉

Figure 3.21: Quantum circuit acting as a controlled-controlled-Û2 gate based on CNOT and controlled-Û

gates. If we choose Û =
√

σ̂x (the square root of NOT) we can reproduce the effect of the Toffoli gate..

respectively. We demonstrated the universality of the Toffoli gate. Furthermore, we have:

XOR→ T|1〉|y〉|z〉 = |1〉|y〉|z⊕ y〉,

NAND→ T|x〉|y〉|1〉 = |x〉|y〉|x ∧ y〉,

We can conclude that it is possible to do any computation reversibly.

We have seen the importance of the Toffoli gate. However, this gate cannot be realized by

means of one- or two-bit classical gates. Fortunately, there exist quantum gates! In figure 3.21

is depicted a quantum circuit that acts as a controlled-controlled-Û2 gate, where Û is a unitary

operator (ÛÛ† = Û†Û = Î), that involves only CNOT and controlled-Û gates. The reader can

easily verify that the circuit applies the Û2 operator to the state |z〉 of the output register only if

the two-bit input register is |x〉|y〉 = |1〉|1〉, namely:

|x〉|y〉|z〉 → Î⊗ Î⊗
[
Ûx(Û†)x⊕yÛy

]
|x〉|y〉|z〉.

If we now introduce the unitary operator:

Û =
√

σ̂x →
1

1 + i

(
1 i

i 1

)
(square root of NOT)

such that Û2 =
√

σ̂x
√

σ̂x = σ̂x, then the ccNOT can be obtained with the quantum circuit of

figure 3.21. Note that
√

σ̂x does not exist as a classical gate, but it exists as quantum gate, since:

√
σ̂x|0〉 =

|0〉+ i|1〉
1 + i

,
√

σ̂x|1〉 =
i|0〉+ |1〉

1 + i
.

3.7.2 The Fredkin gate

The Fredkin gate is another three-bit gate which can be used to build a universal set of gates.

This gate has one control bit and two targets: when the control bit is 1 the targets are swapped,

otherwise they are left unchanged. The action of the Fredkin gate, represented by the unitary

operator F, is summarized in table 3.2, whereas we show the corresponding quantum circuit in

figure 3.22.
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|x〉|y〉|z〉 F|x〉|y〉|z〉

|0〉|0〉|0〉 |0〉|0〉|0〉
|0〉|0〉|1〉 |0〉|0〉|1〉
|0〉|1〉|0〉 |0〉|1〉|0〉
|0〉|1〉|1〉 |0〉|1〉|1〉
|1〉|0〉|0〉 |1〉|0〉|0〉
|1〉|0〉|1〉 |1〉|1〉|0〉
|1〉|1〉|0〉 |1〉|0〉|1〉
|1〉|1〉|1〉 |1〉|1〉|1〉

Table 3.2: The action of the Fredkin gate.

|x〉 • |x〉
|y〉 × |xy⊕ xz〉
|z〉 × |xz⊕ xy〉

Figure 3.22: Quantum circuit for the Fredkin gate.

By suitably setting the input bits it is possible to implement any logical operation. For in-

stance we have:

AND→ F|x〉|y〉|0〉 = |x〉|x ∧ y〉|x ∧ y〉,

NOT→ F|x〉|0〉|1〉 = |x〉|x〉|x〉,

therefore the Fredkin gate is universal. Note that in the last case we implemented both the

COPY and the NOT operations at the same time.
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Chapter 4
The Quantum Fourier Transform

and the factoring agorithm

IN THIS CHAPTER we introduce the Quantum Fourier Transform (QFT) which is a key ingre-

dient of many quantum protocols. We apply the QFT to the phase estimation problem and

we address the factoring algorithm.

4.1 Discrete Fourier transform and QFT

The discrete Fourier transform maps a vector (x1, . . . , xN) of N complex numbers into a new

vector (y1, . . . , yN), where:

yh =
1√
N

N

∑
k=1

exp
(

2πi
h k
N

)
xk .

In a similar way we can define the QFT. Given the n-qubit state |x〉n =
⊗n−1

m=0 |xm〉 =

|xn−1〉|xn−2〉 . . . |x0〉, where x is an integer number, 0 ≤ x < 2n, and xn−1xn−2 . . . x0 is its bi-

nary representation, namely, x = ∑n−1
k=0 xk 2k, with xk ∈ {0, 1}, we have:

F̂Q|x〉n =
1

2n/2

2n−1

∑
y=0

exp
(

2πi
x y
2n

)
|y〉n. (4.1)

Since |y〉n =
⊗n−1

m=0 |ym〉 and y = ∑n−1
m=0 ym 2m, we can write (4.1) as:

F̂Q|x〉n =
1

2n/2

1

∑
yn−1=0

· · ·
1

∑
y0=0

n−1⊗
m=0

exp
(

2πi
x ym

2n−m

)
|ym〉 (4.2)

=
1

2n/2

n−1⊗
m=0

[
|0〉+ exp

(
2πi

x
2n−m

)
|1〉
]
=

n−1⊗
m=0
|ψm〉, (4.3)

45
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|x0〉

F̂Q

|ψ0〉

|x1〉 |ψ1〉
...

...
|xn−2〉 |ψn−2〉

|xn−1〉 |ψn−1〉

Figure 4.1: Quantum Fourier transform: the input n-qubit state |x〉n =
⊗n−1

k=0 |xk〉 is transformed into the

output n-qubit state
⊗n−1

k=0 |ψk〉. See text for details.

where we defined:

|ψm〉 =
1√
2

[
|0〉+ exp

(
2πi

x
2n−m

)
|1〉
]

.

In Fig. 4.1 we show the action of the QFT on the state |x〉n.

In order to find the quantum circuit implementing the QFT, instead of the transformation

(4.3) it is better to consider the following one (for the sake of simplicity we use the same symbol

F̂Q for both the operations):

F̂Q|x〉n =
1

2n/2

n⊗
m=1

[
|0〉+ exp

(
2πi

x
2m

)
|1〉
]
=

n⊗
m=1
|ψn−m〉, (4.4)

The subtle difference between (4.3) and (4.4) is that the overall action of the first one can be

summarized as:
|x0〉 → |ψ0〉,
|x1〉 → |ψ1〉,

...

|xn−1〉 → |ψn−1〉,

while in the second case we have:

|x0〉 → |ψn−1〉,
|x1〉 → |ψn−2〉,

...

|xn−1〉 → |ψ0〉,

or, in a more compact form:

|xm〉 → |ψn−m−1〉 =
1√
2

[
|0〉+ exp

(
2πi

x
2m+1

)
|1〉
]

.

Note that we can also write:

exp
(

2πi
x

2m+1

)
=

n−1

∏
k=0

exp

(
2πi

xk2k

2m+1

)
,
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where we used x = ∑n−1
k=0 xk2k. By introducing the function:

fm(z, k) =


exp

(
2πi

z
2m−k+1

)
if 0 ≤ k < m,

(−1)z if k = m,

1 if m < k < n,

with z ∈ {0, 1}, we have:

|xm〉 →
1√
2

[
|0〉+

n−1

∏
k=0

fm(xk, k) |1〉
]

→ 1√
2

[
|0〉+

m

∏
k=0

fm(xk, k) |1〉
]

.

If we now define the operator R̂h(z), such that:

R̂h(z)|0〉 = |0〉, and R̂h(z)|1〉 = exp
(

2πi
z

2h

)
|1〉,

which corresponds to the 2× 2 matrix:

R̂h(z)→

 1 0

0 exp
(

2πi
z

2h

)
 ,

we can write (for m > 0):

1√
2

[
|0〉+

m

∏
k=0

fm(xk, k) |1〉
]
= R̂m+1(x0) R̂m(x1) . . . R̂2(xm−1)

|0〉+ (−1)xm |1〉√
2︸ ︷︷ ︸

H|xm〉

,

where H is the Hadamard transformation (see Section 1.4.4). In summary:

• if m = 0: |x0〉 → H|x0〉;

• if 0 < m < n: |xm〉 → ∏m−1
k=0 R̂m−k+1(xk)H|xm〉.

As a matter of fact, R̂h(0) = Î, thus we can see R̂h(xk) as a controlled gate, which applies a

phase shift to the corresponding qubit only if the control qubit |xk〉 assumes the value xk = 1.

Therefore, the corresponding quantum circuit involves single-qubit gates (Hadamard transfor-

mations) and two-qubit gates [controlled R̂h ≡ R̂h(1)], as depicted in Fig. 4.2.

In order to reverse the order of the outputs, one should apply at most n/2 SWAP gates

(recall that three CNOT gates are needed to implement a single SWAP). Besides the SWAPs, the

total number of gates involved in Fig. 4.2 is n + (n − 1) + · · · + 1 = n(n + 1)/2 ∼ n2. Note

that the classical Fast Fourier Transform algorithm needs ∼ n 2n gates (since it ignores trivial
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|x0〉 · · · • · · · • · · · • H |ψn−1〉

|x1〉 · · · • · · · • · · · H R̂2 |ψn−2〉

...
...

|xn−2〉 • · · · H · · · R̂n−2 R̂n−1 · · · |ψ1〉

|xn−1〉 H R̂2 · · · R̂n−1 R̂n · · · · · · |ψ0〉

Figure 4.2: Quantum circuit implementing the QFT (we do not implement the final SWAP gates).

operations such as the multiplication by 1), while the direct calculation of the discrete Fourier

transform requires ∼ 22n gates! However, there are two main issues we should point out: (i)

the final amplitudes cannot be accessed directly; (ii) there is not an efficient preparation of the

initial state. Finding applications of the QFT is more subtle than one might hope. . .

4.2 The phase estimation protocol

The phase estimation procedure is a key ingredient for many quantum algorithms. Suppose that

Û is an unitary operator and |u〉 is one of its eigenvectors, such that:

Û|u〉 = exp (2πiφ) |u〉, (4.5)

where φ ∈ [0, 1) is unknown. The binary representation of φ is given by 0.ϕ1 ϕ2 ϕ3 . . ., where

ϕk ∈ {0, 1}, and φ = ∑k ϕk 2−k. Since φ is an overall phase, we cannot directly retrieve it.

However, if we have “black boxes” (the oracles) capable of preparing |u〉 and of performing the

controlled-Û2n−k
operations, namely cÛ2n−k

k , which use the k-th qubit as control, we can succeed

in the estimation of φ. Note that since we cannot access Û (for this reason it is represented as a

“black box”), the phase estimation procedure is not a complete algorithm in its own right.

At first, we assume that φ can be exactly specified with n bits: in this case the estimation

procedure allows us to obtain the actual value φ. The protocol uses two registers: the first one

contains n qubits prepared in the initial state |0〉n; the second one contains many qubit as is

necessary to store |u〉 (without loss of generality we assume that only one qubit is needed). The

first step of the procedure applies n Hadamard transformations to |0〉n, generating a balanced

superposition of all the states |x〉n, 0 ≤ x < 2n. Then we apply controlled-Û2k
to |u〉 with
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|01〉 H · · · •
...

...

|0n−2〉 H|0〉n • · · · |Ψ(φ)〉n

|0n−1〉 H • · · ·

|0n〉 H • · · ·

|u〉 Û Û2 Û22 · · · Û2n−1 |u〉





Figure 4.3: Quantum circuit representing the first step of the phase estimation procedure. The expression

of the state |Ψ(φ)〉n is given in Eq (4.6).

control qubit corresponding to the k-th qubit of the first register (see Fig. 4.3).

Since cÛ2n−k

k |xk〉|u〉 = exp
(

2πiφ xk 2n−k
)
|xk〉|u〉, we have (we write only the evolution of

the k-th qubit of the first register and the second register):

cÛ2n−k

k (H⊗ Î)|0k〉|u〉 =
1√
2

[
|0k〉+ exp

(
2πi 2n−kφ

)
|1k〉

]
|u〉 ≡ |ψk〉|u〉.

Therefore, after the first step of the procedure, the first register evolves as follows (since the

second register is left unchanged, we do not write it explicitly):

|0〉n → |ψn〉|ψn−1〉 . . . |ψ1〉 ≡ |Ψ〉n.

As in the case of Eq. (4.3), we can write:

|Ψ(φ)〉n =
1

2n/2

2n−1

∑
x=0

exp (2πi φx) |x〉n. (4.6)

Now we apply the inverse of the QFT to |Ψ(φ)〉n:

F̂†
Q|Ψ(φ)〉n =

1
2n

2n−1

∑
x=0

exp (2πi φx)
2n−1

∑
y=0

exp
(
−2πi

yx
2n

)
|y〉n (4.7)

=
1
2n

2n−1

∑
y=0

2n−1

∑
x=0

exp
[
−2πi x

(y− 2nφ)

2n

]
︸ ︷︷ ︸

2n δ0,y−2nφ

|y〉n (4.8)

= |2nφ〉n ≡ |ϕ〉n (4.9)

where in Eq. (4.8) we defined the integer number ϕ as:

2nφ = 2n
n

∑
m=1

ϕm2−m =
n−1

∑
k=0

ϕn−k2k ≡ ϕ, (4.10)
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|01〉 H •

F̂†
Q

|ϕ1 = 0〉

|02〉 H • |ϕ2 = 0〉

|03〉 H • |ϕ3 = 1〉

|1〉 T T2 T4 |1〉

Figure 4.4: Phase estimation with the T or π
8 gate. See text for details.

and we recall that both y and ϕ are integers less then 2n [otherwise we don’t have the Kronecker

delta, see Eq. (4.11) below]. Finally, since:

|ϕ〉n = |ϕn〉|ϕn−1〉 . . . |ϕ1〉,

we can retrieve the value of each bit ϕk by measuring the corresponding qubit in the computa-

tional basis.

� – Example 4.1 It this example we consider the T gate defined in Eq. (3.2). It is straightforward

to verify that T|1〉 = e2πφ|1〉 with φ = 1/8 or, in binary notation, φ = 0.ϕ1 ϕ2 ϕ3 = 0.0012 (where the

subscript 2 refers to the chosen basis). The quantum circuit to implement the phase estimation is drawn

in figure 4.4. The state of the input register after the inverse of the QFT reads (the proof is left to the

reader):

F̂†
Q|Ψ(φ)〉3 =

1
23

7

∑
y=0

7

∑
x=0

exp
[
−2πi x

y− 23φ

23

]
︸ ︷︷ ︸

23δ0,y−23φ

|y〉3 .

Since 23φ = 1 = 0012, we obtain F̂†
Q|Ψ〉 =

∣∣23φ
〉

3 = |01〉|02〉|13〉.

If the actual value of the phase, say φ∗, cannot be exactly written with an n-bit expression,

then the estimation does not give its actual value, but just an approximation. In fact, in this case

2nφ∗ is not an integer and Eq. (4.8) becomes:

F̂†
Q|Ψ(φ)〉n =

2n−1

∑
y=0

1
2n

1− exp [−2πi (y− 2nφ∗)]

1− exp [−2πi (y− 2nφ∗)2−n]
|y〉n,

=
2n−1

∑
y=0

fy(φ
∗; n)|y〉n, (4.11)

that is a superposition of all the possible outcomes |y〉n, each with probability:

p(y) =
∣∣ fy(φ

∗; n)
∣∣2 =

1
22n

1− cos [2π (y− 2nφ∗)]

1− cos [2π (y− 2nφ∗)2−n]
. (4.12)
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Figure 4.5: Plot of p(y) given in Eq. (4.12) for the estimation of the phase φ∗ = 0.6875, that has the exact

binary expansion 0.10112. We used a different number n of qubits for the input register, from left to right:

n = 4, 3 and 2.
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Figure 4.6: Plot of p(y) given in Eq. (4.12) for the estimation of the phase φ∗ = 0.2, that does not have

and exact binary expansion (0.00110011 . . .2), using an increasing number n of qubits for the input register,

from left to right n = 2, 4 and 8.

The reader can check that p(y) ≥ 0 and ∑2n−1
y=0 p(y) = 1. In the figures 4.5 and 4.6 we plot the

outcome probability p(y) for two values of the unknown phase and a different number n of

qubits of the input register.

Among the possible outcomes of the measurement there will be a particular integer ϕ(b),

0 ≤ ϕ(b) < 2n, such that φ(b) = 2−n ϕ(b), is the best n-bit approximation of the actual value φ∗.

