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Abstract

The de Rham Theorem in Algebraic Geometry states the existence of a comparison
isomorphism between the algebraic de Rham and Betti cohomologies of smooth
algebraic varieties. We provide a proof of this result, together with an exposition of
the constructions and results involved.

The algebraic de Rham isomorphism naturally produces the period numbers,
which are an interesting arithmetic invariant for algebraic varieties. There are some
conjectures about polynomial relations between periods, which predict that all such
relations should be explained by the geometry of the algebraic variety.

A natural conceptual framework in which these conjectures can be formulated
is Theory of Motives. We revisit the de Rham Theorem in this framework and we
state a version of the Grothendieck Period Conjecture.
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Introduction

Algebraic Topology is a branch of Mathematics which studies topological spaces by
associating to each of them some objects, which should be easier to deal with. Such
objects, called invariants, are usually linear algebra objects, such as groups or vector
spaces. Some of these invariants arise as the sequence of cohomology groups of a
complex associated to the given topological space. They are called cohomological
invariants. The construction of the complex may involve the topological structure
alone, or it may use some additional structure considered on the topological space.
For example, the singular cohomology is a cohomological invariant, which can be
defined for any topological space. It is the sequence of the cohomology groups of
the complex of singular cochains, whose construction is based on continuous maps
from the topological standard simplexes to the given topological space. Another
one is the de Rham cohomology, which can be defined for any differentiable or
complex manifold, that is, a topological space with an additional differentiable or
complex structure. It is the sequence of the cohomology groups of the de Rham
complex, whose construction is based on differential forms defined over the given
manifold. Although these two cohomological invariants are constructed using tools
of very different nature (singular cohomology is of topological nature, while de Rham
cohomology is of analytic nature), they turn out to be the same. That is, there exists
a canonical isomorphism between each cohomology group of the singular complex
and of the de Rham complex associated to a manifold. It is called the de Rham
isomorphism. This is the content of the de Rham Theorem, originally conjectured
by Henri Cartan and proved for the first time by Georges de Rham in [deR31]. An
explicit isomorphism is given by the integration of closed differential forms along
singular cycles over the manifold.

Algebraic Geometry is another branch of Mathematics which deals with a partic-
ular kind of topological spaces, which can be studied with purely algebraic methods:
the algebraic varieties. We consider the notion of an algebraic variety over a field
given by the modern language of theory of schemes. Algebraic Geometry borrows at
times from Algebraic Topology the technique of considering cohomological invariants,
in order to solve some problems about algebraic varieties. The most famous case is
the construction of the étale ℓ-adic cohomologies for algebraic varieties over a field
of positive characteristic, for the solution of the Weil Conjectures.

In this thesis we deal with another couple of cohomological invariants for algebraic
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Introduction

varieties, which are the analogues of the singular cohomology and of the de Rham
cohomology of Algebraic Topology. We consider smooth algebraic varieties over
a field k of characteristic zero. For k = C, there exists a universal construction,
called the analytification, which allows to transform a smooth algebraic variety
over C into a complex manifold. This construction allows to associate, to any
smooth algebraic variety over C, the cohomological invariants given by the singular
cohomology and the de Rham cohomology of the corresponding complex manifold.
They are called, respectively, Betti cohomology and analytic de Rham cohomology of
the given algebraic variety over C. In fact, we can also construct, for any smooth
algebraic variety over k, another kind of de Rham cohomology, using the purely
algebraic structure of the algebraic variety, called the algebraic de Rham cohomology.
Compared to the analytic version, its definition involves only the algebraic forms,
without considering the transcendental ones. For k = C, the algebraic and the
analytic de Rham cohomologies turn out to be canonically isomorphic. The first
chapter of this thesis is devoted to give a proof of this result, together with an
exposition of the definitions and constructions involved. Composing the isomorphism
between the algebraic and the analytic de Rham cohomologies with the de Rham
isomorphism, we obtain a canonical isomorphism between the algebraic de Rham
and the Betti cohomologies, called the algebraic de Rham isomorphism. Explicitly,
this isomorphism is given by the integration of algebraic forms along singular cycles
over the complex manifold given by the analytification.

Starting from smooth algebraic varieties over Q, the field of algebraic numbers,
the algebraic de Rham isomorphism naturally produces the period numbers. For this
reason the algebraic de Rham isomorphism, in this case, is also called the period
isomorphism. The period numbers are a class of complex numbers that lie between
algebraic and transcendental numbers. They are defined as those numbers obtained
by integrating closed Q-linear algebraic forms along Q-linear singular cycles. Many
famous numbers and constants that appear in central conjectures in Number Theory
are periods, such as π and special values of some L-functions. Others, like e and the
Euler constant γ, are supposed not to be periods. There are several open questions
about periods, some of them are considered very hard and out of reach for the present
moment. A survey on open problems and connections with arithmetic conjectures is
[KZ01]. One of the first questions regards identities between periods. More precisely,
we can ask what are the relations between two representations of a single period
as an integral. The Kontsevich and Zagier Period Conjecture ([KZ01, Conj. 1])
predicts that we can pass from an integral representation to another using only the
classical integration rules: linearity, change of variables and Stokes formula. Another
questions regards the polynomial relations with coefficients in Q[π−1] between periods.
Following an initial intuition of Grothendieck, which predicts that all polynomial
relations between periods of an algebraic variety over Q should be explained by
the geometry (that is, the algebraic cycles) of the given algebraic variety and its
products, a precise conjecture, usually called the Grothendieck Period Conjecture,
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can be stated inside the conceptual framework of Theory of Motives. The conjectures
of Grothendieck and Kontsevich-Zagier are also related to each other (see [Ayo14b]).

The motive (or motivic cohomology) of an algebraic variety is a notion initially
envisioned by Grothendieck in the 60’s, which can be thought as the essential and
deepest cohomological invariant that can be associated to an algebraic variety. All
the other cohomological invariants should be concrete manifestations of this master
invariant. For many years, Theory of Motives remained a vague ideal project and
more precise conjectural pictures grew thanks to further developments in Algebraic
Geometry. But nowadays, we have several concrete candidate theories, which also
allowed to approach and solve some problems in Arithmetic Algebraic Geometry.
The main goal in Theory of Motives is to construct a suitable category of motives,
which should be thought as the category in which motivic cohomology takes values.
Mostly for historical reasons, we usually distinguish between Theory of Pure Motives
and Theory of Mixed Motives : in the first only smooth projective algebraic varieties
are considered, while the second includes all (smooth) algebraic varieties. Initially,
only pure motives were studied, in order to solve the Weil Conjectures, even though
it was clear from the very beginning that they should be included into a wider picture
of mixed motives, as we can see in a letter from Grothendieck to Luc Illusie in 1973
(which can be found in the appendix of [Jan]). In the successive years, the scope of
mixed motives expanded, until the formulation by Alexander Beilinson in the middle
80’s of an ambitious conjectural program, which, besides extending pure motives,
should also explain and relate several phenomena across Algebraic Geometry and
Number Theory. This made popular Theory of Motives also among arithmeticians.

There are mainly two methods (related to each other) for constructing a category
of motives, which give rise to as many versions of the Grothendieck Period Conjecture.
One uses the formalism of tannakian categories, which allows to talk about the motivic
Galois group and paves the way for the development of a Galois Theory of Periods
(see [And08] and [Hub18]). The other method is based on algebraic cycles. This
thesis is concerned with the latter approach. In the overview to the second chapter,
we outline some facts about Theory of Motives from this cycle-theoretic point of
view. In the second chapter we present two concrete constructions of categories of
motives: the category of Chow motives, which belongs to Theory of Pure Motives,
and a version of Voevodsky’s triangulated category of motives, which is an outcome
of Beilinson’s program of mixed motives. Besides recovering the algebraic de Rham
isomorphism inside these conceptual frameworks, we construct the cycle class maps
relating algebraic cycles to Betti and algebraic de Rham cohomologies. The cycle
class maps and their compatibility under the algebraic de Rham isomorphism are the
fundamental tools, which allow to state the cycle-theoretic version of the Grothendieck
Period Conjecture.
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Chapter 1

The de Rham Theorem in
Algebraic Geometry

1.0.1 Overview

The de Rham Theorem is a result in Differential Geometry, which states that:

Theorem 1.0.1 (de Rham Theorem). For any M differentiable manifold, there exist
canonical isomorphisms of R-vector spaces, for each i ≥ 0,

H i
dR(M/R) ∼= H i

Sing(M ;R),

where H i
dR(M/R) is the ith-de Rham cohomology group of M and H i

Sing(M ;R) is the
ith-singular cohomology group with real coefficients of M .

An analogous result with complex coefficients can be stated for any complex
manifold.

In this chapter we want to bring this theorem inside Algebraic Geometry, that
is, we want to state an analogous result for algebraic varieties, instead of manifolds.
More precisely, we will prove the following:

Theorem 1.0.2 (Algebraic de Rham Theorem). Let σ : k ↪→ C be a field extension.
For any X smooth algebraic variety over k, there exist canonical isomorphisms of
C-vector spaces, for each i ≥ 0,

ϖi : Hi
AdR(X/k)⊗k C ∼= Hi

Bet(Xσ)⊗Q C,

where H i
AdR(X/k) is the i

th-algebraic de Rham cohomology group of X and H i
Bet(Xσ)

is the ith-Betti cohomology group of Xσ := X ×k C.

To state this theorem we first need to define the Betti and the algebraic de Rham
cohomologies. Given X an algebraic variety over C, the set of C-rational points X(C),
called the analytification of X, has a canonical structure of complex analytic space (a

9



Chapter 1

complex manifold with eventually singular points). Given a smooth algebraic variety
over C, the analytification is a smooth complex analytic space, that is, a complex
manifold. The Betti cohomology of X is defined as the singular cohomology with
rational coefficients of X(C)

H i
Bet(X) := Hi

Sing(X(C);Q).

Given X a smooth algebraic variety over any field k, the algebraic de Rham cohomol-
ogy of X is defined as the sheaf cohomology of Ω•

X/k, a complex of Zariski sheaves
over X, called the algebraic de Rham complex of X over k,

Hi
AdR(X/k) := Hi(XZar,Ω

•
X/k).

The algebraic de Rham complex is constructed with purely algebraic tools, starting
from a sheaf-theoretical version of the module of Kähler differentials. Attention
should be paid to the fact that each object ΩpX/k is a coherent sheaf of OX-modules,
while the differentials are only k-linear.

The proof of the Algebraic de Rham Theorem consists in showing the following
composition of canonical isomorphisms of C-vector spaces, for each i ≥ 0,

Hi
AdR(X/k)⊗k C ∼= Hi

AdR(Xσ/C) ∼= Hi
dR(Xσ(C)) ∼= Hi

Bet(Xσ)⊗Q C.

The first isomorphism follows from a flat base change result in sheaf cohomology.
The last isomorphism is the de Rham Theorem for complex manifolds. So, much
of the work consists in proving the middle isomorphism. It compares, for any X
algebraic variety over C, the algebraic de Rham cohomology of X with the de Rham
cohomology of the analytification, called the analytic de Rham cohomology of X. To
do this, it’s useful to notice that also the analytic de Rham cohomology of X can be
computed as the sheaf cohomology of a complex of sheaves. Indeed, it holds that

Hi
dR(X(C)) ∼= Hi(X(C)an,Ω•

X(C)),

where Ω•
X(C) is the holomorphic de Rham complex of X(C), which is a complex

of sheaves over X(C), with the classical topology of open covers. In case X is
proper, using a spectral sequences argument, the comparison isomorphism between
algebraic and analytic de Rham cohomology is a direct consequence of a GAGA
Theorem ([Ser56] and [Gro57]), which states that sheaf cohomology of a coherent
sheaf of modules over a proper algebraic variety over C is isomorphic to the one of
its analytification. In the general case, a first proof was given by Grothendieck in
[Gro66]. Another is given by Deligne in [Del70]. The strategy consists in embedding
X as an open subset into X, a smooth proper algebraic variety over C, such that the
complementary closed subscheme D := X \X is a simple normal crossing divisor of
X (this is possible by Nagata Embedding Theorem [Del10] and Hironaka resolution of
singularities [Wlo05]). Then, we consider Ω•

X/C(logD), a complex of Zariski sheaves
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over X, called the algebraic de Rham complex with logarithmic poles along D. We
show that its sheaf cohomology computes the algebraic de Rham cohomology of X

Hi
AdR(X/C) ∼= Hi(XZar,Ω

•
X/C(logD)).

Moreover, analogous constructions and results hold in the analytic context, consider-
ing the analytifications. That is, it holds

Hi
dR(X(C)) ∼= Hi(X(C)an,Ω•

X(C)(logD(C))).

We conclude by proving the isomorphism between the sheaf cohomology of the
algebraic and the analytic de Rham complexes with logarithmic poles, for which we
can use the GAGA Theorem recalled above, since X is proper.

We see that the sheaf-theoretic point of view is fundamental in all this work. We
refer to Appendix A for notations and results on cohomology of sheaves defined over
a general site.

For k = Q, with σ : Q ↪→ C given by the inclusion, the Algebraic de Rham
Theorem gives the canonical isomorphisms

ϖi : Hi
AdR(X/Q)⊗Q C ∼= Hi

Bet(Xσ)⊗Q C.

These isomorphisms produce the period numbers, which are defined as the complex
numbers appearing as the entries of a representative matrix of ϖi, with respect to a
Q-basis and a Q-basis, respectively.

1.0.2 Contents of the chapter

In section 1.1, after recalling briefly the definition of the de Rham and singular
cohomologies for differentiable manifolds and the statement of the de Rham Theorem,
we see how these cohomology theories can be described also as sheaf cohomology of
some complexes of sheaves. We also give a proof of the de Rham Theorem in this
sheaf-theoretic setting, as a direct consequence of the Poincaré Lemma. Then, we
discuss the analogous de Rham Theorem for complex manifolds.

In section 1.2, we introduce the complex analytic spaces and the analytification
functor, together with some properties. Then, we talk about sheaves of modules over
algebraic varieties over C and over complex analytic spaces, the analytification of
sheaves of modules and their relations, until the statement of GAGA Theorems.

In section 1.3, after recalling briefly the constructions of the module of Kähler
differentials and the algebraic de Rham complex for morphisms of commutative rings
with unit, we describe their sheaf-theoretical analogue using the language of sites.
That is, we define the sheaf of modules of Kähler differentials and the algebraic de
Rham complex for morphisms of sheaves of commutative rings with unit over a site.
We also prove two general properties: change of sites and functoriality. Then, we
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describe this construction applied to the data of a morphism of schemes and we
discuss some properties.

In section 1.4, we give a definition of smooth morphisms of schemes. We choose
a suitable definition in order to easily prove that an algebraic variety over C is
smooth if and only if its analytification is a smooth complex analytic space. Then,
we prove an important property of smooth morphisms: its sheaf of modules of Kähler
differentials is finite locally free. Our definition of smooth morphisms contains, as a
particular case, the definition of étale morphisms. They allow to construct a new
topology (in the sense of Grothendieck topologies) over schemes: the étale topology.
With this new topology, we obtain a characterization of smooth morphisms, which
is analogous to the definition of smooth complex analytic spaces. Moreover, we see
that a morphism between smooth algebraic varieties over C is étale if and only if
its analytification is a local isomorphism of smooth complex analytic spaces. This
suggests to consider also a new topology over complex analytic spaces, which is
defined by local isomorphisms: the étale-analytic topology. In fact, this is nothing
new, since it is equivalent to the classical topology given by open covers, but it will
be useful later in the second chapter. Finally, we see some further properties of
smooth schemes over a field.

In section 1.5, we define the algebraic de Rham cohomology of smooth algebraic
varieties over a field k. We see that it can be also computed by the Čech cohomology
relative to an affine open cover. We use this description to compute some examples.
Then, we see some properties of the algebraic de Rham cohomology: functoriality,
Künneth formula, A1-invariance and étale descent. Then, taking k = C, we prove the
comparison isomorphism between the algebraic and the analytic de Rham cohomology.
We first prove it in the case of a proper smooth algebraic variety and then we prove
the general case of any smooth algebraic variety. Although the proper case is not
necessary for the proof of the general case, we discuss it anyway, because some facts
in the general case are nothing more than the logarithmic version of the ones in the
proper case, which are easier to discuss.

In section 1.6 we define the Betti cohomology of algebraic varieties over C and we
finally prove the Algebraic de Rham Theorem. Then, we define the period numbers,
which are some arithmetic invariants associated to a smooth algebraic variety over
Q, naturally arising from the corresponding algebraic de Rham isomorphism.

1.1 The de Rham Theorem for manifolds

1.1.1 Differentiable manifolds

In Differential Geometry, given a differentiable manifold M , we can associate to M
two kinds of cohomological invariants.

12



1.1. The de Rham Theorem for manifolds

- The de Rham cohomology of M

Hi
dR(M/R) := Hi(A•(M)),

which is defined as the cohomology groups of the complex of R-vector spaces
A•(M), the de Rham complex of M (see [Bre93, §V,2]). This invariant is of
analytic nature, since its definition involves differential forms defined over M .

- The singular cohomology of M with real coefficients

Hi
Sing(M ;R) := Hi(C•Sing(M ;R)),

which is defined as the cohomology groups of the complex of R-vector spaces
C•Sing(M,R), the complex of singular cochains overM with coefficients in R (see
[Bre93, §V,5]). This invariant is of topological nature, since it can be defined
for any topological space. Starting from a differentiable manifold, we simply
forget the differentiable structure.

It’s well-known the de Rham Theorem, which states that, in fact, de Rham and
singular cohomologies with real coefficients provide the same cohomological invariant
for M (see [Bre93, §V, Thm. 9.1])

Theorem 1.1.1 (De Rham Theorem). Let M be a differentiable manifold. There
exist isomorphisms of R-vector spaces, for each i ≥ 0,

Hi
dR(M/R) ∼= Hi

Sing(M ;R).

There exist several proofs of this theorem. There are classical proofs which
show explicit isomorphisms, as the one given in [Bre93]. The strategy consists in
considering the pairings given by integration of differential forms along singular
cycles over M , for any p ≥ 0,

Ap(M)× CSingp (M)→ R

(ω, γ) ↦→
∫
γ

ω,

where CSing• (M) is the complex of singular chains over M (with coefficients in Z).
Then, it’s proved that these induce the pairings, for any i ≥ 0,

Hi
dR(M/R)× HSing

i (M)→ R

([ω], [γ]) ↦→
∫
γ

ω,
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where the singular homology of M (with integral coefficients)

HSing
i (M) := Hi(CSing• (M))

is defined as the homology groups of CSing• (M). Finally, it’s proved that these pairings
are perfect, that is, they induce isomorphisms of R-vector spaces

Hi
dR(M/R) ∼= HomZ-mod(H

Sing
i (M),R).

This proves Theorem 1.1.1. Indeed, the complex of singular cochains over M is
defined as

C•Sing(M ;R) := HomZ-mod(CSing• (M),R)

and, since R is a field, by the Universal Coefficients Theorem, it holds that, for any
i ≥ 0,

Hi(C•Sing(M ;R)) ∼= HomZ-mod(Hi(CSing• (M)),R).

Another proof uses Homological Algebra methods. A reference is [GH78, p.
44]. The key point is to adopt a sheaf-theoretic point of view, thinking de Rham
and singular cohomologies as cohomology groups of M with coefficients in certain
complexes of sheaves of R-vector spaces over M . In this sheaf-theoretic language, the
de Rham Theorem is reformulated as the existence of a quasi-isomorphism between
these complexes of sheaves. For notations and results about sheaf cohomology look at
Appendix A. Although this reformulation gives a less explicit proof of the de Rham
Theorem, it will be fundamental to move from the setting of Differential Geometry
to the one of Algebraic Geometry.

We start describing the de Rham cohomology as sheaf cohomology.

Definition 1.1.2. Given M a differentiable manifold, the de Rham complex of M is
the complex of presheaves of R-vector spaces over M (presheaves of R-vector spaces
over the category of open subsets of M)

A•
M : A0

M
d−→ A1

M
d1−→ A2

M → · · · ,

given open-wise by the de Rham complex of differential forms over the open subset.
That is, for any U ⊂M open subset,

A•
M(U) := A•(U).

Restriction morphisms are given by the usual restriction maps of differential forms.

The de Rham complex is a complex of sheaves of R-vector spaces overM (sheaves
of R-vector spaces over the classical site of open subsets of M). Notice that A0

M is
the sheaf of differentiable R-valued functions over M . If M has dimension n, for any
point x ∈M , let w1,x, . . . , wn,x ∈ A0

M,x be the stalks of some local coordinates at x.
The ideal generated by w1,x, . . . , wn,x is the maximal ideal of A0

M,x. Hence, we can
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1.1. The de Rham Theorem for manifolds

think at M as a locally ringed space with structural sheaf A0
M . The sheaf A1

M is a
finite locally free sheaf of A0

M -modules of rank n, with stalks generated by the stalks
of differentials of local coordinates

A1
M,x
∼= ⊕ni=1A0

M,xdwi,x.

Also the sheaves ApM are sheaves of A0
M -modules, such that

ApM ∼=
p⋀
A1
M .

Hence, they are also finite locally free sheaves of A0
M -modules. The differentials

dp : ApM → A
p+1
M

are morphisms of sheaves of R-vector spaces (not of A0
M -modules!), which on stalks

are such that

dp(fxdwi1,x ∧ · · · ∧ dwip,x) = dfx ∧ dwi1,x ∧ · · · ∧ dwip,x =

=
n∑
j=1

(
∂f

∂wj

)
x

dwj,x ∧ dwi1,x ∧ · · · ∧ dwip,x.

Proposition 1.1.3. Let M be a differentiable manifold. The cohomology groups of
M with coefficients in A•

M compute the de Rham cohomology of M

Hi(M,A•
M) ∼= Hi

dR(M/R).

Proof. Since differentiable manifolds admit partitions of unity, then the structural
sheaf A0

M is a fine sheaf and hence, also all sheaves of A0
M -modules are fine. So, each

ApM is a fine sheaf, hence acyclic. Then, the hyper-cohomology spectral sequence

Ep,q
1 = Hq(M,ApM)⇒ Hp+q(M,A•

M)

has page 1 given by

· · · · · · · · ·
0 → 0 → 0 → · · ·
0 → 0 → 0 → · · ·

H0(M,A0
M) → H0(M,A1

M) → H0(M,A2
M) → · · · .

Hence, the spectral sequence degenerates at page 2 and we get that, for any i ≥ 0,

Hi(M,A•
M) ∼= Hi(H0(M,A•

M)) = Hi(Γ(M,A•
M)).

By definition, the global sections at M of the de Rham complex is the complex
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A•(M), which computes de Rham cohomology. We conclude that

Hi(M,A•
M) ∼= Hi

dR(M/R).

Now we pass to describe singular cohomology as sheaf cohomology. Given an
abelian group Λ, we denote by

ΛM

the constant abelian sheaf overM given by Λ, that is the sheafification of the constant
abelian presheaf over M with values Λ.

Proposition 1.1.4. Let M be a differentiable manifold. The cohomology groups of
M with coefficients in ΛM compute the singular cohomology of M with coefficients
in Λ

Hi(M,ΛM) ∼= H i
Sing(M ; Λ).

Proof. A reference is [BT82, chap. III, §15]. This result actually holds for any
topological space which admits a good cover. Recall that, given U = {Ui}i∈I an open
cover of a topological space, we say that U is a good cover if all finite intersections

Ui0...ip := Ui0 ∩ · · · ∩ Uip

are contractible. Differentiable manifolds always admit a good cover. So, let U be a
good cover of M . Consider the complex of U -small singular chains (with coefficients
in Z) of M

CU• (M) : CU0 (M)→ CU1 (M)→ CU2 (M)→ · · · .

The Mayer-Vietoris principle (see [BT82, prop. 15.2]) states that

0← CU• (M)←
⨁
i0

CSing• (Ui0)←
⨁
i0,i1

CSing• (Ui0i1)←
⨁
i0,i1,i2

CSing• (Ui0i1i2)← · · ·

is an exact sequence of complexes of abelian groups. Since each CUp (M) and
CSingp (Ui0...ip) is a free abelian group, then, applying the functor HomZ-mod( ,Λ)
to the above exact sequence, we get the exact sequence of complexes of abelian
groups

0→ C•U(M ; Λ)→
∏
i0

C•Sing(Ui0 ; Λ)→
∏
i0,i1

C•Sing(Ui0i1 ; Λ)→
∏
i0,i1,i2

C•Sing(Ui0i1i2 ; Λ)→ · · · .

(1.1)
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Consider the first quadrant double complex

· · · · · · · · ·
↑ ↑ ↑∏

i0
C2Sing(Ui0 ; Λ) →

∏
i0,i1
C2Sing(Ui0i1 ; Λ) →

∏
i0,i1,i2

C2Sing(Ui0i1i2 ; Λ) → · · ·
↑ ↑ ↑∏

i0
C1Sing(Ui0 ; Λ) →

∏
i0,i1
C1Sing(Ui0i1 ; Λ) →

∏
i0,i1,i2

C1Sing(Ui0i1i2 ; Λ) → · · ·
↑ ↑ ↑∏

i0
C0Sing(Ui0 ; Λ) →

∏
i0,i1
C0Sing(Ui0i1 ; Λ) →

∏
i0,i1,i2

C0Sing(Ui0i1i2 ; Λ) → · · · .

We consider the two spectral sequences associated to it. The first one IEp,q
2 is

obtained by computing first, vertical cohomology and then, the horizontal. Since in
Λ-mod cohomology commutes with products, page 1 is given by

· · · · · · · · ·∏
i0
H2

Sing(Ui0 ; Λ) →
∏

i0,i1
H2

Sing(Ui0i1 ; Λ) →
∏

i0,i1,i2
H2

Sing(Ui0i1i2 ; Λ) → · · ·∏
i0
H1

Sing(Ui0 ; Λ) →
∏

i0,i1
H1

Sing(Ui0i1 ; Λ) →
∏

i0,i1,i2
H1

Sing(Ui0i1i2 ; Λ) → · · ·∏
i0
H0

Sing(Ui0 ; Λ) →
∏

i0,i1
H0

Sing(Ui0i1 ; Λ) →
∏

i0,i1,i2
H0

Sing(Ui0i1i2 ; Λ) → · · · .

Since U is a good cover, by homotopy invariance of singular cohomology, we deduce
that

Hq
Sing(Ui0...ip ; Λ) =

{
Λ if q=0

0 else.

Moreover notice that, for any p ≥ 0∏
i0,...,ip

H0
Sing(Ui0...ip ; Λ)

∼=
∏
i0,...,ip

Λ ∼= Čp(U ; ΛM).

That is, page 1 of the spectral sequence is concentrated in the 0th-row, given by the
Čech complex of the constant sheaf ΛX relative to the cover U . Hence, the spectral
sequence degenerates at page 2 and converges to the Čech cohomology of ΛX relative
to U

IEp,q
2 ⇒ Ȟ

p+q
(U ; ΛM).

The second spectral sequence IIEp,q
2 is obtained by computing first, horizontal

cohomology and then, the vertical. By exactness of 1.1, page 1 is given by

· · · · · · · · ·
0 → 0 → 0 → · · ·
0 → 0 → 0 → · · ·

C0U(M ; Λ) → C1U(M ; Λ) → C2U(M ; Λ) → · · · .

Hence IIEp,q
2 degenerates at page 2 and converges to the U -small singular cohomology

17
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of M with coefficients in Λ

IIEp,q
2 ⇒ Hp+q

U (M ; Λ).

Since both spectral sequences IEp,q
2 and IIEp,q

2 converge to the cohomology of the
total complex of the double complex, then we deduce that the limits are isomorphic

Ȟ
i
(U ; ΛM) ∼= Hi

U(M ; Λ).

Since the complex of singular chains over M is homotopical equivalent to the the
complex of U -small singular chains overM and the functor HomZ-mod( ,Λ) preserves
homotopical equivalence of complexes, then the complex of singular cochains over M
is homotopical equivalent to the the complex of U -small singular cochains over M .
Hence, the U-small singular cohomology is isomorphic to the singular cohomology
with coefficients in Λ

Hi
U(M ; Λ) ∼= Hi

Sing(M ; Λ).

Then, since good covers are cofinal in the category of covers of M , taking direct
limit over all good covers of M , we deduce that the Čech cohomology of M with
coefficients in ΛM is isomorphic to the singular cohomology of M with coefficients in
Λ

Hi
Sing(M ; Λ) ∼= lim−→

U good cover

Ȟ
i
(U ; ΛM) ∼= Ȟ

i
(M ; ΛM).

Since M is paracompact, then Čech cohomology always coincides with sheaf coho-
mology. Hence, we conclude

Hi
Sing(M ; Λ) ∼= Ȟ

i
(M ; ΛM) ∼= Hi(M,ΛM).

Now, we finally prove the de Rham Theorem. Recall that, from Real Analysis,
it’s well-known the Poincaré Lemma.

Theorem 1.1.5 (Poincaré Lemma). For any integer n ≥ 0, over any open disk of
Rn, any closed differential form is also exact.

Since M at each point has a basis of open neighborhoods diffeomorphic to open
disks of Rn, then the Poincaré Lemma is equivalent to say that the de Rham complex
A•
M is exact on stalks, i.e. exact as a complex of sheaves. Moreover, the kernel of

d : A0
M → A1

M

is the sheaf of differentiable R-valued functions with differential zero, that is, the
constant sheaf RM . Hence, we have a quasi-isomorphism of complexes of sheaves of
R-vector spaces over M

RM
∼−→ A•

M .

18



1.1. The de Rham Theorem for manifolds

Since quasi-isomorphisms induce isomorphisms on sheaf cohomology, then, for each
i ≥ 0,

Hi
Sing(M ;R) ∼= Hi(M,RM) ∼= Hi(M,A•

M) = H i
dR(M/R),

which is the de Rham Theorem 1.1.1.

1.1.2 Complex manifolds

In Complex Geometry, we can formulate analogous constructions and results, con-
sidering complex manifolds instead of differentiable manifolds. We describe what
happens in this context because we need it to connect to Algebraic Geometry.

Let M be a complex manifold of dimension n. In particular M is a differentiable
manifold of dimension 2n, so we can consider its de Rham complex A•

M . Consider
(A•

M)C the open-wise complexification of A•
M . That is, for any U ⊂M open subset,

(A•
M)C(U) := A•

M(U)⊗R C.

It is a complex of sheaves of C-vector spaces over M (sheaves of C-vector spaces over
the classical site of open subsets of M). For any point x ∈ M , let w1,x, . . . , wn,x ∈
A0
M,x⊗RC be the stalks of some complex local coordinates at x. We have a canonical

decomposition of each (ArM)C

(ArM)C ∼= ⊕p+q=rAp,qM ,

such that on stalks

Ap,qM,x
∼= ⊕I,J(A0

M,x ⊗R C)dwI,x ∧ dw̄J,x,

where I = {1 ≤ i1 < · · · < ip ≤ n}, J = {1 ≤ j1 < · · · < jq ≤ n} and dwI :=
dwi1 ∧ · · · ∧ dwip , dw̄J := dw̄j1 ∧ · · · ∧ dw̄jq . We also have a canonical decomposition
of the differentials

drC = ⊕p+q=rdp,q + d̄p,q,

such that on stalks

drC(fxdwI,x ∧ dw̄J,x) =
n∑
i=1

(
∂f

∂wi

)
x

dwi,x ∧ dwI,x ∧ dw̄J,x +
n∑
j=1

(
∂f

∂w̄j

)
x

dw̄j,x ∧ dwI,x ∧ dw̄J,x

=: dp,q(fxdwI,x ∧ dw̄J,x) + d̄p,q(fxdwI,x ∧ dw̄J,x).
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In other words, we have a first quadrant double complex

· · · · · · · · ·

A0,2
M A1,2

M A2,2
M · · ·

A0,1
M A1,1

M A2,1
M · · ·

A0,0
M A1,0

M A2,0
M · · · ,

d0,2 d1,2

d0,1

d̄0,1

d1,1

−d̄1,1 d̄2,1

d0,0

d̄0,0

d1,0

−d̄1,0 d̄2,0

whose total complex is (A•
M)C.

Definition 1.1.6. Given M a complex manifolds, the holomorphic (or analytic) de
Rham complex of M is the complex of sheaves of C-vector spaces over M

Ω•
M : Ω0

M
d−→ Ω1

M
d1−→ Ω2

M → · · ·

defined as

Ω•
M := ker(A•,0

M

d̄•,0−−→ A•,1
M ).

Notice that Ω0
M
∼= OM is the sheaf of holomorphic C-valued functions overM . For

any point x ∈M , let w1,x, . . . , wn,x ∈ OM,x be the stalks of some local coordinates
at x. The ideal generated by w1,x, . . . , wn,x is the maximal ideal of OM,x. Hence, we
can think at M as a locally ringed space with structural sheaf OM . The sheaf Ω1

M

is a finite locally free sheaf of OM -modules of rank n, with stalks generated by the
stalks of differentials of local coordinates

Ω1
M,x
∼= ⊕ni=1OM,xdwi,x.

Also the sheaves Ωp
M are sheaves of OM -modules, such that

Ωp
M
∼=

p⋀
Ω1
M .

Hence, they are also finite locally free sheaves of OM -modules. The differentials

dp : Ωp
M → Ωp+1

M

are morphisms of sheaves of C-vector spaces (not of OM -modules!), which satisfy
the Leibnitz rule: for any ω section of Ωr

M and η section of Ωp−r
M ,

dp(ω ∧ η) = drω ∧ η + (−1)rω ∧ dp−rη.
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1.1. The de Rham Theorem for manifolds

In analogy with what happens in the real case, we give the following definition.

Definition 1.1.7. Given M a complex manifold, the holomorphic (or analytic) de
Rham cohomology of M is the cohomology of M with coefficients in the holomorphic
de Rham complex

Hi
dR(M/C) := Hi(M,Ω•

M).