One of the interesting features of the phase-estimation procedure we described, is that, given

a positive integer t representing the tolerance to error, the probability to obtain as outcome of

the measurement an integer ϕ corresponding to the phase φ = 2−n ϕ, such that |ϕ− ϕ(b)| > t,

decreases as t increases. It is possible to show that this probability is given by:

p
(∣∣∣ϕ− ϕ(b)

∣∣∣ > t
)
≤ 1

2(t− 1)
.

and, thus, the probability to get an estimation of φ within the tolerance t, the is the success

probability, reads:

p
(∣∣∣ϕ− ϕ(b)

∣∣∣ ≤ t
)
> 1− 1

2(t− 1)
.

Furthermore, the higher is the number of qubits n, the better is the approximation. For instance,
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suppose we want to approximate φ to an accuracy 2−q, 0 < q < n, namely:∣∣∣φ− φ(b)
∣∣∣ < 2−q,

or, equivalently, multiplying both sides by 2n:∣∣∣ϕ− ϕ(b)
∣∣∣ ≤ t = 2n−q − 1,

(note that 2n−q− 1 corresponds to the maximum integer which can be encoded using only n− q

bits). If we require p(|ϕ− ϕ(b)| ≤ t) = 1− ε, for a given ε > 0, then the number n of required

qubits for the first register should be at least:

n = q +
⌈

log2

(
2 +

1
2ε

)⌉
, (4.13)

where dze is the ceiling function, which represents the smallest integer not less than z ∈ R.

4.3 The factoring algorithm (Shor algorithm)

The aim of a factoring algorithm is to find the nontrivial factors of an integer N. In this section

we show that the factoring problem turns out to be equivalent to the so-called order-finding

problem we just studied, in the sense that a fast algorithm for order finding can easily be turned

into a fast algorithm for factoring. The algorithm is essentially based on two theorems and it is

useful to recall the following concepts. Given three integer numbers a, b and N, we have that:

a = b(mod N)⇒ ∃ q ∈ Z such that a− b = q N.

Suppose, now, to have two integers, x and N, x < N, with no common factors. The order of x

modulo N is defined to be the least positive integer r such than xr(mod N) = 1.

� – Example 4.2 Given x = 5 and N = 21, we have:

5(mod 21) = 5, 54(mod 21) = 16,

52(mod 21) = 4, 55(mod 21) = 17,

53(mod 21) = 20, 56(mod 21) = 1.

Therefore the order of 5 modulo 21 is r = 6.

� – Example 4.3 Given x = 3 and N = 10, we have:

3(mod 10) = 3, 33(mod 10) = 7,

32(mod 10) = 9, 34(mod 10) = 1.

Therefore the order of 3 modulo 10 is r = 4.
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� – Exercise 4.1 Prove that given the integers x, y and N, one has:

[x(mod N)] [y(mod N)] = [xy(mod N)] . (4.14)

Note that if r is the order of x modulo N, then x(r+s)(mod N) = xs(mod N), with 0 ≤ s < r.

We can now state the two theorems that are at the basis of the factoring algorithm:

Theorem 4.1 Suppose N is an L-bit composite number, and x is a non-trivial solution to the equation

x2 = 1(mod N) in the range 1 ≤ x ≤ N, that is, x 6= ±1(mod N). Then at least one of gcd(x− 1, N)

and gcd(x + 1, N) is a non-trivial factor of N that can be computed using O(L3) operations.

Note that if x ∈ [1, N], then we have:

x 6= 1(mod N)⇒ x 6= 1, and x 6= −1(mod N)⇒ x 6= N − 1.

The problem is thus reduced to find a non-trivial solution x to x2 = 1(mod N). This second

theorem can help us.

Theorem 4.2 Suppose N = pα1
1 . . . pαm

m is the prime factorization of an odd composite positive integer.

Let y be an integer chosen uniformly at random, subject to the requirements that 1 ≤ y ≤ N − 1 and

y is co-prime to N, namely gcd(y, N) = 1 . Let r be the order of y modulo N, that is the least positive

integer such that yr(mod N) = 1. Then the probability that r is even and yr/2 6= −1(mod N) satisfies:

p
(
r even and yr/2 6= −1(mod N)

)
≥ 1− 1

2m . (4.15)

Therefore, the factorizing problem is equivalent to find the order r of random number y modulo

N [note that if y = 1, its order is r = 1, being 1r(mod N) = 1, ∀r > 0]: if r is even and x = yr/2 is

not a trivial solution of x2 = 1(mod N), and this is quite likely according to Theorem 4.2, then

we can apply Theorem 4.1, that is, one of gcd(x− 1, N) and gcd(x + 1, N) is a non-trivial factor

of N.

4.3.1 Order-finding protocol

To find the order of x(mod N) is a hard problem on a classical computer, since there is not an

algorithm to solve this problem using resources polynomial in O(L), where L = dlog2 Ne is

the number of bits needed to specify N. In the following we investigate the performance of a

quantum algorithm.

We start from a unitary operator Ûx such that:

Ûx|y〉L = |xy(mod N)〉L,
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(a) |y〉L / Ûx |xy(mod N)〉L

(b) |y〉L / x(mod N) |xy(mod N)〉L

Figure 4.7: (a) Quantum circuit representing the action of the Ûx gate acting on the input state |y〉L of L

qubits. (b) For the sake of simplicity we can substitute to the symbol Ûx the expression x(mod N).

where 0 ≤ y < 2L. In Fig. 4.7 we report the quantum circuits representing the action of Ûx. Let

us now consider the state:

|us(x, r)〉L =
1√
r

r−1

∑
k=0

exp
(
−2πi

ks
r

) ∣∣∣xk(mod N)
〉

L

with 0 < s < r integer and r is the (unknown!) order of x modulo N, namely, xr(mod N) = 1.

Note that L〈ut(x, r)|us(x, r)〉L = δt,s. We have:

Ûx|us(x, r)〉L =
1√
r

r−1

∑
k=0

exp
(
−2πi

ks
r

) ∣∣∣xk+1(mod N)
〉

L
(4.16)

which can be rewritten as:

Ûx|us(x, r)〉L =
1√
r

r

∑
k=1

exp
[
−2πi

(k− 1)s
r

] ∣∣∣xk(mod N)
〉

L
(4.17)

= exp
(

2πi
s
r

) 1√
r

r

∑
k=1

exp
(
−2πi

ks
r

) ∣∣∣xk(mod N)
〉

L
(4.18)

= exp
(

2πi
s
r

) 1√
r

r−1

∑
k=0

exp
(
−2πi

ks
r

) ∣∣∣xk(mod N)
〉

L︸ ︷︷ ︸
|us(x, r)〉L

(4.19)

= exp
(

2πi
s
r

)
|us(x, r)〉L ≡ exp [2πi φs(r)] |us(x, r)〉L (4.20)

wherev and to pass from Eq. (4.18) to Eq. (4.19) we used |xr(mod N)〉L =
∣∣x0(mod N)

〉
L = 1

and introduced φs(r) = s/r. It follows that |us(x, r)〉L is an eigenstate of Ûx with eigenvalue

exp
(
2πi s

r
)
. Therefore, we can estimate the ratio φs(r) = s/r applying the phase-estimation pro-

cedure described in section 4.2. The quantum circuit implementing the order-finding procedure

is sketched in Fig. 4.8.

Indeed, we should be able to implement the controlled-Û2k
gates, and this is fine. The issue

could be the preparation of the eigenstate |us(x, r)〉L. However we note that:

1√
r

r−1

∑
s=0
|us(x, r)〉L =

1
r

r−1

∑
k=0

r−1

∑
s=0

exp
(
−2πi

sk
r

)
︸ ︷︷ ︸

r δk,0

∣∣∣xk(mod N)
〉

L
= |1〉L. (4.21)
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|0〉n / H⊗n • F̂†
Q

|1〉L / xz(mod N)

Figure 4.8: Quantum circuit implementing the order-finding procedure. After the Hadamard transforma-

tions the first register is 2−n/2 ∑2n−1
z=0 |z〉n.

Therefore, if we prepare the state |1〉L ≡ |1(mod N)〉L, we are also preparing a balanced su-

perposition of all the r states |us(x, r)〉L, 0 ≤ s < r, each with probability 1/r. Let 1 − ε be

the success probability for the estimation of s/r for a given |us(x, r)〉, then the overall success

probability (we do not know the actual value of s since we have a superposition) is (1− ε)/r.

Now we investigate how to implement a quantum circuit for the order-finding procedure.

As for the usual phase-estimation protocol, we start from the input state |0〉n|1〉L and apply H⊗n

to the first register, that is to |0〉n, obtaining the balanced superposition of all the integers from

0 to 2n − 1:
1

2n/2

2n−1

∑
z=0
|z〉n|1〉L.

We can calculate the action of the controlled U2k
x , k = 0, . . . , n− 1, on |1〉L, where, for a given

|z〉n = |zn−1〉 . . . |z0〉, z = ∑n−1
h=0 zh2h, the control qubit is |zk〉. In general we can write:

|z〉n|y〉L −→ |z〉nÛzn−12n−1

x . . . Ûz020

x |y〉L
|z〉n

∣∣∣xzn−12n−1+...+z020
y(mod N)

〉
L

|z〉n|x
zy(mod N)〉L.

Therefore, after the controlled-Û2k
x we have the final state (before the inverse of QFT):

1
2n/2

2n−1

∑
z=0
|z〉n|x

z(mod N)〉L. (4.22)

Since |xz(mod N)〉L = Uz
x|1〉L and |1〉L can be written as a balanced superposition of |us(x, r)〉,

as show in Eq. (4.21), we can rewrite the state (4.22) as follows:

1√
r

r−1

∑
s=0
|Ψ[φs(r)]〉n|us(x, r)〉L, (4.23)

where :

|Ψ[φs(r)]〉n =
1

2n/2

2n−1

∑
z=0

exp [2πi z φs(r)] |z〉n,

that has the same form as in Eq. (4.6). If we now suppose to measure (implicit measurement) the

output register and to find as outcome the state |us(x, r)〉L (with probability 1/r), then the input
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register is left in the state |Ψ[φs(r)]〉n. It is now clear that F̂†
Q|Ψ[φs(r)]〉n leads to an estimation

of φs(r) as shown in the next section.

We have seen how the order-finding problem is reduced to a phase estimation process,

where the unknown phase to be estimated is φs(r) = s/r. Of course, at the end of the pro-

tocol we obtain an estimated value φ of φs(r), where both s and r are unknown, thus we should

find a way to retrieve this information starting from φ. This will be shown in section 4.3.2.

4.3.2 Continued-fraction algorithm

First of all we recall that the continued-fraction algorithm describes a positive real number z in

terms of positive integers [a0, a1, . . . , aM], where a0 ≥ 0 and ak > 0, k > 0, namely:

z→ [a0, a1, . . . , aM] = a0 +
1

a1 +
1

. . . +
1

aM

. (4.24)

The m-th convergent to the continued fraction [a0, a1, . . . , aM] is [a0, . . . , am], with 0 ≤ m ≤ M.

Furthermore, if z = S/R, where S and R are L− bit integers, then the algorithm requires O(L3)

operations.

� – Example 4.4 z = 2.93→ [2, 1, 13, 3, 2].

� – Example 4.5 Decomposition of a fraction as a continued fraction.

z =
31
13

= 2.384615→ [2, 2, 1, 1, 2].

In order to find the fraction s/r corresponding to the estimated phase φ of φs(r), we can use

the following theorem:

Theorem 4.3 If ∣∣∣ s
r
− φ

∣∣∣ ≤ 1
2r2 (4.25)

then s/r is a convergent of the continued fraction for φ and can be computed with O(L3) operations

using the continued-fraction algorithm.

In order to apply the Theorem 4.3 we should satisfy the condition in Eq. (4.25); in our case

N is an L-bit integer, r ≤ N ≤ 2L, and we, thus, have:

1
2r2 ≥

1
22L+1 . (4.26)

Therefore, if we use n = 2L + 1 bits for the register involved in the estimation of φs(r), on the

one hand the accuracy in the estimation of the best φ(b) is 2−(2L+1), that is:∣∣∣φ(b) − φ
∣∣∣ ≤ 1

22L+1 ,
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and, on the other hand, Ineqs. (4.26) allow us to write:∣∣∣φ(b) − φ
∣∣∣ ≤ 1

2r2 , (4.27)

and, thus, we can apply the Theorem 4.3 finding the two integers s and r such that:

φ(b) =
s
r

.

In particular we obtained the order r and we can check whether xr(mod N) = 1.

4.3.3 The factoring algorithm

We can now summarize the procedure to factor an integer N:

1. If N is even, return the factor 2.

2. Determine whether N = ab for integers a ≥ 1 and b ≥ 2, and if so return the factor a (this

can be done with a classical algorithm).

3. Randomly choose an integer y ∈ [1, N − 1]. If gcd(y, N) > 1 then return the factor

gcd(y, N).

4. If gcd(y, N) = 1, use the order-finding subroutine to find the order r of y modulo N (here

quantum mechanics help us).

5. If r is even and x = yr/2 6= −1(mod N), then compute gcd(x − 1, N) and gcd(x + 1, N),

and test to see if one of these is a non-trivial factor N, returning that factor if so (see

Theorem 4.1). Otherwise, the algorithm fails.

4.3.4 Example: factorization of the number 15

The smallest integer number wich is not even or a power of some smaller integer is the number

N = 15, thus we can apply the order-finding protocol in order to factorize it.

Since N = 15, we have L = dlog2 15e = 4. Therefore, if we require a success probability of

at least 1− ε = 3/4, corresponding to an error probability of at most ε = 1/4, the number of

qubits needed for the first register is:

n = 2L + 1 +
⌈

log2

(
2 +

1
2ε

)⌉
= 11,

where the term 2L + 1 is needed to apply the continued-fraction algorithm (see section 4.3.2).

We proceeds as follows.

1. We generate the random number y ∈ [1, N − 1] ≡ [1, 14], for instance, we get y = 7.
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2. We use the order-finding protocol to find the order r of y(mod N). The initial state is

|0〉11|1〉4 and after the application of the Hadamard transformations and the controlled-

Û2h
gates (but before the inverse of the QFT, see Fig. 4.8), we obtain the state:

1√
2048

2047

∑
z=0
|z〉11|y

z(mod N)〉4

which explicitly writes:

1√
2048

(
|0〉11|1〉4 + |1〉11|7〉4 + |2〉11|4〉4 + |3〉11|13〉4

+ |4〉11|1〉4 + |5〉11|7〉4 + |6〉11|4〉4 + |7〉11|13〉4 + . . .
)

.

or, in a more compact form:

1√
512

511

∑
k=0

1
2
(
|4k〉11|1〉4 + |1 + 4k〉11|7〉4 + |2 + 4k〉11|4〉4 + |3 + 4k〉11|13〉4

)
,

where we put in evidence four contributions. Now we should apply F̂†
Q to the first regis-

ter. However, since the second register does not undergo further transformations, we can

assume that it is measured before the application of the inverse of the QFT: this does not

affect the success of the protocol but simplifies the theoretical calculations. The measure-

ment outcome will be one of the four possible states |1〉4, |7〉4, |4〉4 or |13〉4 with probability

1/4. Suppose we get |4〉4, thus the first register is left into the state (similar results follows

from the other outcomes):

|Ψ[φs(r)]〉11 =
1√
512

511

∑
k=0
|2 + 4k〉11.

After the inverse of the QFT the previous state of the first register is transformed into the

superposition:

F̂†
Q|Ψ[φs(r)]〉11 =

1√
512

511

∑
k=0

1√
2048

2047

∑
z=0

exp
(
−2πi z

2 + 4k
2048

)
|z〉11

=
2047

∑
z=0

cz|z〉11

=
|0〉11 − |512〉11 + |1024〉11 − |1536〉11

2
.

where we introduced:

cz =
1

1024

511

∑
k=0

exp
(
−2πi z

2 + 4k
2048

)
=

eiπz

1024
cos

( πz
512

) sin(πz)
sin
(

πz
512
) ,
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which is non null only if z is an integer multiple of 512, namely, z = 0, 512, 1024, 1536.

Therefore we have:

F̂†
Q|Ψ[φs(r)]〉11 =

|0〉11 − |512〉11 + |1024〉11 − |1536〉11
2

.

The measurement on the first register gives with probability 1/4 one of the four states

and let’s suppose that we obtain |1536〉11 (similar results are obtained for |512〉11). Since

211 = 2048 , our outcome leads to the continued-fraction expansion 1536/2048 = 3/4 and,

therefore, the order of y = 7 modulo N = 15 is r = 4 (the denominator of the fraction),

which is even!

3. Since the order r is even and yr/2 = 72 = 49 6= 14 ≡ −1(mod 15), x = yr/2 is a solution of

x2 = 1(mod N) and we can apply the Theorem 4.1 obtaining:

gcd(x− 1, N) = gcd(48, 15) = 3,

gcd(x + 1, N) = gcd(50, 15) = 5.

Finally: 15 = 3× 5.

In the other two cases, namely, |0〉11 and |1024〉11, the algorithm fails. In fact, if |0〉11

it is not possible to retrieve the information about r. In the case of |1024〉11 we have the

continued-fraction expansion 1024/2048 = 1/2, therefore r = 2, that is even, x = yr/2 = 7

but 72(mod 15) = 4 6= 1 and the algorithm fails.
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Chapter 5
The quantum search algorithm

IN THIS CHAPTER we address the quantum solution to the search problem. In particular we

focus on the search through a search space of N = 2n elements, where each element is

identified by an integer index x ∈ Ω = {0, 1, . . . , N − 1} and, thus, by the state |x〉n, and we

assume that the search has M solutions. We can represent the instance of the search problem by

means of a function f : {0, 1, . . . , N − 1} → {0, 1} such that:

f (x) = 0⇒ x is not a solution,

f (x) = 1⇒ x is a solution.

Indeed, we also need an oracle able to recognize the solutions to the search problem. As usual,

we assume that the oracle acts as follows:

|x〉n|q〉
Ô−→ |x〉|q⊕ f (x)〉,

where Ô is the quantum operator associated with the oracle and |q〉 is the oracle qubit, q ∈
{0, 1}. Note that |q〉 → |q〉 only if f (x) = 1, namely, only if x is a solution. Due to the linearity,

we also have:

|x〉n
|0〉 − |1〉√

2
Ô−→ |x〉n

|0⊕ f (x)〉 − |1⊕ f (x)〉√
2

≡ (−1) f (x)|x〉n
|0〉 − |1〉√

2
.

Since the state of the oracle qubit is left unchanged, we can focus only on the |x〉. We have:

|x〉n
Ô−→ |x〉n if x is not a solution,

|x〉n
Ô−→ −|x〉n if x is a solution,

that is, the oracle marks a solution x to the problem by shifting the phase of the corresponding

qubit state |x〉. It is worth noting that the oracle does not know the solution: it is just able to

recognize a solution.

61
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5.1 Quantum search: the Grover operator

We start our search procedure with the n qubits prepared in the state |0〉n and, then, we apply

n Hadamard transformations in order to generate a superposition of all the possible states:

H⊗n|0〉n =
1

2n/2

2n−1

∑
x=0
|x〉n ≡ |ψ〉n.

Now we apply the so-called Grover iteration or Grover operator Ĝ which consists in the following

steps:

• apply the oracle (this needs also the additional oracle qubit that we do not consider ex-

plicitly): |x〉n
Ô−→ (−1) f (x)|x〉n;

• apply H⊗n;

• apply the conditional shift |x〉n → (−1)1+δx,0 |x〉n, i.e., all the states but |0〉n, which is left

unchanged, undergo a phase shift;

• apply H⊗n.

Note that the conditional phase shift can be described by the unitary operator 2|0〉n〈0| − Î.
Furthermore, we have:

H⊗n(2|0〉n〈0| − Î)H
⊗n = 2|ψ〉n〈ψ| − Î,

therefore, the Grover operator can be written as:

Ĝ =
[(

2|ψ〉n〈ψ| − Î
)
⊗ Î
]
Ô.

In the following we see that by applying Ĝ a certain number of times, one obtains a solution to

the search problem with high probability.

5.1.1 Geometric interpretation of the Grover operator

By definition, the state |ψ〉n is a superposition of all the possible states |x〉n, x ∈ Ω. However,

we can introduce the two sets A and B, A ∪ B = Ω and A ∩ B = ∅, such that:

if x ∈ A then f (x) = 0⇒ x is not a solution,

if x ∈ B then f (x) = 1⇒ x is a solution.

Therefore we can define the two orthogonal sates:

|α〉n =
1√

N −M ∑
x∈A
|x〉n, and |β〉n =

1√
M

∑
x∈B
|x〉n,
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Figure 5.1: Geometric representation of the action of the Grover operator onto the state |ψ〉n (gray vector):

(left) initial state; (center) after the oracle call the initial state is reflected across the direction of the |α〉n;

(right) after the application of the operator 2|ψ〉n〈ψ| − Î the final state is nearer to the vector of solution

|β〉n. The overall effect of a single application of the Grover operator is a counterclockwise rotation of

amount θ applied to the initial state |ψ〉n.

where |α〉n represents the superposition of all the states |x〉n which are not solutions, while |β〉n
is the superposition of all the states |x〉n which are solutions to the search problem. Of course

we have:

|ψ〉n =

√
N −M

N
|α〉n +

√
M
N
|β〉n.

Since we reduced our N-dimensional system to a two-dimensional one, we can also introduce

the following parameterization:

|ψ〉n = cos
θ

2
|α〉n + sin

θ

2
|β〉n,

with:

cos
θ

2
=

√
N −M

N
, and sin

θ

2
=

√
M
N

.

We can represent the states |α〉n, |β〉n and |ψ〉n in a two-dimensional (real) space, as shown in

the left panel of figure 5.1. This allows us to obtain a geometrical interpretation of the action of

the Grover algorithm. After the query to the oracle we have |β〉n → −|β〉n, therefore, the state

|ψ〉n is reflected across the direction of the vector associated with |α〉n (figure 5.1, center panel).

Now we should apply 2|ψ〉n〈ψ| − Î, which corresponds to a reflection across the direction of

the vector associated with |ψ〉n (right panel of figure 5.1). Overall, the action of Ĝ on |ψ〉n after

a single iteration can be summarized as follows (recall that we are not explicitly considering the

oracle qubit, which is indeed necessary to apply Ô):

|ψ〉n = cos
θ

2
|α〉n + sin

θ

2
|β〉n

Ĝ−→
∣∣∣ψ(1)

〉
n
= cos

3θ

2
|α〉n + sin

3θ

2
|β〉n,

thus, from the geometrical point of view, the action of the Grover operator onto a state is a
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counterclockwise rotation of an amount θ, described by the matrix:

Ĝ →
(

cos θ − sin θ

sin θ cos θ

)
. (5.1)

After k iterations we find:

|ψ〉n
Ĝk
−→

∣∣∣ψ(k)
〉

n
= cos

(
2k + 1

2
θ

)
|α〉n + sin

(
2k + 1

2
θ

)
|β〉n.

It is worth noting that θ is a function of both N, the total number of states, and of the number of

solutions M.

� – Exercise 5.1 By using the geometrical representation, prove that 2|ψ〉n〈ψ| − Î
corresponds to a reflection across the direction of the vector associated with |ψ〉n.

5.2 Number of iterations and error probability

As a matter of fact, we have a best number R of Grover iterations, which bring the initial state

|ψ〉n as nearer as possible to the state |β〉n: further iterations would drive the state away form

|β〉n. Thanks to the geometrical interpretation (see again the left panel of figure 5.1) we find

that in order to obtain exactly |β〉n we should rotate |ψ〉n by an amount φ = arccos
√

M/N.

Therefore the number of needed iterations is:

R = CI

(
arccos

√
M/N

θ

)
,

where CI(z) corresponds to the closest integer to the real number z. After this number of it-

erations, one measures the final state in the computational basis and obtains a solution to the

search problem with a high probability.

In particular, if M � N, we have that the angular error in the final state will be at most

θ/2 ≈
√

M/N, and the probability of error is thus given by:

Perr =

∣∣∣∣sin
θ

2

∣∣∣∣2 ≈ M
N
� 1.

Furthermore, since:

R = CI

(
arccos

√
M/N

θ

)
≤
⌈ π

2θ

⌉
,

assuming M ≤ N/2 we find θ/2 ≥ sin(θ/2) =
√

M/N and we have the following bound on

the best number of iterations, i.e.:

R ≤
⌈ π

2θ

⌉
≤
⌈

π

4

√
N
M

⌉
,
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0 N�2 N

M

1

Figure 5.2: Plot of the r.h.s. of Eq. (5.2) .

that isR ∼ O(
√

N/M), while a classical algorithm would solve the search problem with O(N)

steps. It is worth noting that since:

sin θ =
2
√

M(N −M)

N
, (5.2)

on the one hand if M ≤ N/2, then θ grows with the number of solutions M, thus requiring less

iterations; on the other hand, if N/2 < M ≤ N, then θ decreases as M increases, namely, more

iterations are required (see figure 5.2). This is a silly property of the quantum search algorithm,

which can be solved by increasing the total number of state from N = 2n to 2N = 2n+1, that is ,

we just add one qubit.

5.3 Quantum counting

Up to now we addressed the search problem assuming that the number of solutions, and, thus,

θ, was known. In general this is not the case. Nevertheless, it is possible to estimate both θ and

M, and this allows us to find a solution quickly and also to decide whether or not a solution

even exists!

In section 5.1.1 we have seen that in the space spanned by |α〉n and |β〉n, Ĝ behaves as a

rotation described by the 2× 2 matrix of Eq. (5.1). It is straightforward to see that eiθ and ei(2π−θ)

are the eigenvalues of Ĝ, therefore we can apply the phase estimation protocol described in

section 4.2 in order to estimate θ and M. For ease the analysis, we double N by adding a qubit

in order to be assured that the number of solution M is less then the half of the possible states,

that is 2N. Now, we have sin2(θ/2) = M/(2N).

Following section 4.2, if we want an accuracy to m bits, namely, |∆θ| ≤ 2−m, with success

probability 1− ε, we need to use a register with at least a number of qubits given by Eq. (4.13).

By using sin2(θ/2) = M/(2N) one can show that:

|∆M| <
(

2
√

NM +
N

2m+1

)
2−m.
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5.4 Example of quantum search

As an example of quantum search we consider a 2-bit search space, that is N = 22 and we

assume to know that there is only one solution to the problem, that is x0 ∈ {0, 1, 2, 3}. From the

classical point of view one would need on average 2.25 oracle calls. What is the performance of

the quantum algorithm?

We start, as usual, with the superposition:

|ψ〉2 =
1
2

3

∑
x=0
|x〉2 =

√
3

2
|α〉2 +

1
2
|β〉2, (5.3)

where |α〉2 = 3−1/2 ∑x 6=x0
|x〉2 and |β〉2 = |x0〉2. Since sin(θ/2) = 1/2, we have θ = π/3, and,

therefore, we need just one iteration of Ĝ with θ = π/3 obtaining the following evolution:

|ψ〉2
Ĝ−→ |x0〉2. (5.4)

We get the right solution with only one oracle call!

� – Exercise 5.2 Draw the quantum circuit which implement the quantum search

addressed in section 5.4.

5.5 Quantum search and unitary evolution

Suppose that x0 ∈ {0, 1, . . . , 2n − 1} is the label of the only solution. We guess the Hamiltonian

which solves the problem of |ψ〉n as initial state and |x0〉n as solution. Formally, we want a

Hamiltonian Ĥ such that (we use natural units, i.e., h̄→ 1):

exp
(
−iĤt

)
|ψ〉n = |x0〉n, (5.5)

after a certain time evolution t. As a matter of fact, Ĥ should depends on both |ψ〉n and |x0〉n.

Therefore, the simplest Hamiltonian we can consider is:

Ĥ = |x0〉n〈x0|+ |ψ〉n〈ψ|. (5.6)

For the sake of simplicity and to use the qubit formalism, we define the two following orthogo-

nal states:

|0〉 = |x0〉n, and |1〉 = 1√
N − 1 ∑

x 6=x0

|x〉n, (5.7)

and we write:

|ψ〉n = α|0〉+ β|1〉,

with α =
√
(N − 1)/N and β =

√
1/N. We have:

Ĥ = (α2 + 1)|0〉〈0|+ β2|1〉〈1|+ αβ (|0〉〈1|+ |1〉〈0|) . (5.8)
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that is:

Ĥ = Î+ α(β σ̂x + α σ̂z). (5.9)

It follows that [see Eq. (2.13)]:

exp
(
−iĤt

)
= e−it [cos(αt) Î− i sin(αt)(β σ̂x + α σ̂z)

]
, (5.10)

and we find the following evolution (we neglect the overall phase e−it):

exp
(
−iĤt

)
|ψ〉n = cos(αt) |ψ〉n − i sin(αt) |x0〉n. (5.11)

By choosing t = π/(2α) we have, up to an overall phase, |ψ〉n → |x0〉n.

The Hamiltonian of Eq. (5.9) can be easily simulated using standard methods based on the

result known as “Trotter formula”:

Theorem 5.1 Let Â and B̂ be Hermitian operators. Then for any real t we have:

lim
k→∞

[
exp

(
iÂ

t
k

)
exp

(
iB̂

t
k

)]k
= exp

[
i
(

Â + B̂
)

t
]

. (5.12)
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Chapter 6
Quantum operations

THE QUANTUM OPERATION formalism allows us to describe the evolution of a quantum sys-

tem in a wide variety of circumstances. In general, a quantum operation is a map E that

transforms a quantum state described by a density operator $̂ into a new density operator $̂′,

i.e.:

E($̂) = $̂′. (6.1)

A quantum operation captures the dynamic change to a state which occurs as the result of some

physical process. The simplest example of quantum operation is the evolution of a quantum

state $̂ under a unitary operator Û, which can be written as E($̂) ≡ Û$̂ Û†.

6.1 Environment and quantum operations

Suppose that we have a system S described by $̂S which interacts with another system E, which

we call “environment”, described by $̂E. We assume also that the interaction is described by

the unitary operator Û. Physically, this corresponds to describe the interaction by means of a

Hamiltonian that couples the two systems, leading to their unitary evolution. If S and E are

initially uncorrelated, and we are interested just in the evolution of the system, then its evolved

state can be represented by the following map:

$̂S → E($̂S) ≡ TrE

[
Û$̂S ⊗ $̂E Û†

]
. (6.2)

Without lack of generality we assume that $̂E = |e0〉〈e0|, where {|ek〉} is an orthonormal

basis of the Hilbert space associated with the environment. Now the quantum operation in
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Eq. (6.2) can be written as:

E($̂S) = TrE

[
Û$̂S ⊗ |e0〉〈e0| Û†

]
= ∑

k
〈ek|Û$̂S ⊗ |e0〉〈e0| Û†|ek〉

= ∑
k

Êk $̂S Ê†
k , (operator-sum representation) (6.3)

where we introduced Êk = 〈ek|Û|e0〉, that is a linear operator acting on the state space of the

system S. Indeed, in order to have a quantum state we should require that ∀$̂, TrS[$̂] = 1:

1 = TrS [E($)] = TrS

[
∑
k

Êk $̂ Ê†
k

]

= ∑
k

TrS

[
Ê†

k Êk $̂
]
= TrS

[(
∑
k

Ê†
k Êk

)
$̂

]
,

therefore one should have ∑k Ê†
k Êk = Î. More in general one may have ∑k Ê†

k Êk ≤ Î, and when

the inequality is saturated the map is referred to as trace-preserving.

6.2 Physical interpretation of quantum operations

Suppose we measure the environment in the basis {|ek〉}. The conditional state $̂k of the system,

corresponding to the outcome k from the measurement, is (we set $̂S = $̂):

$̂k =
1
pk

TrE

[
Û$̂⊗ |e0〉〈e0|Û†

Î⊗ P̂k

]
=

1
pk
〈ek|Û$̂⊗ |e0〉〈e0|Û†|ek〉 =

1
pk

Êk $̂ Ê†
k ,

where P̂k = |ek〉〈ek| and:

pk = TrSE

[
Û$̂⊗ |e0〉〈e0|Û†

Î⊗ P̂k

]
,

= TrS

[
Êk $̂ Ê†

k

]
,

is the probability of the outcome k. Therefore we have:

E($̂) = ∑
k

Êk $̂ Ê†
k ≡∑

k
pk $̂k,

and the action of E is to replace $̂ with the conditional state $̂k with probability pk.
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Figure 6.1: Effect of the bit flip operation on the Bloch sphere: we have a contraction of the z–y plane by

a factor 1− 2p.