Differently from the real case, the sheaves Ωp
M aren’t acyclic in general. Hence,

the sheaf cohomology of Ω•
M can’t be computed by taking the cohomology groups of

the complex of its global sections at M , but we need to consider acyclic resolutions
of Ωp

M . The following variant of the Poincaré Lemma (see [GH78, p. 25]) provides
such resolutions.

Theorem 1.1.8 (d̄-Poincaré Lemma). For any integer n ≥ 0, over any open disk of
Cn, any d̄-closed differential form is also d̄-exact.

Since M at each point has a basis of open neighborhoods biholomorphic to open
disks of Cn, then the d̄-Poincaré Lemma is equivalent to say that columns of the
double complex 1.1.2 are exact on stalks, i.e. exact complexes of sheaves. So we
have quasi-isomorphisms, for each p ≥ 0,

Ωp
M

∼−→ Ap,•M

and hence, also a quasi-isomorphism

Ω•
M

∼−→ Tot⊕(A•,•
M ) ∼= (A•

M)C.

Notice that, since each ApM is acyclic and C is flat over R, then also each (ApM)C is
acyclic. Hence, (A•

M)C is an acyclic resolution of Ω•
M . Then,

Hi
dR(M/C) = Hi(M,Ω•

M) ∼= Hi(M, (A•
M)C) ∼= Hi(A•

M(M)⊗R C) ∼=
∼= Hi(A•(M)⊗ C) ∼= Hi

dR(M/R)⊗R C,

that is, the holomorphic de Rham cohomology of a complex manifold is the com-
plexification of the de Rham cohomology of the underlying differentiable manifold.
Moreover, recall that, by Poincaré Lemma, we have a quasi-isomorphism of sheaves
of R-modules over M

RM
∼−→ A•

M .

Since C is flat over R, its complexification is still a quasi-isomorphism

CM
∼−→ (A•

M)C.

Since image of CM → (A•
M)C lies inside Ω•

M , then, we have a commutative diagram
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of complexes of sheaves over M

CM (A•
M)C

Ω•
M

∼

∼

By the 2-out-of-3 property for quasi-isomorphisms, then also

c : CM
∼−→ Ω•

M (1.2)

is a quasi-isomorphism. We can think at it as an holomorphic version of Poincaré
Lemma. As in the real case, we have an holomorphic version of the de Rham Theorem,
which is an immediate consequence of holomorphic Poincaré Lemma.

Theorem 1.1.9 (Holomorphic (or analytic) de Rham Theorem). Let M be a complex
manifold. There exist isomorphisms of C-vector spaces, for each i ≥ 0,

H i
dR(M/C) ∼= H i

Sing(M ;C).

Proof. The quasi-isomorphisms of complexes of abelian sheaves 1.2 induces the
isomorphisms on sheaf cohomology, for each i ≥ 0

Hi(M,CM) ∼= Hi(M,Ω•
M)

By the sheaf-theoretic interpretation of singular cohomology of M (Prop. 1.1.4) and
by definition of holomorphic de Rham cohomology, it follows that

Hi
Sing(M ;C) ∼= Hi(M,CM) ∼= Hi(M,Ω•

M) = Hi
dR(M/C).

Remark 1.1.10. As in the real case, an explicit isomorphism is the one induced by
the perfect pairing given by integration of holomorphic forms along singular cycles
over M

H i
dR(M/C)×HSing

i (M)→ C

([ω], [γ]) ↦→
∫
γ

ω.

From now on, since we will deal only with complex manifolds, we will denote the
analytic de Rham cohomology of a complex manifold M simply by

Hi
dR(M),

instead of Hi
dR(M/C).
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1.2. Analytic spaces and GAGA Theorems

1.2 Analytic spaces and GAGA Theorems

1.2.1 Analytic spaces

We want to introduce a kind of locally ringed spaces, which can be thought as complex
manifolds with eventually some singular points. These spaces allow to connect to
the algebraic varieties over C in Algebraic Geometry. A reference is [GR84].

We consider Cn with the euclidean topology and we denote by OCn the sheaf of
holomorphic C-valued functions over Cn. It is a sheaf of C-algebras. Stalks of OCn

are all isomorphic to C{t1, . . . , tn}, the ring of power series convergent on some disk,
which is a subring of CJt1, . . . , tnK, the ring of formal power series. It is a local ring
because CJt1, . . . , tnK is, with maximal ideal generated by t1, . . . , tn, and an invertible
formal power series which is convergent has inverse which is also convergent. Also
the maximal ideal of C{t1, . . . , tn} is generated by t1, . . . , tn and the residue field is
isomorphic to C. Hence, we can think at Cn as a locally ringed space with structural
sheaf OCn . For any open subset U ⊂ Cn, we can think at U as a locally ringed space
with structural sheaf given by OU := OCn

⏐⏐
U
.

Definition 1.2.1. A local model is a ringed space (Z,OZ), such that Z is the zero
locus of a finite set of holomorphic functions S ⊂ OCn(U) on an open subset U ⊂ Cn

Z = Z(S) := {x ∈ U | f(x) = 0 ∀f ∈ S},

with the subspace topology and structural sheaf

OZ := i−1(OU/⟨S⟩),

where i : Z ↪→ U denotes the inclusion and ⟨S⟩ ⊂ OU is the subsheaf of ideals
generated by elements of S.

A complex analytic space is a ringed space (Y ,OY), with Y Hausdorff, which is
locally isomorphic to a local model, i.e. such that there exists an open cover {Wi}i∈I
of Y , such that, for any i ∈ I,

(Wi,OY
⏐⏐
Wi

) ∼= (Z,OZ)

as ringed spaces, for some (Z,OZ) local model. The ringed spaces Wi are called local
charts of Y .

Example 1.2.2. Cn and its open subsets are Hausdorff, hence they are complex
analytic spaces. In particular C0 is the complex analytic spaces given by the point
with structural sheaf the constant sheaf C. Notice that it is isomorphic to Spec(C)
as a ringed space. Since local models have subspace topology of Cn, then they are
Hausdorff, hence they are complex analytic spaces. Open subsets of complex analytic
spaces are complex analytic spaces.
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Remark 1.2.3. Complex analytic spaces are locally ringed spaces. Indeed, it suffices
to check that local models are. Let (Z,OZ) be a local model. Then, for any x ∈ Z,

OZ,x = i−1(OU/⟨S⟩)x ∼= OCn,x/⟨S⟩x

is a quotient of a local ring, hence it is local.

Notice that, since OCn is a sheaf of C-algebras, then also the structural sheaf of
any complex analytic space is a sheaf of C-algebras. Hence, any complex analytic
space is endowed with a unique morphism of ringed spaces into C0.

Definition 1.2.4. Given Y and W complex analytic spaces, a morphism of complex
analytic spaces f : Y → W is a morphism of locally ringed spaces over C0. In other
words, f is a morphism of locally ringed spaces, such that the morphism on structural
sheaves f# : f−1OW → OY is a morphism of sheaves of C-algebras.

Complex analytic spaces with their morphisms form the category of complex
analytic spaces, denoted by AnC.

Remark 1.2.5. Let (Z,OZ) be a local model. The inclusion

i : Z ↪→ U

with the morphism of sheaves obtained by applying i−1 to the canonical projection
on the quotient

i# : i−1OU ↠ i−1(OU/⟨S⟩)

defines a closed immersion. Moreover, for any x ∈ Z, the surjective morphism
induced on the residue fields at x and i(x) is a morphism of C-algebras

C ↠ k(x).

Hence k(x) ∼= C. That is, the residue field of any complex analytic spaces at any
point is isomorphic to C.

Remark 1.2.6. The translations in Cn

τ : Cn → Cn

(y1, . . . , yn) ↦→ (y1 + a1, . . . , yn + an),

for some a1, . . . , an ∈ C, with morphism on structural sheaves given by composition
with τ , are isomorphisms of complex analytic spaces, with inverse the opposite
translation. Notice that, up to applying a translation, we can assume that, given
any complex analytic space Y and a point y ∈ Y, a local chart W ∼= Z such that
y ∈ W , maps y into 0 ∈ Z ⊂ Cn.
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Remark 1.2.7. Let Y be a complex analytic space. Then, we have a canonical map

HomAnC(Y ,Cn)→ OY(Y)n

f ↦→ (s1, . . . , sn),

such that, for each i = 1, . . . , n,

f#
C : OCn(C)→ OY(Y)

pi ↦→ si,

where pi : Cn → C is the projection to the ith-component. In fact, this defines a
bijection (see [GR84, §1.3.1]).

Definition 1.2.8. A complex analytic space Y is reduced at a point y ∈ Y if the
stalk OY,y is a reduced ring. We say that Y is reduced if it is reduced at all its points.

Definition 1.2.9. A complex analytic space Y is smooth of dimension n at a point
y ∈ Y, if there exists a local chart containing y, which is isomorphic to an open
subset of Cn. We say that Y is smooth, if it is smooth at all its points. We denote
by AnSmC the full subcategory of AnC, whose objects are smooth complex analytic
spaces.

Remark 1.2.10. It can be checked that the classical definition of a complex manifold
via holomorphic atlas is equivalent to the one of smooth complex analytic space.
Moreover, morphisms of smooth complex analytic spaces are exactly morphisms
of complex manifolds. In this sense, we can think at complex analytic spaces as
complex manifolds with eventually some singular points.

There’s a useful criterion for smoothness.

Theorem 1.2.11 (Jacobi criterion). Let Y be a complex analytic space, y ∈ Y
a point, W ⊂ Y a local chart containing y, with W ∼= Z(f1, . . . , fn−r) for some
f1, . . . , fn−r ∈ OCn(U) and U ⊂ Cn open subset. Assume that the local chart maps
y ∈ W into 0 ∈ Z ⊂ Cn. Then, Y is smooth of dimension r at y if and only if the
Jacobian matrix evaluated at 0

Jf1,...,fn−r(0) :=

[
∂fi
∂tj

(0)

]
i=1,...,n−r
j=1,...,n

has maximal rank n− r.

Proof. If Y is smooth of dimension r at y, then we can assume that the local chart
W ⊂ Y containing y is sufficiently small such that there exists an isomorphism

φ :W ∼= V
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with V ⊂ Cr an open subset. Then, we have an isomorphism

OCr,φ(y)
∼= OY,y.

Hence, the maximal ideal my ⊂ OY,y is generated by r elements g1,y, . . . , gr,y ∈ OY,y.
We can assume that U is sufficiently small, such that there exist g′1, . . . , g

′
r ∈ OCn(U),

whose stalks g′1,0, . . . , g
′
r,0 ∈ OCn,0 are some preimages of g1,y, . . . , gr,y along the

surjective morphism

OCn,0 ↠ OCn,0/(f1,0, . . . , fn−r,0) ∼= OY,y.

Then it holds that

OCn,0/(f1,0, . . . , fn−r,0, g
′
1,0, . . . , g

′
r,0)
∼= OY,y/(g1,y, . . . , gr,y) ∼= C,

This means that f1,0, . . . , fn−r,0, g
′
1,0, . . . , g

′
r,0 generate the maximal ideal of OCn,0, i.e.

they are stalks of holomorphic functions defining a local chart of Cn on an open
neighborhood of 0. Hence, the Jacobian matrix of f1, . . . , fn−r, g

′
1, . . . , g

′
r evaluated

at 0 has maximal rank n. Then, also the Jacobian matrix of f1, . . . , fn−r evaluated
at 0 has maximal rank n − r. Conversely, assume that the last n − r columns of
the Jacobian matrix evaluated at 0 are linearly independent. By the Holomorphic
Implicit Function Theorem, we can assume W sufficiently small, such that W is
isomorphic to the graph of an holomorphic function g : V → Cn−r, for some V ⊂ Cr

open subset. Then, W ∼= V as ringed spaces (see [GR84, §1.3.5]). Hence, Y is
smooth at y.

Now, we see the relation between algebraic varieties over C and complex analytic
spaces. First, we recall the definition of an algebraic variety.

Definition 1.2.12. An algebraic variety over a field k is a separated, locally of
finite type k-scheme. Algebraic varieties over k with morphisms of k-schemes, i.e.
morphisms of locally ringed spaces over Spec(k), form the category of algebraic
varieties over k, denoted by V ark.

Recall that a k-scheme X is locally of finite type if, for any U ⊂ X affine open
subset, OX(U) is a finitely generated k-algebra.

Both the categories V arC and AnC fully embed into LocC, the category of locally
ringed spaces over Spec(C) ∼= C0

AnC

V arC LocC.

ιA

ιV

There exists a universal construction that transforms an algebraic variety over C
into a complex analytic space.
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Proposition 1.2.13 (Analytification). The full embedding ιV : V arC ↪→ LocC admits
an absolute right kan lift along the full embedding ιA : AnC ↪→ LocC

AnC

V arC LocC.
⇓ α

ιA

ιV

an

Explicitly, there exists a functor

an : V arC → AnC

X ↦→ an(X)

with a natural transformation

α : ιA ◦ an⇒ ιV ,

satisfying the following universal property: given X ∈ V arC and Y ∈ AnC, for any
morphism f : Y → X in LocC, there exists a unique morphism Y → an(X) in AnC,
such that

Y X

an(X)

f

αX

is a commutative diagram in LocC.

Proof. Notice that, equivalently, the universal property in the statement tells that
for any X ∈ V arC and Y ∈ AnC we have a bijection

HomAnC(Y , an(X)) ∼= HomLocC(Y , X),

natural in X and Y , which is given by composition with a morphism of locally ringed
spaces

αX : an(X)→ X.

In other words, for any X ∈ V ar/C, the functor

HomLocC( , X) : AnopC → Set

is represented by an(X) together with a canonical morphism αX : an(X)→ X.

We start considering the case X ∼= An
C is the affine space of dimension n. We

have canonical bijections, for any Y ∈ AnC,

HomLocC(Y ,An
C)
∼= HomAlgC(C[t1, . . . , tn],OY(Y)) ∼= OY(Y)n ∼= HomAnC(Y ,Cn),
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where the first bijection holds because affine spaces are affine schemes, and the last is
remark 1.2.7. So, an(An

C)
∼= Cn. Following the bijections, we see that the canonical

morphism of locally ringed spaces

αAn
C
: Cn → An

C

is the one corresponding to the homomorphism of C-algebras

C[t1, . . . , tn]→ OCn(Cn),

which assigns to any polynomial the holomorphic function defined by that polynomial.

Now, consider the case X is an affine algebraic variety. This means that X ∼=
Spec(OX(X)) and OX(X) is a finitely generated C-algebra

OX(X) ∼= C[t1, . . . , tn]/I,

for some ideal I ⊂ C[t1, . . . , tn]. By Hilbert’s basis theorem, I is a finitely generated
ideal. Let I = (f1, . . . , fm) for some f1, . . . , fm ∈ C[t1, . . . , tn]. So, X = V (f1, . . . , fm)
is the closed subscheme of An

C corresponding to the sheaf of ideals

I := ⟨f1, . . . , fm⟩ ⊂ OAn
C
.

Consider the fiber product in LocC between X and Cn over An
C

Z := X ×An
C
Cn Cn

X An
C

/

⌟ αAnC

/

Then, Z ↪→ Cn is the closed immersion corresponding to the sheaf of ideals

α∗
An
C
I = ⟨f1, . . . , fm⟩ ⊂ OCn ,

where here f1, . . . , fm ∈ OCn(Cn) are seen as the holomorphic functions defined by
the polynomials. That is, Z is the local model Z = Z(f1, . . . , fm) ⊂ Cn. We have
the canonical bijections, for any Y ∈ AnC,

HomAnC(Y , Z) ∼= HomLocC(Y , Z) ∼=
∼= HomLocC(Y , X)×HomLocC (Y,A

n
C) HomLocC(Y ,Cn) ∼=

∼= HomLocC(Y , X),

where the second bijection holds by universal property of fiber product in LocC, and
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1.2. Analytic spaces and GAGA Theorems

the last follows from the previous case, since

HomLocC(Y ,An
C)
∼= HomLocC(Y ,Cn).

So, Z ∼= an(X) and the morphism αX : an(X)→ X is the canonical morphism of
fiber product.

Finally, consider X a generic algebraic variety over C. Let {Xi}i∈I be an affine
open cover ofX. EachXi is an affine algebraic variety over C, hence its analytification
an(Xi) exists by the previous case. We prove that the an(Xi), for i ∈ I, glue to an
analytification of X. First notice that they glue to a locally ringed space. Indeed,
notice that, since X is separated, also each intersection Xij := Xi ∩Xj is an affine
open subsets of X, hence its analytification an(Xij) exists by the previous case. By
naturality of analytification, the glueing data {Xi, Xij}i,j∈I for X, produces a glueing
data of locally ringed spaces {an(Xi), an(Xij)}i,j∈I . Let X be the glueing locally
ringed space. The canonical morphisms of analytification define a morphism between
the glueing data of X and X. They glue to a morphism of locally ringed spaces

α : X → X.

Now, we show that X is a complex analytic space. Indeed, {an(Xi)}i∈I is an open
cover of X and, by the previous case, the an(Xi) are local models. Moreover, since
we have the commutative diagram of topological spaces with the diagonal maps

X X × X

X X ×X,

∆

α α×α

/
∆

and ∆α(X) ⊂ X ×X is closed because X is separated, then

∆(X ) = (α× α)−1(∆α(X))

is closed inside X ×X . Hence, X is Hausdorff. Finally, we show that X satisfies the
universal property of the analytification of X. Given Y ∈ LocC, for any f : Y → X
in LocC, consider {Yi := f−1(Xi),Yij := f−1(Xij)}i,j∈I , which is a glueing data for
Y . For each i ∈ I, by universal property of an(Xi), there exists a unique morphism
Yi → an(Xi) such that

Yi Xi

an(Xi)

f |Yi

αXi
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commutes in LocC. By naturality of analytification, these morphisms define a
commutative diagram of morphisms between the glueing data of Y, X and X.
Taking colimit, we conclude that there exists a unique morphism Y → X such that

Y X

X

f

α

commutes in LocC. So X ∼= an(X), with canonical morphism α : X → X.

Definition 1.2.14. The universal functor

an : V arC → AnC

is called analytification functor. Given X an algebraic variety over C, the complex
analytic space an(X) is called the analytification of X.

Remark 1.2.15. We have an explicit description of what is set-theoretically the
analytification of an algebraic variety over C, which however is not so clear form the
proof of its existence. Let X ∈ V arC. On one hand, we have the bijections,

HomLocC(C
0, X) ∼= HomAnC(C

0, an(X)) ∼= an(X),

where the first is the universal property of analytification and the second holds
because the residue field of any complex analytic space is isomorphic to C at any
point, by remark 1.2.5. On the other hand, since C0 ∼= Spec(C) as locally ringed
spaces, then

HomLocC(C
0, X) ∼= HomV arC(Spec(C), X) = X(C),

where by X(C) we denote the set of C-rational points of X. Hence,

an(X) ∼= X(C),

that is, set-theoretically an(X) is the set of C-rational points of X. From now on,
we will denote by X(C) the analytification of X. Notice that, since C is algebraically
closed, the C-rational points are exactly the closed ones and, since X is locally of
finite type over C, they are very dense in X (which means that every locally closed
subset contains a point of X(C)). Moreover, the canonical map αX : X(C) ↪→ X is
the inclusion of closed points.

Remark 1.2.16. Let X ∈ V arC and U ⊂ X be an open subset. Then, the
analytification of U is isomorphic to the preimage of U along the canonical morphism
of analytification

U(C) ∼= α−1
X (U).
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1.2. Analytic spaces and GAGA Theorems

Indeed, by universal properties of analytification and fiber product, we have the
bijections, for any Y ∈ AnC,

HomAnC(Y , α−1
X (U)) ∼= HomLocC(Y , U ×X X(C)) ∼=

∼= HomLocC(Y , U)×HomLocC (Y,X) HomLocC(Y , X(C)) ∼=
∼= HomLocC(Y , U)×HomLocC (Y,X) HomAnC(Y , X(C)) ∼=
∼= HomLocC(Y , U) ∼= HomAnC(Y , U(C)).

The claim follows by Yoneda Lemma.

Proposition 1.2.17. Let X be an algebraic variety over C. The canonical morphism
of analytification αX : X(C)→ X is such that, for any x ∈ X(C) closed point of X,
the morphism of local rings OX,x → OX(C),x induces an isomorphism between their
adic-completion with respect to their maximal ideal

ÔX,x ∼= ÔX(C),x.

Proof. Since x is a closed point of X, then

OX,x ∼= OAn
C ,0
/I,

where 0 ∈ An
C(C) ∼= Cn is the closed point of An

C = Spec(C[t1, . . . , tn]) given by the
maximal ideal m = (t1, . . . , tn) and I ⊂ OAn

C ,0
is an ideal. By construction of the

analytification, we see that

OX(C),x ∼= OCn,0/IOCn,0.

Since completion commutes with quotients, then it suffices to show that

ÔAn
C ,0
∼= ÔCn,0.

On one hand, we have that

ÔAn
C ,0
∼= ˆC[t1, . . . , tn]m ∼= ˆC[t1, . . . , tn]m̂ ∼= CJt1, . . . , tnKm̂ ∼= CJt1, . . . , tnK,

where the second isomorphism holds because, since m is maximal, the m-adic com-
pletion commutes with the localization at m, and the last holds because CJt1, . . . , tnK
is already local with maximal ideal m̂. On the other hand, we have

ÔCn,0 = ˆC{t1, . . . , tn} ∼= CJt1, . . . , tnK.

Hence
ÔAn

C ,0
∼= CJt1, . . . , tnK ∼= ÔCn,0.
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1.2.2 GAGA Theorems

Notice that the analytification construction offers an alternative way to study alge-
braic varieties over C. Indeed, given X an algebraic variety over C, we have two
different ways to study it. One is the algebraic way, considering X as a scheme, so
dealing with the Zariski topology and the rational functions of the structural sheaf
OX . The other is the analytic way, passing to the analytification X(C), so considering
the analytic topology and the transcendental functions of the structural sheaf OX(C).
It turns out that, in case X is a proper algebraic variety, these two ways give rise to
analogous results, making the two approaches substantially equivalent. The deep
reason for this equivalence is attributable to the equivalence of the categories of
coherent sheaves of modules over X and X(C) and to the isomorphism of the sheaf
cohomologies of the corresponding coherent sheaves of modules. Below, we state
precisely these results, which are called GAGA (Géométrie Algébrique Géométrie
Analytique) Theorems.

The appropriate language in which to discuss sheaves (of modules) and sheaf
cohomology is the one of (ringed) sites. For the moment, we consider the classical
sites associated to the underlying topological spaces of X and X(C), that is, the
ones given by the category of open subsets, with the Grothendieck topology where
the covering families are open covers. Moreover, since X and X(C) are ringed spaces,
then the structural sheaves are sheaves of rings with respect to the classical sites,
so they define classical ringed sites. The more general notion of sites will be useful
later, when we will consider non-classical sites associated to X and X(C) and also
big sites. So, explicitly, given X an algebraic variety over C (or more generally over
any field k), we consider the site with underlying category Op(X), the category of
Zariski open subsets of X, and covering families given by open covers. It is called
the small Zariski site over X and it is denoted by

XZar.

Since X is a ringed space, then the structural sheaf OX is a sheaf of rings on the
site XZar. Hence, it endows XZar with a structure of ringed site, denoted by

(XZar,OX).

Analogously, given Y a complex analytic space, we consider the site with underlying
category Op(Y), the category of open subsets of Y as a complex analytic space, and
covering families given by open covers. It is called the small analytic site over Y and
it is denoted by

Yan.

Since Y is a ringed space, than the structural sheaf OY is a sheaf of rings on the site
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1.2. Analytic spaces and GAGA Theorems

Yan. Hence, it endows Yan with a structure of ringed site, denoted by

(Yan,OY).

To relate cohomology of X with the one of X(C), we consider morphisms of
(ringed) sites. The continuous map of topological spaces underlying αX : X(C)→ X,
the canonical morphism of analytifcation, induces a morphism of sites

αX : X(C)an → XZar.

By remark 1.2.16, it is the morphism of sites associated to the continuous functor
given by the restriction of the analytification functor

an : Op(X)→ Op(X(C))
U ↦→ α−1

X (U) ∼= U(C).

Since αX : X(C)→ X is also a morphism of ringed spaces, it induces a morphism of
ringed sites

αX : (X(C)an,OX(C))→ (XZar,OX).

Consider the categories of abelian sheaves and sheaves of OX-modules over XZar

Ab(XZar) & Mod(OX)

and, analogously for X(C), the categories

Ab(X(C)an) & Mod(OX(C)).

By general theory of (ringed) sites, we have the pairs of adjoint functors

α−1
X : Ab(XZar) Ab(X(C)an) : αX∗

and
α∗
X : Mod(OX) Mod(OX(C)) : αX∗.

Recall that: αX∗ is such that, for any G ∈ Ab(X(C)an) or Mod(OX(C)),

αX∗G : U ↦→ G(U(C)),

α−1
X is such that, for any F ∈ Ab(XZar), α

−1
X F is the sheafification of

αpXF :W ↦→ lim−→
W→U(C)∈Op(X(C))

F (U),
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and α∗
X is such that, for any F ∈ Mod(OX),

α∗
XF := α−1

X F ⊗α−1
X OX

OX(C).

Definition 1.2.18. Given X an algebraic variety over C, the functor

α∗
X : Mod(OX)→ Mod(OX(C))

F ↦→ F an := α∗
XF

is called the analytification functor of sheaves of modules and F an the analytification
of F .

Proposition 1.2.19. For any X algebraic variety over C, the morphism of ringed
sites

αX : (X(C)an,OX(C))→ (XZar,OX)

is faithfully-flat. Hence, the analytification functor of sheaves of modules α∗
X is exact.

Proof. We have to prove that

α#
X : α−1

X OX → OX(C)

is a faithfully-flat morphism of abelian sheaves over the site X(C)an. Since X(C)an
is the classical site given by open covers, this is equivalent to prove that for any
x ∈ X(C)

OX,x → OX(C),x

is a faithfully-flat morphism of local rings. Taking the induced morphism on adic-
completions with respect to the maximal ideals, we obtain the commutative diagram
of rings

OX,x OX(C),x

ÔX,x ÔX(C),x.

By proposition 1.2.17, the lower horizontal morphism is an isomorphism. Since
OX,x and OX(C),x are noetherian local rings (because are isomorphic to quotients
and localizations of C[t1, . . . , tn] and C{t1, . . . , tn}, which are noetherian rings), then
the canonical morphisms into their adic-completion with respect to their maximal
ideal, i.e. vertical morphisms in the diagram, are faithfully-flat. By commutativity
of the diagram, it follows that also OX,x → OX(C),x is faithfully-flat.

Before stating GAGA Theorems, we see some properties of coherent sheaves of
modules over the ringed sites XZar and X(C)an.
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1.2. Analytic spaces and GAGA Theorems

Proposition 1.2.20. For any X algebraic variety over a field k, the structural sheaf
OX is a coherent sheaf of OX-modules. Analogously, for any Y complex analytic
space, the structural sheaf OY is a coherent sheaf of OY-modules.

Proof. Let X be an algebraic variety over k. Since X is a locally noetherian scheme,
then coherent sheaves of OX-modules are exactly the quasi-coherent and locally
of finite type ones (see [GW20, Prop. 7.46]). Since the structural sheaf OX is a
quasi-coherent and locally of finite type sheaf of OX-modules, then it is a coherent
sheaf of OX-modules.

Let Y be a complex analytic space. In case Y ∼= Cn, the statement is Oka’s
Theorem (see [GR84, §2.5.2]). Since coherence is a local property, then also OU
is a coherent sheaf OU -modules for any U ⊂ Cn open subset. For a general Y,
since coherence is a local property, we can assume that Y is a local model. Let
Y ∼= Z = Z(S), zero locus of a finite set of holomorphic functions S over an open
subset U ⊂ Cn. Let i : Y ↪→ U be the corresponding closed immersion. Since S is
finite, then OU/⟨S⟩ is a locally of finite presentation sheaf of OU -modules. Since
OU is a coherent sheaf of OU -modules and OU/⟨S⟩ is a locally of finite presentation
sheaf of OU -modules, then OU/⟨S⟩ is also a coherent sheaf of OU -modules. Since a
sheaf of OU/⟨S⟩-modules that is coherent as a sheaf of OU -modules is also a coherent
sheaf of OU/⟨S⟩-modules, then OU/⟨S⟩ is a coherent sheaf of OU/⟨S⟩-modules.
Using exactness of i−1, we conclude that OY ∼= i−1(OU/⟨S⟩) is a coherent sheaf of
i−1(OU/⟨S⟩)-modules.

Proposition 1.2.21. Let X be an algebraic variety over C. If F is a coherent sheaf
of OX-modules, then F an is a coherent sheaf of OX(C)-modules.

Proof. Since, by proposition 1.2.20, for both algebraic varieties over C and complex
analytic spaces the structural sheaf is coherent, then the statement is equivalent to: if
F is a locally of finite presentation sheaf of OX-modules, then F an is a locally of finite
presentation sheaf of OX(C)-modules. So, let F be a locally of finite presentation
sheaf of OX-modules. For any x ∈ X(C) closed point of X, consider a local finite
presentation of F over an open subset U ⊂ X containing x, that is an exact sequence,
for some n,m ≥ 0,

OmU → OnU → F
⏐⏐
U
→ 0.

Since α∗
X is exact by proposition 1.2.19, then it induces the exact sequence

OmU(C) → OnU(C) → F an
⏐⏐
U(C) → 0,

which is a local finite presentation of F an over the open subset U(C) ⊂ X(C)
containing x. Hence, F an is locally of finite presentation.

In other words, proposition 1.2.21 tells that, for any X algebraic variety over
C, the analytification functor of sheaves of modules restricts to the categories of
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coherent sheaves of modules

α∗
X : Coh(OX)→ Coh(OX(C)).

Now we state GAGA Theorems. They were first formulated and proved by Serre
for projective algebraic varieties in [Ser56] and then generalized by Grothendieck
for proper algebraic varieties in [Gro57]. Moreover, Grothendieck adopts a relative
approach. That is, instead of considering only algebraic varieties, he deals more
generally with morphisms of algebraic varieties. Hence, statements about sheaf
cohomology of algebraic varieties become more generally statements about the right-
derived pushforward of morphisms of algebraic varieties. However, we are interested
only in Serre’s non-relative version, which is recovered by applying Grothendieck’s
relative version to the structural morphism of algebraic varieties into Spec(C). We
also remark that, while Grothendieck considers sheaf cohomology, Serre considers
Čech cohomology. However, notice that it makes no difference, since, in both algebraic
and analytic contexts, they coincide for coherent sheaves of modules. Indeed, in the
algebraic context, recall that, given U an affine algebraic variety and F ∈ Coh(OU),
it holds that (see [Har77, §III, Thm. 3.5])

Hq(UZar, F ) = 0 for any q > 0.

So, given X ∈ V arC, consider U = {Ui}i∈I an affine open cover of X. Since X is
separated, then also finite intersections Ui0...in := Ui0 ∩ · · · ∩ Uin are affine. Hence, it
holds that, for any F ∈ Coh(OX),

Hq(Ui0...in , F ) = 0 for each n ≥ 0 and q > 0.

By Leray’s Theorem, it follows that, for each i ≥ 0,

Hi(XZar, F ) ∼= Ȟ
i
(U ;F ).

In the analytic context, there is the notion of a Stein space, a kind of complex
analytic space, which plays the analogous role of an affine algebraic variety (see
[GR84, §1.4.4-6]). Indeed, Cartan’s Theorem B states that, given V a Stein space
and G ∈ Coh(OV ), it holds that

Hq(Van, G) = 0 for any q > 0.

Moreover, any Y ∈ AnC admits an open cover of Stein spaces V = {Vi}i∈I and finite
intersections Vi0...in := Vi0 ∩ · · · ∩ Vin are again Stein. Hence, it holds that, for any
G ∈ Coh(OY),

Hq(Vi0...in , G) = 0 for each n ≥ 0 and q > 0.
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1.3. The algebraic de Rham complex

Then, by Leray’s Theorem, it follows that

Hi(Yan, G) ∼= Ȟ
i
(V ;G).

We will state GAGA theorems considering sheaf cohomology.

Consider the morphism of ringed sites

αX : (X(C)an,OX(C))→ (XZar,OX).

Recall that, by functoriality of sheaf cohomology with respect to morphisms of ringed
sites, we have canonical morphisms of C-vector spaces, for any F ∈ Mod(OX) and
i ≥ 0,

Hi(XZar, F )→ Hi(X(C)an, α∗
XF ) = Hi(X(C)an, F an),

natural in F .

Theorem 1.2.22 (GAGA Theorem I). Let X be a proper algebraic variety over C.
Then, for any F ∈ Coh(OX), the canonical morphisms of C-vector spaces, for each
i ≥ 0,

Hi(XZar, F )→ Hi(X(C)an, F an)

are isomorphisms, natural in F .

Proof. See [Ser56, §12-13, Thm. 1], [Gro57, §6, Thm. 5].

Theorem 1.2.23 (GAGA Theorem II). Let X be a proper algebraic variety over C.
Then, the analytification functor of sheaves of modules restricted to the categories of
coherent sheaves of modules

α∗
X : Coh(OX)→ Coh(OX(C))

is an equivalence of categories.

Proof. See [Ser56, §14-17, Thm. 2,3], [Gro57, §8, Thm. 6].

1.3 The algebraic de Rham complex

1.3.1 Sheaf-theoretic Kähler differentials

Recall that, given a morphism of commutative rings with unit φ : A → B, the
functor of A-derivations from B

DerA(B, ) : B-mod→ Set
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is such that, for any M ∈ B-mod, DerA(B,M) is the set of morphisms of A-modules
D : B →M satisfying Leibniz rule

D(bb′) = bD(b′) + b′D(b) for any b, b′ ∈ B.