6.3 Geometric picture of single-qubit operations

As we have seen in chapter 2, we can associate the density operator $̂ with a 2× 2 density matrix

$, which can be written as:

$̂→ $ =
1
2
(1+ r · σ) = 1

2

(
1 + rz rx − iry

rx + iry 1− rz

)
,

where r = (rx, ry, rz), σ = (σx, σy, σz) are the Pauli matrices corresponding to the Pauli operators

[see Eqs. (1.8)], and r ·σ = rxσx + ryσy + rzσz. Therefore a trace-preserving quantum operation is

equivalent to an affine map of the Bloch sphere into itself and can be written as r → r′ = Mr + v,

M being a 3× 3 real matrix and v a 3-dimensional real vector.

6.3.1 Bit flip operation

If p, with 0 ≤ p ≤ 1, is the probability that a bit flip occurs to a qubit, that is |0〉 → |1〉 and

|1〉 → |0〉, the corresponding quantum operation reads:

Ebf($̂) = (1− p)$̂ + pσ̂x $̂ σ̂x,

and the corresponding elements of the operator-sum representation are:

Ê0 =
√

1− p Î, and Ê1 =
√

p σ̂x.

The transformation of the vector r is (the proof is left to the reader):

rx → rx,

ry → (1− 2p) ry,

rz → (1− 2p) rz,

that is we have a contraction of the z–y plane by a factor 1− 2p, see figure 6.1.
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Figure 6.2: Effect of the phase flip operation on the Bloch sphere: we have a contraction of the x–y plane

by a factor 1− 2p.

6.3.2 Phase flip operation

The quantum operation corresponding to phase flip occurring with probability p is:

Epf($̂) = (1− p)$̂ + pσ̂z $̂ σ̂z, (6.4)

and the corresponding elements of the operator-sum representation are:

Ê0 =
√

1− p Î, and Ê1 =
√

p σ̂z.

The transformation of the vector r is (the proof is left to the reader):

rx → (1− 2p) rx,

ry → (1− 2p) ry,

rz → rz,

now we have a contraction of the x–y plane by a factor 1− 2p, as shown in figure 6.2.

6.3.3 Bit-phase flip operation

When both bit flip and phase flip operations occur with probability p, the process is described

by the quantum operation:

Ebpf($̂) = (1− p)$̂ + pσ̂y $̂ σ̂y,

and the elements of the operator-sum representation are:

Ê0 =
√

1− p Î, and Ê1 =
√

p σ̂y.

The vector r trasforms as follows (the proof is left to the reader):

rx → (1− 2p) rx,

ry → ry,

rz → (1− 2p) rz,

and, thus, we have a contraction of the x–z plane by a factor 1− 2p, see figure 6.3.



6.3 Geometric picture of single-qubit operations 73

Figure 6.3: Effect of the bit-phase flip operation on the Bloch sphere: we have a contraction of the x–z

plane by a factor 1− 2p.

6.3.4 Depolarizing channel

The so-called depolarizing channel describes a process in which $̂ is replaced by Î/2, that is the

maximally mixed state, with probability p, namely:

Edc($̂) = (1− p)$̂ + p
Î

2
.

In order to obtain the operator-sum representation of the depolarizing channel, we use the

following identity (the proof his left to the reader):

Î

2
=

1
4
(
$̂ + σ̂x $̂ σ̂x + σ̂y $̂ σ̂y + σ̂z $̂ σ̂z

)
.

We find:

Edc($̂) =

(
1− 3p

4

)
$̂ +

p
4 ∑

k=x,y,z
σ̂k $̂ σ̂k.

or:

Edc($̂) = (1− q) $̂ +
q
3 ∑

k=x,y,z
σ̂k $̂ σ̂k,

with q = 3p/4, which tells us that the depolarizing channel leaves $̂ unchanged with probability

1− q, while with probability q/3 one of the Pauli operators is applied to it. The vector r evolves

as follows (the proof is left to the reader):

rx → (1− p) rx,

ry → (1− p) ry,

rz → (1− p) rz,

therefore, we have a contraction of the whole sphere by a factor 1− p. Note that the maximally

mixed state, in the Bloch sphere formalism, corresponds to the center of the sphere. Figure 6.4

shows the uniform contraction of the Bloch sphere under the effect of the depolarizing channel.
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Figure 6.4: Effect of the depolarizing channel on the Bloch sphere: we have a uniform contraction by a

factor p− 1. The center of the sphere corresponds to the qubit maximally mixed state Î/2.

6.4 Amplitude damping channel

Amplitude damping describes the energy dissipation (e.g., an atom which emits a photon,

losses during the propagation of light, a system approaching the thermal equilibrium). The

map which describes this process is:

Ead($̂) = Ê0$̂Ê†
0 + Ê1$̂Ê†

1 , (6.5)

with:

Ê0 =
1
2

[
(1 +

√
1 + γ) Î+ (1−

√
1− γ) σ̂z

]
→
(

1 0

0
√

1− γ

)
, (6.6a)

Ê1 =

√
γ

2
(
σ̂x + iσ̂y

)
→
(

0
√

γ

0 0

)
, (6.6b)

1 ≤ γ ≤ 0. Note that we can also write
√

γ = sin θ and
√

1− γ = cos θ.

� – Exercise 6.1 Write the amplitude damping map Ead($̂) as a function of the Pauli

operators.

Since Ê0 = |0〉〈0|+
√

1− γ |1〉〈1| and Ê1 =
√

γ |0〉〈1|, it is easy to verify that:

Ê0|0〉 = |0〉, and Ê0|1〉 =
√

1− γ|1〉,

and:

Ê1|0〉 = 0, and Ê1|1〉 =
√

γ|0〉,

therefore γ can be thought as the probability of loosing a quantum of energy. We have the

following effect on the Bloch sphere:

rx →
√

1− γ rx,

ry →
√

1− γ ry,

rz → γ + (1− γ) rz.

(6.7)
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Figure 6.5: Effect of the amplitude damping channel on the Bloch sphere with $̂∞ = |0〉〈0|, that is the

north pole of the unit sphere.

In order to describe the dissipative dynamics affecting a qubit, we make the following sub-

stitution:

γ→ γ(t) = 1− e−t/τ , (6.8)

where t is a parameter corresponding to the time evolution and τ is a characteristic time of the

system (here we assume that t = 0 represents the initial time). Inserting γ(t) into Eq. (6.5) we

obtain a quantum operation describing a dissipative time evolution. In particular, since:

lim
t→+∞

γ(t) = 1, (6.9)

as time increases the system evolves toward the state |0〉 (the north pole of the Bloch sphere),

which is the lowest energy level of the qubit: we can now easily understand why the map

of Eq. (6.5) represents dissipation. . . at least for a quantum system at zero temperature. Fig-

ure 6.5 shows the deformation of the Bloch sphere due to the amplitude damping channel (with

asymptotic state $̂∞ = |0〉〈0|).

6.5 Generalized amplitude damping channel

In general, quantum systems may have a nonzero temperature T and, in this case, the asymp-

totic state does not correspond to the lowest energy one. This fact is described by means of a

generalized amplitude damping channel which involves the two operators Ê0 and Ê1 of Eqs. (6.6)

and the following two further operators:

Ê2 =
1
2

[
(1 +

√
1 + γ) Î− (1−

√
1− γ) σ̂z

]
→
( √

1− γ 0

0 1

)
, (6.10a)

Ê3 =

√
γ

2
[
σ̂x − iσ̂y

]
→
(

0 0
√

γ 0

)
, (6.10b)
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which represent a phase insensitive amplification process. In fact, Since Ê2 =
√

1− γ |0〉〈0| +
|1〉〈1| and Ê3 =

√
γ |1〉〈0|, it is easy to verify that:

Ê2|0〉 =
√

1− γ|0〉, and Ê2|1〉 = |1〉,

and:

Ê3|0〉 =
√

γ|1〉, and Ê3|1〉 = 0.

The whole map reads:

Egad($̂) = p (Ê0$̂Ê†
0 + Ê1$̂Ê†

1) + (1− p) (Ê2$̂Ê†
0 + Ê3$̂Ê†

1), (6.11)

where 0 ≤ p ≤ 1. If we perform the same substitution given in Eq. (6.8), we find that the

stationary state for t→ +∞ is:

$̂∞ =
1
2
Î+

2p− 1
2

σ̂z →
(

p 0

0 1− p

)
.

� – Exercise 6.2 Find the evolution of the vector r under the effect of the generalized

amplitude damping channel.

6.5.1 Approaching the thermal equilibrium

When the quantum operation of Eq. (6.11) describes the evolution of a qubit state toward the

termal equilibrium, the probability p is a function of the temperature T. If Ex is the energy of the

state |x〉, x = 0, 1, then one has that the state occupation probability is given by the Boltzmann

distribution, namely:

px(T) =
1
Z exp

(
− Ex

kBT

)
,

where Z = p0(T) + p1(T) is the partition function and kB is the Boltzmann constant. Therefore

the stationary, equilibrium state writes:

$̂∞(T)→
(

p0(T) 0

0 1− p0(T)

)
=

1
Z

(
exp [−E0/(kBT)] 0

0 exp [−E1/(kBT)]

)
,

which represents the statistical mixture describing a two-level system at termal equilibrium at

temperature T. The purity of the state $̂∞(T) is:

µ [$̂∞(T)] = 1− 2p0(T) p1(T).
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6.6 Phase damping channel

This kind of channel describes the loss of quantum information without loss of energy. We can

derive the quantum operation of this channel addressing a single qubit system subjected to a

rotation around the z-axis of the Bloch sphere, namely:

R̂z(ϑ) = cos ϑ Î− i sin ϑ σ̂z →
(

e−iϑ/2 0

0 eiϑ/2

)
,

where ϑ is random (this is a random kick). We assume that ϑ is randomly distributed according

to a Gaussian distribution with zero mean and variance 2∆2. We have the following evolution:

$̂→ Epdc($̂) =
∫ +∞

−∞
dϑ

exp
(
− ϑ2

4∆2

)
√

4π∆2
R̂z(ϑ) $̂ R̂z(ϑ)

† (6.12)

= Ê0$̂Ê†
0 + Ê0$̂Ê†

0 , (6.13)

with:

Ê0 =

√
1 + exp(−∆2)

2
Î, and Ê1 =

√
1− exp(−∆2)

2
σ̂z.

It is worth noting that the quantum operation of Eq. (6.13) corresponds to the phase flip oper-

ation addressed in section 6.3.2 with p = [1 + exp(−∆2)]/2. The effect on the Bloch sphere is

analogous to that of the phase flip operation:

rx → e−∆2
rx,

ry → e−∆2
ry,

rz → rz.
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Chapter 7
Basics of quantum error correction

7.1 The binary symmetric channel

In a classical binary symmetric channel (BSC) the information is encoded into the bits |0〉 and

|1〉 and we assume that a bit flip error may occurs with probability p. The probability of error,

that is the probability that |x〉 → |x〉, with x = 0, 1, is simply given by the bit flip probability,

that is:

p(1)err = p, (7.1)

where the superscript tell us we are using just one bit to encode the information.

7.1.1 The 3-bit code

One of the classical codes used to correct the bit flip error is the 3-bit code. Here the information

is encoded onto three independent copies of the original bit and the correction strategy is based

on the majority voting: if, among the received three bits, at least two have the same value x, then

we decide that the sent bit value was x. Indeed, here we are also assuming that only one bit

undergoes bit flip and, thus, we have the following error probability, which is the probability of

having two or more bits flipped:

p(3)err ≡ p≥2 = p3 + 3p2(1− p) = 3p2 − 2p3. (7.2)

As one can see from figure 7.1, we have that p(3)err < p(1)err if p < 1/2.

7.2 Quantum error correction: the 3-qubit code

A quantum state cannot be cloned. Therefore we cannot have three identical copies of an un-

known quantum state |ψ〉 (see section 3.3.1). Furthermore, in contrast to the classical case, we

79
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Figure 7.1: Plot of p(1)err (dashed, red line) and p(3)err (solid, blue line) as functions of the bit flip probability

p. For values of p less than 0.5 the 3-bit code has a better performance with respect the single bit encoding.

|ψ〉 • •

|0〉

|0〉

Figure 7.2: This quantum circuit implement the transformation |ψ〉|0〉|0〉 → α|000〉+ β|111〉, where |ψ〉 =
α|0〉+ β|1〉.

cannot measure the state in order to get information about the error, since the measurement de-

stroys the quantum state. . . We should find a quantum circuit able to “detect” the eventual error

(the bit flip) and to correct it without destroying the quantum state. The solution to this problem is

given by the 3-qubit code, that is the analogous of the classical code

7.2.1 Correction of bit flip error

As we have seen in section 6.3.1, the evolution of a quantum state $̂ through a bit flip channel

can be described by the quantum map:

E($̂) = (1− p) $̂ + p σ̂x $̂ σ̂x, (7.3)

where, now, p is the bit flip probability. In the following we assume that the information is

encoded in the qubit state |ψ〉 = α|0〉+ β|1〉 and we also have σ̂x|ψ〉 = α|1〉+ β|0〉. The basic

idea of the 3-qubit code is to encode the information onto three qubits as follows:

|ψ〉 → |Ψ〉 = α|000〉+ β|111〉, (7.4)

where, as usual |xyz〉 = |x〉|y〉|z〉. The reader can verify that this task is obtained by means of

the quantum circuit of figure 7.2. It is worth noting that |Ψ〉 is an entangled state.
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|ψ〉 • •
bit

flip

• • |ψ〉

|0〉 •

|0〉 •

Figure 7.3: The dashed box encloses the quantum circuit implementing the 3-qubit code for quantum

error correction against single bit flip operation.

As in the classical case, we let the bit flip channel affect independently each qubit (uncorre-

lated channels). After the noisy evolution we should implement the error diagnosis and correc-

tion: in figure 7.3 we can see the quantum circuit achieving this goal.

In order to understand how the 3-qubit code works, let us assume that after the bit flip

channel the state is |Ψ′〉 = σ̂x ⊗ Î⊗ Î |Ψ〉, i.e., the first qubit has been flipped. The first CNOT

gate performs the following transformation:∣∣Ψ′〉 = α|100〉+ β|011〉 → α|110〉+ β|011〉, (7.5)

thereafter, we have the second CNOT gate which leads to:

α|110〉+ β|011〉 → α|111〉+ β|011〉. (7.6)

The last gate is a Toffoli gate which takes the second and third qubits as control and the first

qubit as target, we obtain:

α|111〉+ β|011〉 → α|011〉+ β|111〉 ≡ (α|0〉+ β|1〉)︸ ︷︷ ︸
|ψ〉

|11〉. (7.7)

We conclude that the error has been corrected since the state of the first qubit is still |ψ〉.

� – Exercise 7.1 Verify that the 3-qubit codes depicted in figure 7.3 works as follows:

Î⊗ Î⊗ Î |Ψ〉 → |ψ〉|00〉,

σ̂x ⊗ Î⊗ Î |Ψ〉 → |ψ〉|11〉,

Î⊗ σ̂x ⊗ Î |Ψ〉 → |ψ〉|10〉,

Î⊗ Î⊗ σ̂x |Ψ〉 → |ψ〉|01〉.

The code may fails if more than one qubit is flipped. Since the probability that at most one

bit is flipped reads:

p≤1 = (1− p)3 + 3p (1− p)2 = (1− p)2(1 + 2p), (7.8)
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|ψ〉 • • H
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H • • |ψ〉

|0〉 H H •

|0〉 H H •

Figure 7.4: Quantum circuit describing the strategy to implement the 3-qubit code for quantum error

correction against single phase flip operation.

we have the following probability of error at the output:

p(3)err,Q = 1− p≤1 = 3p2 − 2p3, (7.9)

the same obtained in the classical 3-bit code.

7.2.2 Correction of phase flip error

Phase flip error does not have classical analogue, since the transformation |1〉 → −|1〉 does not

exist in classical logic. The quantum map describing a channel in which phase flip occurs with

probability p reads (see also section 6.3.2):

E($̂) = (1− p) $̂ + p σ̂z $̂ σ̂z. (7.10)

It is worth noting that since σ̂z|x〉 = (−1)x|x〉, we have:

σ̂z|±〉 = |∓〉, (7.11)

where:

|±〉 = |0〉 ± |1〉√
2

, (7.12)

and we conclude that the phase flip channel acts as a bit flip channel on the basis |±〉. Therefore,

recalling the action of the Hadamard transformation on the computational basis |0〉 and |1〉,
it is easy to prove that the quantum circuit represented in figure 7.4 corrects a single phase

flip error. Actually, the first Hadamard transformations physically change the computational

basis in order that the phase flip channel behaves like a bit flip channel; the second Hadamard

transformations transform back to the original basis in order to apply the same correction code

described in the previous section.

7.2.3 Correction of any error: the Shor code

As a matter of fact, in a realistic channel both bit and phase flip errors may take place. It is

possible to protect the qubit against the effects of an arbitrary error by means of the Shor code,
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|ψ〉 • • H • •

arb.

error

• • H • • |ψ〉

|0〉 •

|0〉 •

|0〉 H • • • • H •

|0〉 •

|0〉 •

|0〉 H • • • • H •

|0〉 •

|0〉 •

Figure 7.5: Quantum circuit implementing the Shor code to protect a qubit |ψ〉 against an arbitrary error.

which is a combination of the 3-qubit bit flip and phase flip error correction codes. In figure 7.5

we sketched the quantum circuit implementing the Shor code. The reader can investigate its

action applying the results obtained in the previous sections.
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Chapter 8
Two-level systems and basics of QED

ANY TWO-LEVEL QUANTUM SYSTEM is associated with a Hilbert space spanned by two or-

thonormal states and , thus, can be seen as a qubit. In this chapter we will focus on 1
2 -spin

particles and two-level atoms, which are the simplest example of qubits. We also explain how

it is possible to manipulate spins and atoms in order to implement quantum logic gates.

8.1 Universal computation with spins

A typical two-level system is a 1
2 -spin particle which can be used as a qubit and manipulated

by means of electromagnetic fields.

8.1.1 Interaction between a spin and a magnetic field

The operator associated with the spin magnetic moment of a 1
2 -spin particle is given by:

µ̂ = − gq
2m

Ŝ,

where g is the gyromagnetic factor (for an electron g ≈ 2.002), q and m are the charge and the

mass of the particle, respectively, and Ŝ = h̄
2 σ̂, where σ̂ = (σ̂x, σ̂y, σ̂z) is, as usual, the vector of

the Pauli operators.

The Hamiltonian describing the interaction between the 1
2 -spin particle and the (classical)

static magnetic fiels B = (Bx, By, Bz) is:

Ĥint = −µ̂ · B =
gq
2m

h̄
2

σ̂ · B.

which can be written as:

Ĥint =
h̄ω

2
n · σ̂, (8.1)

85
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Figure 8.1: Precession of a spin (red arrow) under the effect of a magnetic field B directed along z-direction.

The tip of the vector representing the spin rotate counterclockwise around the z-direction.

where we introduced the Larmor frequency ω = gq|B|/(2m), and n = B/|B|.
Without lack of generality, we assume B = (0, 0, B), that is we take the magnetic field along

the z-direction and, accordingly, n · σ̂ = σ̂z. Given the initial state (as we mentioned, any two-

level system can be considered as a qubit, see section 2.2):

|ψ0〉 = cos
θ

2
|0〉+ sin

θ

2
|1〉,

with σ̂z|x〉 = (−1)x|x〉, x = 0, 1, we have the following time evolution under the effect of Ĥint:

|ψt〉 = exp
(
−i

Ĥint

h̄
t
)
|ψ0〉

= cos
θ

2
e−iωt/2|0〉+ sin

θ

2
eiω/2t|1〉

= e−iωt/2
(

cos
θ

2
|0〉+ sin

θ

2
eiωt|1〉

)
,

where, in the last equation, the overall phase e−iωt/2 can be neglected. Following section 2.2.1,

the Bloch vector rt associated with |ψt〉 reads:

rt =


sin θ cos ωt

sin θ sin ωt

cos θ

 ,

that is we have the Larmor precession of the spin around the direction of the magnetic field

(here the z-direction), as illustrated in figure 8.1.

More in general, the unitary evolution operator associated with the Hamiltonian (8.1) reads:

exp
(
−i

Ĥint

h̄
t
)
= cos

(
ωt
2

)
Î− i sin

(
ωt
2

)
n · σ̂, (8.2)

and we can implement single qubit gates by suitably choosing the time t and the amplitude and

orientation of the magnetic field B.
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8.1.2 Spin qubit and Hadamard transformation

If we orient the magnetic field along the x-z direction, i.e., B = B n with n = 2−1/2(1, 0, 1), and

set the evolution time such that ωt = π, form Eq. (8.2) we have:

exp
(
−i

Ĥint

h̄
t
)
→ − i√

2
(σ̂x + σ̂z) ≡ −iH, (8.3)

that is, up to an overall phase factor “−i”, we have the quantum operator describing the action

of the Hadamard transformation introduced in section 1.4.4 [see Eq. (1.9)].

� – Exercise 8.1 Starting form Eq. (8.2), explain why it is possible to reproduce the

action of any single-qubit gate by using a single spin and a suitably chosen classical

magnetic field.

8.1.3 How to realize a CNOT gate

The CNOT gate involves two qubits and the corresponding operator, taking qubits 1 and 2 as

control and target, respectively, may be written as the following operator:

C12 =
1
2

(
Î+ σ̂

(1)
z + σ̂

(2)
x − σ̂

(1)
z σ̂

(2)
x

)
, (8.4)

where σ̂
(h)
k , k = x, y, z and h = 1, 2, represent the Pauli operators acting on the h-th qubit (see

section 1.4.2). However, as mentioned in section 3.5, σ̂z = H σ̂x H, therefore we can focus on the

operator:

Z12 =
(
Î⊗H

)
C12

(
Î⊗H

)
(8.5)

=
1
2

(
Î+ σ̂

(1)
z + σ̂

(2)
z − σ̂

(1)
z σ̂

(2)
z

)
, (8.6)

which is symmetric with respect the exchange of the two qubits. Since (Z12)
2 = Î we have:

exp (iZ12 θ) =
∞

∑
k=0

(iθ)k

k!
(Z12)

k

= cos θ Î+ iZ12 sin θ,

and, setting θ = π/2, we find:

Z12 = −i exp
(

iZ12
π

2

)
= −i exp

[
i
π

4

(
Î+ σ̂

(1)
z + σ̂

(2)
z − σ̂

(1)
z σ̂

(2)
z

)]
= exp

(
−i

π

4

)
exp

[
i
π

4

(
σ̂
(1)
z + σ̂

(2)
z − σ̂

(1)
z σ̂

(2)
z

)]
.

Therefore, we can implement the Z12 gate by letting the two qubits interact through the Hamil-

tonian:

Ĥ ∝ σ̂
(1)
z + σ̂

(2)
z − σ̂

(1)
z σ̂

(2)
z , (8.7)
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and by choosing a suitable time t for the corresponding unitary evolution. As we will see, the

term Ĥ0 ∝ σ̂
(1)
z + σ̂

(2)
z is the free Hamiltonian of the system of the two qubits, while σ̂

(1)
z σ̂

(2)
z

represents a highly anisotropic interaction that couples the z-components of the qubits, known

as Ising interaction.

Physically, the Hamiltonian Ĥ may be realized with 1
2 -spin particles. In this case the free

Hamiltonian is Ĥ0 = 1
2 h̄ (σ̂(1)

z + σ̂
(2)
z ) and the interaction ∝ σ̂

(1)
z σ̂

(2)
z couples the spins along

the z-direction subject to an uniform magnetic field, whose amplitude is proportional to the

strength of their coupling. However, Ising interactions are hard to arrange and it is better to

consider exchange interactions between spins. As we will see in chapter 8 (section 8.1.4), by

applying suitable magnetic fields to the spins, with the same direction but different magnitudes

and signs, we can build a Z12 gate.

� – Exercise 8.2 Prove that the operators C12 and Z12 as defined in Eqs. (8.4) and

(8.6), respectively, act on |x〉|y〉 as a CNOT and a controlled-Z gates, where σ̂z|x〉 =
(−1)x|x〉 and σ̂x|x〉 = |x〉.

8.1.4 Exchange interactions and CNOT gate

In section 8.1.3 we have seen that CNOT may be implemented with two 1
2 -spins by using the

Ising interaction, that is a kind of interaction which couples spin along z-direction. However, we

pointed out that Ising interactions are hard to arrange and it is better to use exchange interactions

between two spins, whose interaction Hamiltonian is:

Ĥex ∝ σ̂(1) · σ̂(2) = σ̂
(1)
x σ̂

(2)
x + σ̂

(1)
y σ̂

(2)
y + σ̂

(1)
z σ̂

(2)
z ,

where σ̂(k) = (σ̂
(k)
x , σ̂

(k)
y , σ̂

(k)
z ), k = 1, 2, is the vector of the Pauli operators acting on the Hilbert

spaceHk of the k-th spin.

The system we are considering here consists of two 1
2 -spins particles of mass mk and charge

qk, k = 1, 2. We assume that each spin interacts with a magnetic field Bk whereas they are

coupled through exchange interaction. The corresponding Hamiltonian reads (we use the same

formalism introduced in the previous sections):

Ĥ = h̄
ω1

2
n1 · σ̂(1) + h̄

ω2

2
n2 · σ̂(2) + h̄J σ̂(1) · σ̂(2), (8.8)

where ωk are the corresponding Larmor frequencies and J is the strength of the exchange inter-

action. Note that if J = 0, then Eq. (8.8) reduces to the Hamiltonian of two uncoupled spins each

interacting with the corresponding magnetic field, that is we have just two single-qubit gates.

Without lack of generality we can set Bk = (0, 0, Bk) and Eq. (8.8) becomes:

Ĥ = h̄
ω1

2
σ̂
(1)
z + h̄

ω2

2
σ̂
(2)
z︸ ︷︷ ︸

Ĥ0

+ h̄J σ̂(1) · σ̂(2)︸ ︷︷ ︸
Ĥex

, (8.9)
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where Ĥ0 is the free Hamiltonian of the two-spin system, while Ĥex is the interaction Hamilto-

nian. In the following we show that, starting form the Hamiltonian in Eq. (8.9), we can build the

two-qubit quantum gate Z12, that can be converted into a CNOT gate by means of Hadamard

transformations realized through Eq. (8.3) (see section 8.1.3). In particular, we show that for a

suitable choice of ωk and t, given J, we may have Z12 = exp(−i Ĥt/h̄). First of all, we recall

that:

Z12 =
1
2

(
Î+ σ̂

(1)
z + σ̂

(2)
z − σ̂

(1)
z σ̂

(2)
z

)
,

and this is its action on the triplet states |00〉, |11〉 and |ψ+〉 = 2−1/2(|01〉 + |10〉) and on the

singlet state |ψ−〉 = 2−1/2(|01〉 − |10〉):

Z12|00〉 = |00〉, Z12|11〉 = −|11〉, (8.10)

Z12|ψ+〉 = |ψ+〉, Z12|ψ−〉 = |ψ−〉. (8.11)

It is worth noting that the four states {|00〉, |11〉, |ψ±〉} form a basis of the Hilbert spaceH1⊗H2,

Hk being the Hilbert space of the k-th spin. Therefore, it is enough to find the conditions on the

involved parameters in order to have exp(−i Ĥt/h̄) acting as cZ on such a basis.

The first step is to find the eigenvectors and eigenvalues of Eq. (8.9) and we proceed as fol-

lows. Since the SWAP operator may be written as S = 1
2 (Î+ σ̂(1) · σ̂(2)), therefore the following

states are eigenstates of the operator σ̂(1) · σ̂(2), namely:

σ̂(1) · σ̂(2)|00〉 = |00〉, σ̂(1) · σ̂(2)|11〉 = |11〉,

σ̂(1) · σ̂(2)|ψ+〉 = |ψ+〉, σ̂(1) · σ̂(2)|ψ−〉 = −3 |ψ−〉.

Furthermore, we can write:

Ĥ0 = h̄
ω+

2

(
σ̂
(1)
z + σ̂

(2)
z

2

)
+ h̄

ω−
2

(
σ̂
(1)
z − σ̂

(2)
z

2

)
,

with ω± = ω1 ±ω2 and we find:

1
2

(
σ̂
(1)
z + σ̂

(2)
z

)
|00〉 = |00〉, 1

2

(
σ̂
(1)
z − σ̂

(2)
z

)
|00〉 = 0,

1
2

(
σ̂
(1)
z + σ̂

(2)
z

)
|11〉 = −|11〉, 1

2

(
σ̂
(1)
z − σ̂

(2)
z

)
|11〉 = 0,

1
2

(
σ̂
(1)
z + σ̂

(2)
z

)
|ψ±〉 = 0,

1
2

(
σ̂
(1)
z − σ̂

(2)
z

)
|ψ±〉 = |ψ∓〉.

Therefore we have:

Ĥ|00〉 = h̄
(

J +
ω+

2

)
|00〉, Ĥ|11〉 = h̄

(
J − ω+

2

)
|11〉, (8.12)

Ĥ|ψ+〉 = h̄J|ψ+〉+ h̄
ω−
2
|ψ−〉, Ĥ|ψ−〉 = −3h̄J|ψ−〉+ h̄

ω−
2
|ψ+〉, (8.13)
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that is |00〉 and |11〉 are eigenstates of Ĥ, while Ĥ transforms |ψ±〉 is a linear combination of

|ψ+〉 and |ψ−〉. Thereafter, we have the following matrix representation of Ĥ in the chosen

basis:

Ĥ → h̄


J + 1

2 ω+ 0 0 0

0 J − 1
2 ω+ 0 0

0 0 J 1
2 ω−

0 0 1
2 ω− −3J

 .

The matrix has a block-diagonal form and, to find its eigenvectors and eigenvalues we can

consider only the 2 × 2 block [the other block is with eigenvectors and eigenvalues given in

Eg. (8.12)]: (
J 1

2 ω−
1
2 ω− −3J

)

that has eigenvalues −J ±
√

4J2 + 1
4 ω2
−, corresponding to the eigenstates |Ψ±〉 = α±|ψ+〉 +

β±|ψ−〉, where we do not explicitly calculate the expression of the coefficients α± and β±. Now,

since |ψ±〉 are eigenstates of Z12 with eigenvalue 1 [see Eq. (8.11)], the states |Ψ±〉 are still its

eigenstates with the same eigenvalue. Therefore, we have found that the four states:

|00〉, |11〉, and |Ψ±〉,

are eigenstates of both Z12 and Ĥ and, thus, of the evolution operator Uex(t) = exp(−i Ĥt/h̄).

In order to have Z12 ≡ Uex(t), their eigenstates should have the same eigenvalues, up to a

constant phase factor which should be the same for all the states, namely:

Uex(t)|00〉 = exp
[
−it

(
J +

1
2

ω+

)]
|00〉 ↔ Z12|00〉 = |00〉,

Uex(t)|11〉 = exp
[
−it

(
J − 1

2
ω+

)]
|11〉 ↔ Z12|11〉 = −|11〉,

Uex(t)|Ψ+〉 = exp

[
−it

(
−J +

√
4J2 +

1
4

ω2
−

)]
|Ψ+〉 ↔ Z12|Ψ+〉 = |Ψ+〉,

Uex(t)|Ψ−〉 = exp

[
−it

(
−J −

√
4J2 +

1
4

ω2
−

)]
|Ψ−〉 ↔ Z12|Ψ−〉 = |Ψ−〉.

This happens by setting ω+ = 4J, ω− = 4
√

3J and t = π/(4J), which also leads to the overall

constant phase factor exp(−i 3π/4) equal for all the states. Indeed, one can change the value

of ω± by changing the values of the two magnetic fields. In fact, the previous conditions are

equivalent to require ω1 = 2(1 +
√

3)J and ω2 = 2(1−
√

3)J, and, thus, we find (for the sake of

simplicity we assume the two 1
2 -spin particle to be of the same species, i.e., mk = m, gk = g and

qk = q, k = 1, 2):

B1 = 4(
√

3 + 1)
mJ
gq

, and B2 = −4(
√

3− 1)
mJ
gq

,
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Note that the two magnetic fields are directed along z-direction but have opposite sign; though

Z12 is symmetric, its physical implementation by means of exchange interaction requires dif-

ferent magnetic fields acting on the two spins. However, if we set ω1 = 2(1 −
√

3)J and

ω2 = 2(1 +
√

3)J we obtain the same result, that is, the symmetry is still present!