It is a representable functor and we denote a representation by (ΩB/A, d). The
B-module ΩB/A is called the module of Kähler differentials of B over A, and the
universal morphism

d : B → ΩB/A

is called the universal derivation. We have an explicit description of ΩB/A: it is the
free B-module generated by formal elements db, for b ∈ B, modulo the relations
given by A-linearity and Leibniz rule. For each p ≥ 0, we denote by

Ωp
B/A

:=

p⋀
ΩB/A,

where the wedge product is taken as B-modules. In particular, Ω0
A/B
∼= B and

Ω1
A/B

∼= ΩA/B. Ωp
B/A is generated as a B-module by the elements of the kind

db1 ∧ · · · ∧ dbp, for b1, . . . , bp ∈ B. Moreover, for any p ≥ 0, there exists a unique
morphism of A-modules (not of B-modules!)

dp : Ωp
B/A → Ωp+1

B/A,

such that
dp(b0db1 ∧ · · · ∧ dbp) = db0 ∧ db1 ∧ · · · ∧ dbp.

These morphisms are characterized by the following properties:

- d0 = d,

- dp+1 ◦ dp = 0 for any p ≥ 0,

- dp(ω ∧ η) = drω ∧ η + (−1)rω ∧ dp−rη for any ω ∈ Ωr
B/A and η ∈ Ωp−r

B/A.

The second property tells that we have a complex of A-modules

Ω•
B/A : B

d−→ Ω1
B/A

d1−→ Ω2
B/A → · · · ,

called the algebraic de Rham complex of B over A. For more details and properties
(such as functoriality and exact sequences), we refer to [Eis95, §16].

We have sheaf-theoretical analogues of all these constructions in the general
language of sites.

Definition 1.3.1. Given C a site, f : O1 → O2 a morphism of sheaves of commutative
rings with unit over C andM a sheaf of O2-modules, we define an O1-derivation
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from O2 toM a morphism of sheaves of O1-modules

D : O2 →M,

such that, for any open subset U ⊂ X,

DU : O2(U)→M(U)

is an O1(U)-derivation from O2(U) toM(U). We denote by DerO1(O2,M) the set
of O1-derivations from O2 toM. This gives rise to the functor

DerO1(O2, ) : Mod(O2)→ Set,

called the functor of O1-derivations from O2

Proposition 1.3.2. Let C be a site and f : O1 → O2 a morphism of sheaves of
commutative rings with unit over C. Then, the functor

DerO1(O2, ) : Mod(O2)→ Set

is representable.

Proof. We define the sheaf of O2-modules

ΩO2/O1

obtained by sheafifying the presheaf of O2-modules

ΩP
O2/O1

: U ↦→ ΩO2(U)/O1(U),

where ΩO2(U)/O1(U) is the module of Kähler differentials of O2(U) over O1(U). More-
over, we define the morphism of sheaves of O1-modules

d : O2 → ΩO2/O1

obtained by sheafifying the morphism of presehaves of O1-modules

U ↦→ (dU : O2(U)→ ΩO2(U)/O1(U)),

where dU is the universal derivation for ΩO2(U)/O1(U). We have the bijections, for any
M∈ Mod(O2),

DerO1(O2,M) ∼= HomPMod(O2)(Ω
P
O2/O1

,M) ∼= HomMod(O2)(ΩO2/O1 ,M),

where the first follow from open-wise representability of DerO1(O2, ) and the second
is universal property of sheafification. Then DerO1(O2, ) is representable, with a
representation given by (ΩO2/O1 , d).
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Definition 1.3.3. Given C a site and f : O1 → O2 a morphism of sheaves of
commutative rings with unit over C, the sheaf of O2-modules ΩO2/O1 is called the
sheaf of modules of Kähler differentials of O2 over O1, and the morphism of sheaves
of O1-modules d : O2 → ΩO2/O1 is called the universal derivation. For each p ≥ 0,
we define

Ωp
O2/O1

:=

p⋀
ΩO2/O1 ,

where the wedge product is taken as sheaves of O2-modules. It is the sheafification
of the presheaf of O2-modules

U ↦→ Ωp
O2(U)/O1(U).

In particular, Ω0
O2/O1

∼= O2 and Ω1
O2/O1

∼= ΩO2/O1 . Moreover we define the morphisms

of sheaves of O1-modules (not of O2-modules!), for any p ≥ 0,

dp : Ωp
O2/O1

→ Ωp+1
O2/O1

,

the sheafification of the morphism of presheves of O1-modules

U ↦→ (dpU : Ωp
O2(U)/O1(U) → Ωp+1

O2(U)/O1(U)).

In particular, d0 = d. By the corresponding property for rings, we have that, for any
p ≥ 0

dp+1 ◦ dp = 0.

Hence, we have a complex of sheaves of O1-modules

Ω•
O2/O1

: O2
d−→ Ω1

O2/O1

d1−→ Ω2
O2/O1

→ · · · ,

called algebraic de Rham complex of O2 over O1.
Given a morphism of ringed sites f : (C,OC) → (D,OD), we can apply this

construction to the morphism of sheaves of rings over C

f# : f−1OD → OC.

We obtain a complex of sheaves of f−1OD-modules, denoted by

Ω•
C/D := Ω•

OC/f−1OD
,

called the algebraic de Rham complex of C over D.
We see some properties of the sheaf of modules of Kähler differentials and the

algebraic de Rham complex.

Proposition 1.3.4. Let f : C → D be a morphism of sites and O1 → O2 a
morphism of sheaves of commutative rings with unit over D. Then, we have a
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canonical isomorphism of complexes of abelian sheaves

f−1Ω•
O2/O1

∼= Ω•
f−1O2/f−1O1

.

Proof. By universal property of the sheaf of modules of Kähler differentials and by
the adjunctions

f−1 : Mod(O2) Mod(f−1O2) : f∗

and
f−1 : Mod(O1) Mod(f−1O1) : f∗,

(which are both restrictions of the adjunction (f−1, f∗) on categories of abelian
sheaves over C and D), we have the bijections, for anyM sheaf of f−1O2-modules,

Homf−1O2
(f−1Ω1

O2/O1
,M) ∼= HomO2(Ω

1
O2/O1

, f∗M) ∼= DerO1(O2, f∗M) ∼=
∼= Derf−1O1

(f−1O2,M) ∼= Homf−1O2
(Ω1

f−1O2/f−1O1
,M).

By Yoneda lemma, it follows the isomorphism of sheaves of f−1O2-modules

f−1Ω1
O2/O1

∼= Ω1
f−1O2/f−1O1

.

It is compatible with universal derivations, that is, we have the commutative diagram
of morphisms of sheaves of f−1O1-modules

f−1O2 f−1Ω1
O2/O1

f−1O2 Ω1
f−1O2/f−1O1

.

f−1d

≃

d

Since f−1 commutes with exterior powers, we also have the canonical isomorphisms
of sheaves of f−1O2-modules, for each p ≥ 0,

f−1Ωp
O2/O1

∼= f−1

(
p⋀
Ω1

O2/O1

)
∼=

p⋀
f−1Ω1

O2/O1
∼=

p⋀
Ω1
f−1O2/f−1O1

∼= Ωp
f−1O2/f−1O1

,

which are compatible with differentials of the algebraic de Rham complexes. That is,
they define an isomorphism of complexes of abelian sheaves

f−1Ω•
O2/O1

∼= Ω•
f−1O2/f−1O1

.

The following is the sheafified versions of the analogous functoriality property for
the module of Kähler differentials for rings.
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Proposition 1.3.5 (Functoriality). Let C be a site and

O1 O2

O′
1 O′

2

a commutative square of sheaves of commutative rings with unit over C. Then, we
have a canonical morphism of complexes of abelian sheaves

Ω•
O2/O1

→ Ω•
O′

2/O′
1

and canonical morphisms of sheaves of O′
2-modules, for each p ≥ 0,

Ωp
O2/O1

⊗O2 O′
2 → Ωp

O′
2/O′

1
.

Moreover, if the square is object-wise cocartesian, that is, for any U ∈ C, O′
2(U)

∼=
O′

1(U)⊗O1(U) O2(U), then

Ωp
O2/O1

⊗O2 O′
2
∼= Ωp

O′
2/O′

1
.

Proof. For any U ∈ C, the commutative square of rings

O1(U) O2(U)

O′
1(U) O′

2(U)

induces the canonical morphism of O2(U)-modules (see [Eis95, pg.386])

Ω1
O2(U)/O1(U) → Ω1

O′
2(U)/O′

1(U)

and hence, the canonical morphism of O′
2(U)-modules

Ω1
O2(U)/O1(U) ⊗O2(U) O′

2(U)→ Ω1
O′

2(U)/O′
1(U),

which is an isomorphism in case the square of sheaves of rings is object-wise cocarte-
sian. These define morphisms of presheaves, whose sheafification are the morphism
of sheaves of O2-modules

Ω1
O2/O1

→ Ω1
O′

2/O′
1

and the morphisms of sheaves of O′
2-modules

Ω1
O2/O1

⊗O2 O′
2 → Ω1

O′
2/O′

1
,
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1.3. The algebraic de Rham complex

which is an isomorphism in case the square of sheaves of rings is object-wise cocarte-
sian. Taking exterior powers for each p ≥ 0, we get the morphisms of sheaves of
O2-modules

Ωp
O2/O1

→ Ωp
O′

2/O′
1

and, since pullback commutes with exterior power, the morphism of sheaves of
O′

2-modules
Ωp

O2/O1
⊗O2 O′

2 → Ωp
O′

2/O′
1
,

which is an isomorphism in case the square of sheaves of rings is object-wise cocarte-
sian. Moreover, the morphisms Ωp

O2/O1
→ Ωp

O′
2/O′

1
are compatible with differentials,

hence they define a morphism of complexes of abelian sheaves between the algebraic
de Rham complexes

Ω•
O2/O1

→ Ω•
O′

2/O′
1
.

1.3.2 Kähler differentials for schemes

We are interested in this construction applied to the classical morphism of ringed
sites given by a morphism of schemes f : X → S, that is, applied to the morphism
of ringed sites

f : (XZar,OX)→ (SZar,OS).

We denote by
Ω•
X/S := Ω•

OX/f−1OS
.

We discuss some properties in this case.

Proposition 1.3.6. Let f : X → S be a morphism of schemes. For each p ≥ 0,
ΩpX/S is a quasi-coherent sheaf of OX-modules, such that, for any affine open subsets

Spec(B) ∼= U ⊂ X and Spec(A) ∼= V ⊂ S, with f(U) ⊂ V ,

Ωp
X/S

⏐⏐
U
∼= Ωp

B/A
∼.

Moreover, for any x ∈ X,

(Ωp
X/S)x

∼= Ωp
OX,x/OS,f(x)

Proof. Let Spec(B) ∼= U ⊂ X and Spec(A) ∼= V ⊂ S be affine open subsets, such
that f(U) ⊂ V . We denote by

f
⏐⏐
U
: U → V

the restriction of f . By universal property of the module of Kähler differentials, we

43



Chapter 1

have the bijections, for anyM sheaf of OU -modules,

HomMod(OU )(Ω
1
U/V ,M) ∼= Derf |U−1OV

(OU ,M) ∼= Der
f−1OS

⏐⏐
U

(OX
⏐⏐
U
,M) ∼=

∼= HomMod(OX |U )(Ω
1
X/S

⏐⏐
U
,M) ∼= HomMod(OU )(Ω

1
X/S

⏐⏐
U
,M).

By Yoneda Lemma, it follows the isomorphism of sheaves of OU -modules

Ω1
X/S

⏐⏐
U
∼= Ω1

U/V .

By universal property of the module of Kähler differentials and the equivalence of
categories between B-modules and quasi-coherent sheaves of OU -modules, we have
the bijections, for any B-module M ,

HomQCoh(OU )(Ω
1
B/A

∼
,M∼) ∼= HomB-mod(Ω

1
B/A,M) ∼= DerA(B,M) ∼=

∼= DerA∼(B∼,M∼) ∼= Derf |U−1OV
(OU ,M∼) ∼=

∼= HomQCoh(OU )(Ω
1
U/V ,M

∼).

By Yoneda Lemma, it follows the isomorphism of sheaves of OU -modules

Ω1
U/V
∼= Ω1

B/A
∼
.

Hence,
Ω1
X/S

⏐⏐
U
∼= Ω1

B/A
∼

as sheaves of OU -modules. Then, for any p ≥ 0,

Ωp
X/S

⏐⏐
U
∼=

p⋀
Ω1
X/S

⏐⏐
U
∼=

p⋀
(Ω1

B/A
∼
) ∼=

(
p⋀
Ω1
B/A

)∼

∼= Ωp
B/A

∼.

Moreover, for any x ∈ X, take some affine open subsets Spec(B) ∼= U ⊂ X and
Spec(A) ∼= V ⊂ S, such that f(U) ⊂ V and x ∈ U . Let q ∈ Spec(B) and
p ∈ Spec(A) be the prime ideals corresponding to x ∈ U and f(x) ∈ V respectively.
Then, we have the isomorphisms of OX,x-modules

(Ω1
X/S)x

∼= (Ω1
U/V )x

∼= (Ω1
B/A)q

∼= Ω1
Bq/Ap

∼= Ω1
OX,x/OS,s

.

Then, for any p ≥ 0,

(Ωp
X/S)x

∼= (

p⋀
Ω1
X/S)x

∼=
p⋀
(Ω1

X/S)x
∼=

p⋀
Ω1

OX,x/OS,s

∼= Ωp
OX,x/OS,s

.

Example 1.3.7. Given a commutative ring with unit R and an R-scheme X, we
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1.3. The algebraic de Rham complex

denote by
Ω1
X/R := Ω1

X/Spec(R)

the sheaf of modules of Kähler differentials of the structural morphism X → Spec(R).
Consider the R-scheme An

R = Spec(R[t1, . . . , tn]), the n-dimensional affine space over
R. Recall that

Ω1
R[t1,...,tn]/R

∼= ⊕ni=1R[t1, . . . , tn]dti.

Then,
Ω1

An
R/R
∼= Ω1

R[t1,...,tn]/R
∼ ∼= ⊕ni=1OAn

R
dti

is a free OAn
R
-module of rank n. Moreover, given f1, . . . , fm ∈ R[t1, . . . , tn], consider

the closed subscheme
X := V (f1, . . . , fm) ⊂ An

R,

which is such that X ∼= Spec(B), with B ∼= R[t1, . . . , tn]/(f1, . . . , fm). Recall that

Ω1
B/R
∼= Ω1

R[t1,...,tn]/R
/⟨df1, . . . , dfm⟩ ∼= ⊕ni=1R[t1, . . . , tn]dti/⟨df1, . . . , dfm⟩,

hence it is a finitely presented R[t1, . . . , tn]-module. Then

Ω1
X/R
∼= Ω1

B/R
∼

is a finitely presented sheaf of OAn
R
-modules, hence also a finitely presented sheaf of

OX-modules.

Remark 1.3.8. Let g : X → S be morphism of schemes locally of finite presentation,
that is, for any x ∈ X, there exist affine open subsets Spec(B) ∼= U ⊂ X and
Spec(A) ∼= V ⊂ S, such that x ∈ U , f(U) ⊂ V and

B ∼= A[t1, . . . , tn]/(f1, . . . , fm),

for some f1, . . . , fm ∈ A[t1, . . . , tn]. Since, by proposition 1.3.6,

Ω1
X/S

⏐⏐
U
∼= Ω1

B/A
∼
,

by example 1.3.7, it follows that Ω1
X/S is a locally of finite presentation sheaf of

OX-modules.

Proposition 1.3.9 (Functoriality). Let

X ′ X

S ′ S

f

p q

g

be a commutative square of schemes. Then, we have a canonical morphism of
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complexes of abelian sheaves

f−1Ω•
X/S → Ω•

X′/S′

and canonical morphisms of sheaves of O′
X-modules, for each p ≥ 0,

f ∗Ωp
X/S → Ωp

X′/S′ .

Moreover, if the square is cartesian, that is X ′ ∼= X ×S S ′, then

f ∗Ωp
X/S
∼= Ωp

X′/S′ .

Proof. We apply proposition 1.3.5 to the site X ′
Zar and the commutative square of

sheaves of rings

f−1q−1OS f−1OX

p−1OS′ OX′ .

We deduce the canonical morphism of complexes of abelian sheaves

Ω•
f−1OX/f−1q−1OS

→ Ω•
OX′/p−1OS′ = Ω•

X′/S′

and the canonical morphisms of sheaves of OX-modules, for each p ≥ 0,

Ωp
f−1OX/f−1q−1OS

⊗f−1OX
OX′ → Ωp

OX′/p−1OS′
= Ωp

X′/S′ ,

which are isomorphisms if the square of schemes is cartesian. 1 By proposition 1.3.4
applied to the morphism of sites f : X ′

Zar → XZar and the morphism of sheaves of
rings q−1OS → OX over XZar, we get that

f−1Ω•
X/S = f−1Ω•

OX/q−1OS

∼= Ω•
f−1OX/f−1q−1OS

.

By composition, we get the morphism of complexes of abelian sheaves

f−1Ω•
X/S → Ω•

X′/S′ .

Moreover, we have the morphisms of OX-modules, for each p ≥ 0,

f ∗Ωp
X/S
∼= f−1Ωp

X/S ⊗f−1OX
OX′ → Ωp

X′/S′ ,

1The fact that the square of schemes is cartesian doesn’t imply that the square of sheaves of
rings is object-wise cocartesian. However, it is on an affine open cover of X ′. By quasi-coherence of
the sheaf of modules of Kähler differentials, we see that this is indeed sufficient to conclude the
isomorphism.
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1.4. Smooth and étale morphisms of schemes

which are isomorphisms if the square of schemes is cartesian.

1.4 Smooth and étale morphisms of schemes

In this section we want to give a suitable notion of smoothness for algebraic varieties
over C, such that it corresponds exactly to the notion of smoothness for complex
analytic spaces via analytification. That is, we would like that, for any X algebraic
variety over C,

X is smooth ⇐⇒ X(C) is smooth.

Since smooth complex analytic spaces of dimension r are those complex analytic
spaces that are locally isomorphic to Cr, which is the analytification of the r-
dimensional affine space Ar

C, then, we might be pushed to define smooth algebraic
varieties over C as those algebraic varieties over C which are locally isomorphic to Ar

C.
However, this definition turns out to be too restrictive for our purpose, since there
exist algebraic varieties over C, which are not smooth in the above naive sense, but
whose analytification is a smooth complex analytic space. The reason why this naive
definition doesn’t work is that, when we say said locally for algebraic varieties over
C, we meant locally with respect to the Zariski topology, which is too coarse. In fact,
the same definition is indeed the correct one for our purpose, once we replace Zariski
topology with another suitable topology (in the sense of Grothendieck topologies).

1.4.1 Smooth morphisms of schemes

For the moment, we leave aside the idea of introducing a new Grothendieck topology
and we take another reasonable way to define smoothness for algebraic varieties over
C. Notice that another possible approach can be imitate the Jacobi criterion 1.2.11.
Following this idea, we give more generally a definition of smoothness for morphisms
of schemes, which will also allow to define the wanted new Grothendieck topology. A
reference is [Bos12, §8.5].

Recall that, given a polynomial f ∈ R[t1, . . . , tn], we denote by ∂f
∂tj

the polynomial

given by the formal derivative of f with respect to the variable tj. Given a point
x ∈ An

R = Spec(R[t1, . . . , tn]), the evaluation of f at x is the image of f along the
canonical morphism into the the residue field at x

R[t1, . . . , tn]→ k(x)

f ↦→ f(x).

Definition 1.4.1. Given a morphism of schemes g : X → S locally of finite
presentation and a point x ∈ X, we say that g is smooth at x of relative dimension
r, if there exist affine open subsets U ⊂ X and Spec(R) ∼= V ⊂ S, with x ∈ U and
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f(U) ⊂ V , and a commutative diagram

U An
R

V,

/

g

such that

U ∼= V (f1, . . . , fn−r) = Spec(R[t1, . . . , tn]/(f1, . . . , fn−r)),

for some f1, . . . , fn−r ∈ R[t1, . . . , tn], such that the Jacobian matrix evaluated at x

Jf1,...,fn−r(x) :=

[
∂fi
∂tj

(x)

]
i=1,...,n−r
j=1,...,n

has maximal rank n− r.
We say that f is smooth, if it is smooth at all its points.
A smooth morphism of relative dimension 0 at each point is called an étale

morphism.
Given a scheme S, we say that an S-scheme X is smooth if its structural morphism

X → S is smooth. We denote by SmS the full subcategory of S-schemes given by
smooth S-schemes.

Remark 1.4.2. Since having maximal rank is a local property, then also being
smooth is, i.e. if f : X → S is smooth at x ∈ X of relative dimension r, then there
exists and open subset U ⊂ X, with x ∈ U , such that f

⏐⏐
U
: U → S is smooth of

relative dimension r. In particular, being étale is a local property.

Example 1.4.3. For any scheme S and any n ∈ N, the n-dimensional affine space
An
S is a smooth S-scheme of relative dimension n.

There exists also other equivalent definitions of smooth morphisms of schemes.
With this one, it’s immediate to prove that it gives the definition of smooth algebraic
varieties over C we were looking for.

Proposition 1.4.4. Let X be an algebraic variety over C, x ∈ X(C) a closed point
of X. Then, X is smooth of relative dimension r at x if and only if X(C) is smooth
of dimension r at x . Moreover, X is smooth if and only if X(C) is.

Proof. Assume that X is smooth at x ∈ X(C) of relative dimension r. Take affine
open subsets U ⊂ X containing x and V = Spec(C), as in definition 1.4.1. By
construction of analytification (proposition 1.2.13), we see that U(C) is the local
model Z(f1, . . . , fn−r) ⊂ Cn, where f1, . . . , fn−r are seen as the holomorphic functions
on Cn defined by the corresponding polynomials. Since x is a closed point of X,
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1.4. Smooth and étale morphisms of schemes

the Jacobian matrix of polynomials f1, . . . , fn−r evaluated at x in the definition of
smooth morphisms of schemes coincides with the Jacobian matrix of the corresponding
holomorphic functions evaluated at x. Hence, one Jacobian matrix has maximal rank
if and only if also the other does. By definition of smoothness for X as a C-scheme
and by Jacobi criterion 1.2.11 for X(C), then X is smooth at x if and only if X(C)
is smooth at x. Moreover, since being smooth is a local property and, by remark
1.2.15, X(C) is very dense in X, then smoothness for X can be checked at points in
X(C). So, X is smooth if and only if X(C) is.

Remark 1.4.5. Let’s see more explicitly which are local charts of X(C) analyti-
fication of X, a smooth algebraic variety over C. Given x ∈ X(C), let U ⊂ X be
an affine open subset containing x, as in the proof of the previous proposition. By
construction of analytification, we have the naturality square of α

U(C) U

Cn An
C.

αU

/ /

αAnC

Consider the corresponding commutative diagram of global sections of the structural
sheaves

OX(C)(U(C)) OX(U)

O(Cn) C[t1, . . . , tn].

We denote by u1, . . . , un ∈ OX(U) and w1, . . . , wn ∈ OX(C)(U(C)) the images of
t1, . . . , tn ∈ C[t1, . . . , tn]. Assuming that the Jacobian matrix of f1, . . . , fn−r evaluated
at x has the last n− r columns which are linearly independent, by the Holomorphic
Implicit Function Theorem, w1,x, . . . , wr,x are stalks of local coordinates of X(C) at
x.

The definition of smooth morphism of schemes given above is also convenient to
prove the following result, which will be useful later.

Proposition 1.4.6. Let g : X → S be a smooth morphism of schemes. Then,
the sheaf of modules of Kähler differentials Ω1

X/S is a finite locally free sheaf of
OX-modules, with rank at a point x equal to the relative dimension of g at x.

Proof. Since g is locally of finite presentation, then, by remark 1.3.8, Ω1
X/S is a

locally of finite presentation sheaf of OX-modules. Then, to prove that Ω1
X/S is

a finite locally free sheaf of OX-modules, it’s sufficient to prove that Ω1
X/S is free

on stalks (see [GW20, prop. 7.41]). Let x ∈ X be a point and r be the relative
dimension of g at x. We prove that (Ω1

X/S)x is a free OX,x-module of rank r. Take
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affine open subsets U ⊂ X containing x and V ⊂ S, as in definition 1.4.1. We
denote by

A := OS,g(x), B := OAn
R,x

and C := OX,x.

By proposition 1.3.6, we have that

(Ω1
X/S)x

∼= Ω1
C/A.

Hence, we have to prove that Ω1
C/A is a free C-module of rank r. Notice that

B ∼= A[t1,x, . . . , tn,x] and C ∼= B/Ix,

where Ix is the ideal generated by the stalks f1,x, . . . , fn−r,x ∈ B. Then, Ω1
B/A is the

free B-module generated by dt1,x, . . . , dtn,x

Ω1
B/A
∼= ⊕ni=1Bdti,x.

Let k(x) be the residue field of B. Consider the k(x)-vector space

Ω1
B/A ⊗B k(x) ∼= ⊕ni=1k(x)dti(x).

Let df1(x), . . . , dfn−r(x) ∈ Ω1
B/A ⊗B k(x) be the images of df1,x, . . . , dfn−r,x ∈ Ω1

B/A

along the canonical morphism Ω1
B/A → Ω1

B/A ⊗B k(x). They are such that, for each
i = 1, . . . , n,

dfi(x) =
n∑
j=1

∂fi
∂tj

(x)dtj(x).

Since the Jacobian matrix evaluated at x has maximal rank n− r, then the elements
df1(x), . . . , dfn−r(x) ∈ Ω1

B/A ⊗B k(x) are k(x)-linearly independent. Assuming that
the last n− r columns of the Jacobian matrix of f1, . . . , fn−r evaluated at x

Jf1,...,fn−r(x) :=

[
∂fi
∂tj

(x)

]
i=1,...,n−r
j=1,...,n

are k(x)-linearly independent, then we can complete the k(x)-linearly independent set
{df1(x), . . . , dfn−r(x)} with dt1(x), . . . , dtr(x) to obtain a k(x)-basis of Ω1

B/A⊗B k(x).
Since Ω1

B/A is a finitely generated B-module, then, by Nakayama lemma, Ω1
B/A is

generated by df1,x, . . . , dfn−r,x, dt1,x, . . . , dtr,x as a B-module. Since Ω1
B/A is a free

B-module of rank n, then, they are also free generators

Ω1
B/A
∼= (⊕n−ri=1Bdfi,x)⊕ (⊕ri=1Bdti,x).

Consider the conormal sequence for A→ B ↠ C (see [Eis95, Prop. 16.3]). It is the
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exact sequence of C-modules

Ix/I
2
x → Ω1

B/A ⊗B C → Ω1
C/A → 0.

Since Ix/I
2
x is generated by classes of f1,x, . . . , fn−r,x, which are sent into df1,x, . . . , dfn−r,x

in ΩB/A ⊗B C, and

Ω1
B/A ⊗B C ∼= (⊕n−ri=1 Cdfi,x)⊕ (⊕ri=1Cdti,x),

then, the coker of Ix/I
2
x → Ω1

B/A ⊗B C is

Ω1
C/A
∼= ⊕ri=1Cdti,x.

Hence, Ω1
C/A is a free C-module of rank r.

Definition 1.4.7. Given g : X → S a smooth morphism of relative dimension r
at a point x ∈ X, by proposition 1.4.6, there exist u1,x, . . . ur,x ∈ OX,x, such that
their images du1,x, . . . dur,x along dx : OX,x → (Ω1

X/S)x, the stalk of the universal

derivation, are free generators of (Ω1
X/S)x as an OX,x-module

(Ω1
X/S)x

∼= ⊕ri=1OX,xdui,x,

Such a set {u1,x, . . . ur,x} is called a system of local parameters of g at x.

Remark 1.4.8. Let’s see more explicitly how to describe a system of local parameters
at a point x ∈ X. Take affine open subsets U ⊂ X containing x and V ⊂ S, as in
definition 1.4.1. Then, we have a closed immersion

U ↪→ An
R.

Consider the corresponding morphism on global sections of the structural sheaves

OX(U)← R[t1, . . . , tn].

We denote by u1, . . . , un ∈ OX(U) the images of t1, . . . , tn ∈ R[t1, . . . , tn]. Assuming
that the Jacobian matrix of f1, . . . , fn−r evaluated at x has the last n− r columns
which are linearly independent, by the proof of the previous proposition, we see
that (Ω1

X/S)x is the free OX,x-module generated by the stalks du1,x, . . . , dur,x. Hence,

{u1,x . . . ur,x} is a system of local parameters.

An immediate consequence of proposition 1.4.6 is the following characterization
of étale morphisms. Recall that a morphism of schemes g : X → S locally of finite
presentation is unramified at a point x ∈ X, if (Ω1

X/S)x = 0 and it is unramified, if it
is unramified at all its points.

Corollary 1.4.9. Let g : X → S be a morphism of schemes locally of finite presen-
tation. Then, g is an étale morphism if and only if it is smooth and unramified.
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Proof. It follows from proposition 1.4.6 and definition of étale morphisms.

1.4.2 The étale topology

Now, we want to define a new Grothendieck topology on schemes and obtain a
characterization of smooth morphisms of schemes, following the idea described at
the beginning of this section.

In the following proposition we collect some properties of smooth and étale
morphisms of schemes.

Proposition 1.4.10. The following facts hold true:

(1) Let f : X → Y and g : Y → Z be smooth morphisms of relative dimension r
and s respectively. Then, gf : X → Z is smooth of relative dimension r + s.
In particular, composition of étale morphisms is étale.

(2) Smooth (étale) morphisms are stable under base change.

(3) Let f : X → Y and g : Y → Z be morphisms of finite presentation, with g
unramified. If gf is smooth (étale), then also f is.

(4) Open immersions are étale morphisms.

Proof. For (1) and (2), see [Bos12, §8.5, Prop. 2]. For (3), see [Bos12, §8.5, Lemma
11]. (4) is true because open immersions trivially satisfy the definition of étale
morphisms of schemes.

Definition 1.4.11. Given X a scheme, we define an étale cover of X any family of
étale morphisms of schemes

{fi : Xi → X}i∈I ,

such that X =
⋃
i∈I fi(Xi). We define the small étale site over X

Xét

the site with underlying category Ét/X, the category of étale morphisms over X,
and covering families of objects given by étale covers. Properties (1), (2) and (3) in
proposition 1.4.10 and corollary 1.4.10 assure that étale covers define a Grothendieck
topology on this site, called étale topology. The étale sheaf of rings

OétX : U ↦→ OU(U)

endows Xét with a structure of ringed site, called small étale ringed site

(Xét,OétX).
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Remark 1.4.12. For any f : X → Y morphism of schemes, we have an induced
morphism on small étale ringed sites

f ét : (Xét,OétX)→ (Yét,OétY ).

Indeed, since étale morphisms are stable under base change, we have a functor

Ét/Y → Ét/X

V ↦→ V ×Y X.

By definition of étale covers, this functor is continuous. Hence, it gives rise to a
morphism of sites f : Xét → Yét. Moreover, we have a morphism of sheaves of rings
over Yét

OétY → f ét∗ OétX ,

given by, for any V ∈ Ét/Y ,

OV (V )→ OV×YX(V ×Y X),

the global sections of the morphism on the structural sheaves of the canonical
projection of the fiber product V ×Y X → V . The adjoint morphism of sheaves of
rings

f ét
−1OétY → OétX

defines the morphism on small étale ringed sites.

Remark 1.4.13. Given X a scheme, property (4) in proposition 1.4.10 tells that
we have the inclusion functor

Op(X) ↪→ Ét/X.

By definition of Zariski and étale covers, this inclusion functor is continuous. Hence,
it defines a morphism of sites

πX : Xét → XZar.

Then, we have the pair of adjoint functors

π−1
X : Ab(XZar) Ab(Xét) : πX∗.

Moreover, notice that πX∗OétX is the restriction of OétX to Op(X), hence it coincides
with the structural sheaf of X

OX ∼= πX∗OétX .
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The adjoint morphism of étale sheaves of rings

π−1
X OX → O

ét
X

defines a morphism of ringed sites

πX : (Xét,OétX)→ (XZar,OX).

It’s useful the following characterization of étale morphisms between smooth
schemes over a base.

Proposition 1.4.14. Let f : X → Y be a morphism of S-schemes locally of finite
presentation and x ∈ X a point. Let s ∈ S be the image of x along X → S. If X is
smooth at x and Y is smooth at f(x), then the following are equivalent:

(i) f is étale at x.

(ii) The canonical functoriality morphism of sheaves of OX-modules (proposition
1.3.9)

f ∗Ω1
Y/S → Ω1

X/S,

is an isomorphism on the stalk at x

Proof. See [Bos12, §8.5, cor. 12].

The following result tells that smooth S-schemes are those étale-locally isomorphic
to an affine space over S.

Proposition 1.4.15. Let g : X → S be a morphisms of schemes locally of finite
presentation and x ∈ X a point. Then, f is smooth at x of relative dimension r if
and only if there exist affine open subsets U ⊂ X and Spec(R) ∼= V ⊂ Y with x ∈ U
and f(U) ⊂ V , such that there exists an étale morphism of R-schemes

h : U → Ar
R.

Proof. If h exists, then g is smooth at x of relative dimension r becuse Ar
S → S is

smooth of relative dimension r, and by property (1) in proposition 1.4.10. Conversely,
assume that g is smooth at x of relative dimension r. Let u1,x, . . . , ur,x ∈ OX,x be a
system of local parameters of X at x. Then, we can take affine open subsets U ⊂ X,
Spec(R) ∼= V ⊂ S, with x ∈ U and f(U) ⊂ V , and sections u1, . . . , ur ∈ OX(U),
whose stalks at x are the given system of local parameters, such that

Ω1
X/S

⏐⏐
U
∼= ⊕ri=1OX

⏐⏐
U
dui

The sections u1, . . . , ur ∈ OX(U) define a morphism of R-schemes

h : U → Ar
R
∼= Spec(R[t1, . . . , tr]),
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corresponding to the morphism of R-algebras

R[t1, . . . , tr]→ OX(U)
ti ↦→ ui.

Hence, for any y ∈ U , the canonical morphism of OX,y-modules

(h∗Ω1
Ar
R/R

)y = (Ω1
Ar
R/R

)h(y) ⊗OAr
R

,h(y)
OX,y → (Ω1

X/S)y (1.3)

maps dti,y into dui,y, for i = 1, . . . , r. Since

(Ω1
Ar
R/R

)h(y) ∼= ⊕ri=1OAr
R,h(y)

dti,y

and
(Ω1

X/S)y
∼= ⊕ri=1OX,ydui,y,

then, the canonical morphism 1.3 is an isomorphism. By proposition 1.4.14, h is
étale at y. Since this holds for any y ∈ U , then h is étale.

1.4.3 The étale-analytic topology

Another consequence of proposition 1.4.14 is the following result, which gives a
geometric interpretation of étale morphisms, in case of smooth algebraic varieties
over C, via the corresponding property of its analytification.

Corollary 1.4.16. Let
f : X → Y

be a morphism of smooth algebraic varieties over C. Then, f is étale if and only if
its analytification

fan : X(C)→ Y (C)

is a local isomorphism of smooth complex analytic spaces.

Proof. Let x ∈ X(C) be a closed point of X. By the Inverse Function Theorem, fan

is a local isomorphism at x if and only if the canonical functoriality morphism of
sheaves of OX(C)-modules between the sheaves of holomorphic 1-forms

fan∗Ω1
Y (C) → Ω1

X(C) (1.4)

is an isomorphism on the stalk at x. We will see in proposition 1.5.10 that the
analytification of the sheaf of modules of Kähler differentials ofX over C is canonically
isomorphic to the sheaf of holomorphic 1-forms of X(C), and the same holds for
Y . Moreover, these canonical isomorphisms are compatible with the canonical
functoriality morphisms. That is, the morphism 1.4 is the analytification of the
canonical functoriality morphism of sheaves of OX-modules between the sheaves of
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modules of Kähler differentials (proposition 1.3.9)

f ∗Ω1
Y/C → Ω1

X/C. (1.5)

By proposition 1.2.19, the analytification functor of sheaves of OX-modules is
faithfully-flat, hence it preserves and reflects isomorphisms. So, 1.5 is an isomorphism
on stalk at x if and only if 1.4 is an isomorphism on stalk at x. By proposition
1.4.14, this means that f is étale at x if and only if fan is a local isomorphism at x.
Since being étale is a local property and X(C) is very dense in X, then being étale
for f can be checked at closed points of X. Hence, f is étale if and only if fan is a
local isomorphism.

Remark 1.4.17. Given X a smooth algebraic variety over C, by proposition 1.4.4,
we know that the analytification X(C) is a smooth complex analytic space. We want
to describe explicitly local charts. Let x ∈ X(C), such that X has relative dimension
n over C at x. By proposition 1.4.15, there exists an affine open subset U ⊂ X
containing x, such that there exists an étale morphism of C-schemes

h : U → An
C.

By corollary 1.4.16, its analytification

han : U(C)→ Cn

is a local isomorphism. Then, we can choose an open subsetW ⊂ U(C) containing x,
such that han restricts on W to an isomorphism into an open subset of Cn. Such W
is a local chart of X(C) at x, with local coordinates given by w1, . . . , wn ∈ OX(C)(W)
the images of t1, . . . , tn along

C[t1, . . . , tn]
h#−→ OX(U)

α#
X−−→ OX(C)(U(C))→ OX(C)(W).

The last corollary suggests to consider also another topology for complex analytic
spaces, that will be useful later.

Definition 1.4.18. Given Y a complex analytic space, we define an étale-analytic
cover of Y any family of local isomorphisms (or étale-analytic morphisms) of complex
analytic spaces

{fi : Yi → Y}i∈I ,

such that Y =
⋃
i∈I fi(Yi). We define the small étale-analytic site of Y

Yét-an

the site with underlying category Ét-An/Y , the category of local isomorphisms over
Y , and covering families of objects given by étale-analytic covers.
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Remark 1.4.19. Let Y be a complex analytic space. Since open immersions are
local isomorphisms, we have the inclusion functor

Op(Y) ↪→ Ét-An/Y .

By definition of analytic open and étale-analytic covers, this inclusion functor is
continuous. Hence, it defines a morphism of sites

πanY : Yét-an → Yan.

Notice that, since any étale-analytic cover is refined by an analytic open cover and
viceversa, then the induced adjunction

πanY
−1 : Ab(Yan) Ab(Yét-an) : πanY∗

defines an equivalence of categories and sheaf cohomologies of corresponding sheaves
are isomorphic.

Remark 1.4.20. Let X be a smooth algebraic variety over C. Corollary 1.4.16
tells that the analytification functor restricts to

an : Ét/X → Ét-An/X(C).

By definition of étale and étale-analytic covers, this inclusion functor is continuous.
Hence, it defines a morphism of sites

αétX : X(C)ét-an → Xét.

1.4.4 Smooth schemes over a field

To conclude, we see some properties of smooth schemes over a field. In this case, the
relative dimension is simply called dimension. We see that smoothness is related to
regularity property.

Recall that a locally noetherian scheme X is regular at a point x ∈ X, if

dimOX,x = dimk(x)mx/m
2
x,

where mx ⊂ OX,x is the maximal ideal. By Nakayama lemma, there exists a
set of generators u1,x, . . . , ur,x of mx, with r = dimOX,x, such that their classes
u1(x), . . . , ur(x) ∈ mx/m

2
x are a k(x)-basis. The set {u1,x, . . . , ur,x} is called a system

of regular parameters of X at x. X is regular, if it is regular at all its points.

Proposition 1.4.21. Let X be a scheme locally of finite type over a field k, x ∈ X a
point. If X is smooth at x of dimension r, then X is regular at x with r = dimOX,x.
Moreover, a system of regular parameters at x is also a system of local parameters at
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x. If k is perfect, also the converse holds true: if X is regular at x with r = dimOX,x,
then X is smooth at x of dimension r.

Proof. See [Bos12, §8.5, prop. 15].

Remark 1.4.22. Notice that, given X a scheme locally of finite type over a field k
and x ∈ X a closed point, is not true that a system of local parameters at x is also a
system of regular parameters at x! For example, take X = A2

k
∼= Spec(k[t1, t2]) and

x the point corresponding to the prime ideal (t1 − 1, t2 − 1). Since

(Ω1
A2
k
)x ∼= ⊕i=1,2OA2

k,x
dti,x,

then {t1,x, t2,x} is system of local parameters of A2
k at x, but it is not a system of

regular parameters, since they are invertible elements in OA2
k,x

, so they don’t generate
the maximal ideal. Viceversa, notice that a system of regular parameters is given by
{u1,x, u2,x}, where ui := ti − 1, for i = 1, 2. In agreement with proposition 1.4.21, it
is also a system of local parameters, since dui,x = dti,x, for i = 1, 2.

Corollary 1.4.23. Let X be a scheme locally of finite type over a field k. If X is
smooth, then X is reduced and its irreducible components coincide with connected
components.

Proof. By proposition 1.4.21, X is regular. This means that OX,x is a regular
local ring for any x ∈ X. By Auslander-Buchsbaum Theorem, OX,x is an UFD, in
particular is reduced, for any x ∈ X. So X is reduced. Moreover, in particular OX,x is
a domain, hence x belongs to exactly one irreducible component of X. So, irreducible
components are disjoint and they coincide with connected components.

1.5 The algebraic de Rham cohomology

Given X an algebraic variety over a field k, we defined its algebraic de Rham complex
(subsection 1.3.2)

Ω•
X/k : OX → Ω1

X/k → Ω2
X/k → · · · .

If X is smooth, it gives rise to a good cohomology theory for X, which, in case
k = C, coincides with the analytic de Rham cohomology of the analytification X(C).
The aim of this section is to prove this fact.

1.5.1 The algebraic de Rham cohomology

Definition 1.5.1. Let X be a smooth algebraic variety over a field k. The cohomol-
ogy of X with coefficients in the algebraic de Rham complex

Hi
AdR(X/k) := Hi(XZar,Ω

•
X/k)
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is called the algebraic de Rham cohomology of X.

Remark 1.5.2. Algebraic de Rham cohomology is defined as sheaf cohomology.
However, it can also be computed as Čech cohomology relative to an affine open cover.
Indeed, given X an algebraic variety over C, let U = {Ui}i∈I be an affine open cover
of X. Since X is separated, then also the finite intersections Ui0...in := Ui0 ∩ · · · ∩Uin
are affine. Since by proposition 1.3.6, for any p ≥ 0, Ωp

X/k is a coherent sheaf of

OX-modules, it holds that (see [Har77, §III, Thm. 3.5])

Hq(Ui0...in ,Ω
p
X/k) = 0 for each n ≥ 0 and q > 0.

By Leray’s Theorem, it follows that, for each i ≥ 0,

Hi(XZar,Ω
•
X/k)

∼= Ȟ
i
(U ; Ω•

X/k).

This fact is useful to compute some examples of algebraic de Rham cohomology.

Example 1.5.3. 1) X = Spec(k). Since Spec(k) is affine, we choose the affine
open cover U = {Spec(k)}. The Čech complex of Ω•

Spec(k)/k relative to U is

0→ k → 0.

Hence, we get

Hi
AdR(Spec(k)/k)

∼=

{
k for i = 0

0 else.

2) X = A1
k. Since A1

k
∼= Spec(k[t]) is affine, we choose the affine open cover

U = {A1
k}. The Čech complex of Ω•

A1
k/k

relative to U is

0→ k[t]→ k[t]dt→ 0.

If char(k) = 0, then polynomials with differential zero are the constant ones
and every polynomial is differential of some other polynomial. Hence, we get

Hi
AdR(A1

k/k)
∼=

{
k for i = 0

0 else.

3) X = Gm. Since Gm
∼= Spec(k[t, u]/(tu− 1)) is affine, we choose the affine open

cover U = {Gm}. The Čech complex of Ω•
Gm/k

relative to U is

0→ k[t, u]

(tu− 1)
→
(

k[t, u]

(tu− 1)
dt⊕ k[t, u]

(tu− 1)
du

)
/⟨udt+ tdu⟩ → 0.

If char(k) = 0, polynomials with differential zero are again the constant ones
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and udt = dt/t = −du/u = −tdu is not differential of any polynomial, hence
generates cohomology in degree 1. Hence, we get

Hi
AdR(Gm/k) ∼=

{
k for i = 0, 1

0 else.

4) X = P1
k = Proj(k[z0, z1]). Consider the affine open cover U = {U0, U1}, where

U0 := D+(z0) ∼= Spec(k[z1/z0]) ∼= Spec(k[t]) ∼= A1
k

U1 := D+(z1) ∼= Spec(k[z0/z1]) ∼= Spec(k[u]) ∼= A1
k

U0 ∩ U1
∼= D(t) ∼= D(u) ∼= Spec(k[t, u]/(tu− 1)) ∼= Gm.

The Čech complex of Ω•
P1
k/k

relative to U is the total complex of the double

complex

0 0
↑ ↑

k[t,u]
(tu−1)

→ ( k[t,u]
(tu−1)

dt⊕ k[t,u]
(tu−1)

du)/⟨udt+ tdu⟩ → 0

↑ ↑
k[t]⊕ k[u] → k[t]dt⊕ k[u]du → 0.

Assume char(k) = 0. In degree 0, a cycle is a pair of constant polynomials
(c,−c). In degree 1, a cycle is a triple (F (t, u), f(t)dt, g(u)du), such that

∂F (t, u)

∂t
= f(t) + cu &

∂F (t, u)

∂u
= g(u) + ct,

for some c ∈ k. This implies that F (t, u) is of the kind F1(t) + F2(u) in
k[t, u]/(tu− 1), with

∂F1(t)

∂t
= f(t) &

∂F2(u)

∂u
= g(u).

But then, the element (F (t, u), f(t)dt, g(u)du) is the boundary of the pair of
polynomials (F1(t), F2(u)) in degree 0. In degree 2, the element ω := dt/t =
−du/u is not a boundary. So, it generates the cohomology in degree 2. Hence,
we get

Hi
AdR(P1

k/k)
∼=

{
k for i = 0, 2

0 else.

Now, we see some properties of the algebraic de Rham cohomology.

Proposition 1.5.4 (Functoriality). Let f : X → Y be a morphism of smooth
algebraic varieties over a field k. Then, we have canonical morphisms of k-vector
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spaces, for each i ≥ 0,
Hi

AdR(Y/k)→ Hi
AdR(X/k).

They define a contravariant functor

Hi
AdR( /k) : Smk → Vectk.

Proof. By proposition 1.3.9, we have the canonical morphism of complexes of abelian
sheaves over XZar

f−1Ω•
Y/k → Ω•

X/k.

It induces the morphisms on sheaf cohomology

Hi(XZar, f
−1Ω•

Y/k)→ Hi(XZar,Ω
•
X/k) = Hi

AdR(X/k).

Composing with the functoriality morphisms of sheaf cohomology

Hi
AdR(Y/k) = Hi(YZar,Ω

•
Y/k)→ Hi(XZar, f

−1Ω•
Y/k),

we get the canonical morphisms of abelian groups

Hi
AdR(Y/k)→ Hi

AdR(X/k).

Since all the considered morphisms of complexes of abelian sheaves are also k-linear,
then these are also morphisms of k-vector spaces. Functorial properties follow from
functoriality of inverse image and naturality of the functoriality morphisms of sheaf
cohomology.

Proposition 1.5.5 (Künneth formula). Let X and Y be smooth algebraic varieties
over a field k. Then, we have canonical isomorphisms of k-vector spaces, for each
i ≥ 0,

Hi
AdR(X ×k Y/k) ∼= ⊕p+q=iH

p
AdR(X/k)⊗k H

q
AdR(Y/k)

Proof. See [Stacks, Tag 0FM9]

Proposition 1.5.6 (A1-invariance). Let X be a smooth algebraic variety over a field
k. Then, we have canonical isomorphisms of k-vector spaces, for each i ≥ 0,

Hi
AdR(X ×k A1

k/k)
∼= Hi

AdR(X/k).

Proof. Recall from example 1.5.3 that

H i
AdR(A1

k/k)
∼=

{
k for i = 0

0 else.
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By Künneth formula (proposition 1.5.5), we obtain that, for each i ≥ 0,

H i
AdR(X ×k A1

k)
∼= ⊕p+q=iHp

AdR(X)⊗k Hq
AdR(A

1
k)
∼=

∼= H i
AdR(X)⊗k k ∼= H i

AdR(X).

Another property tells that the algebraic de Rham cohomology can be computed
also as a sheaf cohomology of a complex of étale sheaves. This complex is obtained by
applying the general construction of the algebraic de Rham complex to the morphism
on small étale ringed sites. More precisely, recall that, given a morphism of schemes
g : X → S, we have the morphism of ringed sites (remark 1.4.12)

gét : (Xét,OétX)→ (Sét,OétS ).

Applying the general construction of algebraic de Rham complex to this morphism
of ringed sites, we get a complex of abelian sheaves over Xét

(Ω•
X/S)

ét := Ω•
Oét

X/f
ét−1Oet

S
.

Remark 1.5.7. Recall that we have the morphism of ringed sites (remark 1.4.13)

πX : (Xét,OétX)→ (XZar,OX).

Notice that, for each p ≥ 0, we have a canonical isomorphism of OétX-modules

π∗
XΩ

p
X/S
∼= (Ωp

X/S)
ét.

Indeed, we have the commutative diagram of ringed sites

(Xét,OétX) (Sét,OétS )

(XZar,OX) (SZar,OS),

gét

πX πS

g

which induces the commutative square of sheaves of rings over Xét

π−1
X g−1OS π−1

X OX

gét
−1OétS OétX .

On one hand, by proposition 1.3.4, we have the canonical isomorphism of sheaves of
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OétX-modules

Ωp

π−1
X OX/π

−1
X g−1OS

⊗π−1
X OX

OétX ∼= π−1
X Ωp

OX/g−1OS
⊗π−1

X OX
OétX = π∗

XΩ
p
X/S.

On the other hand, by proposition 1.3.5, we have the canonical isomorphism of
sheaves of OétX-modules 2

Ωp

π−1
X OX/π

−1
X g−1OS

⊗π−1
X OX

OétX ∼= Ωp

Oét
X/g

ét−1Oét
S

= (Ωp
X/S)

ét.

Remark 1.5.8. For each p ≥ 0, since ΩpX/S is a quasi-coherent OX-module, then we

have the following explicit description of π∗
XΩ

p
X/S (see [Stacks, Tag 070S] and [Stacks,

Tag 03DV]): for any f : U → X étale morphism

π∗
XΩ

p
X/S(U)

∼= Γ(U, f ∗Ωp
X/S).

If moreover X is smooth over S, by proposition 1.4.14, we have that

f ∗Ωp
X/S
∼= Ωp

U/S.

Hence, in this case we have that (Ωp
X/S)

ét ∼= π∗
XΩ

p
X/S is the étale sheaf

(Ωp
X/S)

ét : U ↦→ Γ(U,Ωp
U/S).

Proposition 1.5.9 (Étale descent). Let X be a smooth algebraic variety over a field
k. The complex of abelian sheaves over Xét

(Ω•
X/k)

ét := Ω•
Oét

X/f
ét−1Oet

Spec(k)

computes the algebraic de Rham cohomology of X. That is, we have canonical
isomorphisms of k-vector spaces, for each i ≥ 0,

Hi
AdR(X/k)

∼= Hi(Xét, (Ω
•
X/k)

ét).

Proof. By propositions 1.3.4 and 1.3.5 applied to the commutative square of sheaves
of rings in remark 1.5.7, we have a canonical morphism of complexes of abelian
sheaves over Xét

π−1
X Ω•

X/k
∼= Ω•

π−1
X OX/π

−1
X g−1OSpec(k)

→ Ω•
Oét

X/g
ét−1Oét

Spec(k)

= (Ω•
X/k)

ét.

2The square of sheaves of rings is not object-wise cocartesian. However, it is on an affine open
cover of X and this is indeed sufficient to conclude the isomorphism.
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It induces the morphisms on sheaf cohomology

Hi(Xét, π
−1
X Ω•

X/k)→ Hi(Xét, (Ω
•
X/k)

ét).

Composing with the functoriality morphisms of sheaf cohomology

Hi
AdR(X/k) = Hi(XZar,Ω

•
X/k)→ Hi(Xét, π

−1
X Ω•

X/k),

we get the canonical morphisms of abelian groups

Hi
AdR(X/k)→ Hi(Xét, (Ω

•
X/k)

ét). (1.6)

Since all the considered morphisms of complexes of abelian sheaves are also k-linear,
then these are also morphisms of k-vector spaces. We prove that these canonical
morphisms of k-vector spaces are isomorphisms. For each p ≥ 0, since Ωp

X/k is a

quasi-coherent OX-module and (Ωp
X/k)

ét ∼= π∗
XΩ

p
X/k (remark 1.5.7), then we have

canonical isomorphisms (see [Stacks, Tag 03DW]), for each q ≥ 0,

Hq(XZar,Ω
p
X/k)

∼= Hq(Xét, (Ω
p
X/k)

ét).

They define a canonical isomorphism between the hyper-cohomology spectral se-
quences

Ep,q
1 = Hq(XZar,Ω

p
X/S)⇒ Hp+q(XZar,Ω

•
X/k) = Hp+q

AdR(X/k)

and
Ep,q

1 = Hq(Xét, (Ω
p
X/k)

ét)⇒ Hp+q(Xét, (Ω
•
X/k)

ét).

Hence, we conclude that the morphisms induced on the limits of the spectral sequences,
which are the canonical morphisms 1.6, are isomorphisms.

1.5.2 Comparison of algebraic and analytic de Rham coho-
mology

Now, we consider k = C. As explained in the subsection 1.2.2 on GAGA Theorems,
we have an algebraic and an analytic way to study algebraic varieties in this case. For
what concerns de Rham cohomology, this means that, given X a smooth algebraic
variety over C, we can either consider its algebraic de Rham cohomology

Hi
AdR(X/C) := Hi(XZar,Ω

•
X/C),

or pass to the analytification X(C), which is a smooth analytic space (i.e. a complex
manifold, by remark 1.2.10), and consider its analytic de Rham cohomology

Hi
dR(X(C)) := Hi(Xan,Ω

•
X(C)).
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The aim of the rest of this section is to show that these two approaches give indeed
the same objects, that is, we have canonical isomorphisms of C-vector spaces, for
each i ≥ 0,

Hi
AdR(X/C) ∼= Hi

dR(X(C)).

We first prove it in case X is proper, where we can use GAGA Theorem I. Then, we
prove the general case, where the idea is to reduce to the proper case.

We start constructing the canonical morphisms of C-vector spaces

Hi
AdR(X/C)→ Hi

dR(X(C)).

Let g : X → Spec(C) be the structural morphism. Since the analytic differential

d : OX(C) → Ω1
X(C)

is C-linear and satisfies the Leibnitz rule, then the composition

OX → αX∗OX(C)
αX∗d−−−→ αX∗Ω

1
X(C)

is a g−1OSpec(C)-derivation. By universal property of Ω1
X/C, there exists a canonical

morphism of sheaves of OX-modules

Ω1
X/C → αX∗Ω

1
X(C),

such that the following diagram commutes

OX Ω1
X/C

αX∗OX(C) αX∗Ω
1
X(C).

d

αX∗d

(1.7)

Consider the adjoint morphism of sheaves of OX(C)-modules via the adjunction
(α∗

X , αX∗)
α∗
XΩ

1
X/C → Ω1

X(C).

Since pullback commutes with exterior powers, we get the morphisms of sheaves of
OX(C)-modules, for each p ≥ 0,

α∗
XΩ

p
X/C
∼= α∗

X

(
p⋀
Ω1
X/C

)
∼=

p⋀
α∗
XΩ

1
X/C →

p⋀
Ω1
X(C)
∼= Ωp

X(C).

Taking back the adjoint morphisms of sheaves of OX-modules via the adjunction
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(α∗
X , αX∗) we get the morphisms of sheaves of OX-modules

Ωp
X/C → αX∗Ω

p
X(C).

They are compatible with differentials, that is, we have commutative diagrams

Ωp
X/C Ωp+1

X/C

αX∗Ω
p
X(C) αX∗Ω

p+1
X(C).

dp

αX∗d
p

Indeed, since d1 = d, the commutative diagram 1.7 tells that it’s true for p = 1.
Moreover, the analytic differentials are such that dp+1◦dp = 0, are C-linear and satisfy
the Leibnitz rule. This is sufficient to prove the commutativity of the diagram, since
these properties characterize the algebraic differentials dp. So, we have a morphism
of complexes of abelian sheaves over XZar

Ω•
X/C → αX∗Ω

•
X(C).

Taking the adjoint morphism via the adjunction (α−1
X , αX∗), we get the canonical

morphism of complexes of abelian sheaves over X(C)an

α−1
X Ω•

X/C → Ω•
X(C).

It induces the morphisms on sheaf cohomology

Hi(X(C)an, α−1
X Ω•

X/C)→ Hi(X(C)an,Ω•
X(C)) = Hi

dR(X(C)).

Composing with the functoriality morphism of sheaf cohomology

Hi
AdR(X/C) = Hi(XZar,Ω

•
X/C)→ Hi(X(C)an, α−1

X Ω•
X/C),

we get the canonical morphisms of abelian groups, for each i ≥ 0,

Hi
AdR(X/C)→ Hi

dR(X(C)). (1.8)

Since all the considered morphisms of complexes of abelian sheaves are also C-linear,
then these are also morphisms of C-vector spaces.

It is fundamental the following fact, which tells that the analytification of the
sheaves of modules of Kähler differentials are the sheaves of modules of holomorphic
forms.

Proposition 1.5.10. Let X be a smooth algebraic variety over C. Then, we have
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canonical isomorphisms of sheaves of OX(C)-modules, for each p ≥ 0,

(Ωp
X/C)

an ∼= Ωp
X(C).

Proof. Consider the canonical morphisms of sheaves of OX(C)-modules constructed
above

(Ωp
X/C)

an = α∗
XΩ

p
X/C → Ωp

X(C).

We show that these are isomorphisms. It suffices to prove it for p = 1, since all
others isomorphisms are obtained by taking its exterior powers. We show that we
have isomorphisms on the stalk at each point x ∈ X(C). Let u1,x, . . . , un,x ∈ OX,x be
a system of local parameters of X at x. By definition of local parameters, (Ω1

X/C)x is
freely generated as an OX,x-module by their differentials

(Ω1
X/C)x

∼= ⊕ni=1OX,xdui,x.

We denote by w1,x, . . . , wn,x ∈ OX(C),x the images of u1,x, . . . , un,x ∈ OX,x along the

morphism α#
X,x : OX,x → OX(C),x. By remark 1.4.17, w1,x, . . . , wn,x ∈ OX(C),x are

stalks of local coordinates of a local chart of X(C) at x. Hence, (Ω1
X(C))x is freely

generated as an OX(C),x-module by their analytic differentials

(Ω1
X(C))x

∼= ⊕ni=1OX(C),xdwi,x.

By commutativity of the diagram 1.7, we have that the morphism

(Ω1
X/C)x → (αX∗Ω

1
X(C))x → (Ω1

X(C))x

maps dui,x into dwi,x, for i = 1, . . . , n. Hence,

(α∗
XΩ

1
X/C)x

∼= (⊕ni=1OX,xdui,x)⊗OX,x
OX(C),x → ⊕ni=1OX(C),xdwi,x ∼= (Ω1

X(C))x

is an isomorphism.

Remark 1.5.11. Since we have the morphism of small analytic ringed sites

(X(C)an,OX(C))→ (C0
an,OC0)

we could also apply the general construction of the algebraic de Rham complex to it.
However, this is not a relevant object. It doesn’t coincide with Ω•

X(C), the analytic de

Rham complex of X(C), which is indeed the right object to consider in the analytic
context. Intuitively, a reason why they don’t coincide, is that the analytic differential
can be linear with respect to infinite sums, in the sense that, for example, we have

d(ez) = d(1 + z + z2/2 + . . . ) = dz + zdz + z2/2dz + · · · = ezdz.

The algebraic differential, instead, is only linear with respect to finite sums. For
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example, it can be proved that

d(ez) ̸= ezdz.

Now, we prove the comparison isomorphism between the algebraic and the analytic
de Rham cohomology.

The proper case

Theorem 1.5.12. Let X be a smooth proper algebraic variety over C. Then, the
canonical morphisms of C-vector spaces constructed in 1.8, for each i ≥ 0,

Hi
AdR(X/C)→ Hi

dR(X(C)),

are isomorphisms.

Proof. For each p ≥ 0, the sheaf of OX-modules ΩpX/k is finite locally free (proposition

1.4.6). Hence, it is a quasi-coherent and locally of finite type sheaf of OX-modules.
Since X is a locally noetherian scheme and OX is a coherent sheaf of OX-modules
(proposition 1.2.20), then Ωp

X/k is a coherent sheaf of OX-modules (see [GW20,

Prop. 7.46]). Since X is proper, by GAGA Theorem I 1.2.22, we have canonical
isomorphisms of C-vector spaces, for each q ≥ 0,

Hq(XZar,Ω
p
X/C)

∼= Hq(X(C)an, (Ωp
X/C)

an).

Composing with the canonical isomorphism

Hq(X(C)an, (Ωp
X/C)

an) ∼= Hq(X(C)an,Ωp
X(C))

induced by the canonical isomorphism of OX(C)-modules (ΩpX/C)
an ∼= ΩpX(C) of propo-

sition 1.5.10, we get canonical isomorphisms of C-vector spaces

Hq(XZar,Ω
p
X/C)

∼= Hq(X(C)an,Ωp
X(C)).

They define a canonical isomorphism between the hyper-cohomology spectral se-
quences

Ep,q
1 = Hq(XZar,Ω

p
X/C)⇒ Hp+q(XZar,Ω

•
X/C) = Hp+q

AdR(X/C)

and
Ep,q

1 = Hq(X(C)an,Ωp
X(C))⇒ Hp+q(X(C)an,Ω•

X(C)) = Hp+q
dR (X(C))

Hence, we conclude that the morphisms induced on the limits of the spectral sequences,
which are the canonical morphism constructed in 1.8, are isomorphisms.
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1.5. The algebraic de Rham cohomology

The general case

The strategy to prove the general case consists of the following steps.

1) Given X a smooth algebraic variety over C, we embed X as an open subset
inside X, a smooth proper algebraic variety over C.

2) We define a complex of abelian sheaves over XZar, whose sheaf cohomology
computes the algebraic de Rham cohomology of X.

3) We do analogous constructions in the analytic context: we define a complex of
abelian sheaves over X(C)an, whose sheaf cohomology computes the analytic
de Rham cohomology of X(C).

4) We prove, using GAGA Theorem I 1.2.22, that the cohomology of X and
X(C) with coefficients in the complexes of abelian sheaves defined in 2) and 3)
are isomorphic. Since they compute the algebraic and the analytic de Rham
cohomology of X and X(C) respectively, we conclude the isomorphisms

Hi
AdR(X/C) ∼= Hi

dR(X(C)).

We start with step 1). Given X a smooth algebraic variety over C, by Nagata
Embedding Theorem for schemes (see [Del10, thm. 1.6]), we can be embedded X as
an open subscheme into X̃, a proper algebraic variety over C,

X ↪→ X̃.

Since X̃ might not be smooth, we apply Hironaka Resolution of Singularities in
characteristic zero (see [Wlo05, thm. 1.0.3]) to obtain a proper morphism

ρ : X → X̃,

with X a smooth algebraic variety over C, such that the restriction to the smooth
locus X̃sm ⊂ X̃, the open subset of smooth points,

ρ|ρ−1(X̃sm) : ρ
−1(X̃sm)→ X̃sm

is an isomorphism. Since X̃ and ρ are proper, then also X is. Since X is a smooth
open subscheme of X̃, then X ⊂ X̃sm. Hence, X ∼= ρ−1(X) can be identified with
an open subscheme of X. Moreover, by Hironaka Embedded Desingularization
Theorem (see [Wlo05, thm. 1.0.2]), up to applying blow-ups, we can assume that
the complementary closed subscheme, with the reduced scheme structure,

D := X \X

is a simple normal crossing divisor.
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Now, we address step 2). For the moment we leave aside the setting obtained in
step 1) and we consider the more generally the setting given by Y a smooth algebraic
variety over a field k with D ⊂ Y a normal crossing divisor. This is indeed sufficient
for all constructions and results, that we are about to face in this step.

First, we recall the definition of normal crossing divisor.

Definition 1.5.13. Let Y be a smooth algebraic variety over a field k. Recall from
proposition 1.4.21, that Y is regular. A closed subvariety D ⊂ Y is a normal
crossing divisor (NCD) of Y if, for any y ∈ D, there exists u1,y, . . . , un,y ∈ OY,y a
system of regular parameters of Y at y, such that

OD,y ∼= OY,y/(u1,y · · ·um,y),

for some m ≤ n. Moreover, we say that D is simple, if its irreducible components
are smooth.

Remark 1.5.14. Let Y be a smooth algebraic variety over a field k, y ∈ Y a point
and u1,y, . . . , un,y ∈ OY,y a system of local parameters of Y at y. As seen in the proof
of proposition 1.4.15, we can take an affine open subset U ⊂ Y containing y and
sections u1, . . . un ∈ OY (U), whose stalks at y are the system of local parameters,
which define an étale morphism h : U → An

k . This means that

Ω1
Y/k(U)

∼= ⊕ni=1OY (U)dui.

Recall that, by proposition 1.4.21, a system of regular parameters is also a system
of local parameters of Y at y. Then, the definition of D ⊂ Y NCD implies that, for
any y ∈ Y , there exists such an affine open subset U ⊂ Y , such that

D ∩ U ∼= V (u1 · · ·um) = V (u1) ∪ · · · ∪ V (um)

for some m ≤ n (eventually m = 0, meaning that y /∈ D). So, we can think at a
NCD as a closed subscheme, which étale-locally is a union of coordinate hyperplanes.
Moreover, if we denote by X := Y \D the complementary open subscheme, then

X ∩ U ∼= D(u1 · · ·um) = D(u1) ∩ · · · ∩D(um).

Hence, the restrictions u1, . . . , um ∈ OY (X ∩ U) are invertible elements.

Whenever we have a NCD, we can define the following logarithmic variant of the
sheaf of Kähler differentials.

Definition 1.5.15. Let Y be a smooth algebraic variety over a field k and D ⊂ Y
a NCD. Let X := Y \D ⊂ Y be the complementary open subscheme and denote by
j : X ↪→ Y the open immersion. Consider the sheaf of OY -modules

j∗Ω
1
X/k.
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1.5. The algebraic de Rham cohomology

We define the sheaf of modules of Kähler differentials of Y with logarithmic poles
along D the OY -submodule

ΩY/k(logD) ⊂ j∗Ω
1
X/k,

such that, for any y ∈ Y , if U ⊂ Y is an affine open subset as in remark 1.5.14, then

ΩY/k(logD)(U) ⊂ j∗Ω
1
X/k(U)

∼= Ω1
Y/k(X ∩ U) ∼= ⊕ni=1OY (X ∩ U)dui,

is the OY (U)-submodule generated by the elements 3

du1
u1

, . . . ,
dum
um

, dum+1, . . . , dun.