Let us now focus on the order of magnitude of the involved quantities. The Bohr magneton

and the Nuclear magneton are:

µB =
eh̄

2me
= 9.27× 10−24 J

T
and µN =

eh̄
2mp

= 5.05× 10−27 J
T

respectively, where e is the charge of the electron while me and mp are the masses of the electron

and of the proton, respectively. Typical 1
2 -spin nuclei are 1H, 13C and 19F and the J-coupling

magnitudes are J ∼ 108 Hz (∼ 100 MHz). Since ω ∼ 108 Hz, we have that the involved

magnetic field amplitudes are ∼ 10−2 T for the electronic spin and ∼ 10 T for the nuclear spin,

leading to a time-scale t ∼ 10−8 sec.

� – Exercise 8.3 Draw the quantum circuit to implement the CNOT gate involving
1
2 -spin particles by using single-qubit gates and the two-qubit gate based on the ex-

change interaction. Explain how the involved magnetic fields should be directed, write

their magnitude and the interaction time for each gate. Is it important to control the

overall phases appearing on the quibit after the gates? Why?

8.1.5 Further considerations

The exchange interaction Hamiltonians are typical of NMR systems and molecules. The inter-

action between the spins is an indirect interaction mediated by the electrons shared through a

chemical bond. The magnetic field seen by the nucleus is perturbed by the state of the electronic

cloud, which interacts with another nucleus through the overlap of the wave-function with the

nucleus (Fermi contact interaction), that is a through-bond interaction.

The same Hamiltonian of Eq. (8.8) describe the excess of electron spins in pair of quan-

tum dots, which are linked through a tunnel junction (Heisenberg Hamiltonian). This effective

Hamiltonian can be derived from a microscopic model for electrons in coupled quantum dots.

8.2 Interaction between atoms and light: cavity QED

In this section we address a two-level atom, throughout the section |g〉 and |e〉 represent the

states associated with the ground and the excited state, respectively. The free Hamiltonian of

the two-level atom can be written by means of the Pauli operators as follows:

Ĥa = h̄
ωeg

2
σ̂z,
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where h̄ωeg = h̄ωe − h̄ωg is the energy difference between the two levels and we have the

following association with the usual computational basis: |e〉 → |0〉 and |g〉 → |1〉.
In the two-level approximation, the electric-dipole moment operator of the atom can be

written as:

D̂ = d (εaσ̂− + ε∗a σ̂+) (8.14)

where we introduced σ̂− = |g〉〈e| and σ̂+ = |e〉〈g|, the lowering and raising operators, d is the

matrix element of the atomic transition and εa is a complex vector which represents the atomic

polarization transition.

8.2.1 Interaction picture

Given a Hamiltonian Ĥ = Ĥ0 + Ĥint, Ĥ0 and Ĥint being the free and interaction Hamiltonian,

respectively, it is sometime useful to use the so-called interaction picture. If |ψt〉 represents the

state of the system at the time t, its evolution is governed by the Schrödingier equation:

ih̄
∂

∂t
|ψt〉 = Ĥ|ψt〉 .

Now, we apply the following unitary transformation:

|ψt〉 → |ψ′t〉 = Û0(t)†|ψt〉 ⇒ |ψt〉 = Û0(t)|ψ′t〉

where Û0(t) = exp(−iĤ0t/h̄). Substituting into the Schrödinger equation we have:

ih̄
∂

∂t
[
Û0(t)|ψ′t〉

]
=
(

Ĥ0 + Ĥint
)

Û0(t)|ψ′t〉

Ĥ0Û0(t)|ψ′t〉+ ih̄Û0(t)
∂

∂t
|ψ′t〉 =

(
Ĥ0 + Ĥint

)
Û0(t)|ψ′t〉

and, after some algebra and applying Û†
0 (t) to both sides, we obtain:

ih̄
∂

∂t
|ψ′t〉 = Ĥ′int(t)|ψ′t〉 ,

where we introduced Ĥ′int(t) = Û†
0 (t)ĤintÛ0(t). Therefore, by using the interaction picture with

respect to the free Hamiltonian1 one can focus on the (transformed) interaction Hamiltonian:

this is extremely useful in the presence of oscillatory terms as we will see in the next section

where we will investigate the interaction of a two level atom with an oscillatory electric field.

8.2.2 Interaction between a two-level atom and a classical electric field

The interaction between a two-level atom and a classical electric field is formally equivalent to

the interaction between a 1
2 -spin particle and a magnetic field discussed in the previous sec-

tion. The quantum Hamiltonian describing the interaction between the atomic electric dipole
1More in general, one can perform the interaction picture considering a different Hamiltonian which, in the case

under investigation, allows to simplify the description of the system.
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moment and the classical field E(ω, t) = i E0 (εf e−iωt−iϕ − ε∗f eiωt+iϕ) with real amplitude E0,

frequency ω and polarization εf, is:

Ĥint = −D̂ · E(ω, t), (8.15)

and the whole hamiltonian is thus given by:

Ĥtot = h̄
ωeg

2
σ̂z − D̂ · E(ω, t). (8.16)

In order to focus on the interaction, we consider the interaction picture wither respect to the

Hamiltonian Ĥ0 = h̄ωσ̂z/2 (note that here we use the frequency ω of the field). Following

section 8.2.1 we have:

Ĥtot → Ĥ = Û†
0 (t)ĤtotÛ0(t) = h̄

∆ω

2
, σ̂z − Û†

0 (t)D̂ · E(ω, t)Û0(t) , (8.17)

where ∆ω = ωeg − ω, that is the detuning between the two-level atom and the field. Since

Û†
0 (t)σ̂±Û0(t) = σ̂± e±iωt, the last term of Eq. (8.17) contains terms proportional to e±iϕ and to

e±i2ωt±iϕ: these last terms are fast rotating and if we assume that the time-scale of the system

is 1/ω, then their effect on the time evolution is negligible. This corresponds to perform the

rotating-wave approximation (RWA) or secular approximation. Therefore, Eq. (8.16) reduces to:

Ĥ = h̄
Ω′

2
n · σ̂, (8.18)

where:

n =
1

Ω′
(−Ω0 sin ϕ, Ω0 cos ϕ, ∆ω).

with Ω′ =
√
(∆ω)2 + Ω2

0 and we introduced the Rabi frequency:

Ω0 =
2d
h̄

E0 ε∗a · εf. (8.19)

In the resonant case (∆ω = 0) we have (we can assume Ω0 ∈ R and set ϕ = 0):

Ĥ = h̄
Ω0

2
σ̂y,

which has the following eigenstates |γ±〉 = 2−1/2(|0〉 ± i|1〉). More in general, if ϕ 6= 0, we

obtain the following time evolution (still in the resonant case):

Ûϕ(t) = exp
(
−i

Ω0t
2

n · σ̂
)

= cos
(

Ω0t
2

)
Î− i sin

(
Ω0t

2

) [
− sin ϕ σ̂x + cos ϕ σ̂y

]
,

and, by using the 2× 2 matrix formalism (in the computational basis):

Ûϕ(t)→

 cos
(

Ω0t
2

)
−e−iϕ sin

(
Ω0t

2

)
eiϕ sin

(
Ω0t

2

)
cos

(
Ω0t

2

)  .
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It is now straightforward to see that:

Ûϕ(t)|e〉 = cos
(

Ω0t
2

)
|e〉+ eiϕ sin

(
Ω0t

2

)
|g〉,

Ûϕ(t)|g〉 = cos
(

Ω0t
2

)
|g〉 − e−iϕ sin

(
Ω0t

2

)
|e〉.

We have three following relevant cases.

• π
2 -pulse: in this case one sets Ω0t = π/2 and we have the following evolution starting

from |g〉 or |e〉:

|e〉 → 2−1/2
(
|e〉+ eiϕ|g〉

)
, and |g〉 → 2−1/2

(
|g〉 − e−iϕ|e〉

)
, (8.20)

and, for ϕ = 0, we obtain the Hadamard transformation.

• π-pulse: now Ω0t = π and we have:

|e〉 → eiϕ|g〉, and |g〉 → −e−iϕ|e〉, (8.21)

that is, besides and overall phase shift, the NOT gate.

• 2π-pulse: for Ω0t = 2π we get:

|e〉 → −|e〉, and |g〉 → −|g〉, (8.22)

i.e., we add a phase shift to the input state. This phase shift is a well-known properties of

2π-spin rotations.

� – Exercise 8.4 Represent the evolution of the two-level atom interacting with a

classical electric field by using the Bloch sphere formalism, in the case of π
2 -pulse, π-

pulse and 2π-pulse. Assume that the initial state is |e〉, that is the north pole of the

unit sphere.

8.2.3 Fabry-Perot cavity

The main interaction between light and atoms in quantum electrodynamics (QED) is the dipolar

interaction. On the one hand, the dipole moment is fixed by the nature of the atom: usually

experimentalists use the Rydberg states (that is states with very high principal quantum number

n in order to obtain a high electric dipole moment) of alkali atoms, such as Rb atoms. On the

other hand, one can realize a very large electric field in a narrow band of frequencies and in a

small volume of space by means of a Fabry-Perot cavity.

A Fabry-Perot cavity consists of two semi-reflecting mirrors with reflectivity R1 and R2, re-

spectively. In order to find the field inside the cavity, we consider what happens when two
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Figure 8.2: Input and output fields at a semi-reflecting mirror with reflectivity R.

Figure 8.3: Scheme of Fabry-Perot cavity. See the text for details.

classical fields E(in)
a and E(in)

b are mixed at a semi-reflecting mirror with reflectivity R (see fig-

ure 8.2). If we denote with E(out)
a and E(out)

b the output field, we have the following linear

transformation: (
E(out)

a

E(out)
b

)
=

( √
R

√
1− R

√
1− R −

√
R

)(
E(in)

a

E(in)
b

)

that is:

E(out)
a =

√
R E(in)

a +
√

1− R E(in)
b ,

E(out)
b = −

√
R E(in)

b +
√

1− R E(in)
a .

The scheme of the Fabry-Perot cavity is sketched in figure 8.3: two mirrors with reflectivity

R1 and R2, respectively, are placed at a distance L. The cavity is pumped with an input field E(in)

of frequency ω, which impinges on the first mirror. The transmitted part undergoes multiple

reflections between the two mirrors leading to an overall forward and backward field inside the

cavity, E(cav)
fwd and E(cav)

bwd , respectively, an overall transmitted field E(out) and an overall reflected
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Figure 8.4: Ratio between the input power and the power of the field inside the cavity as a function of the

input field frequency ω. We set R1 = R2 = 0.8. See the text for details.

field E(rfl), as depicted in figure 8.3. If we define φ = 2Lω/c, then we have:

E(cav)
fwd =

√
1− R1

1 + eiφ√R1R2
E(in),

E(cav)
bwd = eiφ/2

√
R2 E(cav)

fwd ,

E(out) = eiφ/2
√

1− R2 E(cav)
fwd ,

E(rfl) = eiφ
√
(1− R1)R2 E(cav)

fwd +
√

R1 E(in).

In particular, if we assume R1 = R2 = R and choose L such that φ = (2m + 1)π (field-cavity

resonance condition), m ∈ N, we obtain:

E(cav)
fwd =

E(in)
√

1− R
, (8.23a)

E(cav)
bwd = i

√
R√

1− R
E(in), (8.23b)

E(out) = i E(in), E(rfl) = 0. (8.23c)

A quantity usually considered to investigate the behavior of the cavity is the ratio between

the input field power and the forward cavity field power, namely:

Pcav

Pin
=

∣∣∣∣∣E
(cav)
fwd

E(in)

∣∣∣∣∣
2

=
1− R1

1 + R1R2 + 2
√

R1R2 cos φ
. (8.24)

In figure 8.4 we plot Pcav/Pin as a function of the input field frequency: it is clear that near

resonance we have a high field amplitude inside the cavity. In order to better understand the

behavior of the ratio defined in Eq. (8.24) we introduce δ = φ−π, i.e., the resonance is obtained
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for δ = 0, and consider the limit δ� 1. We obtain the following expression for Eq. (8.24):

Pcav

Pin
=

1− R1

(1−
√

R1R2)2
∆2(R1, R2)

δ2 + ∆2(R1, R2)
(8.25)

that is a Lorentzian function where the half-width at half-maximum (HWHM) is:

∆2(R1, R2) =
(1−

√
R1R2)

2
√

R1R2
,

which, assuming R1 = R2 = R, reduces to:

∆(R) =
1− R√

R
,

and corresponds to a spectral bandwidth HWHM:

∆ω =
c

2L
1− R√

R
.

Finally, the cavity finesse is the ratio between the free spectral range, and the full-width half-

maximum (FWHM) of Eq. (8.24) at resonance. In the present case the free spectral range is

2πc/(2L) (see figure 8.4), while the FWHM is 2∆ω, thus the cavity finess is given by:

F =
2πc
2L

1
2∆ω

= π

√
R

1− R
.

The reader can obtain a quantitative analysis of the cavities involved in typical cavity QED

experiments considering that R ≈ 1 and L ∼ 1 cm: this is why we have a very high field

amplitude inside the cavity in the microwave domain, and, remarkably, microwaves are the

characteristic transition frequencies of the Rydberg states involved in these experiments.

We now focus the attention on plain waves and assume that the axis of the cavity is aligned

with the z-axis of a reference frame, where the mirrors are placed at z = 0 and z = L, respec-

tively. In side the cavity we have two counter propagating waves [here we also assume to be at

resonance and we use consider resonance and use Eqs. (8.23)]:

E(cav)
fwd (z, ω, t) =

E(in)
√

1− R
cos(kz−ωt),

E(cav)
bwd (z, ω, t) = − E(in)

√
R√

1− R
sin(kz + ωt),

therefore, inside the cavity we have the following wave:

Ecav(z, ω, t) =
E(in)
√

1− R

[
cos(kz−ωt)−

√
R sin(kz + ωt)

]
.

If we now perform the time average of the intensity of the field inside the cavity, we find:〈
|Ecav(z)|2

〉
≡ ω

2π

∫ 2π/ω

0
|Ecav(z, ω, t)|2 dt =

1 + R− 2
√

R sin(2kz)
2(1− R)

∣∣∣E(in)
∣∣∣2

=
1 + R− 2

√
R sin

[
(2m + 1)π

z
L

]
2(1− R)

∣∣∣E(in)
∣∣∣2 ,
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where, in the last equality, we used the resonance condition for the wave vector k = ω/c,

namely k = (2m + 1)π/(2L). In the case of optical frequencies m ≈ 105 and if we consider the

average over the z direction we find:〈
|Ecav|2

〉
≈ 1 + R

2(1− R)

∣∣∣E(in)
∣∣∣2 .

8.2.4 The quantum description of light

The quantum Hamiltonian of the single-mode electromagnetic field in the cavity corresponds

to that of a harmonic oscillator with the same frequency ω, namely:

Ĥ =
P̂2

2
+

1
2

ω2Q̂2 = h̄ω

(
â† â +

1
2

)
where we introduced the position- and momentum-like operators:

Q̂ =

√
h̄

2ω

(
â† + â

)
, and P̂ = i

√
h̄ω

2

(
â† − â

)
,

respectively,
[
Q̂, P̂

]
= ih̄ Î, and:

â =

√
ω

2h̄

(
Q̂ + i

P̂
ω

)
, and â† =

√
ω

2h̄

(
Q̂− i

P̂
ω

)
,

are the annihilation and creation bosonic field operators respectively. Note that [â, â†] = Î. At

each mode of the radiation field corresponds a bosonic field operator.

If we denote with {|n〉}n∈N the set of the eigenvectors of the self-adjoint operator N̂ = â† â,

namely, N̂|n〉 = n|n〉 we have:

â|n〉 =
√

n|n− 1〉 and â†|n〉 =
√

n + 1|n + 1〉,

and, thus:

|n〉 = (â†)n
√

n!
|0〉,

where the state |0〉 represents the vacuum state. The set {|n〉}n∈N is sometimes called Fock-state

basis or photon-number basis.