Remark 1.5.16. By corollary 1.4.23, Y is reduced and has irreducible components
that coincide with connected components. Hence, connected components of Y are
integral. This implies that, for any open subset U ⊂ Y , the restriction morphism

OY (U) ↪→ OY (X ∩ U)

is injective, i.e. the canonical morphism OY ↪→ j∗OX is injective. Moreover, if
U ⊂ Y is an affine open subset as in remark 1.5.14, since the elements

du1, . . . , dum, dum+1, . . . , dun ∈ Ω1
Y/k(X ∩ U)

are OY (X ∩ U)-linearly independent, then also the elements

du1
u1

, . . . ,
dum
um

, dum+1, . . . , dun ∈ Ω1
Y/k(X ∩ U)

are OY (X ∩U)-linearly independent and hence also OY (U)-linearly independent. So,

ΩY/k(logD)(U) ∼=
(
⊕mi=1OY (U)

dui
ui

)
⊕
(
⊕ni=m+1OY (U)dui

)
.

That is, ΩY/k(logD) is a finite locally free sheaf of OY -modules, with stalks at y ∈ Y

(ΩY/k(logD))y ∼=
(
⊕mi=1OY,y

dui,y
ui,y

)
⊕
(
⊕ni=m+1OY,ydui,y

)
.

As for the algebraic de Rham complex, we can construct a complex of abelian
sheaves out of the sheaf of modules of Kähler differentials with logarithmic poles

3We define ΩY/k(logD) only on an affine open cover of Y . It can be proved that these definitions
don’t depend on the choice of a system of local parameters, hence they are compatible over
intersections of affine open subsets. So, ΩY/k(logD) is indeed a sheaf of OY -modules.
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along D. For each p ≥ 0, we define

Ωp
Y/k(logD) :=

p⋀
Ω1
Y/k(logD),

where the wedge product is taken as sheaves ofOY -modules. In particular, Ω0
Y/k(logD) ∼=

OY and Ω1
Y/k(logD) ∼= ΩY/k(logD). It’s immediate to check that we have inclusions

of sheaves of OY -modules, for each p ≥ 0,

Ωp
Y/k(logD) ⊂ j∗Ω

p
X/k. (1.9)

Moreover, notice that the first differential of j∗Ω
•
X/k is such that, on an affine open

subset U ⊂ Y as in remark 1.5.16,

d

(
dui
ui

)
= d

(
1

ui

)
∧ dui = −

1

u2i
dui ∧ dui = 0.

So, we see that the differentials of j∗Ω
•
X/k restrict to the inclusions 1.9. Hence they

define a complex of abelian sheaves

Ω•
Y/k(logD),

which is also k-linear. By construction, we have the inclusion of complexes of abelian
sheaves over YZar

Ω•
Y/k(logD) ↪→ j∗Ω

•
X/k, (1.10)

which is also k-linear.

Definition 1.5.17. Let Y be a smooth algebraic variety over a field k and D ⊂ Y
a NCD. The complex of sheaves of k-vector spaces over YZar

Ω•
Y/k(logD)

is called the algebraic de Rham complex of Y with logarithmic poles along D.

Now, we want to prove that the sheaf cohomology of the algebraic de Rham
complex with logarithmic poles computes the algebraic de Rham cohomology of the
complementary open subscheme, which is smooth. We start constructing a canonical
morphism from one to the other. The inclusion of complexes of abelian sheaves over
YZar 1.10 induces canonical morphisms on sheaf cohomology

Hi(YZar,Ω
•
Y/k(logD))→ Hi(YZar, j∗Ω

•
X/k).

Composing with the canonical edge morphisms of the Leray spectral sequence for j
and Ω•

X/k

Hi(YZar, j∗Ω
•
X/k)→ Hi(XZar,Ω

•
X/k) = Hi

AdR(X/k),
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we get the canonical morphisms of abelian groups, for each i ≥ 0,

Hi(YZar,Ω
•
Y/k(logD))→ Hi

AdR(X/k).

Since all the considered morphisms of complexes of abelian sheaves are also k-linear,
then these are also morphisms of k-vector spaces.

Proposition 1.5.18. Let k be a field of characteristic 0. Given Y a smooth algebraic
variety over k and D ⊂ Y a NCD, let X := Y \D ⊂ Y be the complementary open
subscheme and denote by j : X ↪→ Y the open immersion. Then, the canonical
morphisms of k-vector spaces, for each i ≥ 0,

Hi(YZar,Ω
•
Y/k(logD))→ Hi

AdR(X/k)

are isomorphisms.

Proof. We prove that each of the morphisms in the composition

Hi(YZar,Ω
•
Y/k(logD))→ Hi(YZar, j∗Ω

•
X/k)→ Hi

AdR(X/k)

is an isomorphism. Consider the second morphism in the composition. Notice that
it is the limit morphism of the morphism between the hyper-cohomology spectral
sequences

Ep,q
1 = Hq(YZar, j∗Ω

p
X/k)⇒ Hp+q(YZar, j∗Ω

•
X/k)

and
Ep,q

1 = Hq(XZar,Ω
p
X/k)⇒ Hp+q(XZar,Ω

•
X/k) = Hp+q

dR (X),

such that, for each p ≥ 0, the canonical morphisms

Hq(YZar, j∗Ω
p
X/k)→ Hq(XZar,Ω

p
X/k)

are the edge morphisms of the Leray spectral sequence for j and ΩpX/k. So, it suffices
to prove that these are isomorphisms. Recall that the Leray spectral sequence for j
and Ωp

X/k is

Er,s
2 = Hr(YZar,R

sj∗Ω
p
X/k)⇒ Hr+s(XZar,Ω

p
X/k).

Recall that the higher derived pushforward Rsj∗Ω
p
X/k is the abelian sheaf over YZar

given by the sheafification of the abelian presheaf

U ↦→ Hs(X ∩ U,Ωp
X/k).

If we take U ⊂ Y an affine open subsets as in remark 1.5.14, then X ∩U is an affine
scheme. Since Ωp

X/k is a quasi-coherent sheaf of OX-modules, then (see [Har77, §3,
Thm. 3.5])

Hs(X ∩ U,Ωp
X/k) = 0 for each s > 0.
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Since such open subsets U ⊂ Y form an open cover of Y , then we conclude that

Rqj∗Ω
p
X/k = 0 for each q > 0.

Hence, the Leray spectral sequence for j and ΩpX/k degenerates at page 2 and the edge
morphisms are isomorphisms. Now, consider the first morphism in the composition.
Recall that it is induced by the inclusion of complexes of abelian sheaves over YZar

Ω•
Y/k(logD) ↪→ j∗Ω

•
X/k. (1.11)

We prove that it is a quasi-isomorphism. A reference is [HM17, Prop. 3.1.16]. We
prove that the cokernel of 1.11 is an exact complex of abelian sheaves over YZar.
Since being exact for a complex of sheaves is a local property, this is equivalent
to check exactness on stalks at each point y ∈ Y . In fact, using the étale descent
property of algebraic de Rham cohomology, we see that we can equivalently consider
the étale topology, so we can equivalently check exactness at étale stalks (see [Mil13,
p. 47]). Hence, we can assume that Y ∼= An

k
∼= Spec(k[t1, . . . , tn]), y ∈ Y is the

point given by the prime ideal (t1, . . . , tn) and D = V (t1, . . . , tm) for some m ≤ n.
Reasoning by induction, it suffices to prove the case n = 1. If m = 0, that is D is
empty, there is nothing to prove. So, assume that D = V (t). Recall that the étale
stalk of OY = OA1

k
at y is the Henselization of k[t](t) (see [Mil13, Cor. 4.14]), which

is the ring of algebraic formal power series (see [Mil13, Cor. 4.17])

O := kJtK ∩ k(t)alg.

The étale stalk at y of the cokernel of 1.11 is the complex

0→ O[t
−1]

O
→ O[t

−1]

t−1O
dt→ 0. (1.12)

The only non-trivial differential is such that, for any f ∈ O and i > 0,

f

ti
↦→

{
f ′

ti
dt− i f

ti+1dt i > 1

− f
t2
dt i = 1.

Since, by hypothesis, char(k) = 0, then the differential is injective. Reasoning by
induction, we see that it is also surjective. Hence, the complex 1.12 is exact.

Now, we address step 3). In the analytic context we can do exactly the analogous
constructions of the algebraic context of step 2). Everything can be literally rewritten,
replacing:

• Y a smooth algebraic variety over a field k, with M a smooth complex analytic
space.
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• u1,y, . . . , un,y ∈ OY,y a system of local parameters ofN at y, with w1,y, . . . , wn,y ∈
OM,y stalks of local coordinates of a local chart of N at y. Notice that D ⊂ N
a NCD is a closed complex analytic subspace, which locally, i.e. on a local
chart, is the union of some coordinate hyperplanes.

• U ⊂ Y an affine open subset endowed with an étale morphism h : U → An
k ,

with U ⊂ N an open subset of a local chart.

• The corresponding sections u1, . . . , un ∈ OY (U), with coordinates of the local
chart w1, . . . , wn ∈ ON(U).

• The sheaf of Kähler differentials and the algebraic de Rham compex, with the
sheaf of holomorphic 1-forms and the analytic de Rham complex.

So, given N a smooth complex analytic space with D ⊂ N a NCD, if we denote
by M := N \ D the complementary open subspace, which is a smooth complex
analytic space, and j :M ↪→ N the open immersion, we obtain a finite locally free
sheaf of ON -modules

ΩN(logD) ⊂ j∗Ω
1
M ,

called the sheaf of modules of holomorphic 1-forms of N with logarithmic poles along
D. It has stalks at y ∈ N

(ΩN(logD))y ∼=
(
⊕mi=1ON,y

dwi,y
wi,y

)
⊕
(
⊕ni=m+1ON,ydwi,y

)
,

where w1, . . . , wn are local coordinates of a local chart U ⊂ N containing y and
D ∩ U = Z(w1 · · ·wm). Its exterior powers form the analytic de Rham complex of N
with logarithmic poles along D

Ω•
N(logD) ↪→ j∗Ω

•
M ,

which is also C-linear. Notice that, for smooth complex analytic spaces, the fact
that, for any U ⊂ N open subset, the restriction morphisms

ON(U) ↪→ ON(M ∩ U)

are injective, i.e. ON ↪→ j∗OM is injective, is due to the Identity Principle of
holomorphic functions. We also have the canonical morphism of C-vector spaces, for
each i ≥ 0,

Hi(Nan,Ω
•
N(logD))→ Hi

dR(M).

Remark 1.5.19. In the analytic context, we can define the morphism of abelian
sheaves

log : O×
M → OM ,
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given by the complex logarithm. Its composition with the first differential of the
analytic de Rham complex gives the logarithmic derivation, that is the morphism of
abelian sheaves

d log : O×
M → Ω1

M ,

which assigns to a section f of O×
M the section df

f
of Ω1

M . The logarithmic derivation
makes sense also in the algebraic context: we have the morphism of abelian sheaves

d log : O×
X → Ω1

X/k,

which assigns to a section f of O×
X the section df

f
of Ω1

X/k. The sheaves Ω
1
Y (logD) and

Ω1
N(logD) contain the sections given by the logarithmic derivations of the rational

functions defining D. For this reason they are called the algebraic/analytic de Rham
complexes with logarithmic poles along D.

It holds the analogous of the algebraic proposition 1.5.18.

Proposition 1.5.20. Let N be a smooth complex analytic space and D ⊂ Y be a
NCD. Let M := N \ D ⊂ N be the complementary open subspace and denote by
j :M ↪→ N the open immersion. Then, the canonical morphisms of C-vector spaces,
for each i ≥ 0,

Hi(Nan,Ω
•
N(logD))→ Hi

dR(M)

are isomorphisms.

Proof. As for the algebraic analogue, we prove that each of the morphisms in the
composition

Hi(Nan,Ω
•
N(logD))→ Hi(Nan, j∗Ω

•
M)→ Hi

dR(M)

is an isomorphism. Consider the second morphism in the composition. The same
proof of the algebraic version works literally with the replacements pointed above,
because, given U ⊂ N a local chart, where D is the union of some coordinate
hyperplanes, then M ∩U is a Stein space. Since, for each p ≥ 0, ΩpM is a finite locally
free sheaf of OM -modules and OM is a coherent sheaf of OM -modules, then ΩpM is a
coherent sheaf of OM -modules. Hence, by Cartan’s Theorem B, we have that

Hs(M ∩ U,Ωp
M) = 0 for each s > 0.

We conclude as in the algebraic case. Now, consider the first morphism in the
composition. As in the algebraic case, we prove that the inclusion of complexes of
abelian sheaves over Nan

Ω•
N(logD) ↪→ j∗Ω

•
M (1.13)

is a quasi-isomorphism. A reference is [HM17, Prop. 4.1.16]. We prove that the
cokernel of 1.13 is an exact complex of abelian sheaves over Nan. Since being exact
for a complex of sheaves is a local property, this is equivalent to check exactness on
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stalks at each point y ∈ N . Hence, we can assume that N is isomorphic to a disk
in Cn, y = 0 ∈ Cn and D = Z(t1, . . . , tm) for some m ≤ n. Reasoning by induction,
it suffices to prove the case n = 1. If m = 0, that is D is empty, there is nothing
to prove. So, assume that D = Z(t). We denote by O the ring of germs at 0 of
holomorphic functions and by K the ring of germs at 0 of meromorphic functions with
an isolated singularity at 0. Then, O ∼= C{t} is the ring of power series convergent
on some disk and K is the ring of Laurent series convergent on some annulus. The
stalk at 0 of the cokernel of 1.13 is the complex

0→ K
O
→ K

t−1O
dt→ 0. (1.14)

The only non-trivial differential is such that∑
i>0

ait
−i ↦→

∑
i>0

(−i)ait−i−1.

It is bijective, with inverse given by∑
j>1

bit
−j ↦→

∑
j>1

bj
−j + 1

t−j+1.

Hence, the complex 1.14 is exact.

We conclude with step 4). Consider the setting of step 2) with k = C. So,
let Y be a smooth algebraic variety over C and D ⊂ Y be a NCD. We denote by
X := Y \D the complementary open subscheme and j : X ↪→ Y the open immersion.
So, we have the inclusion of complexes of abelian sheaves over YZar

Ω•
Y/C(logD) ↪→ j∗Ω

•
X/C.

We can also consider the associated complex analytic spaces given by the ana-
lytifications: Y (C), X(C) and D(C). Y (C) is a smooth complex analytic space,
D(C) ⊂ Y (C) is a closed subspace and X(C) = Y (C) \D(C) is the complementary
open subspace, with open immersion jan : X(C) ↪→ Y (C). By remark 1.4.17, which
describes explicitly the local charts of the analytification, we see that D(C) ⊂ Y (C)
is a NCD in the sense of a smooth complex analytic spaces. Hence, Y (C), D(C) and
X(C) give the setting of step 3). So, we have the inclusion of complexes of abelian
sheaves over Y (C)an

Ω•
Y (C)(logD(C)) ↪→ jan∗ Ω•

X(C).

We want to compare the sheaf cohomology of Ω•
Y/C(logD) with the one of

Ω•
Y (C)(logD(C)). Recall that we have a morphism of complexes of abelian sheaves
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over XZar

Ω•
X/C → αX∗Ω

•
X(C).

Applying the functor j∗, we get the morphism of complexes of abelian sheaves over
X(C)an

j∗Ω
•
X/C → j∗αX∗Ω

•
X(C)
∼= αY ∗j

an
∗ Ω•

X(C).

Following definitions, we see that it restricts to a morphism between the de Rham
complexes with logarithmic poles

Ω•
Y/C(logD)→ αY ∗Ω

•
Y (C)(logD(C)).

Taking the adjoint morphism via the adjunction (α−1
Y , αY ∗), we get the canonical

morphism of complexes of abelian sheaves over Y (C)an

α−1
Y Ω•

Y/C(logD)→ Ω•
Y (C)(logD(C)).

It induce the morphism on sheaf cohomology

Hi(Y (C)an, α−1
Y Ω•

Y/C(logD))→ Hi(Y (C)an,Ω•
Y (C)(logD(C))).

Composing with the functoriality morphism of sheaf cohomology

Hi(YZar,Ω
•
Y/C(logD))→ Hi(Y (C)an, α−1

Y Ω•
Y/C(logD)),

we get the canonical morphisms of abelian groups, for each i ≥ 0,

Hi(YZar,Ω
•
Y/C(logD))→ Hi(Y (C)an,Ω•

Y (C)(logD(C))),

which are also C-linear.
It holds the logarithmic version of proposition 1.5.10, which tells that analytifi-

cation of sheaves of modules of Kähler differentials with logarithmic poles are the
sheaves of holomorphic forms with logarithmic poles.

Proposition 1.5.21. Let Y be a smooth algebraic variety over C, D ⊂ Y a NCD.
Denote by X := Y \D the complementary open subscheme and j : X ↪→ Y the open
immersion. Then, we have canonical isomorphisms of sheaves of OY (C)-modules, for
each p ≥ 0,

(Ωp
Y/C(logD))an ∼= Ωp

Y (C)(logD(C)).

Proof. We observed above that we have morphisms of sheaves of OY -modules

Ωp
Y/C(logD)→ αY ∗Ω

p
Y (C)(logD(C)).

The adjoint morphisms of OY (C)-modules via the adjunction (α∗
Y , αY ∗) are

(Ωp
Y/C(logD))an = α∗

YΩ
p
Y/C(logD)→ Ωp

Y (C)(logD(C)).
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We show that these are isomorphisms. It suffices to prove it for p = 1, since all
other isomorphisms are obtained by taking exterior powers. We show that we have
isomorphisms on each stalk at y ∈ Y (C). Let u1,y, . . . , un,y ∈ OY,y be a system
of local parameters of Y at y and w1,y, . . . , wn,y ∈ OY (C),y the images along the

morphism α#
Y,y : OY,y → OY (C),y. Recall that the stalks of the sheaf of modules of

Kähler differentials of Y with logarithmic poles along D are

(Ω1
Y/C(logD))y ∼=

(
⊕mi=1OY,y

dui,y
ui,y

)
⊕
(
⊕ni=m+1OY,ydui,y

)
,

and the stalks of the sheaf of modules of the holomorphic 1-forms of Y (C) with
logarithmic poles along D(C) are

(Ω1
Y (C)(logD(C)))y ∼=

(
⊕mi=1OY (C),y

dwi,y
wi,y

)
⊕
(
⊕ni=m+1OY (C),ydwi,y

)
.

Since
(Ω1

Y/C(logD))y → (αY ∗Ω
1
Y (C)(logD(C)))y → (Ω1

Y (C)(logD(C)))y
maps ui,y into wi,y and dui,y into dwi,y, for i = 1, . . . , n, then

(α∗
YΩ

1
Y/C(logD))y ∼= (Ω1

Y/C(logD))y ⊗OY,y
OY (C),y → (Ω1

Y (C)(logD(C)))y

is an isomorphism.

Remark 1.5.22. Notice that, instead,

(j∗Ω
p
X/C)

an ≇ jan∗ Ωp
X(C).

Indeed, the first one is the sheaf of meromorphic p-forms over Y (C) with poles along
D(C), while the second is the sheaf of p-forms over Y (C) with eventually some
essential singularity along D(C).

In case Y is proper, we have the logarithmic version of theorem 1.5.12.

Theorem 1.5.23. Let Y be a smooth proper algebraic variety over C, D ⊂ Y a
NCD. Denote by X := Y \D the complementary open subscheme and j : X ↪→ Y the
open immersion. Then, the canonical morphisms of C-vector spaces, for each i ≥ 0,

Hi(YZar,Ω
p
Y/C(logD)) ∼= Hi(Y (C)an,Ωp

Y (C)(logD(C)))

are isomoprhisms.

Proof. For each p ≥ 0, the sheaf of OY -modules Ωp
Y/C(logD) is finite locally free

(remark 1.5.16). Hence, it is a quasi-coherent and locally of finite type sheaf of
OY -modules. Since Y is a locally noetherian scheme and OY is a coherent sheaf
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of OY -modules (proposition 1.2.20), then Ωp
Y/C(logD) is a coherent sheaf of OY -

modules (see [GW20, Prop. 7.46]). Since Y is proper, arguing as in theorem 1.5.12,
using proposition 1.5.21, GAGA Theorem I 1.2.22 and the hyper-cohomology
spectral sequences for Ω•

X/C(logD), we get that the canonical morphisms of C-vector
spaces

Hi(YZar,Ω
p
Y/C(logD)) ∼= Hi(Y (C)an,Ωp

Y (C)(logD(C)))

are isomorphisms.

This allows to conclude the generalization of theorem 1.5.12 to any smooth
algebraic variety over C.

Theorem 1.5.24. Let X be a smooth algebraic variety over C. Then, the canonical
morphisms of C-vector spaces constructed in 1.8, for each i ≥ 0,

Hi
AdR(X/C)→ Hi

dR(X(C)),

are isomorphisms.

Proof. By step 1), there exists X a smooth projective algebraic variety over C with
an open immersion j : X ↪→ X, such that D := X \X the complementary closed
subset with the reduced scheme structure is a NCD of X. By above constructions
applied to Y = X, we have a commutative square of canonical morphisms of C-vector
spaces

Hi(XZar,Ω
•
X/C(logD)) Hi(X(C)an,Ω•

X(C)(logD(C)))

Hi
AdR(X/C) Hi

dR(X(C))

By propositions 1.5.18 and 1.5.20, the vertical morphisms are isomorphisms. Since
X is proper, by theorem 1.5.23, the upper horizontal morphism is an isomorphism.
Hence, also the lower horizontal morphism is an isomorphism.

1.6 The algebraic de Rham Theorem

1.6.1 The algebraic de Rham isomorphism

Let σ : k ↪→ C be a field extension. Given X an algebraic variety over k we can
associate to X two different cohomology theories. One is the algebraic de Rham
cohomology defined in section 1.5, that is, the family of k-vector spaces

Hi
AdR(X/k) := Hi(XZar,Ω

•
X/k).
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1.6. The algebraic de Rham Theorem

The other is obtained by considering the base change of X along σ

Xσ := X ×k C,

which is a smooth algebraic variety over C, since smooth morphisms are stable
under base change, and taking the singular cohomology with coefficients in Q of
the analytification. This cohomology theory takes the following name in Algebraic
Geometry.

Definition 1.6.1. Given X an algebraic variety over C, the family of Q-vector
spaces

Hi
Bet(X) := Hi

Sing(X(C);Q)

is called the Betti cohomology of X.

The algebraic de Rham Theorem states that these cohomology theories provide
the same invariants extending scalars in C.

Theorem 1.6.2 (Algebraic de Rham Theorem). Let σ : k ↪→ C be a field extension.
For any X smooth algebraic variety over k, there exists a canonical isomorphism of
C-vector spaces, for each i ≥ 0,

Hi
AdR(X/k)⊗k C ∼= Hi

Bet(Xσ)⊗Q C,

natural in X.

Proof. The canonical isomorphisms are obtained by composition of the following
canonical isomorphisms, which are also all natural.

• The canonical isomorphisms of the analytic de Rham Theorem 1.1.9 for Xσ(C)

Hi
dR(Xσ(C)) ∼= Hi

Sing(Xσ(C);C) ∼= Hi
Sing(Xσ(C);Q)⊗Q C ∼= Hi

Bet(Xσ)⊗Q C.

• The canonical comparison isomorphism between the algebraic and the analytic
de Rham cohomology 1.5.24 for Xσ

Hi
AdR(Xσ/C) ∼= Hi

dR(Xσ(C)).

• The canonical isomorphisms

Hi
AdR(X/k)⊗k C ∼= Hi

AdR(Xσ/C),

which are constructed as follows. By proposition 1.3.9, we have the canonical
morphism of complexes of abelian sheaves over XσZar

σ̃−1Ω•
X/k → Ω•

Xσ/C,
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where σ̃ : Xσ → X is the canonical morphism of the fiber product. This
induces the morphisms on sheaf cohomology

Hi(XσZar, σ̃
−1Ω•

X/k)→ Hi(XσZar,Ω
•
Xσ/C) = Hi

AdR(Xσ/C).

Composing with the canonical functoriality morphisms

Hi
AdR(X/k) = Hi(XZar,Ω

•
X/k)→ Hi(XσZar, σ̃

−1Ω•
X/k),

we get the canonical morphisms of abelian groups

Hi
AdR(X/k)→ Hi

AdR(Xσ/C),

which are also k-linear. Since Hi
AdR(Xσ/C) are also C-vector spaces, we get

the canonical morphisms of C-vector spaces

Hi
AdR(X/k)⊗k C→ Hi

AdR(Xσ/C). (1.15)

Consider the hyper-cohomology spectral sequences

Ep,q
1 = Hq(XZar,Ω

p
X/k)⇒ Hp+q(XZar,Ω

•
X/k) = Hp+q

AdR(X/k),

which induces the spectral sequence

Ep,q
1 = Hq(XZar,Ω

p
X/k)⊗k C⇒ Hp+q(XZar,Ω

•
X/k)⊗k C = Hp+q

AdR(X/k)⊗k C,

and

Ep,q
1 = Hq(XσZar,Ω

p
Xσ/C)⇒ Hp+q(XσZar,Ω

•
Xσ/C) = Hp+q

AdR(Xσ/C).

Since Ωp
X/k are quasi-coherent OX-modules (proposition 1.3.6), by flat base

change (see [Har77, §III, Prop. 9.3]) and proposition 1.3.9, we get the canonical
isomorphisms

Hq(XZar,Ω
p
X/k)⊗k C ∼= Hq(XσZar, σ̃

∗Ωp
X/k)

∼= Hq(XσZar,Ω
p
Xσ/C),

which define an isomorphism between the last two spectral sequences. Hence,
the morphism induced on the limits of the spectral sequences, which is the
canonical morphism 1.15, is an isomorphism.

Definition 1.6.3. Given X a smooth algebraic variety over a field k with a field
extension σ : k ↪→ C, the canonical morphism of C-vector spaces, for each i ≥ 0,

ϖi
X : Hi

AdR(X/k)⊗k C ∼= Hi
Bet(Xσ)⊗Q C

82



1.6. The algebraic de Rham Theorem

is called the algebraic de Rham isomorphism.

Remark 1.6.4. The algebraic de Rham isomorphism is canonical once we fix the
field extension σ, in the sense that for different field extensions we get different
isomorphisms.

1.6.2 Period numbers

For k = Q, with the inclusion into C, given X an algebraic variety over Q, we have
the associated algebraic de Rham isomorphisms

ϖi
X : Hi

AdR(X/Q)⊗Q C ∼= Hi
Bet(Xσ)⊗Q C.

These canonical isomorphisms of C-vector spaces produce some arithmetic invariants
associated to the algebraic variety X. Notice that a Q-basis of Hi

AdR(X/Q) induces
a C-basis of Hi

AdR(X/Q)⊗Q C, which we still call a Q-basis. Analogously, we can

consider a Q-basis of Hi
Bet(Xσ)⊗Q C.

Definition 1.6.5. Let X be a smooth algebraic variety over Q. The complex
numbers arising as entries some representative matrix of the canonical isomorphisms
ϖi
X , with respect to a Q-basis and a Q-basis, are called period numbers.

For this reason, in this case, the canonical isomorphism ϖi
X is also called period

isomorphisms. Concretely, following the isomorphisms which give rise to the period
isomorphisms (see the proof of theorem 1.6.2) and taking account of the concrete
description of the analytic de Rham theorem in remark 1.1.10, we see that period
numbers are obtained by integrating closed Q-linear algebraic form along Q-linear
singular cycles over Xσ(C).

Example 1.6.6. Take X = Gm
∼= Spec(Q[t, u](tu− 1)). Recall from example 1.5.3,

3) that its algebraic de Rham cohomology is given by

Hi
AdR(Gm/Q) ∼=

{
Q for i = 0, 1

0 else.

Consider the period isomorphism

ϖ1
Gm

: H1
AdR(Gm/Q)⊗Q C ∼= H1

Bet(Gm)⊗Q C.

Notice that the analytification of Gm is C without the origin

Gm(C) ∼= C×.

A Q-basis of Hi
AdR(Gm/Q) corresponds to the class of the algebraic form dz

z
over C×.

A Q-basis of H1
Bet(Gm) corresponds to the class of the singular cycle γ : t ↦→ exp(2πit)

83



Chapter 1

over C×. Then, ∫
γ

dz

z
= 2πi

is a period number of Gm.
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The de Rham Theorem in Theory
of Motives

2.0.1 Overview

In this chapter we revisit the Algebraic de Rham Theorem inside Theory of Motives.
Theory of Motives is a vast research area with many different approaches, conjec-

tural programs and candidate concrete theories. The whole picture remains to be
understood.

Broadly speaking, one of the ultimate aims of Theory of Motives is that of
providing a unifying framework in which to study both arithmetic-analytic invariants
and algebro-geometric invariants of algebraic varieties, as well as relations between
them. Examples of the former are algebraic de Rham and Betti cohomologies.
Examples of the latter are Chow groups and algebraic K-theory, which are some
invariants constructed out, respectively, algebraic cycles (linear combinations of
integral closed subvarieties) and algebraic vector bundles over the given algebraic
variety.

The relations between these two kinds of invariants are the content of some
deep conjectures in Algebraic Geometry, such as the Grothendieck-Hodge Conjecture,
the Tate Conjecture and the Grothendieck Period Conjecture. The final aim of this
chapter is to state a version of the latter, as presented in [And+20, §1.3].

To do it, we have to, not only recover the algebraic de Rham isomorphism inside
the conceptual framework given by Theory of Motives, but also construct maps
relating algebraic cycles to de Rham and Betti cohomologies, in a compatible way
under the algebraic de Rham isomorphism. So, revisiting the algebraic de Rham
Theorem in Theory of Motives, means to obtain more than the only algebraic de
Rham isomorphism of the previous chapter. In order to understand this revisitation,
we outline some facts about Theory of Motives.

The idea for a Theory of Motives was introduced for the first time by Grothendieck
in the 60’s, while studying the Weil Conjectures. The matter is that there exist many
different cohomology theories for smooth projective algebraic varieties over a field
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(the kind of spaces involved in the Weil Conjectures). Examples are the algebraic de
Rham and Betti cohomologies

H∗
Bet = ⊕i≥0H

i
Bet :SmProj

op
C → grV ectQ

H∗
AdR = ⊕i≥0H

i
AdR :SmProjopk → grV ectk,

which are defined over the fields C and k of characteristic 0. Others, defined over
finite fields Fp of positive characteristic, the étale ℓ-adic cohomologies (see [Mil13,
§19])

H∗
ℓ = ⊕i≥0H

i
ℓ : SmProj

op
Fp
→ grV ectQℓ

,

were introduced in that years, in order to solve the Weil Conjectures. Although
these cohomology theories are defined using different tools (for example, tools of
topological nature for the Betti cohomology, of algebraic nature for the algebraic de
Rham cohomology and of arithmetic nature for the ℓ-adic cohomologies), they turn
out to share some common properties. Moreover, under suitable conditions, they
are also related by comparison isomorphisms. The algebraic de Rham isomorphism
proved in the previous chapter is an example. The common properties of these
cohomology theories are encoded in the abstract notion of a Weil cohomology theory
(see subsection 2.1.1). Briefly, a Weil cohomology over a field k, with coefficients
in a field K of characteristic 0, is the data of a contravariant functor from smooth
projective varieties over k into finite dimensional graded K-vector spaces

H∗ := ⊕iHi : SmProjopk → grV ectK ,

satisfying some axioms. The main axioms are: Künneth formula, Poincaré duality
and the existence of cycle class maps, for any i ≥ 0,

cliX : CHi(X)→ H2i(X)(i),

where H2i(X)(i) := H2i(X) ⊗ K(1)⊗i, with K(1) ∈ grV ectK a given object of
dimension 1 concentrated in degree −2, called the Tate module. Its inverse K(−1) :=
K(1)⊗−1 is canonically isomorphic to H2(P1

k), called the Lefschetz module. Recall
that CHi(X), the Chow group of codimension i, is the group Zi(X) of algebraic
cycles of codimension i (the free abelian group generated by integral subvarieties of
X of codimension i), modulo the rational equivalence ∼rat (see [Ful98, §1.3])

CHi(X) := Zi(X)/ ∼rat .

The cycle class map is the important tool that relates algebraic cycles to the given
Weil cohomology. The algebraic de Rham, Betti and ℓ-adic cohomologies are all
examples of Weil cohomologies. A natural question is whether, for any fixed base
field k, they all come from some universal Weil cohomology with coefficients in Q,
in the sense that any other Weil cohomology with coefficients in K is canonically
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isomorphic to it, after extending coefficients. This is proved not to be the case
(there exists a counterexample of Serre in positive characteristic, see [Mil12, §3],
and another argument in characteristic 0, given in subsection 2.1.3, is related to the
existence of transcendental periods). Then, in order to find a deep reason and explain
a common origin to the various concrete cohomology theories of smooth projective
algebraic varieties over k, Grothendieck’s idea was to look for a cohomology theory
with values, not in the category of finite dimensional graded Q-vector spaces, but
more generally in some category M(k), called the category of motives. Accounts
of this conjectural program can be found for example in [Ser91]. The category of
motivesM(k) is expected to have properties similar to the ones of finite dimensional
Q-vector spaces: it should be rigid, tensor, Q-linear, abelian, semi-simple and with
finite dimensional hom-sets. The cohomology theory with values inM(k) should be
a monoidal contravariant functor

h : SmProjopk →M(k),

called motivic cohomology, such that any Weil cohomology H∗ over k with coefficients
in K factors uniquely through it, with a faithful exact tensor functor RH, called
realization functor,

SmProjopk grV ectK .

M(k)

H∗

h RH

For example, we should have the Betti, algebraic de Rham and ℓ-adic realization
functors

RBet :M(C)→ grV ectQ

RAdR :M(k)→ grV ectk

Rℓ :M(Fp)→ grV ectQℓ
.

Moreover, the functor h should have a decomposition

h = ⊕i≥0h
i,

which induces on the motivic cohomology of any X ∈ SmProjk a graduation

h∗(X) ∼= ⊕i≥0h
i(X),

called graduation by weights. The realization functors should be such that

RH(h
i(X)) = Hi(X),
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that is, each hi(X) should realize into Hi(X). The object 1(−1) := h2(P1
k) is called

the Lefschetz object. Its dual should coincide with its inverse with respect to tensor
product 1(1) := 1(−1)⊗−1, called the Tate object, which realizes into the Tate module.
For any j ∈ Z, we denote by hi(X)(j) := hi(X)⊗ 1(1)⊗j.