8.2.5 The Jaynes-Cummings model

The full quantum model to describe the interaction between light and matter involves the quan-

tum description of light. Now the classical electric field appearing in the interaction Hamilto-

nian of Eq. (8.15) is replaced by the corresponding quantum operator2:

Ê = iE0

(
εf â− ε∗f â†

)
,

2We consider a stationary, time-independent cavity field and, for the sake of simplicity, we also assume that the atom

is placed at the center of the cavity.
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Figure 8.5: The blue and red lines refer to the energy levels corresponding to the eigenstates of the free

Hamiltonian given in Eq. (8.26) with ω = ωeg: it is clear that the states |g, n + 1〉 and |e, n〉, with n ≥ 0, are

degenerate. The only non-degenerate level is the ground state |g, 0〉. The Jaynes-Cummings interaction

removes degeneracy and couples the dressed states
∣∣Ψ±n 〉, whose corresponding energy levels (green lines)

have an energy difference equal to h̄Ωn = h̄Ω0
√

n + 1.

where â and â† are the annihilation and creation field operators introduced in section 8.2.4. The

free Hamiltonian of the system reads:

Ĥ0 = h̄
ωeg

2
σ̂z︸ ︷︷ ︸

atom

+ h̄ω

(
â† â +

1
2

)
︸ ︷︷ ︸

field

, (8.26)

and we have the two families of eigenstates of Ĥ0, i.e.:

Ĥ0|g, n〉 = h̄
[
−

ωeg

2
+ ω

(
n +

1
2

)]
|g, n〉,

Ĥ0|e, n〉 = h̄
[
+

ωeg

2
+ ω

(
n +

1
2

)]
|e, n〉,

where {|e〉, |g〉} are the eigenstates of σ̂z, {|n〉} is the photon-number basis and |x, y〉 = |x〉|y〉.
As we can also see in figure 8.5, if ω = ωeg the states |g, n + 1〉 and |e, n〉, with n ≥ 0, are

degenerate.

The interaction Hamiltonian reads:

Hint = −D̂ · Ê, (8.27)

where D̂ is still given by Eq. (8.14). By performing the interaction picture with respect to the

Hamiltonian Ĥ′ = h̄ω(â† â + 1
2 + 1

2 σ̂z) and the RWA (see sections 8.2.1 and 8.2.2), we obtain the
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following interaction Hamiltonian:

Ĥint = h̄
δ

2
σ̂z − i h̄

Ω0

2

(
σ̂+ â− σ̂− â†

)
, (Jaynes-Cummings Hamiltonian) (8.28)

where Ω0 is the Rabi frequency defined in Eq. (8.19) and δ = ωeg − ω is the detuning. It is in-

teresting to note that Ĥint couples the two-dimensional manifold spanned by {|g, n + 1〉, |e, n〉},
with n > 0. In fact, we have:(

σ̂+ â− σ̂− â†
)
|g, n + 1〉 =

√
n + 1 |e, n〉, (absorption of one photon)(

σ̂+ â− σ̂− â†
)
|e, n〉 = −

√
n + 1 |g, n + 1〉. (emission of one photon)

Note that the ground state of the free Hamiltonian, namely, |g, 0〉, is also an eigenstate of Ĥint.

Upon introducing the operator N̂ = â† â + 1
2 +

1
2 σ̂z, the total Hamiltonian may be written as

follows (after the RWA but not in the interaction picture):

Ĥ = h̄ω N̂ + h̄
δ

2
σ̂z − i h̄

Ω0

2

(
σ̂+ â− σ̂− â†

)
. (8.29)

If we focus on the resonant case δ = 0, besides the ground state, we find the following eigen-

states of the total Hamiltonian for n ≥ 0:

Ĥ
∣∣Ψ±n 〉 = h̄

[
(n + 1)ω± 1

2
Ωn

]
︸ ︷︷ ︸

E±n

∣∣Ψ±n 〉,
where: ∣∣Ψ±n 〉 = 1√

2
(|e, n〉 ± i|g, n + 1〉) ,

and Ωn = Ω0
√

n + 1 is the Rabi frequency for n photons. The states |Ψ±n 〉 are called dressed

states and ∆En = E+
n − E−n = h̄Ω0

√
n + 1. Of course we can also write:

|e, n〉 = 1√
2

(∣∣Ψ+
n
〉
+
∣∣Ψ−n 〉) , and |g, n + 1〉 = 1

i
√

2

(∣∣Ψ+
n
〉
−
∣∣Ψ−n 〉) .

� – Exercise 8.5 Assume that the system is initially prepared in the state |e, n〉, n ≥
0. Find the probability to find the atom in the excited state after an interaction time t

assuming δ = 0.

The physical meaning of the solution of the exercise 8.5 is that the atom and the field mode

exchange one single photon with frequency Ωn.

It is worth noting that the Jaynes-Cummings Hamiltonian of Eq. (8.28) can be also written

as:

Ĥint = h̄
Ω0

2

(
σ̂+ â + σ̂− â†

)
,

where we perform the following unitary transformation of mode â → iâ, which, of course,

preserves the commutation relations, since
[
(iâ), (iâ)†] = [â, â†] = Î.
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atom • R̂(t) •

cavity field •

Figure 8.6: Quantum circuit implementing vacuum Rabi oscillations.

8.2.6 Vacuum Rabi oscillations: quantum circuit

If the atom is initially in the excited state |e〉 and the field is in the vacuum state |0〉, we have

the vacuum Rabi oscillations. In particular we find:

• π-pulse (Ω0t = π):

|e, 0〉 → |g, 1〉, and |g, 1〉 → −|e, 0〉;

• π
2 -pulse (Ω0t = π/2):

|e, 0〉 → 1√
2
(|e, 0〉+ |g, 1〉) , and |g, 1〉 → 1√

2
(|g, 1〉 − |e, 0〉) ,

that are maximally entangled states of the atom and the cavity field.

� – Exercise 8.6 Find the effect of a 2π-pulse (Ω0t = 2π) on |e, 0〉 and |g, 1〉.

The figure 8.6 shows how we can describe the vacuum Rabi oscillations by means of CNOT

gates and controlled unitary operation:

R̂(t) = exp
(
−i

Ω0t
2

σ̂y

)
= cos

(
Ω0t

2

)
Î− i sin

(
Ω0t

2

)
σ̂y,

where we should use the following association between the physical states and the computa-

tional basis:

|g, 0〉 ↔ |00〉, |g, 1〉 ↔ |01〉, |e, 0〉 ↔ |10〉, and |e, 1〉 ↔ |11〉.

The reader can check that the quantum circuit of figure 8.6 acts on the computational basis as

follows:

|00〉 → |00〉, |11〉 → |11〉,

|01〉 → cos
(

Ω0t
2

)
|01〉 − sin

(
Ω0t

2

)
|10〉,

|10〉 → cos
(

Ω0t
2

)
|10〉+ sin

(
Ω0t

2

)
|01〉,

that is the same evolution obtained with the Jaynes-Cummings Hamiltonian of Eq. (8.28), except

for what concerns the state |11〉 = |e, 1〉, since, in this case, we have:

exp
(
−i

Ĥint

h̄
t
)
|e, 1〉 = cos

(
Ω1t

2

)
|e, 1〉+ sin

(
Ω1t

2

)
|g, 2〉.
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As we have seen in the previous section, Ĥint couples the states |e, 1〉 and |g, 2〉, but |g, 2〉 does

not belong to the computational space spanned by the two qubits. . .

In order solve this problem, we should modify the evolution as follows:

exp
(
−i

Ĥint

h̄
t
)
→ exp

(
−i

Ĥint

h̄
t
) [

P̂q − |e, 1〉〈e, 1|
]
+ |e, 1〉〈e, 1|,

where we introduced the projector operator P̂q = ∑A=g,e ∑F=0,1 |A, F〉〈A, F|, which projects the

state onto the 4-dimensional space spanned by the 2-qubit computational basis.

We close this section showing how we can map an atomic superposition state |ψA〉 = ce|e〉+
cg|g〉 onto the cavity field state. To this aim it is enough to prepare the field in the vacuum state

and then apply a π-pulse, namely (note that, here, 0 and 1 represent the number of photons):

(ce|e〉+ cg|g〉)|0〉
π-pulse
−−−−−→ |g〉(ce|1〉+ cg|0〉),

i.e., the atom is left in the ground state while the cavity is a superposition state with the same

complex amplitudes of the input atomic state. On the other hand, when we try to map the state

|ψA〉 = c1|1〉+ c0|0〉 of the field onto an atomic state, we obtain:

|g〉(c1|1〉+ c0|0〉)
π-pulse
−−−−−→ (−c1|e〉+ c0|g〉)|0〉,

i.e., we have a phase appearing in front of |e〉. It is worth noting that the field considered

throughout this chapter is inside a cavity and, thus, is not directly accessible: one should mea-

sure the atom after the interaction in order to have some information about the cavity state!
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Chapter 9
Superconducting qubits:

charge and transmon qubits

IN THIS CHAPTER we explain how it is possible to obtain a two-level system starting from su-

perconducting circuits. In particular we consider the Josephson junction and the SQUID and

we focus on the charge qubit and the transmon qubit. We also describe the coupling between

a charge qubit and a 1-D transmission line resonator leading to a coupling Hamiltonian similar

to that obtained in cavity QED experiments.

9.1 The LC circuit as a harmonic oscillator

We consider a circuit involving an inductor (with inductance L) and and a capacitor (with ca-

pacity C). If we indicate with V the voltage at the ends of the capacitor and with I the current

flowing in the circuit, the energies stored in the capacitor and in the inductor are:

EC =
1
2

CV2 =
Q2

2C
, and EL =

1
2

LI2 =
Φ2

2L
,

respectively, where Q = CV is the charge of the capacitor and Φ = LI is the magnetic flux in

the inductor. The classical Hamiltonian Hcl = EC + EL is:

Hcl =
Q2

2C
+

Φ2

2L
,

=
Q2

2C
+

1
2

Cω2
0Φ2,

that is the classical Hamiltonian of a harmonic oscillator with “mass” C, momentum Q, position

Φ and frequency ω0 = 1/
√

LC.

103
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9.1.1 Quantization of the LC circuit

The quantization of Hcl is achieved by the substitution (see also section 8.2.4):

Q→ Q̂ = i

√
h̄

2Z0

(
â† − â

)
, and Φ→ Φ̂ =

√
h̄Z0

2

(
â† + â

)
,

where we introduced the impedance Z0 =
√

L/C and the annihilation and creation operators â

and â†, respectively, [â, â†] = Î. Note that Φ̂ and Q̂ are conjugated quantum variables, namely:[
Φ̂, Q̂

]
= iÎ. (9.1)

As usual, the quantum Hamiltonian reads:

ĤLC = h̄ω0

(
â† â +

1
2

)
, ĤLC|n〉 = En|n〉,

where |n〉, n ∈ N, are the corresponding eigenstates with eigenvalues En = h̄ω0(n + 1/2).

Since the difference between two levels ∆E = En+1 − En = h̄ω0 is independent of n, we

cannot select only two particular levels in order to obtain a qubit. To make the energies of

the quantized levels different enough to obtain a two level system, we should introduce some

nonlinearity, which leads to a nonlinear oscillator.

9.2 The Josephson junction and the SQUID

A Josephson junction consists of two superconductors connected via a tunneling barrier. It can

be described by its critical current Ic, which depends on the SC material and the size of the

junction, and the gauge invariant phase difference ϕ across the junction. Furthermore, the two

Josephson equations:

IJ(t) = Ic sin ϕ(t), (1st Josephson equation) (9.2)

∂ϕ(t)
∂t

=
2π

Φ0
V, (2nd Josephson equation) (9.3)

allow to describe the time evolution of the Josephson current IJ and of ϕ as a function of the

applied voltage V. In Eq. (9.3) we introduced the superconducting flux quantum Φ0 = h/(2e) =

2.07× 10−15 Wb, where 2e is the charge of a Cooper pair. The time derivative of Eq. (9.2) gives:

İJ = Ic cos ϕ
∂ϕ

∂t
,

and, using Eq. (9.3) and since İ = V/L, we can introduce the following nonlinear inductance:

LJ =
1

cos ϕ

Φ0

2π Ic
.
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Vg

Cg

EJ , CJ

reservoir

Φc

Figure 9.1: A SQUID embedded in a circuit with a gate voltage Vg.

The energy associated with LJ is obtained as follows:

EJ,L =
∫ t

0
dτ IJ(τ)V = EJ(1− cos ϕ),

where:

EJ =
Φ0 Ic

2π

is the Josephson energy, which is a measure of the coupling across the junction. Since a Joseph-

son junction has also a capacitance CJ , we can calculate the corresponding energy:

EJ,C =
Q2

2CJ
,

where Q is the charge of the junction.

The classical Hamiltonian of the Josephson junction can be written as (we neglect the con-

stant term):

HJ =
Q2

2CJ
− EJ cos ϕ. (9.4)

Since Q = (2e)N, where N ∈ (−∞,+∞) is the excess of Cooper pair in the Junction, N =

N1 − N2, where N1 and N2 represent the numbers of Cooper pairs present at each side of the

junction, we can define the capacitive energy Ec = e2/(2CJ), and Eq. (9.4) becomes:

HJ = 4EcN2 − EJ cos ϕ. (9.5)

Instead of a single Josephson junction we can consider two Josephson junctions connected in

parallel on a superconducting loop: this system is called SQUID (Superconducting QUantum

Interference Device). If the inductance of the loop can be neglected, then the corresponding

Hamiltonian is the same as in Eq. (9.5), but now:

CJ → 2C(s)
J , EJ → EJ(Φc) = 2E(s)

J cos
(

π
Φc

Φ0

)
,

where C(s)
J and E(s)

J are the single Josephson junction capacitance and energy, respectively, and

Φc is the (eventual) external flux: changing Φc one can modify EJ .
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From now on we assume that our system is a SQUID embedded in a circuit and a gate

voltage Vg is applied through a capacitance Cg, as shown in Fig. 9.1. The presence of Vg simply

shifts N in Eq. (9.5) by Ng = CgVg/(2e), namely:

H = 4Ec(N − Ng)
2 − EJ cos ϕ, (9.6)

where, now:

Ec =
e2

2(CJ + Cg)
. (9.7)

If we associate 4EcN2 with the kinetic energy and −EJ cos ϕ with the potential energy, then

H represents the Hamiltonian of a nonlinear oscillator, where the conjugated variables are N

(corresponding to the momentum) and ϕ (corresponding to the position).

9.2.1 Quantization of the Josephson junction and SQUID Hamiltonians

We can now obtain the quantum analogue of the Hamiltonian Eq. (9.6) associating with ϕ and

N the corresponding quantum operators:

ϕ→ ϕ̂, N → N̂,

and the quantum Hamiltonian reads:

Ĥ = 4Ec(N̂ − Ng)
2 − EJ cos ϕ̂. (9.8)

It is worth noting that N̂ is the operator associated with the excess of Cooper pairs N, where

N ∈ (−∞,+∞), and does not correspond to the number operator of the quantum harmonic

oscillator, as the one considered for the electromagnetic field in section 8.2.4. We can write the

relation between ϕ̂ and N̂ as:

eiϕ̂N̂e−iϕ̂ = N̂ − Î.