So, we can think at the category of motivesM(k) as a linearization of SmProjk,
whose objects, the motives, are the “cohomological essence” of smooth projective
algebraic varieties over k, and which is endowed with realization functors into concrete
cohomology theories.

The main concrete outcome of this conjectural program is a construction proposed
by Grothendieck: the motivic cohomology into the category of Chow motives

h : SmProjopk → CHM(k;Q).

It is a very formal construction based on algebraic cycles modulo rational equivalence
(see subsection 2.1.3). However, this category doesn’t fulfill all the expected require-
ments forM(k). For example, it is not even an abelian category. A slight variation
of the category of Chow motives, the category of numerical motives, obtained by
considering the numerical equivalence instead of the rational equivalence, gives rise to
an abelian category (see [Jan92]). The category of numerical motives is conjecturally
the expected abelian category of motives M(k), provided that some conjectures
hold true. These conjectures are part of the Standard Conjectures, some statements
about the existence of some algebraic cycles, formulated by Grothendieck in order to
prove the Weil Conjectures (see [And04, §5] or [Kle]). However, nowadays Standard
Conjectures are still unsolved and we still don’t have the abelian category of motives
M(k) predicted by Grothendieck.

Progress in Theory of Motives occurred by trying to extend the conjectural
picture from the context of smooth projective algebraic varieties to the one of general
algebraic varieties. Indeed, concrete cohomology theories can be defined also for
general algebraic varieties and some properties and comparison isomorphisms still
hold, so it is reasonable to expect such an extension. In this passage was fundamental
the work of Deligne on Hodge Theory ([Del71b] and [Del74b], or see also [Ste]).
Deligne proved that the Betti cohomology of algebraic varieties over C has a mixed
Hodge structure, generalizing the Hodge decomposition, or equivalently the pure
Hodge structure, of the Betti cohomology of smooth projective algebraic varieties
over C. Mixed Hodge structures form a rigid tensor abelian category MHSQ, whose
objects are endowed with an increasing filtration, with successive quotients which are
pure Hodge structures. Analogous results hold also for the étale ℓ-adic cohomologies,
where RepQℓ

(Gk), the category of finite Qℓ-linear continuous representations of Gk,
the absolute Galois group of k, plays the analogous role of MHSQ (see [Del74a] and
[Del71a]). Assuming that these structures should have a motivic origin, Deligne
conjectured the existence of a rigid tensor Q-linear abelian category of mixed motives
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MM(k) with a monoidal contravariant functor from algebraic varieties over k

h : V aropk →MM(k),

which should containM(k), now renamed the category of pure motives, as the full
subcategory of semi-simple objects. Accounts of this conjectural program can be
found for example in [Dela]. Each mixed motive M ∈ MM(k) is expected to be
endowed with an increasing filtration W•, called the weight filtration, such that the
successive quotients are pure motives, that is

grWi M := WiM/Wi−1M ∈M(k).

Moreover, we expect that realization functors fromM(k) can be extended toMM(k)
and also factor through the category MHSQ, for the Betti realization, and RepQℓ

(Gk),
for the étale ℓ-adic realizations. That is, there exist the enriched realization functors

RBet :MM(k)→ MHSQ

Rℓ :MM(k)→ RepQℓ
(Gk),

called Hodge and Tate realizations respectively. The Grothendieck-Hodge and the
Tate conjectures asserts that these enriched realization functors are full onM(k) (see
[And04, Prop. 7.2.1.3, Prop. 7.3.1.3]). Analogously, the version of the Grothendieck
Period Conjecture we will describe is about fullness of an enriched realization functor.

Another crucial point for the development of Theory of Motives was progress
in the study of algebraic cycles. Algebraic cycles are usually studied modulo an
adequate equivalence, which allows to define a ring structure over the quotient (and
which also allows to define composition in Grothendieck’s categories of pure motives).
The coarser adequate equivalence is the rational equivalence, which gives rise to the
Chow ring (and which is the one used in the construction of the category of Chow
motives)

CH∗(X) := ⊕i≥0CH
i(X) = ⊕i≥0Z

i(X)/ ∼rat .

The problem is that the groups CHi(X) in general are very large, so they are difficult
to study. Indeed, taking rational coefficients, CHi(X)Q := CHi(X)⊗Z Q are infinite
dimensional Q-vector spaces. Instead, the choice of other finer adequate equivalences
gives rise to finite dimensional Q-vector spaces. An example is the homological
equivalence ∼hom, which is induced by the kernel of the cycle class map of some Weil
cohomology H∗ (one of the Standard Conjectures states that it is equivalent to the
numerical equivalence, hence it is independent from H∗). Indeed, by definition, the
quotients by homological equivalence are isomorphic to a sub-vector space of the
cohomology groups

Zi(X)Q/ ∼hom∼= CHi(X)Q/ker(cl
i
X) ↪→ H2i(X)(i),
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which are finite dimensional Q-vector spaces. Moreover (see [Jan, §1]), for both for
Betti and étale ℓ-adic cohomologies, there exist the following Q-linear maps

cl
(1),i
Bet,X :ker(cliBet,X)→ Ext1MHSQ

(Q,H2i−1
Bet (X)(i))

cl
(1),i
ℓ,X :ker(cliℓ,X)→ Ext1RepQℓ

(Gk)
(Qℓ,H

2i−1
ℓ (X)(i)),

whose images are finite dimensional Q-vector spaces. The first are usually called the
Abel-Jacobi maps, while the second are deduced from the Hochschild-Serre spectral
sequence. From the latter, we can also obtain the Q-linear maps, for any ν > 1,

cl
(ν),i
ℓ,X : ker(cl

(ν−1)i
ℓ,X )→ ExtνRepQℓ

(Gk)
(Qℓ,H

2i−ν
ℓ (X)(i)),

whose images are finite dimensional Q-vector spaces. This induces a descending
filtration F •

ℓ on rational Chow groups CHi(X)Q, given by

F 0
ℓ CH

i(X)Q := CHi(X)Q,

F 1
ℓ CH

i(X)Q := ker(cliℓ,X),

F ν
ℓ CH

i(X)Q := ker(cl
(ν−1),i
ℓ,X ) for ν > 1.

The successive quotients

grνFℓ
CHi(X)Q := F ν

ℓ CH
i(X)Q/F

ν+1
ℓ CHi(X)Q ∼= Im(cl

(ν),i
ℓ,X )

are finite dimensional Q-vector spaces, contained into ExtνRepQℓ
(Gk)

(Qℓ,H
2i−ν
ℓ (X)(i)).

Assuming that this should have a motivic origin, Beilinson conjectured (see [Jan,
Conj. 2.3]) the existence of a descending filtration F • on rational Chow groups
CHi(X)Q, for any X ∈ SmProjk, which starts with

F 0CHi(X)Q := CHi(X)Q & F 1CHi(X)Q := ker(cliX),

and whose successive quotients are such that

grνFCH
i(X)Q := F νCHi(X)Q/F

ν+1CHi(X)Q ∼= ExtνMM(k)(1, h
2i−ν(X)(i)),

where 1 ∈MM(k) is the unit object.

Further, there is the fact that Betti and étale ℓ-adic cohomologies arise as
cohomologies of functorial complexes in the (bounded) derived categories of MHSQ
and RepQℓ

(Gk) respectively. That is, we have monoidal contravariant functors, given
by the total right-derived of global section functors,

RBet : V ar
op
C → Db(MHSQ)

X ↦→ RΓ(X(C),Q),
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Rℓ : V ar
op
Fp
→ Db(RepQℓ

(Gk))

X ↦→ RΓ(X ×k k̄,Qℓ),

such that

H∗
Bet(X) ∼= ⊕i≥0H

i(RΓ(X(C),Q)) & H∗
ℓ(X) ∼= ⊕i≥0H

i(RΓ(X ×k k̄,Qℓ)).

This suggests to formulate a derived version of the conjectural program of mixed mo-
tives (see [Jan, Conj. 4.1]). We can expect that there exists a monoidal contravariant
functor

R : V aropk → Db(MM(k)),

such that RBet and Rℓ factor with exact faithful monoidal triangulated realization
functors

RBet :D
b(MM(k))→ Db(MHSQ)

Rℓ :D
b(MM(k))→ Db(RepQℓ

(Gk)).

The expected relation with the abelian category of pure motives is that, for any
X ∈ SmProjk,

Hi(R(X)) ∼= hi(X) ∈M(k)

and we have a quasi-isomorphism of complexes inMM(k) (see [Jan, Lemma 4.3]
and [Dela, §3.3])

R(X) ≃ ⊕i≥0h
i(X)[−i].

So, we have 1(−1) ∼= H2(R(P1
k)). For any j ∈ Z, we denote by R(X)(j) :=

R(X)⊗1(1)⊗j . Moreover, for any X ∈ SmProjk and i ≥ 0, we expect the existence
of a canonical isomorphism

CHi(X)Q ∼= HomDb(MM(k))(1,R(X)(i)[2i]). (2.1)

This requirement can be thought as a derived version of the conjectural descending
filtration on Chow groups described above. Indeed, recalling that the Ext-groups in
an abelian category Å are computed by hom-sets in its derived category as, for any
M,N ∈ A and p ≥ 0,

HomDb(A)(M,N [p]) ∼= ExtpA(M,N),

we have the Ext spectral sequence inMM(k)

Ep,q
2 := HomDb(MM(k))(1,H

q(R(X)(i))[p])⇒ HomDb(MM(k))(1,R(X)(i)[p+ q]).
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This spectral sequence induces a descending filtration F • on the target. In particular,
for p+ q = 2i, by 2.1, we get a descending filtration on CHi(X)Q. By the degeneracy
of the spectral sequence at page 2 (see [Jan, Prop. 4.4]), it follows that the filtration
is such that

grνFCH
i(X)Q ∼= Eν,2i−ν

2
∼= HomDb(MM(k))(1,H

2i−ν(R(X)(i))[ν]) ∼=
∼= ExtνMM(k)(1, h

2i−ν(X)(i)).

Moreover, it follows from the expected requirements that it should exist a fully-faithful
embedding of Q-linear tensor categories (see [Jan, Lemma 4.6])

CHM(k;Q) ↪→ Db(MM(k)), (2.2)

which maps h(X) into R(X). In general, the groups

Hi(X,Q(j)) := HomDb(MM(k))(1,R(X)(j)[i])

are called motivic cohomology groups of X (in [Dela] are also called absolute coho-
mology, to avoid confusion with motivic cohomology of X, which is the motive in
MM(k) associated to X).

There are several candidate triangulated categories of mixed motives which try to
fulfill the requirements expected from Db(MM(k)). However, the abelian category
of mixed motivesMM(k) is still missing (or, less restrictively, the existence of a
t-structure on the candidate triangulated categories of mixed motives, whose heart
would be MM(k), see [Dela, §3.1] and [Jan, §4.7]). One of these proposals is
Voevodsky’s triangulated category of mixed motives, described in [Voe] and [MVW06].
It is considered a very promising candidate triangulated category of mixed motives,
since it satisfies many of the expected properties, including 2.1 and 2.2. More
generally, the motivic cohomology groups in Voevodsky’s category are isomorphic to
Bloch’s higher Chow groups (see [Lev94]), whose definition is still based on algebraic
cycles. In subsection 2.2.1 we consider a variant of this category, described in [Ayo13,
§2.1]. It is equivalent to Voevodsky’s category in the case we are interested in, that is
k of characteristic zero and rational coefficients (see [Ayo13, Thm. B1]). This version
is in fact more similar to the construction of the Morel and Voevodsky’s A1-homotopy
category (see [MV99]), except that we consider chain complexes instead of simplicial
sets.

There are many other important aspects and properties expected from a category
of mixed motives, that we won’t consider in this thesis. One is the expected relation
between motivic cohomology groups with higher algebraic K-theory (see [Dela, §3.7],
[Jan, Conj. 4.1 (v)], [BMS87, §0.2]). Another aspect is a further extension of the
conjectural picture of mixed motives (see [Jan, Conj. 4.8]), by which it is expected the
existence of rigid tensor Q-linear abelian categoriesMM(S), for any base scheme
S, whose derived categories give rise to a Grothendieck’s six functor formalism,
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similarly to what happens for étale ℓ-adic cohomology. This has been accomplished
for the Voevodsky’s category in [CD19]. Moreover, since both categories MHSQ
and RepQℓ

(Gk) are neutral tannakian categories, this suggests that also the abelian
category of mixed motives should be a Q-linear neutral tannakian category (see
[DM82]), with fibre functor given by the Betti realization (see [And04, §6.2]). In
particular, this last aspect allows to discuss a stronger formulation of the Grothendieck
Period Conjecture, which involves the motivic Galois group (see [BC14, §2], [And04,
Prop. 23.1.4.1], [Hub18, Conj. 5.14], [And08, Conj. 4.1.1]).

It may seems that the development of Theory of Motives took a different direction
from the original Grothendieck’s purpose of constructing a universal cohomology
theory for algebraic varieties. However, for example Dugger’s work (see [Dug00]),
whose original motivation was indeed that of “explaining” the construction of the
A1-homotopy category, describes a framework for a universal homotopy theory for a
general category of spaces. Morel and Voevodsky’s construction turns out to fit into
this framework, applied to the category of smooth algebraic varieties (see [Dug00,
§8]). An analogous point of view for cohomology is taken in [Bar23] and [Bar24],
where it is described a framework for a universal cohomology theory for a general
category of spaces. Applied to the category of smooth projective algebraic varieties,
this tells that a universal Weil cohomology with values in an abelian category exists,
and that we can use it to define a theory of pure motives.

2.0.2 Contents of the chapter

In section 2.1 we revisit the algebraic de Rham Theorem inside the conceptual
framework of Theory of Pure Motives. In subsection 2.1.1, we start giving a precise
definition of the central concept in Theory of Pure Motives: the Weil cohomology
theories. The data and axioms in the definition of a Weil cohomology theory introduce
the fundamental concepts of Tate twist, which can be thought as a technical device
to express duals and the property of Poincaré duality, and the cycle class map. We
see some consequences and constructions following directly from this definition. The
most important ones are the construction of the pushforward map and the result
that cohomology of P1

k is completely determined by the axioms. In subsection 2.1.2
we consider the concrete examples of algebraic de Rham and Betti cohomologies. We
state the result telling that they give rise to Weil cohomologies. In particular, we are
interested in the construction of their Tate module and cycle class map. We do it using
Grothendieck’s Theory of Chern classes, for which we refer to Appendix B for the
main constructions and results. Chern classes allow to reduce the construction of the
cycle class map to the one of the first Chern class, which is a natural transformation
from the Picard group to the 1-twisted second cohomology group. To define them,
we also have to establish suitable Tate modules for algebraic de Rham and Betti
cohomology. We also see that the canonical algebraic de Rham isomorphism proved
in the previous chapter (theorem 1.6.2) generalizes to a version including Tate
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twists, obtaining a canonical twisted algebraic de Rham isomorphism. Then, we
prove the main result of this section (proposition 2.1.15): the compatibility of the
algebraic de Rham and the Betti cycle class maps under the twisted algebraic de
Rham isomorphism. By properties in Grothendieck’s Theory of Chern classes, we
see that we can reduce to prove the compatibility of the first Chern class under
the twisted algebraic de Rham isomorphism. In subsection 2.1.3 we describe the
construction of CHM(k;Q), the category of Chow motives. This construction uses
Chow groups and the cycle class map to define a category with realization functors.
At the end of the construction, we remark that, viceversa, Chow groups and the
cycle class map can be recovered from the category of Chow motives respectively as
hom-sets and maps between hom-sets induced by realization functors.

In section 2.2 we pass to the conceptual framework of Theory of Mixed Motives.
In subsection 2.2.1 we start describing the triangulated category of mixed motives we
will work with. We define DAeff

ét (k; Λ), the category of effective étale motivic sheaves.
The idea is to enlarge the category Smk, considering the category of complexes
of presheaves over it, and formally impose the properties of étale descent and A1-
homotopy invariance, by inverting some morphisms corresponding to these properties.
The technical tool used to invert morphisms is that of Bousfield localization in model
categories. We describe also an alternative equivalent construction, which uses the
technical tool of Verdier localization in triangulated categories. This alternative
description and the related notion of A1-local objects are useful to compute hom-sets in
DAeff

ét (k; Λ). We also define the concepts of motives associated to a smooth algebraic
variety, Tate motives and étale motivic cohomology groups. The latter arise as hom-
sets in DAeff

ét (k; Λ) between the motive associated to a smooth algebraic variety and
the Tate motives, that is, étale motivic cohomology groups are represented by the
Tate motives. We conclude stating a result, which relates DAeff

ét (k; Λ) and its étale
motivic cohomology groups to CHMeff(k,Λ) and Chow groups. In subsection 2.2.2
the aim is to construct a triangulated functor from DAeff

ét (C;Q) to D(Q), the derived
category of Q-vector spaces which assign to any motive associated to a smooth
algebraic variety over C the complex of singular chains of the analytification of the
variety. This functor is called the Betti realization functor. The strategy consists
in introducing the category AnDAeff(Λ), which is the analogous of the category
DAeff

ét (C; Λ), but replacing algebraic objects with analytic ones. These two categories
are related by an adjunction, which is induced by the morphism of sites given by
the analytification functor. Moreover, we prove that the category AnDAeff(Λ) is
equivalent to D(Λ), the derived category of Λ-modules. The Betti realization functor
is defined as the composition of the left adjoint with the equivalence of categories. It
allows to define an object in the category DAeff

ét (C;Q), which represents the Betti
cohomology. In subsection 2.2.3, in analogy with Betti cohomology, we define an
object in DAeff

ét (k; k), which represents the algebraic de Rham cohomology. The
aim it to prove that these two objects are canonically isomorphic, taking complex
coefficients. This isomorphism can be thought as the formulation of the Algebraic de
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Rham Theorem with the language of the considered triangulated category of mixed
motives. The proof is obtained by putting together three canonical isomorphisms,
which correspond exactly to the three canonical isomorphisms of the proof of the
Algebraic de Rham Theorem of the previous chapter.

In section 2.3 we state a version of the Grothendieck Period Conjecture. We start
in subsection 2.3.1 by considering only smooth projective algebraic varieties. The
commutative squares expressing the compatibility of the algebraic de Rham and
Betti cycle class maps under the twisted algebraic de Rham isomorphism (proposition
2.1.15) tells that algebraic cycles on an algebraic variety and its powers determine
polynomial relations between periods of the algebraic variety. This observation
leads to the formulation of the cycle-theoretic version of the Grothendieck Period
Conjecture. This conjecture can be rephrased by stating that an enriched realization
functor from the category of Chow motives, the de Rham-Betti realization functor,
is full. In subsection 2.3.1 we pass to consider all smooth algebraic varieties. The
existence of a commutative square with representatives of étale motivic cohomology
groups, Betti cohomology and algebraic de Rham cohomology, induces commutative
squares which generalize the ones in the projective case. This leads to formulate
a natural generalization of the Grothendieck Period Conjecture for étale motivic
cohomology groups.

2.1 Pure Motives

2.1.1 Weil cohomology theories

We give a possible precise definition of a Weil cohomology theory. There is not
a univocal axiomatization. We refer to the one in [And04, §3.3]. We denote by
SmProjk the full subcategory of Smk given by smooth projective algebraic varieties
over a field k.

Definition 2.1.1. Given k,K fields, with K of characteristic 0, a Weil cohomology
theory over k with coefficients in K is given by the following data and axioms.

D1) A contravariant functor from the category of smooth projective algebraic
varieties over k into the category of finite dimensional Z-graded K-vector
spaces

H∗ = ⊕i∈ZHi : SmProjopk → grV ectK ,

called cohomology. For any morphism f : X → Y in SmProjk

f ∗ := H∗(f) : H∗(Y )→ H∗(X)

is called the pullback map of f .

D2) An object K(1) ∈ grV ectK concentrated in degree −2 and of dimension 1 as
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a K-vector space, hence (not canonically!) isomorphic to K, called the Tate
module.

Given V ∗ ∈ grV ectK , its grading is denoted by V ∗ = ⊕iV i, where V i is the
homogeneous component of degree i. Recall that grV ectK is a rigid tensor abelian
category with tensor product of V ∗,W ∗ ∈ grV ectk

V ∗ ⊗W ∗ := ⊕k(⊕i+j=kV i ⊗K W j).

We consider the commutativity constraint V ∗ ⊗W ∗ ∼= W ∗ ⊗ V ∗ given by Koszul
sign rule: for any v ∈ V i and w ∈ W j, v ⊗ w ↦→ (−)ijw ⊗ v. The unit object is K
concentrated in degree 0. It is such that End(K) ∼= K, hence grV ectK is K-linear.
The internal-hom is

Hom(V ∗,W ∗) := ⊕j−iHomK(V
i,W j).

In particular we have dual objects

V ∗∨ := Hom(V ∗, K) ∼= ⊕−iHomK(V
i, K).

We denote by K(−1) := K(1)∨, called the Lefschetz module. It is concentrated
in degree 2 and it is also the inverse of K(1) with respect to tensor product, i.e.
K(−1) ∼= K(1)⊗−1. For any r ∈ Z, we denote by

K(r) := K(1)⊗r,

called the rth-twisted Tate module, and, for any V ∗ ∈ grV ectK ,

V ∗(r) := V ∗ ⊗K(1)⊗r ∼= ⊕i−2rV
i(r),

where V i(r) := V i ⊗K K(r). V ∗(r) is called the rth-Tate twist of V ∗. Since K(1) is
invertible with respect to tensor product, we have the autoequivalence

(1) := ⊗K(1) : grV ectK → grV ectK ,

called Tate twist, with inverse (−1) := ⊗K(−1). Notice that, for any V ∗,W ∗ ∈
grV ectK and r, s ∈ Z,

V ∗(r)⊗W ∗(s) ∼= V ∗ ⊗W ∗(r + s).

D3) A morphism of K-vector spaces, for any X ∈ SmProjk irreducible of dimension
d,

TrX : H2d(X)(d)→ K,

called the trace map of X.
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D4) A group homomorphism, for any X ∈ SmProjk and i ≥ 0,

cliX : CHi(X)→ H2i(X)(i),

called the ith-cycle class map, where CHi(X) is the Chow group of codimension
i. Recall that

CHi(X) := Zi(X)/ ∼rat .

is the group of algebraic cycles Zi(X), the free abelian group generated by
integral closed subschemes) of X of codimension i, modulo the rational equiva-
lence ∼rat. For more details, we refer to [Ful98, §1]. It is equivalent to give
a morphism in grV ectQ from the Chow group, graded by codimension, with
rational coefficients

clX : CH∗(X)Q := ⊕iCHi(X)⊗Z Q→ ⊕iH2i(X)(i).

These data satisfy the following axioms.

A1) (Coproducts) H∗ preserves finite coproducts, i.e. we have canonical isomor-
phisms in grV ectK , for any X, Y ∈ SmProjk,

H∗(X
∐

Y ) ∼= H∗(X)⊕ H∗(Y ).

A2) (Dimension) For any X ∈ SmProjk of dimension d,

Hi(X) = 0 for i < 0 and i > 2d.

Notice that, since H∗(X) is a finite dimensional graded K-vector space, then
each Hi(X) is a finite dimensional K-vector space.

A3) (Künneth formula) H∗ is a tensor functor, i.e. we have isomorphisms in grV ectK

H∗(X ×k Y ) ∼= H∗(X)⊗ H∗(Y ),

natural in X and Y . Moreover, they are compatible with trace maps, i.e. if
X and Y are of dimension d and e respectively, then X ×k Y is of dimension
d+ e and its trace map TrX×kY is given by the composition

H2(d+e)(X ×k Y )(d+ e) ∼= H2d(X)(d)⊗K H2e(Y )(e)
TrX⊗TrY−−−−−→ K ⊗K K ∼= K.

It follows that H∗(X) is an anti-commutative 1 graded K-algebra with multiplication,

1Anti-commutative means that, for any x ∈ Hi(X) and x′ ∈ Hj(X), x ∪ x′ = (−)ijx′ ∪ x. This
comes from the Koszul sign rule on the commutativity constraint of tensor product in grV ectK .
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called cup product, given by the composition

∪ : H∗(X)⊗ H∗(X) ∼= H∗(X ×k X)
∆∗
−→ H∗(X),

where the latter morphism is the pullback map of the diagonal ∆ : X → X ×k X.

A4) (Poincaré duality) For any X ∈ SmProjk irreducible of dimension d, the
trace map TrX : H2d(X)(d) → K is an isomorphism, and, for any i ≥ 0, the
composition

Hi(X)⊗K H2d−i(X)(d)
∪−→ H2d(X)(d)

TrX−−→ K

defines a perfect pairing of K-vector spaces. 2

A5) The cycle class map satisfies the following compatibility conditions:

– (Naturality) For any f : Y → X morphism in SmProjk and i ∈ Z, we
have the naturality square of the ith cycle class map

CHi(X) H2i(X)(i)

CHi(Y ) H2i(Y )(i),

cliX

f∗ f∗(i)

cliY

where f ∗ : CHi(X)→ CHi(Y ) is the pullback map on the Chow groups.

– (Exterior product) For any X, Y ∈ SmProjk, we have the commutative
diagram

CHi(X)⊗ CHj(Y ) CHi+j(X ×k Y )

H2i(X)(i)⊗K H2j(Y )(j) H2(i+j)(X ×k Y )(i+ j),

×

cliX⊗cljY cli+j
X×kY

where the upper arrow is the exterior product on Chow groups (see [Ful98,
§1.10]) and the lower arrow is a component of the Künneth isomorphism.

– (Normalization) For any X ∈ SmProjk irreducible of dimension d, the
composition

CHd(X)
cldX−−→ H2d(X)(d)

TrX−−→ K

2Notice the following abuse of notation: here ∪ denotes the 0-degree component of the dth-twisted
cup product.
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is the degree map, i.e. it is such that [x] ↦→ [k(x) : k], for any rational
class of an algebraic cycle of codimension d of X, that is, a closed point
x : Spec(k(x))→ X, where k(x) is the residue field at x ∈ X.

We see some direct consequences of the definition of a Weil cohomology theory.

Remark 2.1.2. Notice that

H0(Spec(k)) ∼= H0(Spec(k)×k Spec(k)) ∼= H0(Spec(k))⊗K H0(Spec(k)).

Hence,
H0(Spec(k)) ∼= K.

For any X ∈ SmProjk, let g : X → Spec(k) be the structural morphism, and
prX : X × Spec(k) → X the canonical projection on X, which is an isomorphism.
We have the commutative diagram, for any i ∈ Z,

Hi(X)⊗K H0(Spec(k)) Hi(X ×k Spec(k)) Hi(X)

Hi(X)⊗K H0(X) Hi(X ×k X) Hi(X),

≃

id∗X⊗g∗

pr∗−1
X

(idX×g)∗

≃ ∆∗

where the first is a naturality square of Künneth isomorphism and the second
commutes because pr−1

X = (idX × g) ◦ ∆. It follows that 1 ∈ K ∼= H0(Spec(k))
is such that 1X := g∗(1) ∈ H0(X) is the unit of H∗(X). Moreover, for any f :
X → Y morphism in SmProjk, by naturality of Künneth isomorphism, we have the
commutative diagram

H∗(X)⊗ H∗(X) H∗(X ×k X) H∗(X)

H∗(Y )⊗ H∗(Y ) H∗(Y ×k Y ) H∗(Y ),

≃

f∗⊗f∗ (f×f)∗

∆∗
X

f∗

≃ ∆∗
Y

which tells that the pullback map f ∗ is a morphism of graded K-algebras with unit.
Notice that, viceversa, we can express the Künneth isomorphism by means of cup
product and pullback maps

H∗(X)⊗ H∗(Y ) ∼= H∗(X ×k Y )

x⊗ y ↦→ pr∗X(x) ∪ pr∗Y (y),

where prX and prY are canonical projections of the fiber product X ×k Y .

Remark 2.1.3. Taking X = Y in the exterior product axiom for the cycle class map
and composing with the naturality square for the cycle class map for the diagonal
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∆ : X → X ×X, we get that the internal product of the Chow group is compatible
with cup product, i.e.

clX : CH∗(X)Q → ⊕i≥0H
2i(X)(i)

is a morphism of commutative graded rings.

Remark 2.1.4. Let X ∈ SmProjk and let g : X → Spec(k) be the structural
morphism. Consider the rational class [Spec(k)] ∈ CH0(Spec(k)). By normalization
axiom of the cycle class map,

TrSpec(k)(cl
0
Spec(k)([Spec(k)])) = [k : k] = 1

and TrSpec(k) is an isomorphism, then

cl0Spec(k)([Spec(k)]) = 1 ∈ H0(Spec(k))

is the unit of H∗(Spec(k)). Now, consider the rational class [X] = g∗[Spec(k)] ∈
CH0(X). By naturality axiom of the cycle class map, we have that

cl0X([X]) = g∗cl0Spec(k)([Spec(k)]) = g∗(1) ∈ H0(X),

which is the unit of H∗(X), by remark 2.1.2.

Remark 2.1.5. The notion of Tate twist can be thought as a technical device,
useful to express appropriately Poincaré duality and duals. Notice that, given
X ∈ SmProjk irreducuble of dimension d, Poincaré duality tells that, more generally,
for any r ∈ Z, we have the perfect pairing of K-vector spaces

Hi(X)(r)⊗K H2d−i(X)(d− r) ∪−→ H2d(X)(d)
TrX−−→ K,

i.e. we have the isomorphism of K-vector spaces

H2d−i(X)(d− r) ∼= HomK(H
i(X)(r), K).

We deduce the isomorphisms in grV ectK

H∗(X)(r)∨ ∼= (⊕i−2rH
i(X)(r))∨ ∼= ⊕2r−iHomK(H

i(X)(r), K) ∼=
∼= ⊕2r−iH

2d−i(X)(d− r) = ⊕j−2(d−r)H
j(X)(d− r) = H∗(X)(d− r).

In particular, this allows to rewrite the dual object of H∗(X) as

H∗(X)∨ ∼= H∗(X)(d).

Definition 2.1.6. Given f : X → Y a morphism in SmProjk, with X and Y of

100



2.1. Pure Motives

dimension d and e respectively, the morphism in grV ectK given by the composition

f∗ : H
∗(X)(d) ∼= H∗(X)∨

f∗∨−−→ H∗(Y )∨ ∼= H∗(Y )(e),

is called the pushforward map

Remark 2.1.7. The pushforward map can be thought as the dual of the pullback
map via Poincaré duality. Following definitions, we see that, for any i ∈ Z and
x ∈ H2d−i(X)(d), the image f∗x ∈ H2e−i(Y )(e) is characterized by the formula, for
any y ∈ Hi(Y ),

TrX(f
∗y ∪ x) = TrY (y ∪ f∗x). (2.3)

Let gX : X → Spec(k) and gY : Y → Spec(k) be the structural morphisms. Taking
i = 0 and y = 1 = g∗Y (1) ∈ H0(Y ) the unit, since f ∗(1) = g∗X(1) ∈ H0(X) is the unit,
we obtain that trace maps are compatible with the pushforward map, i.e. we have
the commutative diagram

H2d(X)(d) H2e(Y )(e).

K

f∗

TrX

TrY

In particular, taking f = gX the structural morphism of X, we get that the trace
map TrX is given by the composition

H2d(X)(d)
gX∗−−→ H0(Spec(k))

TrSpec(k)−−−−−→ K.

By the formula 2.3, since the pullback map defines a morphisms of graded K-algebras
with respect to cup product, it follows that, for any i, j ∈ Z, x ∈ H2d−i(X)(d),
y ∈ Hj(Y ) and z ∈ H i−j(Y )

TrY (z ∪ y ∪ f∗x) = TrX(f
∗(z ∪ y)∪ x) = TrX(f

∗z ∪ f ∗y ∪ x) = TrY (z ∪ f∗(f ∗y ∪ x)).

Since, by the perfect pairing of Poincaré duality,

TrY (z ∪ ) : H2e−i+j(X)(e)→ K

is an isomorphism, it follows that

y ∪ f∗x = f∗(f
∗y ∪ x),

called the projection formula. Since pullback maps and duals are functorial, then
also the pushforward map is functorial, i.e. for any f : X → Y and g : Y → Z
morphisms in SmProjk,

(gf)∗ = g∗f∗.
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It can be proved that the cycle class map is compatible with pushforward, i.e. we
have commutative diagrams, for any i ∈ Z,

CHd−i(X) H2(d−i)(X)(d− i)

CHe−i(Y ) H2(e−i)(Y )(e− i),

f∗

cld−i
X

f∗(−i)

cle−i
Y

where f∗ : CHd−i(X) → CHe−i(Y ) is the pushforward map on the Chow groups.
Moreover, if i : Z ↪→ X is a closed immersion in SmProjk, where Z has codimension
c in X, then the associated rational class [i(Z)] ∈ CHc(X) is such that

[i(Z)] = i∗[Z],

where [Z] ∈ CH0(Z). By compatibility of the cycle class map with the pushforward
map, we get

clcX([i(Z)]) = clcX(i∗[Z]) = i∗cl
0
Z([Z]) = i∗(1Z) ∈ H2c(X)(c),

where the las equality holds because, by remark 2.1.4, cl0Z([Z]) = 1Z ∈ H0(Z) is the
unit of H∗(Z).

Remark 2.1.8. Given X, Y ∈ SmProjk, with X irreducible of dimension d, using
Künneth formula and Poincaré duality axioms, we have the following canonical
isomorphisms of K-vector spaces

H2d(X ×k Y )(d) ∼= ⊕iH2d−i(X)(d)⊗K Hi(Y ) ∼=
∼= ⊕iHomK(H

i(X), K)⊗K Hi(Y ) ∼=
∼= ⊕iHomK(H

i(X),Hi(Y )) ∼=
∼= HomgrV ectK (H

∗(X),H∗(Y )).