However, since ϕ̂ and N̂ are conjugated variables, being [ϕ̂, N̂] = iÎ, in the basis of the eigen-

states of ϕ̂, we have the following association:

ϕ̂→ ϕ, and N̂ → −i
∂

∂ϕ
,

and the Hamiltonian rewrites:

Ĥ = 4Ec

(
−i

∂

∂ϕ
− Ng

)2
− EJ cos ϕ. (9.9)

The solutions of the differential equation Ĥψm(ϕ) = Emψm(ϕ) are given in terms of the Floquet-

type solutions meν(q, x) as follows:

ψm(ϕ) =
1√
2

me−2[Ng− f (m,Ng)]

(
−

EJ

2Ec
,

ϕ

2

)
,
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Figure 9.2: Em as a function of Ng (in each plot, from bottom to top m = 0, 1, 2 and 3) normalized with

respect to E01 ≡ minNg (E1 − E0) for different values of the ratio EJ/Ec. (Top left) EJ/Ec = 1.0; (top right)

EJ/Ec = 5.0; (bottom left) EJ/Ec = 10.0; (bottom right) EJ/Ec = 50.0. The zero point of energy is chosen

as the bottom of the m = 0 level.

with:

f (m, Ng) = ∑
k=±1

[int(2Ng + k/2)mod 2]

× {int(Ng)− k(−1)m[(m + 1)div 2 + m mod 2]},

where int(x) rounds to the integer closest to x, x mod y denotes the usual modulo operation,

and x div y gives the integer quotient of x and y. The corresponding eigenvalues are:

Em = Ec a−2[Ng− f (m,Ng)]

(
−

EJ

2Ec

)
,

where aν(q) denotes Mathieu’s characteristic value. In Fig. 9.2 we report the behavior of Em,

m = 0, 1, 2, and 3, as a function of Ng and normalized with respect to transition E01, which is

the minimum energy separation between the levels E1 and E0, for different values of the ratio

EJ/Ec.

As shown in Fig. 9.3 we can identify two regimes: the charge regime (Ec � EJ) and the

transmon regime (Ec � EJ). In each of these regimes we can define a two level system which can

be used as a qubit.
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Figure 9.3: Plot of E01/Ec as a function of the ratio EJ/Ec: for Ec � EJ (charge regime) we have E01 ∼ EJ ;

for Ec � EJ (transmon regime) we have E01 ∼
√

8EJ Ec.

Figure 9.4: Schematics of the CPB. The dashed box encloses the superconducting island.

9.3 The charge qubit

In the charge regime, EJ � Ec, our system can be seen as a Cooper pair box (CPB), that is

sketched in Fig. 9.4. It consists in a superconducting electrode (the “island”) in contact with a

superconducting reservoir though a tunnel junction (the grey zone in figure, which corresponds

to a Josephson junction or to the two junctions of the SQUID) with capacitance CJ . Excess

Cooper pairs may tunnel onto the island in response to an electric field applied by means of the

gate capacitance Cg and voltage Vg.

In this case we have a well defined number N of tunneling Cooper pairs and, thus, of excess

of Cooper pairs, and a strongly fluctuating phase. Therefore we can express the Hamiltonian

(9.8) as a function of the eigenstates |N〉 of N̂, that is, N̂|N〉 = N|N〉, N ∈ Z; we have:

ĤCPB =
+∞

∑
N=−∞

[
4Ec(N − Ng)

2|N〉〈N| − 1
2

EJ(|N〉〈N + 1|+ |N + 1〉〈N|)
]

, (9.10)

where the term |N〉〈N + 1|+ |N + 1〉〈N| describes the tunneling through the junction of a sin-

gle Cooper pair. It is now clear that EJ represents a measure of the coupling across the junction.

It is worth noting that the states:

|ϕ〉 = 1√
2π

+∞

∑
N=−∞

exp(iNϕ)|N〉
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Figure 9.5: Left plot: energy levels of the states |N〉 without interaction (EJ = 0): note the degeneracy at

Ng = (1 + 2N)/2. Right plot: as EJ 6= 0 the degeneracy is broken, and, if EJ � Ec, we can identify two

levels, E0 (black) and E1 (red), whose energy difference at Ng = (1 + 2N)/2 is ∼ EJ .

are eigenstates of the operator:

Ĥtun = −1
2

EJ

+∞

∑
N=−∞

(|N〉〈N + 1|+ |N + 1〉〈N|),

and Ĥtun|ϕ〉 = −EJ cos ϕ|ϕ〉, that is we have the following expansion:

cos ϕ̂ =
1
2

+∞

∑
N=−∞

(|N〉〈N + 1|+ |N + 1〉〈N|). (9.11)

� – Exercise 9.1 Prove Eq. (9.11) by the explicit calculation of the matrix elements

of cos ϕ̂ in the basis of the eigenstates |N〉 of N̂, N ∈ Z.

If EJ is negligible, then ĤCPB is just the sum of energies 4Ec(N − Ng)2 of the states |N〉 (see

the left plot in Fig. 9.5): it is interesting to note that, for a particular choice of Ng, states with

different number N may have the same energy (they are degenerate). In particular we can see

that the two states |N〉 and |N + 1〉 are degenerate if Ng = (1 + 2N)/2. As one may expect,

the presence of the interaction, though weak but not negligible, breaks the degeneracy (see the

right plot Fig. 9.5). In particular, an energy gap appears near degeneracy, which, for fixed Ng,

allows us to identify two well defined energy levels whose energy difference is EJ (see the top

left plot in Fig. 9.2). In fact, for a fixed N, and considering Ng ≈ (1 + 2N)/2, we can assume

that only the two states |N〉 and |N + 1〉 are coupled by the interaction (this can be shown more

rigorously by considering the interaction picture and the RWA). The corresponding two-level
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Hamiltonian can be written as:

ĤCPB(Ng, N) = 4Ec

[
(N − Ng)

2|N〉〈N|+ (N + 1− Ng)
2|N + 1〉〈N + 1|

]
− 1

2
EJ
(
|N〉〈N + 1|+ |N + 1〉〈N|

)
, (9.12)

= 4Ec

[
(Ng − N)− 1

2

]
σ
(N)
z − 1

2
EJ σ

(N)
x + 2Ec

[
(N − Ng)

2 + (N − Ng + 1)2
]

,

(9.13)

where we introduced σ
(N)
z = |N〉〈N| − |N + 1〉〈N + 1| and σ

(N)
x = |N〉〈N + 1|+ |N + 1〉〈N|.

The eigenvalues of ĤCPB(Ng, N) are:

E±CPB(Ng, N) = 2Ec

[
(N − Ng)

2 + (N − Ng + 1)2
]
± 1

2

√
E2

J + 16E2
c [1 + 2(N − Ng)]2.

Since at degeneracy N − Ng = −1/2, Eq. (9.12) rewrites (we neglect the constant term Ec):

ĤCPB ≡ ĤCPB(1/2, 0) = −1
2

EJσx, (9.14)

where σz = |0〉〈0| − |1〉〈1| and σx = |0〉〈1|+ |1〉〈0|. Since:

ĤCPB →
(

0 − 1
2 EJ

− 1
2 EJ 0

)
,

it is straightforward to find the two eigenvalues:

E± = ±1
2

EJ , with E+ − E− = EJ ,

and the corresponding eigenstates:

|e〉 = |1〉 − |0〉√
2

, |g〉 = |1〉+ |0〉√
2

,

with ĤCPB|e〉 = E+|e〉 and ĤCPB|g〉 = E−|g〉. Note that:

σx = |g〉〈g| − |e〉〈e|︸ ︷︷ ︸
−σ̂z

, and σz = |e〉〈g|+ |g〉〈e|︸ ︷︷ ︸
σ̂x

,

where, as usual, |e〉 → (1, 0)T and |g〉 → (0, 1)T . In the basis {|g〉, |e〉}, the Hamiltonian (9.14)

simply reads (we neglect the constant term):

ĤCPB = h̄
Ω
2

σ̂z,

with Ω = EJ/h̄, that is the Hamiltonian of an artificial atom which can be used as a qubit.

As a matter of fact, the charge qubit is very sensible to the fluctuations of Ng and, thus, of

the gate voltage Vg. This problem can be solved considering the so-called transmon regime.
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Figure 9.6: Sketch of a typical configuration to implement circuit QED. A superconducting qubit (a CPB,

in yellow) is built inside a 1-D transmission line resonator. The final configuration is such that there is a

maximum coupling between the qubit and resonator (the rms voltages reaches the maxima at the center

of the conductor, see the red lines).

9.4 Charge qubit and capacitive coupling with a 1-D resonator

A 1-D transmission line resonator consists of a full-wave section of superconducting coplanar

waveguide. If Lr and Cr are the effective inductance and capacitance of the resonator, respec-

tively, then its characteristic frequency is ωr = 1/
√

LrCr (typical values are ωr ∼ 10 GHz). The

quantum Hamiltonian of the resonator may be written as:

Ĥr = h̄ωr

(
â† â +

1
2

)
,

â being the annihilation operator, [â, â†] = Î. The 1-D resonator plays the role of the cavity of a

cavity QED experiment.

As depicted in Fig. 9.6, a superconducting qubit (here a CPB) is placed inside the 1-D res-

onator and it plays the role of the atom of the cavity QED setup. The system CPB+resonator

are built is such a way that there is a maximum coupling between the qubit and resonator. As

schematically shown in Fig. 9.6, the qubit couples with the mode 2 of the resonator (maxima at

the center).

The free Hamiltonian of the system reads:

Ĥ0 = h̄ωr

(
â† â +

1
2

)
+ 4Ec(N̂ − Ng)

2 − EJ cos ϕ̂, (9.15)

where the the second and the third terms are the same as in Eq. (9.8).

The coupling between the resonator and the CPB is due to the presence of the quantum

contribution to the voltage, which leads to the following substitution in Eq. (9.15):

Ng → Ng + N̂r, with N̂r =
CgVrms

2e︸ ︷︷ ︸
Nq

(â† + â),

where Vrms =
√

h̄ωr/(2Cr) is the rms voltage corresponding to the mode 2 of the resonator

(ωr → ωr/2) and Cg is the gate voltage. After the substitution we obtain the following Hamil-

tonian which describes also the coupling through the gate voltage (we neglect the constant
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term):

Ĥ = h̄ωr â† â + 4Ec

[
(N̂ − Ng)− Nq(â† + â)

]2
− EJ cos ϕ̂

= h̄ωr â† â︸ ︷︷ ︸
resonator

+ 4Ec(N̂ − Ng)
2 − EJ cos ϕ̂︸ ︷︷ ︸

CPB

− 8EcNq(N̂ − Ng)(â† + â)︸ ︷︷ ︸
interaction

,

where we neglected the terms proportional to N2
q (note that Vrms ∼ µV).

In the charge regime, Ec � EJ , and, as shown in section 9.3, we can expand the Hamiltonian

in the eigenstates |N〉 of N̂. For the sake of simplicity, we consider only the two states |0〉 and

|1〉. By introducing σz = |0〉〈0| − |1〉〈1| , we have the following identities:

(N̂ − Ng) =
1
2
(
Î− σz

)
− Ng,

(N̂ − Ng)
2 =

(
N2

g − Ng +
1
2

)
− (1− 2Ng)σz,

(â† + â)(N̂ − Ng) =
1
2
(â† + â)

[
(1− 2Ng)Î− σz

]
.

If we now use the basis {|e〉, |g〉} introduced in section 9.3, we have:

σz = σ̂x = σ̂+ + σ̂−,

where σ̂+ = |e〉〈g| and σ̂− = |g〉〈e|; finally we obtain (at the degeneracy point Ng = 1
2 ):

Ĥ = h̄ωr â† â + h̄
Ω
2

σ̂z + 4EcNq(â† + â)(σ̂+ + σ̂−),

where Ω = EJ/h̄ and the last term corresponds to the interaction between the artificial atom

and the resonator, which is the same interaction addressed in section 8.2.5.

Indeed, it is also possible to couple the transmon qubit with the 1-D resonator. However, the

theoretical description of the interaction requires advanced methods of quantum optics and it

is left to the interested readers.

9.5 The transmon qubit

Let us focus the attention on Fig. 9.2: as the ratio EJ/Ec increases, the energy levels Em can be

approximated by the oscillating functions:

Em(Ng) ≈ Em(Ng = 1/4) +
εm

2
cos(2πNg),

where:

εm ≈ (−1)mEc
24m+5

m!

√
2
π

(
EJ

2Ec

)m
2 +

3
4

e−
√

8EJ /Ec .

Therefore, in the limit EJ � Ec they become almost independent of Ng (see the bottom right

plot of Fig. 9.2), and we reach the transmon regime, where “transmon” refers to “transmission
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Figure 9.7: The transmon qubit: a SQUID shunted by a large capacitance CB, that reduces the fluctuations

of the gate voltage by reducing Ec.

line shunted plasma oscillation qubit” (this is related to the physical implementation to achieve

EJ � Ec). This regime is achieved by using the same configuration of the charge qubit (a dc

SQUID coupled to a gate voltage Vg via the gate capacitance Cg) but now the SQUID is shunted

by a large capacitance CB, as depicted in Fig. 9.7. Since for this system:

Ec =
e2

2(CJ + Cg + CB)
,

by increasing CB it is possible to decrease Ec in order to obtain the regime Ec � EJ . In this way

the fluctuations of the gate voltage are also reduced.

Since EJ � Ec, we can expand up to the 4-th order the cos ϕ̂ in Eq. (9.8), obtaining (since the

energy levels are independent of Ng, this quantity does not appear explicitly):

ĤTr = 4EcN̂2 +
1
2

EJ ϕ̂2 − 1
24

EJ ϕ̂4 (9.16)

where we can easily identify the Hamiltonian Ĥ0 = 4EcN̂2 + 1
2 EJ ϕ̂2, that represents a harmonic

oscillator and the nonlinear term Ĥ1 = − 1
24 EJ ϕ̂4. In the following, we show that the presence of

Ĥ1 is what we need to make the energy levels different enough in order to select a well defined

two-level system.

Equation (9.16) represents the Hamiltonian of a nonlinear oscillator, therefore we can intro-

duce the bosonic field annihilation, b̂ and creation, b̂†, operators, respectively, with [b̂, b̂†] = Î,

and put:

ϕ̂ =

(
2Ec

EJ

) 1
4 (

b̂† + b̂
)
= 2

√
Ec

h̄ωp

(
b̂† + b̂

)
,

N̂ = i
(

EJ

32Ec

) 1
4 (

b̂† − b̂
)
=

i
4

√
h̄ωp

Ec

(
b̂† − b̂

)
,

where we introduced the Josephson plasma frequency:

ωp =

√
8EJ Ec

h̄
.



114 Chapter 9: Superconducting qubits: charge and transmon qubit

It is easy to show that [ϕ̂, N̂] = iÎ and that Eq. (9.16) becomes:

ĤTr = h̄ωp

(
b̂† b̂ +

1
2

)
︸ ︷︷ ︸

Ĥ0

− 1
12

Ec

(
b̂† + b̂

)4
, (9.17)

and h̄ωp =
√

8EJ Ec. Since Ec � EJ , in order to calculate the eigenvalues of Eq. (9.17) we can

apply the first order perturbation theory. The unperturbed eigenvalues of ĤTr are:

E(0)
n = h̄ωp

(
n +

1
2

)
,

where Ĥ0|n〉 = E(0)
n |n〉. The first order correction to E(0)

n is given by:

E(1)
n = −〈n|

[
1
12

Ec

(
b̂† + b̂

)4
]
|n〉

= − 1
12

Ec〈n|
[
12 b̂† b̂ + 6(b̂†)2b̂2 + 3 + (terms s.t. 〈n| · · · |n〉 = 0)

]
|n〉

= −Ecn− 1
2

Ecn(n− 1)− 1
4

Ec.

Neglecting the constant term, the perturbed energy levels are:

En =
(√

8EJ Ec − Ec

)
n− 1

2
Ecn(n− 1).

It is worth noting that, due to the nonlinearity, the difference between adjacent levels is now

dependent on n, namely:

∆En,n+1 ≡ En+1 − En =
(√

8EJ Ec − Ec

)
− Ecn.

In particular, we have:

∆E0,1 =
√

8EJ Ec − Ec,

∆E1,2 = ∆E0,1 − Ec.

Since typical values of the involved quantities are EJ/h̄ ≈ 2 GHz ad Ec/h̄ ≈ 400 MHz (usually,

CJ ≈ 10−12 F), it is possible to experimentally select only the transition between the levels E0

and E1, thus obtaining the so-called transmon qubit.

It is worth noting that the gain in charge-noise insensitivity as EJ/Ec increases, leads also to

a loss in anharmonicity. In order to reduce a many-level system to a qubit, that is a system with

two well-defined levels, a sufficient anharmonicity is required. Form the experimental point

of view this sets a lower bound on the duration of control pulses to implement the quantum

logic gates. However it is possible to show that the energy ratio should satisfy 20 . EJ/Ec �
5 · 104, opening up a large range with exponentially decreased sensitivity to charge noise and

yet sufficiently large anharmonicity for qubit operations. The interested reader can find further

details in the references cited in the Bibliography.
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