If we denote by prX : X ×k Y → X and prY : X ×k Y → Y the canonical projections
of the fiber product, following the isomorphisms, we see that they are such that

H2d(X ×k Y )(d) ∼= HomgrV ectK (H
∗(X),H∗(Y ))

u ↦→ u := (x ↦→ prY ∗(pr
∗
X(x) ∪ u)).

By composition with the dth-component of the cycle class map of X ×k Y , we obtain
the morphism of Q-vector spaces

rH : CHd(X ×k Y )Q
cldX×kY−−−−→ H2d(X ×k Y )(d) ∼= HomgrV ectK (H

∗(X),H∗(Y )),

For any morphism f : Y → X in SmProjk, we can consider the closed subscheme of
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the fiber product Γtf ⊂ X ×k Y given by the transpose of the graph of f . Since Γf
is isomorphic to Y via the canonical projection prY , then it is an algebraic cycle of
codimension d ofX×kY . Its rational class determines an element [Γtf ] ∈ CHd(X×kY ).
Following the definitions, we see that its image along the morphism rH is exactly
the pullback map of the Weil cohomology

rH([Γ
t
f ]) = cldX×kY

([Γtf ]) = f ∗ : H∗(X)→ H∗(Y ).

Proposition 2.1.9. For any Weil cohomology theory H∗ over k with coefficients in
K, there exists a canonical isomorphism of graded K-vector spaces

H∗(P1
k)
∼= K ⊕ 0⊕K(−1).

That is, cohomology of P1
k is completely determined by the axioms.

Proof. Since P1
k is irreducible of dimension 1, its trace map defines a canonical

isomorphism H2(P1
k)(1)

∼= K, hence

H2(P1
k)
∼= K(−1).

By Poincaré duality, we get the canonical isomorphism

H0(P1
k)
∼= HomK(H

2(P1
k)(1), K) ∼= K.

It remains to prove that H1(P1
k) = 0. Consider [∆] ∈ CH1(P1

k ×k P1
k) the rational

class associated to the closed immersion ∆ : P1
k ↪→ P1

k ×k P1
k, the diagonal. Since the

diagonal is the transpose of the graph of the identity map id : P1
k → P1

k

∆ = Γtid,

then, by remark 2.1.8, we have that

rH([∆]) = id∗ : H∗(P1
k)→ H∗(P1

k)

is the identity of H∗(P1
k). Let x : Spec(k) → P1

k be a k-rational point, hence a
closed point. It is an algebraic cycle of codimension 1 of P1

k. Consider its rational
class [x] ∈ CH1(P1

k). Moreover consider the class [P1
k] ∈ CH0(P1

k). Recall that in
CH1(P1

k ×k P1
k) the diagonal decomposes as (see [And04, Ex. 3.2.2.2 (1)])

[∆] = [x]× [P1
k] + [P1

k]× [x].

Following the definitions and by the compatibility axiom of the cycle class maps
with the exterior product of Chow groups, we see that this decomposition induces,
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via rH, the decomposition of the identity on H∗(P1
k)

id = p0 + p2,

where pi is the identity on Hi(X), for i = 0, 2. It follows that p1, the identity on
H1(P1

k) is zero. Hence, H
1(P1

k) = 0.

2.1.2 The algebraic de Rham and Betti cycle class maps

Recall that in the previous chapter we defined two cohomology theories for smooth
algebraic varieties: the algebraic de Rham cohomology and the Betti cohomology.
Restricting to smooth projective algebraic varieties, it turns out that these cohomology
theories are examples of Weil cohomologies.

Proposition 2.1.10. Given k a field of characteristic 0, the algebraic de Rham
cohomology

H∗
AdR : SmProjopk → grV ectk

X ↦→ H∗
AdR(X/k) := ⊕i≥0H

i
AdR(X/k)

defines a Weil cohomology theory over k with coefficients in k.

The Betti cohomology

H∗
Bet : SmProj

op
C → grV ectQ

X ↦→ H∗
Bet(X) := ⊕i≥0H

i
Bet(X)

defines a Weil cohomology theory over C with coefficients in Q.

It’s not our interest to check that all the axioms are satisfied. For Betti cohomology,
most of the axioms are well-known from classical results in Algebraic Topology. For
algebraic de Rham cohomology, some axioms (for example functoriality and Künneth
formula) have already been proved in the previous chapter, while others (for example
Poincaré duality) are more laborious. The only axiom we are interested is the one of
cycle class map. We want to define cycle class maps for these cohomology theories
and prove that they are compatible under a twisted version of the algebraic de Rham
isomorphism. Following [Delb, §1], we define cycle class maps using Grothendieck’s
Theory of Chern classes. See Appendix B for the main constructions and results.

The idea is to define, for H∗ = H∗
Bet,H

∗
AdR, a suitable Tate twist and a natural

transformation of contravariant functors SmProjopk → Ab

p1 : Pic→ H2( )(1),
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such that the contravariant functor

H2∗( )(∗) : SmProjopk → grRing

X ↦→ ⊕i≥0H
2i(X)(i),

together with the natural transformation, satisfies the axioms of Grothendieck’s
Theory of Chern classes. Then, as explained in Appendix B, we obtain a morphisms
of graded rings

clX : CH∗(X)Q → ⊕i≥0H
2i(X)(i).

This will be the definition of the cycle class map for H∗.

We start with the algebraic de Rham cohomology over k, with char(k) = 0.
Recall that, given a ringed site (C,O), we have a canonical isomorphism of abelian
groups

H1(C,O×) ∼= Pic(O), (2.4)

where O× is the abelian sheaf over C of invertible sections of O, and Pic(O) is the
group of isomorphism classes of invertible O-modules. Moreover, it is natural in C.
The isomorphism 2.4, applied to the ringed site XZar, for any X ∈ SmProjk, gives
the canonical isomorphism

H1(XZar,O×
X)
∼= Pic(X),

natural in X. Consider the morphism of complexes of abelian sheaves over XZar

0 → O×
X → 0 → 0 → · · ·

↓ ↓ d log ↓ ↓
OX → Ω1

X/k → Ω2
X/k → Ω3

X/k → · · · ,

where the morphism d log assigns to a section f of O×
X the section df

f
of Ω1

X/k. It
induces the morphism on sheaf cohomology

H2(XZar,O×
X [−1])→ H2(XZar,Ω

•
X/k) = H2

AdR(X/k).

Since
H2(XZar,O×

X [−1]) ∼= H1(XZar,O×
X)
∼= Pic(X),

then, we obtained the morphism of abelian groups

p1AdR,X : Pic(X)→ H2
AdR(X/k).

Given a morphism f : X → Y in SmProjk, we have the commutative diagram of
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abelian sheaves over XZar

f−1O×
Y [−1] f−1Ω•

Y/k

O×
X [−1] Ω•

X/k.

f−1d log

d log

It induces a commutative square on sheaf cohomology, which, composed with the
natural square of functoriality morphism of sheaf cohomology for the morphism
d log : O×

Y [−1]→ Ω•
Y/k, gives the commutative diagram of abelian groups

Pic(Y ) H2
AdR(Y/k)

H2(XZar, f
−1O×

Y [−1]) H2(XZar, f
−1Ω•

Y/k)

Pic(X) H2
AdR(X/k),

p1AdR,Y

p1AdR,X

where vertical morphisms are pullback maps. This suggests to define the Tate module
for algebraic de Rham cohomology

k(1) := k.

So, in this case, the Tate module k(1) is canonically isomorphic to k and we have a
canonical isomorphism

H2
AdR( /k)(1) ∼= H2

AdR( /k)

Then, the above construction defines a natural transformation of contravarinat
functors SmProjopk → Ab

p1AdR : Pic→ H2
AdR( /k) ∼= H2

AdR( /k)(1).

Now, we pass to Betti cohomology. For anyX ∈ SmProjC, consider the morphism
of abelian sheaves over X(C)an given by the exponential map

exp : OX(C) → O×
X(C).

We denote by
Z(1)X(C) := ker(OX(C)

exp−−→ O×
X(C)).

It is isomorphic to the constant abelian sheaf over X(C)an associated to the abelian
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group
Z(1) := 2πiZ = {2πiz | z ∈ Z},

and the canonical morphism of the kernel

c : Z(1)X(C) → OX(C)

associates to any section, i.e. to any element of Z(1), the constant function of the
corresponding value. Notice that Z(1)X(C) is an abelian sheaf isomorphic to ZX(C),
the constant abelian sheaf of value Z over X(C)an, but the isomorphism is not
canonical, since it depends on the choice of a square root if −1 in C. We have the
exact sequence of abelian sheaves over X(C)an

0→ Z(1)X(C)
c−→ OX(C)

exp−−→ O×
X(C) → 0,

called the exponential sequence. Consider the connecting homomorphism of the long
exact sequence induced on sheaf cohomology

H1(X(C)an,O×
X(C))→ H2(X(C)an,Z(1)X(C)).

Consider the canonical inclusion of abelian sheaves overX(C)an given by the extension
to rational scalars

Z(1)X(C) ↪→ Z(1)X(C) ⊗QX(C) =: Q(1)X(C),

where QX(C) denotes the constant abelian sheaf of value Q over X(C), which is
also a sheaf of rings, and ⊗ denotes the tensor product of abelian sheaves. Then,
Q(1)X(C) is the constant abelian sheaf over X(C)an associated to the abelian group
Q(1) := 2πiQ It induces the morphism on sheaf cohomology

H2(X(C)an,Z(1)X(C))→ H2(X(C)an,Q(1)X(C)).

The isomorphism 2.4, applied to the ringed site X(C)an, gives the canonical isomor-
phism

H1(X(C)an,O×
X(C))

∼= Pic(X(C)),

natural in X. Since the pullback of sheaves of modules commutes with tensor product,
then the analytification functor of sheaves of OX-modules induces a morphism of
abelian groups (which is, in fact, an isomorphism by GAGA Theorem II 1.2.23,
since pullback of sheaves of modules preserve the property of being finite locally free
and also the rank)

Pic(X)→ Pic(X(C))
L ↦→ Lan.
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Following definitions, we see that we have the commutative diagram

Pic(X) Pic(X(C))

H1(XZar,O×
X) H1(X(C)an, α−1

X O
×
X) H1(X(C)an,O×

X(C)).

∼= ∼=

Composing the morphisms constructed above, we obtain the morphism of abelian
groups

p1Bet,X : Pic(X) ∼= Pic(X(C))→ H2(X(C)an,Z(1)X(C))→ H2(X(C)an,Q(1)X(C)).

Given a morphism f : X → Y in SmProjC, let fan : X(C) → Y (C) be the
analytification. We have the commutative diagram of abelian groups

H1(YZar,O×
Y ) → H1(Y (C)an, α−1

Y O
×
Y ) → H1(Y (C)an,O×

Y (C))

↓ ↓ ↓
H1(XZar, f

−1O×
Y ) → H1(X(C)an, (fαX)−1O×

Y ) → H1(X(C)an, (fan)−1O×
Y (C))

↓ ↓ ↓
H1(XZar,O×

X) → H1(X(C)an, α−1
X O

×
X(C)) → H1(X(C)an,O×

X(C))),

where the first is a square of functoriality morphisms on sheaf cohomology for OY ,
the second and the third are naturality squares of functoriality morphisms on sheaf
cohomology for the morphisms α−1

Y O
×
Y → O

×
Y (C) and f

−1O×
Y → O

×
X respectively and

the fourth is induced by the commuative diagram of abelian sheaves over X(C)an

(fαX)
−1O×

Y (fan)−1O×
Y (C)

α−1
X O

×
X(C) O×

X(C),

which follows from a naturality square of analytification. As noticed above, the
horizontal morphisms are the isomorphisms Pic(Y ) ∼= Pic(Y (C)) and Pic(X) ∼=
Pic(X(C)). Moreover, consider the morphism of short exact sequences of abelian
sheaves over X(C)an

0→ (fan)−1Z(1)Y (C) → (fan)−1OY (C)
(fan)−1 exp−−−−−−→ (fan)−1O×

Y (C) → 0

↓ ↓ ↓
0→ Z(1)X(C) → OX(C)

exp−−→ O×
X(C) → 0 .
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Then, we have the commutative diagram of abelian groups

H1(Y (C)an,O×
Y (C)) → H2(Y (C)an,Z(1)Y (C)) → H2(Y (C)an,Q(1)Y (C))

↓ ↓ ↓
H1(X(C)an, (fan)−1O×

Y (C)) → H2(X(C)an, (fan)−1Z(1)Y (C)) → H2(X(C)an, (fan)−1Q(1)Y (C))

↓ ↓ ↓
H1(X(C)an,O×

X(C)) → H2(X(C)an,Z(1)X(C)) → H2(X(C)an,Q(1)X(C)),

where the first and the third are squares of morphisms of long exact sequences induced
on sheaf cohomology, the second is a naturality square of functoriality morphism on
sheaf cohomology for the inclusion Z(1)Y (C) ↪→ Q(1)Y (C) and the fourth is induced
by the commutative diagram of abelian sheaves over X(C)an

(fan)−1Z(1)Y (C) (fan)−1Q(1)Y (C)

Z(1)X(C) Q(1)X(C).

So, we obtained the commutative square

Pic(Y ) H2(Y (C)an,Q(1)Y (C))

Pic(X) H2(X(C)an,Q(1)X(C)).

f∗

p1Bet,Y

p1Bet,X

This suggests to define the Tate module for the Betti cohomology

Q(1) := 2πiQ = {2πir | r ∈ Q}.

Notice that, as for the associated constant abelian sheaf over X(C)an, Q(1) is a
Q-vector space isomorphic to Q, but the isomorphism is not canonical, since it
depends on the choice of a square root of −1 in C. Since, given Λ a group, the
cohomology of ΛX(C), the associated constant abelian sheaf over X(C), computes
singular cohomology with coefficients in Λ (proposition 1.1.4), then we have the
canonical isomorphisms

H2(X(C)an,Q(1)X(C)) ∼= H2
Sing(X(C);Q(1)) ∼= H2

Sing(X(C);Q)⊗QQ(1) = H2
Bet(X)(1).

So, we obtained a natural transformation of contravariant functors SmProjopC → Ab

p1Bet : Pic→ H2
Bet( )(1).
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Definition 2.1.11. The natural transformations

p1AdR : Pic→ H2
adr( /k)(1) & p1Bet : Pic→ H2

Bet( )(1)

are called the algebraic de Rham and Betti first Chern class, respectively.

The contravariant functor

H2∗
AdR( /k)(∗) : SmProjopk → grRing

X ↦→ ⊕i≥0H
2i
AdR(X/k)(i),

with the natural transformation c1AdR, satisfies the axioms of Grothendieck’s Theory
of Chern classes (see [Gro58, §2, ex. 2]). Moreover, since char(k) = 0, then, for any
X ∈ SmProjk, ⊕i≥0H

2i
AdR(X/k)(i) is a graded Q-algebra. Hence, as explained in

Appendix B, we can construct a morphism of commutative graded rings

clAdR,X : CH∗(X)Q → ⊕i≥0H
2i
AdR(X/k)(i).

Analogously for Betti cohomology, the contravariant functor

H2∗
Bet( )(∗) : SmProjopC → grRing

X ↦→ ⊕i≥0H
2i
Bet(X)(i),

with the natural transformation p1Bet, satisfies the axioms of Grothendieck’s The-
ory of Chern classes (see [Gro58, §2, ex. 3]). Moreover, for any X ∈ SmProjC,
⊕i≥0H

2i
Bet(X)(i) is a graded Q-algebra. Hence, as explained in Appendix B, we can

construct a morphism of commutative graded Q-algebras

clBet,X : CH∗(X)Q → ⊕i≥0H
2i
Bet(X)(i).

The maps clAdR,X and clBet,X satisfy the axioms of the cycle class maps of a Weil
cohomology theory. The naturality and the exterior product axioms of the cycle
class map immediately follow from naturality of the Chern character and the fact
that it is a ring homomorphism.

Definition 2.1.12. Given X ∈ SmProjk, with char(k) = 0, the morphism of
commutative graded Q-algebras

clAdR,X : CH∗(X)Q → ⊕i≥0H
2i
AdR(X/k)(i)

is called the algebraic de Rham cycle class map of X.
Given X ∈ SmProjC, the morphism of commutative graded Q-algebras

clBet,X : CH∗(X)Q → ⊕i≥0H
2i
Bet(X)(i)

is called the Betti cycle class map of X.
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Now, recall that, fixed a field extension σ : k ↪→ C, we have the algebraic de
Rham isomorphism (theorem 1.6.2), for any X ∈ Smk and each i ≥ 0,

ϖi
X : Hi

AdR(X/k)⊗k C ∼= Hi
Bet(Xσ)⊗Q C.

We want to consider a twisted version of this canonical isomorphism. Since, by
defintion, k(1) = k as a k-vector space, then, for any q ∈ Z, we have canonical
isomorphisms of k-vector spaces

k(q) = k(1)⊗q ∼= k⊗q ∼= k.

Then, for any p ≥ 0, we have canonical isomorphisms of k-vector spaces

Hp
AdR(X/k)(q) = Hp

AdR(X/k)⊗k k(q) ∼= Hp
AdR(X/k)⊗k k ∼= Hp

AdR(X/k).

Hence, we have canonical isomorphisms of C-vector spaces

Hp
AdR(X/k)(q)⊗k C ∼= Hp

AdR(X/k)⊗k C.

Notice that, for any q ∈ Z, we have canonical isomorphisms of Q-vector spaces

Q(q) = Q(1)⊗q ∼= (2πi)qQ ∼= {(2πi)qr | r ∈ Q}.

Then, we have canonical isomorphisms of Q-vector spaces given by multiplication

Q(q)⊗Q C ∼= C.

Hence, we have the canonical isomorphisms of C-vector spaces

Hp
Bet(Xσ)(q)⊗Q C = Hp

Bet(Xσ)⊗Q Q(q)⊗Q C ∼= Hp
Bet(Xσ)⊗Q C.

Notice that we are not saying that there’s a canonical isomorphism of Q-vector spaces
between Hp

Bet(Xσ)(q) and Hp
Bet(Xσ), which indeed doesn’t exists (an isomorphism

exists, but it’s not canonical!). However, it exists taking coefficients in C. Compos-
ing with the canonical algebraic de Rham isomorphism ϖp

X , we get the canonical
isomorphisms of C-vector spaces

Hp
AdR(X/k)(q)⊗k C ∼= Hp

AdR(X/k)⊗k C ∼= Hp
Bet(Xσ)⊗Q C ∼= Hp

Bet(Xσ)(q)⊗Q C.

Definition 2.1.13. Given X a smooth algebraic variety over a field k with a field
extension σ : k ↪→ C, the canonical morphism of C-vector spaces, for each p ≥ 0 and
q ∈ Z,

ϖp,q
X : Hp

AdR(X/k)(q)⊗k C ∼= Hp
Bet(Xσ)(q)⊗Q C

is called the qth-twisted algebraic de Rham isomorphism.
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Remark 2.1.14. As we can see in the proof of the algebraic de Rham Theorem
1.6.2, the algebraic de Rham isomorphism, factors through the cohomology of
Xσ(C)an with coefficients in the constant abelian sheaf CXσ(C)

Hi
AdR(X/k)⊗k C ∼= Hi(Xσ(C)an,CXσ(C))

∼= Hi
Bet(Xσ)⊗Q C.

Since, by construction, the twisted algebraic de Rham isomorphism factors through
the untwisted version, then this holds also for the twisted version

Hp
AdR(X/k)(q)⊗k C ∼= Hp(Xσ(C)an,CXσ(C))

∼= Hp
Bet(Xσ)(q)⊗Q C.

This isomorphism allows to compare elements coming from algebraic de Rham
cohomology with the ones from Betti cohomology. More precisely, given X ∈
SmProjk we have the canonical injections, for any p ≥ 0 and q ∈ Z,

Hp
AdR(X/k)(q) Hp

AdR(X/k)(q)⊗k C ∼= Hp(Xσ(C)an,CXσ(C))

and
Hp

Bet(Xσ)(q) Hp
Bet(Xσ)(q)⊗Q C ∼= Hp(Xσ(C)an,CXσ(C)).

If we denote by
σ̃∗ : CHi(X)Q → CHi(Xσ)Q

the pullback map on the Chow group along the canonical projection of the fiber
product σ̃ : Xσ → X, then, we can consider the the following diagram, for any i ≥ 0,

CHi(X)Q H2i
Bet(Xσ)(i)

H2i
AdR(X/k)(i) H2i(Xσ(C)an,CXσ(C)).

cliBet,X◦σ̃∗

cliAdR,X
(2.5)

Proposition 2.1.15. Let σ : k ↪→ C be a field extension. Then, for any X ∈
SmProjk and i ≥ 0, the digram 2.5 commutes. That is, the algebraic de Rham
and Betti cycle class maps are compatible under the twisted algebraic de Rham
isomorphism ϖ2i,i.

Proof. Notice that the diagram 2.5 is the same of

CHi(X) CHi(Xσ) H2i
Bet(Xσ)(i)

H2i
AdR(X/k)(i) H2i

AdR(Xσ/C)(i) H2i(Xσ(C)an,CXσ(C)).

cliAdR,X

σ̃∗

cliAdR,Xσ

cliBet,Xσ

cliBet,Xσ

σ̃∗

The first square commutes because it is a naturality square of the algebraic de Rham
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cycle class map. Then, the theorem is equivalent to prove the commutativity of the
second square. In other words, we can assume that X is an algebraic variety over
C. Recall form Appendix B, that the cycle class maps are such that, in each degree
i ≥ 0, for any [Z] ∈ CHi(X)

cliX([Z]) =
1

(i− 1)!
ciX([OZ ]),

where ciX are the Chern classes. So, it suffices to prove that the algebraic de Rham and
Betti Chern classes are compatible under the twisted algebraic de Rham isomorphism,
that is, for any i ≥ 0,

K0(X) H2i
Bet(X)(i)

H2i
AdR(X/C)(i) H2i(X(C)an,CX(C))

ciBet,X

ciAdR,X

commutes. Let E be an algebraic vector bundle over X and π : P(E) → X is its
projectivization. Recall also that Chern classes ciAdR,X(E) ∈ H2i

AdR(X/C)(i) and

ciBet,X(E) ∈ H2i
Bet(X)(i) are the unique elements such that∑

i≥0

(−1)i+1π∗ciAdR,X(E) ∪ p1AdR,P(E)(OP(E)(1)) = 0 in H2i
AdR(P(E)/C)(i)

and ∑
i≥0

(−1)i+1π∗ciBet,X(E) ∪ p1Bet,P(E)(OP(E)(1)) = 0 in H2i
Bet(P(E))(i).

Notice that, since the algebraic de Rham isomorphism is natural in X, then also the
twisted version is. So, we have the naturality square of the 1-twisted algebraic de
Rham isomorphism

H2i
AdR(X/C)(i) H2i

Bet(X)(i)⊗Q C

H2i
AdR(P(E)/C)(i) H2i

Bet(P(E))(i)⊗Q C.

ϖ2i,i
X

π∗ (π∗)C

ϖ2i,i
X

Then, we see that it suffices to show that the algebraic de Rham and Betti first
Chern classes are compatible under the twisted algebraic de Rham isomorphism,
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that is

Pic(X) H2
Bet(X)(1)

H2
AdR(X/C)(1) H2(X(C)an,CX(C))

p1Bet,X

p1AdR,X

commutes. A reference for this is [Del71b, §2.2.5]. Consider the following diagram of
complexes of abelian sheaves over X(C)an

O×
X(C)[−1] [Z(1)X(C)

c−→ OX(C)] Z(1)X(C) Q(1)X(C)

σ≥1Ω•
X(C) [CX(C)

c−→ OX(C)] CX(C) CX(C)

Ω•
X(C) CX(C),

d log

exp

d

c

(2.6)

where σ≥1Ω•
X(C) denotes the left dumb truncation of Ω•

X(C) at level 1. Notice that
the first square commutes because the compositions

Z(1)X(C)
c−→ OX(C) → 0 → 0 → · · ·

↓ ↓ exp ↓ ↓
0 → O×

X(C) → 0 → 0 → · · ·
↓ ↓ d log ↓ ↓
0 → Ω1

X(C) → Ω2
X(C) → Ω3

X(C) → · · ·

and
Z(1)X(C)

c−→ OX(C) → 0 → 0 → · · ·↪→ = ↓ ↓
CX(C)

c−→ OX(C) → 0 → 0 → · · ·
↓ ↓ d ↓ ↓
0 → Ω1

X(C) → Ω2
X(C) → Ω3

X(C) → · · ·

are the same. The second square clearly commutes. The third square is a commutative
diagram of inclusions. The fourth is anti-commutative up to an equivalence. Indeed,
the compositions are

CX(C)
c−→ OX(C) → 0 → 0 → · · ·

↓ ↓ d ↓ ↓
0 → Ω1

X(C) → Ω2
X(C) → Ω3

X(C) → · · ·
↓ = = =

OX(C) → Ω1
X(C) → Ω2

X(C) → Ω3
X(C) → · · ·
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and
CX(C)

c−→ OX(C) → 0 → 0 → · · ·

= ↓ ↓ ↓
CX(C) → 0 → 0 → 0 → · · ·
↓ c ↓ ↓ ↓

OX(C) → Ω1
X(C) → Ω2

X(C) → Ω3
X(C) → · · · ,

and we have the homotopy equivalence of morphisms of complexes

CX(C) OX(C) 0 0 · · ·

OX(C) Ω1
X(C) Ω2

X(C) Ω3
X(C) · · · .

c

0 −c d 0
id

d

Taking the second sheaf cohomology of diagram 2.6, we obtain the anti-commutative
diagram

H2(X(C)an,O×
X(C)[−1]) H2(X(C)an,Z(1)X(C)) H2(X(C)an,Q(1)X(C))

H2(X(C)an,Ω•
X(C)) H2(X(C)an,CX(C)),

where the first arrow in the upper horizontal composition is the opposite 3 of the
connecting homomorphism of the long exact sequence induced on sheaf cohomology
by the exponential sequence and the lower horizontal arrow is the analytic de Rham
isomorphism. Hence, we get a commutative diagram, if we replace the first arrow in
the upper horizontal composition with the connecting homomorphism. We also have

3Indeed, the exponential sequence induces the exact triangle in the derived category
D+(Ab(X(C)an))

Z(1)X(C)
c−→ OX(C)

exp−−→ O×
X(C)

δ−→ Z(1)X(C)[1],

where δ is the morphism in D+(Ab(X(C)an))

O×
X(C)

exp←−− [Z(1)X(C)
c−→ OX(C)][1]→ Z(1)X(C)[1],

which induces the connecting homomorphism in the long exact sequence on sheaf cohomology. Its
shifted δ[−1] is the composition appearing in diagram 2.6. Since

O×
X(C)[−1]

−δ[−1]−−−−→ Z(1)X(C)
c−→ OX(C)

exp−−→ O×
X(C)

is an exact triangle, then δ[−1] induces the opposite of the connecting homomorphism.
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the commutative diagram

H2(XZar,O×
X [−1]) H2(X(C)an, α−1

X O
×
X [−1]) H2(X(C)an,O×

X(C)[−1])

H2(XZar,Ω
•
X/C) H2(X(C)an, α−1

X Ω•
X/C) H2(X(C)an,Ω•

X(C)),

where the first is a naturality square of functoriality morphism on sheaf cohomology for
the morphism d log : O×

X [−1]→ Ω•
X/C and the second is induced by the commutative

diagram of abelian sheaves over X(C)an

α−1
X O

×
X [−1] O×

X(C)[−1]

α−1
X Ω•

X/C Ω•
X(C).

α−1
X (d log) d log

We already noticed that the upper horizontal composition is the morphism of abelian
groups

Pic(X)→ Pic(X(C)).

The lower horizontal composition is the one that gives the comparison isomorphism
between algebraic and analytic de Rham cohomology, constructed in 1.8. Putting
together the diagrams above, we obtain the commutative diagram

Pic(X) Pic(X(C)) H2(X(C)an,Q(1)X(C))

H2(XZar,Ω
•
X/C) H2(X(C)an,Ω•

X(C)) H2(X(C)an,CX(C)).

By definition of algebraic de Rham and Betti first Chern classes, this is exactly the
commutative diagram 2.5 we wanted to prove.

Example 2.1.16. Take X = P1
Q. Recall, from example 1.5.3, that we have

H2
AdR(P1

Q/Q) ∼= Q.

Take x ∈ P1
Q a Q-rational point. Consider [x] ∈ CH1(P1

Q) its rational class. Consider

the cycle classes

cl1AdR,P1
Q
([x]) ∈ H2

AdR(P1
Q)(1)

∼= H2
AdR(P1

Q)

cl1Bet,P1
C
([x]) ∈ H2

Bet(P1
C)(1).
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They are generators because, by the normalization axiom of cycle class maps, we
have in both cases

TrP1
Q
(cl1P1

Q
([x])) = [k(x) : Q] = [Q : Q] = 1 ̸= 0

and the trace map TrP1
Q
is an isomorphism, since P1

Q is irreducible. Consider some

Q-linear and Q-linear generators

ω ∈ H2
AdR(P1

Q/Q) & γ̃ ∈ H2
Bet(P1

C),

where γ ∈ HSing
2 (P1

C(C);Q) is a Q-linear generator and γ̃ ∈ H2
Sing(P1

C(C);Q) ∼=
H2

Bet(P1
C) is the dual element. Then, we write

cl1AdR,P1
Q
([x]) = aω & cl1Bet,P1

C
([x]) = 2πibγ̃,

with a ∈ Q \ {0} and b ∈ Q \ {0}. The compatibility of the cycle class maps with
the twisted period isomorphism

H2
AdR(P1

Q/Q)⊗Q C ∼= H2
Bet(P1

C)(1)⊗Q C

implies that

a

∫
γ

ω = 2πib.

Hence, 2πi is a period of P1
Q.

2.1.3 The category of Chow motives

In the previous sections we defined the abstract notion of a Weil cohomology theory
and we saw the two examples given by algebraic de Rham and Betti cohomology.
As already explained in the overview, a natural question is whether, for any field
k, it is possible to construct a universal Weil cohomology H∗( ;Q) over k with
rational coefficients, in the sense that any other Weil cohomology H∗( ;K) over
k with coefficients in some other field K of characteristic 0 (hence, containing Q)
can be obtained from it changing coefficients, i.e. such that there exist a canonical
isomorphism

H∗( ;K) ∼= H∗( ;Q)⊗Q K.

However, this is not the case. One explanation is due to the existence of transcendental
periods. Indeed, recall that, given X ∈ SmProjQ, a period of X is defined as a
complex number appearing in a representative matrix of the period isomorphism

ϖi
X : Hi

AdR(X/Q)⊗Q C ∼= Hi
Bet(Xσ)⊗Q C
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with respect to a Q-basis of Hi
AdR(X/Q) and a Q-basis of Hi

Bet(Xσ). If such a
universal Weil cohomology theory H∗( ;Q) existed, then we would have canonical
isomorphisms of Q and Q-vector spaces

Hi(X;Q)⊗Q Q ∼= Hi
AdR(X/Q) & Hi(X;Q) ∼= Hi

Bet(X/Q).

Since also the period isomorphism is canonical, this implies that the period isomor-
phism factors through the canonical isomorphisms obtained by extending coefficients
into C

Hi
AdR(X/Q)⊗Q C ∼= H∗(X;Q)⊗Q Q⊗Q C ∼= H∗(X;Q)⊗Q C ∼= Hi

Bet(Xσ)⊗Q C.

But then, the period isomorphism should map any Q-basis of Hi
AdR(X/Q) into a

Q-basis of Hi
Bet(X/Q), hence periods should be all algebraic numbers, which is false

(for example, as we saw in 2.1.16, 2πi is a period of P1
Q, which is transcendental).

Then, recall that the idea to obtain a notion of universal cohomology theory, is
to look for a Q-linear categoryM(k) with a monoidal contravariant functor, called
the motivic cohomology,

h : SmProjopk →M(k),

such that any Weil cohomology H∗ over k with coefficients in K factors uniquely
through it, with a tensor functor RH

SmProjopk grV ectK

M(k).

H∗

h RH

Moreover, to obtain a category of pure motives, we ask some further properties,
as explained in the overview. We describe Grothendieck’s construction for such
a categoryM(k), which is based on algebraic cycles modulo rational equivalence,
called the category of Chow motives. References are [Sch, §1] or [And04, §4]. The
construction consists of three steps.

First step: the category of correspondences

To have such a category M(k), we should have at least an object h(X) for each
X ∈ SmProjk, which will be the motivic cohomology of X. Then, we want to give
a suitable notion of morphisms between such objects. Recall remark 2.1.8, where
we observed that, for any Weil cohomology H∗ over k with coefficients in K and
X, Y ∈ SmProjk with X irreducible of dimension d, we have the following canonical
isomorphism of K-vector spaces

H2d(X ×k Y )(d) ∼= ⊕iH2d−i(X)(d)⊗K Hi(Y ) ∼= HomgrV ectK (H
∗(X),H∗(Y ))
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Composing with the dth-component of the cycle class map we obtain the morphism
of Q-vector spaces

rH : CHd(X ×k Y )Q
cldX×kY−−−−→ H2d(X ×k Y )(d) ∼= HomgrV ectK (H

∗(X),H∗(Y )),

which is such that, for any morphism f : Y → X in SmProjk, the transpose of the
graph of f is mapped into its pullback map of the Weil cohomology

rH([Γ
t
f ]) = cldX×kY

([Γtf ]) = f ∗ : H∗(X)→ H∗(Y ),

The idea is that the morphism rH should be exactly the map induced on hom-sets
by the realization functor. This leads to the following definition.

Definition 2.1.17. We define the category of correspondences modulo rational
equivalence and with coefficients in Q

Corrat(k;Q),

the category with objects
h(X),

for each X ∈ SmProjk, and with morphisms

HomCorrat(k;Q)(h(X), h(Y )) := CHd(X ×k Y )Q,

if X is irreducible of dimension d. For general X, we take direct sums over the
irreducible components of X.

It is called the category of correspondences because the elements of the Q-vector
space, for any r ∈ Z and X ∈ SmProjk irreducible of dimension d,

CHd+r(X ×k Y )Q

are called algebraic correspondences of degree r from X to Y , modulo rational equiv-
alence and with coefficients in Q. So, morphisms in the category of correspondences
are given by the algebraic correspondences of degree 0. Since rational equivalence
is an adequate equivalence (see [Sam58]), then Corrat(k;Q) is a Q-linear category,
with Q-bilinear composition given by, for any X, Y, Z ∈ SmProjk with X and Y
irreducible of dimension d and e respectively,

CHd(X ×k Y )Q ⊗Q CHe(Y ×k Z)Q → CHd(X ×k Z)Q
α⊗ β ↦→ β ◦ α := prXZ∗(α× β),

where α×β := pr∗XY α·pr∗Y Zβ is the exterior product of Chow groups and prXY , prY Z , prXZ
are canonical projections of the fiber product X ×k Y ×k Z. For general X and Y ,
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we extend by Q-bilinearity. The rational class of the diagonal ∆X : X → X ×X is
the identity on h(X), for any X ∈ SmProjk. Corrat(k;Q) is an additive category
with biproducts, for any X, Y ∈ SmProjk,

h(X)⊕ h(Y ) := h(X
∐

Y ).

The zero object is h(∅). The biproduct of morphisms is given by the sum in Chow
groups. Moreover, Corrat(k;Q) is a tensor category with tensor product

h(X)⊗ h(Y ) := h(X ×k Y ).

The unit object is 1 := h(Spec(k)). The tensor product of morphisms is given by the
exterior product of the Chow groups. Associativity and commutativity constraints
are those inherited by the product in SmProjk, the fiber product over k.

Consider on SmProjk the monoidal structure given by the fiber product over k
and unit object Spec(k). We have a contravariant monoidal functor

h : SmProjk → Corrat(k;Q)

X ↦→ h(X)

f ↑ ↓ [Γtf ]
Y ↦→ h(Y ).

By the above discussion, we see that any Weil cohomology H∗ over k with coefficients
in K uniquely factors through Corrat(k;Q)

SmProjopk grV ectK .

Corrat(k;Q)

H∗

h RC
H

The functor RC
H, called the realization functor, is such that, for any X, Y ∈ SmProjk,

with X irreducible of dimension d,

RC
H : Corrat(k;Q)→ grV ectK

h(X) ↦→ H∗(X)

α ↓ ↓ cldX×kY
(α) = rH(α)

h(Y ) ↦→ H∗(Y ).

For general X, we extend by Q-linearity. By exterior product axiom of the cycle
class map, it follows that RC

H is a tensor functor. We see that, as we wanted, the
morphism rH is exactly the map induced on hom-sets by the realization functor
RC

H. For a general X, we still denote by rH the map induced on hom-sets by the
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realization functor

rH : HomCorrat(k;Q)(h(X), h(Y ))→ HomgrV ectK (H
∗(X),H∗(Y ))

α ↦→ RC
H(α).

The category of correspondence Corrat(k;Q) constitutes the bulk of Grothen-
dieck’s construction. Recall that the original aim was to construct a category of pure
motives, which is expected to be rigid abelian. The category of correspondences
Corrat(k;Q) has none of these properties. In the following steps, we apply two formal
categorical constructions to Corrat(k;Q), trying to force them.

Second step: pseudo-abelian completion

The category of correspondences Corrat(k;Q) constructed in the previous step is
an additive Q-linear category, but it is not abelian. In fact, it is not even pseudo-
abelian. 4 In this step we force this latter property. In order to get a pseudo-abelian
category starting from any category, there exists a universal construction: the
pseudo-abelian completion. This construction consists in formally adding an image
for each idempotent morphism. Applied to the category Corrat(k;Q), it produces
the following category.

Definition 2.1.18. We define the category of effective Chow motives with coefficients
in Q

CHMeff(k;Q),

the pseudo-abelian completion of Corrat(k;Q). That is, the category with objects

ph(X),

for each X ∈ SmProjk and p ∈ EndCorrat(k;Q)(h(X)) an idempotent morphism, called
a projector, and with morphisms

HomCHMeff(k;Q)(ph(X), qh(Y )) := q ◦ HomCorrat(k;Q)(h(X), h(Y )) ◦ p.

The pseudo-abelian completion is such that an object ph(X) is canonically
isomorphic to the categorical image of the idempotent morphism p : h(X)→ h(X)

ph(X) ∼= Im(p).

4Pseudo-abelian means that any idempotent morphism p has an image (or equivalently a kernel,
since Ker(p) ∼= Im(id− p) and id− p is also idempotent). Equivalently, any idempotent morphism

p : C → C splits, i.e. there exist morphisms C
f−→ K

g−→ C such that gf = p and fg = id. Moroever,
the splitting is unique and K ∼= Im(p). Hence, C ∼= Im(p) ⊕ Im(id − p). More generally, any
decomposition of the identity into orthogonal idempotents id =

∑
i pi induces the decomposition

C ∼= ⊕iIm(pi).
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By construction, CHMeff(k;Q) is a pseudo-abelian category with biproducts

ph(X)⊕ qh(Y ) ∼= (p⊕ q)h(X
∐

Y ).

The zero object is h(∅). The biproduct of morphisms is naturally induced by the one
in Corrat(k;Q). Moreover, CHMeff(k;Q) is a tensor category with tensor product

ph(X)⊗ qh(Y ) ∼= (p⊗ q)h(X ×k Y ).

The unit object is 1 := h(Spec(k)). The tensor product of morphisms, associativity
and commutativity constraints are naturally induced by the ones in Corrat(k;Q).

We have a canonical embedding functor

Corrat(k;Q) ↪→ CHMeff(k;Q)

h(X) ↦→ idXh(X) =: h(X).

It is a Q-linear tensor functor. By composition with the contravariant monoidal
functor h : SmProjopk → Corrat(k;Q) described above, we obtain the contravariant
monoidal functor, still denoted by h,

h : SmProjopk
h−→ Corrat(k;Q) ↪→ CHMeff(k;Q).

Since any Weil cohomology H∗ over k with coefficients in K uniquely factors through
Corrat(k;Q) and since grV ectK is a pseudo-abelian category, then, by universal
property of pseudo-abelian completion, we have that H∗ also uniquely factors through
CHMeff(k;Q)

SmProjk grV ectk.

Corrat(k;Q) CHMeff(k;Q)

H∗

h RC
H

Reff
H

The functor Reff
H , called the effective realization functor, is a Q-linear tensor functor.

Explicitly, for any X, Y ∈ SmProjk, given a morphism

q ◦ α ◦ p : ph(X)→ qh(Y ),

where α ∈ HomCorrat(k;Q)(h(X), h(Y )) and p ∈ EndCorrat(k;Q)(h(X)), q ∈ EndCorrat(k;Q)(h(Y ))
are projectors, consider the composition

H∗(X)
rH(p)−−−→ H∗(X)

rH(α)−−−→ H∗(Y )
rH(q)−−−→ H∗(Y ).

The realization of q ◦ α ◦ p is the restriction to the images of the realization of the
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projectors

Im(rH(p))
rH(α)−−−→ Im(rH(q)).

Remark 2.1.19. The property of being pseudo-abelian, allows to decompose objects
in CHMeff(k;Q). For example, consider h(P1

k) ∈ CHMeff(k;Q). Let g : P1
k → Spec(k)

be the structural morphism and x : Spec(k)→ P1
k a k-rational point. The composition

in SmProjk
P1
k

g−→ Spec(k)
x−→ P1

k

is an idempotent morphism and this factorization provides a splitting. Hence also
its image in CHMeff(k;Q)

p : h(P1
k)→ 1→ h(P1

k)

is an idempotent morphism and the factorization is a splitting. Since CHMeff(k;Q)
is pseudo-abelian, then 1 ∼= Im(p) and we have the decomposition

h(P1
k)
∼= Im(p)⊕ Im(id− p) ∼= 1⊕ (id− p)h(P1

k).

Definition 2.1.20. The object in CHMeff(k;Q)

L := (id− p)h(P1
k)

is called the Lefschetz motive.

Remark 2.1.21. For any Weil cohomology H∗ over k with coefficients in K, since
its effective realization functor Reff

H is a tensor functor, we have the canonical
isomorphisms

Reff
H (h(P1

k))
∼= Reff

H (1⊕ L) ∼= Reff
H (1)⊕Reff

H (L) ∼= K ⊕Reff
H (L).

On the other hand, by proposition 2.1.9, we have the canonical isomorphism

Reff
H (h(P1

k))
∼= H∗(P1

k)
∼= K ⊕K(−1).

We deduce that there exists a canonical isomorphism

Reff
H (L) ∼= K(−1).

In other words, for any Weil cohomology, the Lefschetz motive always realizes into
the inverse of the Lefschetz module.

Third step: Lefschetz stabilization

The category of effective Chow motives CHMeff(k;Q) is a tensor category, but it’s
not rigid, i.e. not all objects have a dual. In this last step we force the rigidity

123



Chapter 2

property on CHMeff(k;Q). Given a Weil cohomology H∗ over k with coefficients in
K, recall from remark 2.1.5 that, for any X ∈ SmProjk irreducible of dimension d,
the Tate twist allows to rewrite the dual object of H∗(X) as

H∗(X)∨ ∼= H∗(X)(d) ∼= H(X)∗ ⊗K(1)⊗d.

Since the idea is that the functor h should behave like H∗ and since, by remark
2.1.21, the Lefschetz motive L plays the analogous role of the Lefschetz module
K(−1), this suggests that dual objects could be obtained simply by inverting the
Lefschetz motive with respect to the tensor product. In other words, we want to
make the functor

⊗ L : CHMeff(k;Q)→ CHMeff(k;Q).

become an equivalence of categories, so we have to do an L-stabilization construction.
This can be done with the formalism of L-spectra, or formally adding the object
L⊗−1, the inverse of L with respect to tensor product. The latter method leads to
the following category.

Definition 2.1.22. We define the category of Chow motives with coefficients in Q

CHM(k;Q),

the category with objects
ph(X)(r),

for each ph(X) ∈ CHMeff(k;Q) and r ∈ Z, and with morphisms

HomCHM(k;Q)(ph(X)(r), qh(Y )(s)) := lim−→
N≫0

HomCHMeff(k;Q)(ph(X)⊗L⊗N−r, qh(Y )⊗L⊗N−s).

We remark that an alternative notation, that can be found in literature, consists
in denoting an object ph(X)(r) by the triple (X, p, r).

The formula for hom-sets in CHM(k;Q) given in the definition is the formal one
of the L-stabilization construction. In this context it holds a more explicit equivalent
description, using algebraic correspondences of any degree, given by

HomCHM(k;Q)(ph(X)(r), qh(Y )(s)) ∼= q ◦ CHd+s−r(X ×k Y )Q ◦ p,

if X is irreducible of dimension d. For general X, we take the direct sum under
the irreducible components of X. This also shows that CHM(k;Q) can be obtained
equivalently from the category of correspondences Corrat(k;Q), by applying first the
stabilization construction and then the pseudo-abelian completion.

The stabilization construction is such that we have a canonical isomorphism

1(−1) ∼= L.
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Then,
1(1) ∼= L⊗−1

is the inverse with respect to tensor product of the Lefschetz motive, called the Tate
motive. Moreover, we have canonical isomorphisms, for any r ∈ Z,

eh(X)(r) ∼= eh(X)⊗ L⊗−r.

CHM(k;Q) is an additive Q-linear category with biproducts

ph(X)(r)⊕ qh(Y )(s) ∼=

{
(h(X)⊕ (h(Y )⊗ Lr−s))(r) if r ≥ s

((h(X)⊗ Ls−r)⊕ h(Y ))(s) else,

where the ⊕ on the right hand side is taken in CHMeff(k;Q). The zero object is h(∅).
The biproduct of morphisms is naturally induced by the one in CHMeff(k;Q). Since,
as noticed above, the constructions of pseudo-abelian completion and L-stabilization
can be reversed, then CHM(k;Q) is a pseudo-abelian category. Moreover, CHM(k;Q)
is a tensor category with tensor product

ph(X)(r)⊗ qh(Y )(s) ∼= (p⊗ q)h(X ×k Y )(r + s).

The unit object is 1 = h(Spec(k)). The tensor product of morphisms, associativity
and commutativity constraints are naturally induced by the ones in CHMeff(k;Q).
This is indeed the right construction to obtain the dual for every object. That is,
CHM(k;Q) is a rigid tensor category. It holds that we have canonical isomorphisms,
for any X ∈ SmProjk irreducible of dimension d,

ph(X)(r)∨ ∼= pth(X)(d− r),

where pt is the image of p ∈ CHd(X ×k X) along the pullback map on Chow groups
of the the swap morphism of X ×k X. For general X, we take direct sum under the
irreducible components of X.

We have a canonical embedding functor

CHMeff(k;Q) ↪→ CHM(k;Q)

ph(X) ↦→ ph(X)(0) =: ph(X).

By composition with the contravariant monoidal functor h : SmProjopk → CHMeff(k;Q)
described above, we obtain the contravariant monoidal functor, still denoted by h,

h : SmProjopk
h−→ CHMeff(k;Q) ↪→ CHM(k;Q)

Since any Weil cohomology H∗ uniquely factors through CHMeff(k;Q) and since, by
remark 2.1.21, the Lefschetz motive L realizes into K(−1), which is an invertible
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object of grV ectK , then, by universal property of L-stabilization construction, we
have that H∗ also uniquely factors through CHM(k;Q)

SmProjopk grV ectk

CHMeff(k;Q) CHM(k;Q).

H∗

h Reff
H

RH

The functor RH, called the realization functor, is a Q-linear tensor functor. Explicitly,
for any X, Y ∈ SmProjk, with X irreducible of dimension d and r, s ∈ Z, consider a
morphism

α : h(X)(r)→ h(Y )(s),

where α ∈ CHd+s−r(X ×k Y )Q. Notice that, analogously to remark 2.1.8, using
Künneth formula and Poincaré duality axioms, we have the following isomorphisms
of K-vector spaces

H2(d+s−r)(X ×k Y )(d+ s− r) ∼= ⊕iH2(d+r)−i(X)(d+ r)⊗ Hi+2s(Y )(s) ∼=
∼= ⊕iHi+2r(X)(r)∨ ⊗ Hi+2s(Y )(s) ∼=
∼= ⊕iHomK(H

i+2r(X)(r),Hi+2s(Y )(s)) ∼=
∼= HomgrV ectK (H

∗(X)(r),H∗(Y )(s)).

It holds that the realization of α is given by its image along the composition with
the cycle class map

CHd+s−r(X×kY )Q
cld+s−r

X×kY−−−−→ H2(d+s−r)(X×kY )(d+s−r) ∼= HomgrV ectK (H
∗(X)(r),H∗(Y )(s)).

(2.7)
For general X we extend by Q-linearity. For the explicit description of the realization
of a general morphisms in CHM(k;Q)

ph(X)(r)→ qh(Y )(s)

we refer to the description given in the second step.

Remark 2.1.23. Given H∗ a Weil cohomology over k with coefficients in K, we
used Chow groups and cycle class maps to define the category of Chow motives and
its realization functor. Viceversa, we can recover Chow groups and cycle class maps
from the category of Chow motives as follows. Given X ∈ SmProjk irreducible
of dimension d, the Chow group of codimension i with rational coefficients can be
obtained as hom-sets in the category of Chow motives:

CHi(X)Q ∼= CHi(Spec(k)×k X)Q ∼= HomCHM(k;Q)(1, h(X)(i)),

126



2.2. Mixed motives

where the first isomorphism is the pullback map pr∗X on Chow groups. By the above
discussion, the map induced on hom-sets by the realization functor

HomCHM(k;Q)(1, h(X)(i))→ HomgrV ectK (K,H
∗(X)(i))

is given by the cycle class map

cliSpec(k)×kX
: CHi(Spec(k)×k X)Q → H2i(Spec(k)×k X)(i).

By naturality axiom of the cycle class map, this corresponds, via the isomorphisms
given by pullback maps of prX , to the cycle class map

cliX : CH2i(X)Q → H2i(X)(i).

So, the cycle class maps can be recovered as morphisms induced on hom-sets by the
realization functor.

2.2 Mixed motives

2.2.1 A triangulated category of mixed motives

We construct a triangulated category of mixed motives over a field. We follow [Ayo13,
§2.1] and the general theory developed in [Ayo07, §4].

Recall that we denote by Smk the category of smooth algebraic varieties over k.
Notice that, since any object of Smk is union of prime spectra of a finitely generated
k-algebras, which form a set, then Smk is an essentially small category. Consider
the category of presheaves of Λ-modules over Smk

PSh(Smk; Λ).

This category inherits from the category of Λ-modules an open-wise structure of
closed monoidal Λ-linear abelian category. We denote by ⊗ the tensor product.
The unit object is given by Λ, the constant presheaf.

We have a covariant functor

Λ : Smk → PSh(Smk; Λ),

which assigns to each X ∈ Smk the presheaf of Λ-modules over Smk represented by
X

Λ(X) : U ↦→ Λ[HomSmk
(U,X)],

where Λ[HomSmk
(U,X)] denotes the free Λ-module generated by the set HomSmk

(U,X).
By Yoneda Lemma and universal property of free Λ-modules, it is such that, for any
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F ∈ PSh(Smk; Λ),
HomPSh(Smk;Λ)(Λ(X), F ) ∼= F (X).

If we consider on Smk the monoidal structure given by the fiber product over k and
unit object Spec(k), then Λ is a monoidal functor. Indeed, for any U ∈ Smk,

Λ[HomSmk
(U, Spec(k))] ∼= Λ,

so Λ(Spec(k)) ∼= Λ, and for any X, Y ∈ Smk,

Λ[HomSmk
(U,X ×k Y )] ∼= Λ[HomSmk

(U,X)× HomSmk
(U, Y )] ∼=

∼= Λ[HomSmk
(U,X)]⊗Λ Λ[HomSmk

(U, Y )],

so Λ(X ×k Y ) ∼= Λ(X)⊗Λ(Y ).
We consider the category of (unbounded) complexes in PSh(Smk; Λ)

Ch(PSh(Smk; Λ)).

This category inherits from the category PSh(Smk; Λ) a structure of closed monoidal
Λ-linear abelian category. We denote by ⊗ the tensor product. The unit object
is given by Λ, the constant presheaf concentrated in degree 0.

We have a covariant monoidal functor

Λ : Smk → Ch(PSh(Smk; Λ)),

which assigns to any X ∈ Smk the complex given by Λ(X) concentrated in degree 0.
We want to force on objects of Ch(PSh(Smk; Λ)) the étale descent and the A1-

homotopy invariance properties. We will do it by localizing the category Ch(PSh(Smk; Λ))
with respect to a suitable set of morphisms corresponding to these properties. Naively,
this means that we force some morphisms to be isomorphisms. The technical tool
we will use to localize is localization of model categories (see [Hir03, §3]).

So, first we need to define a model structure on Ch(PSh(Smk; Λ)). We denote
by Ch(Λ) the category of (unbounded) complexes of Λ-modules. By [Hov99, §2.3],
Ch(Λ) has a model structure such that:

- weak-equivalences are quasi-isomorphisms of complexes of Λ-modules,

- fibrations are epimorphisms of complexes of Λ-modules, i.e. level-wise surjective
morphisms of Λ-modules,

- cofibrations are characterized by having the left lifting property with respect
to trivial fibrations.

Since the weak-equivalences are the quasi-isomorphisms of chain complexes, the
homotopy category of Ch(Λ) with respect to this model structure is equivalent to
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the (unbounded) derived category of Λ-modules

Ho(Ch(Λ)) ≃ D(Λ).

Moreover, this model structure on Ch(Λ) is a stable model structure. The suspension
functor is given by the total left derived functor of the shift functor

[1] : Ch(Λ)→ Ch(Λ)

A• ↦→ A•−1,

which is already an equivalence of categories and it is exact, hence it induces an
autoequivalence on the homotopy category. The quasi inverse is denoted by [−1]
and, for any p ∈ Z, the pth-iteration of [1] is denoted by [p]. Now, notice that

Ch(PSh(Smk; Λ)) ∼= PSh(Smk; Ch(Λ)),

that is, we can think objects of Ch(PSh(Smk; Λ)) also as presheaves of complexes
of Λ-modules over Smk. We have two ways to induce a model structure on
Ch(PSh(Smk; Λ)) starting from the one on Ch(Λ) described above (see [Ayo07,
Def. 4.4.15, Prop. 4.4.16], which can be applied by [Ayo07, Ex. 4.4.24]). We consider
the following.

Definition 2.2.1. We define the projective global model structure, the model structure
on Ch(PSh(Smk; Λ)) such that:

- projective global weak-equivalences are open-wise weak-equivalences in Ch(Λ),

- projective global fibrations are open-wise fibrations in Ch(Λ),

- projective global cofibrations are characterized by having the left lifting property
with respect to trivial fibrations.

Notice that a morphism in Ch(PSh(Smk; Λ))

F• → G•

is a projective global weak-equivalence (resp. projective global fibration) if and only
if, for any X ∈ Smk,

F•(X)→ G•(X)

is a weak-equivalence (resp. fibration) in Ch(Λ). In other words, projective global
weak-equivalences and projective global fibrations can be checked on global sections.
This is why it is called projective global model structure.

Remark 2.2.2. Since exactness in the abelian category PSh(Smk; Λ) is open-wise
exactness and the notion of a quasi-isomorphism of complexes in an abelian category
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relies on the notion of exactness, then projective global weak-equivalences are quasi-
isomorphisms of chain complexes in the abelian category PSh(Smk; Λ). Hence, the
homotopy category of Ch(PSh(Smk; Λ)) with respect to the projective global model
structure is equivalent to the derived category of the abelian category PSh(Smk; Λ)

Ho(Ch(PSh(Smk; Λ))) ≃ D(PSh(Smk; Λ)).

Remark 2.2.3. Since Ch(Λ) is a stable model category, then also the projective
global model structure on Ch(PSh(Sm/k; Λ)) is stable (see [Ayo07, Cor. 4.4.21]).
The suspension functor is given by the total left derived functor of the shift functor

[1] : Ch(PSh(Smk; Λ))→ Ch(PSh(Smk; Λ))

F• ↦→ F•−1,

which is already an equivalence of categories and it is exact, hence induces an
autoequivalence on the homotopy category. We use the same notations as in Ch(Λ)
for the quasi-inverse [−1] and pth-iteration of the shift functor [p].

Now, we define the set of morphisms in Ch(PSh(Smk; Λ)) that we want to invert.
We start describing the morphisms corresponding to the étale descent property. We
need the following definition.

Definition 2.2.4. The big étale site on Smk is the site with underlying category
Smk and covering families of an object X ∈ Smk the étale covers of X (definition
1.4.11).

Remark 2.2.5. Recall that we defined an étale cover of a scheme X as a family
of étale morphisms of schemes {fi : Ui → X}i∈I , such that ∪i∈Ifi(Ui) = X. Taking
the disjoint union of the morphisms fi, we get a surjective étale morphism onto X.
Viceversa, a surjective étale morphism onto X forms an étale cover. So, equivalently,
an étale cover of X is a surjective étale morphism f : U → X.

We need the notion of hypercovers in the étale toplogy. A reference is [AM69,
§8].

Definition 2.2.6. Given X a scheme, an étale hypercover of X is a simplicial object
in Xét, the small étale site over X, augmented in X

· · · U2 U1 U0

X,

denoted by U∗ → X, such that U0 → X is an étale cover of X and, for any n ≥ 0,

Un+1 → (coskntrnU∗)n+1 (2.8)
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is an étale cover of (coskntrnU∗)n+1.

Recall that the nth-coskeleton functor is right adjoint to the nth-truncation functor

trn : X∆op

ét X
∆op

≤n

ét : coskn.

It exists because Xét has all finite products and pullbacks, hence all finite limits.
The unit of the adjunction gives the morphism of simplicial objects in Xét, for any
U∗ ∈ X∆op

ét ,
U∗ → coskntrnU∗,

The morphism 2.8 is the morphism between the (n+ 1)-simplexes.

Remark 2.2.7. Étale hypercovers can be thought as a generalization of the Čech
nerve NU∗

· · · U ×X U ×X U U ×X U U

X

of an étale cover U → X. Indeed, thinking at U as a simplicial object in Xét

truncated at level 0, then it holds that (see [AM69, Rmk. 8.5])

cosk0U ∼= NU∗.

Using the universal property of the coskeleton, we deduce that, for any n ≥ 0,

NUn+1
∼= (coskntrnNU∗)n+1.

Hence, NU∗ → X is an étale hypercover of X. Viceversa, Čech nerves are exactly
those étale hypercovers characterized by having morphisms 2.8, which are isomor-
phisms. Intuitively, the Čech nerve of an étale cover is the datum of an étale cover
and the étale covers given by its successive auto-intersections (i.e. fiber products
over X). While, an étale hypercover is the datum of an étale cover and compatible
refinements of its successive auto-intersections.

Étale hypercovers give a combinatorial way to compute sheaf cohomology of
étale abelian sheaves. Recall that, given F ∈ Ab(Xét), Čech cohomology of X with
coefficients in F is a combinatorial notion of cohomology for presheaves. Recall that
it is defined as follows. Given U → X an étale cover of X, consider the simplicial
object in Xét given by its Čech nerve NU∗. Applying the presheaf F , we obtain the
cosimplicial abelian group

F (U) F (U × U) F (U × U × U) · · ·.
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Let F (NU∗) denote the corresponding complex of abelian groups obtained via Dold-
Kan correspondence. It is quasi-isomorphic to the Čech complex of F relative to U .
The Čech cohomology of X with coefficients in F is defined as

Ȟ
i
(X;F ) := lim−→

U→X

Hi(F (NU∗)),

where the direct limit runs over all étale covers of X. This combinatorial notion of
cohomology does not always coincide with sheaf cohomology of X with coefficients
in F

Hi(Xet, F ) := Hi(RΓ(X,F )).

However, if we replace étale covers with étale hypercovers, they do. Notice that,
given an étale hypercover U∗ → X of X, analogously to F (NU∗), we can construct
the complex of abelian groups F (U∗).

Theorem 2.2.8 (Verdier’s hypercovering Theorem). Let X be a scheme and F ∈
Ab(Xét). For any i ≥ 0, there exists a canonical isomorphism

Hi(Xét, F ) ∼= lim−→
U∗→X

Hi(F (U∗)),

where the direct limit runs over all étale hypercovers of X.

Proof. See [AM69, Thm. 8.16].

Remark 2.2.9. By a spectral sequences argument, we deduce that the same isomo-
prhism holds more generally for F• ∈ Ch(Ab(Xét))

Hi(Xét, F•) ∼= lim−→
U∗→X

Hi(Tot⊕F•(U∗)).

Now, we come back to our construction. Given an étale hypercover U∗ → X
of X, applying the covariant functor Λ, we get the augmented simplicial object in
PSh(Smk; Λ)

· · · Λ(U2) Λ(U1) Λ(U0)

Λ(X).

Via Dold-Kan correspondence, we get the augmented complex in PSh(Smk; Λ)

· · · Λ(U2) Λ(U1) Λ(U0)

Λ(X).
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We denote it by
Λ(U∗)→ Λ(X). (2.9)

Thought as morphisms in Ch(PSh(Smk; Λ)), these are the morphisms corresponding
to the étale descent property.

The morphisms corresponding to the A1-homotopy invariance property are, for
any X ∈ Smk,

Λ(A1
X)→ Λ(X), (2.10)

obtained by applying the covariant functor Λ to the canonical projection of the fiber
product

A1
X := A1

k ×k X → X.

We consider the following sets of morphisms in Ch(PSh(Smk; Λ)) given by all
shifts of morphisms of the kind 2.10 and 2.9:

Sét := {Λ(U∗)[n]→ Λ(X)[n] | X ∈ Smk, U∗ → X étale hypercover, n ∈ Z},
SA1 := {Λ(A1

X)[n]→ Λ(X)[n] | X ∈ Smk, n ∈ Z},
S(A1,ét) := SA1 ∪ Sét.

Notice that, since Ch(Λ) is a left proper cellular model category, then also Ch(PSh(Smk; Λ))
is, with the global projective model structure (see [Hir03, Prop. 4.1.5]). Being left
proper and cellular are some technical properties that ensure the existence of left
Bousfield localizations with respect to a set of morphisms (see [Hir03, Thm. 4.1.1]).
Hence, there exists the left Bousfield localization of Ch(PSh(Smk; Λ)) with respect
to the set of morphisms S(A1,ét)

LS(A1,ét)
Ch(PSh(Smk; Λ)).

It is a model category with model structure, called the projective (A1, ét)-local model
structure, such that:

- the underlying category is Ch(PSh(Smk; Λ)),

- weak-equivalences are the S(A1,ét)-local equivalences (see [Hir03, Def. 3.1.4 ]),
called the projective (A1, ét)-local weak equivalences,

- cofibrations are the same of Ch(PSh(Smk; Λ)) with projective global model
structure,

- fibrations are characterized by having the right lifting property with respect to
trivial cofibrations.

Recall that, by definition of localization of a model category, the class of (A1, ét)-
local weak-equivalences contains the projective global weak-equivalences and all the
morphisms in S(A1,ét). Recall that a left Bousfield localization is a left localization of
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model categories. That is, LS(A1,ét)
Ch(PSh(Smk; Λ)) is the universal model category

with a Quillen pair

Ch(PSh(Smk; Λ)) LS(A1,ét)
Ch(PSh(Smk; Λ)),

such that the left Quillen functor maps morphisms in S(A1,ét) into (A1, ét)-local
weak-equivalences. Moreover, the Quillen functors are given by identities. The above
Quillen pair induces the total derived adjunction

Ho(Ch(PSh(Smk; Λ))) Ho(LS(A1,ét)
Ch(PSh(Smk; Λ))).

Definition 2.2.10. The homotopy category of a left localization of Ch(PSh(Smk; Λ))
with respect to S(A1,ét)

DAeff
ét (k; Λ) := Ho(LS(A1,ét)

Ch(PSh(Smk; Λ)))

is called the category of effective étale motivic sheaves.

Remark 2.2.11. The shift functor

[1] : LS(A1,ét)
Ch(PSh(Smk; Λ))→ LS(A1,ét)

Ch(PSh(Smk; Λ))

F ↦→ F•−1,

which is already an equivalence of categories, is exact, hence it induces an autoe-
quivalence on the homotopy category. So, DAeff

ét (k; Λ) is a triangulated category.
Moreover, the monoidal structure over Ch(PSh(Smk; Λ)) is compatible with the pro-
jective (A1, ét)-local model structure, hence DAeff

ét (k; Λ) is also a monoidal category.
We denote the tensor product by ⊗ . The unit object is the constant presheaf
Λcst ∼= Λ(Spec(k)).

The following remark gives an alternative useful description of DAeff
ét (k; Λ).

Remark 2.2.12. We definedDAeff
ét (k; Λ) as the homotopy category of a left Bousfield

localization of a model category. Equivalently, it can be described as the Verdier
quotient of a triangulated category (see [Nee01, §2]), which moreover is a left Bousfield
localization of triangulated categories (see [Nee01, §9]). First, notice that we can
decompose the left Bousfield localization with respect to S(A1,et) into two steps,
localizing first with respect to Sét and then with respect to SA1 . Indeed, consider the
left Bousfield localization of Ch(PSh(Smk; Λ)) with respect to the set of morphisms
Sét

LSét
Ch(PSh(Smk; Λ)).

The model structure on this category is called the projective ét-local model structure.
Since left Bousfield localizations of left proper cellular model categories are again
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left proper and cellular (see [Hir03, Thm. 4.1.1]), then there exists the left Bousfield
localization of LSét

Ch(PSh(Smk; Λ)) with respect to the set of morphisms SA1

LSA1
LSét

Ch(PSh(Smk; Λ)).

By definition of weak-equivalences and cofibrations in left Bousfield localizations, we
see that this model category is exactly the left Bousfield localization of Ch(PSh(Smk; Λ))
with respect to the set of morphisms S(A1,ét), so the identity defines a Quillen equiva-
lence

LSA1
LSét

Ch(PSh(Smk; Λ)) ≃ LSA1,ét
Ch(PSh(Smk; Λ)).

Hence, we have the Quillen pairs

Ch(PSh(Smk; Λ)) LSét
Ch(PSh(Smk; Λ)) LS(A1,ét)

Ch(PSh(Smk; Λ)).

They induce the total derived adjunctions

D Dét DAeff
ét (k; Λ), (2.11)

where we denote by

D := Ho(Ch(PSh(Smk; Λ))) ≃ D(PSh(Smk; Λ))

and
Dét := Ho(LSét

Ch(PSh(Smk; Λ))).

Using Verdier’s hypercovering Theorem, we see that (see [Vez18, Prop. 3.10]) Dét is
equivalent to the derived category of Shét(Smk; Λ), the category of étale sheaves of
Λ-modules over Smk, i.e. sheaves of Λ-modules over the big étale site on Smk,

Dét ≃ D(Shét(Smk; Λ)).

With this description, the adjunction

D Dét

aét

is the total derived of the adjunction étale sheafification-inclusion. Hence, also Dét

is a triangulated category. Now, let EA1 be the triangulated subcategory of Dét

generated by the objects

EA1 := ⟨cone(f) | f : Λét(A1
X)→ Λét(X), X ∈ Smk⟩,

where Λét(A1
X) and Λét(X) denote the étale sheafification of the presheves Λ(A1

X)
and Λ(X) respectively. It holds that (see [Ayo14a]) DAeff

ét (k; Λ) is equivalent to the
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Verdier quotient of Dét over EA1

DAeff
ét (k; Λ) ≃ Dét/EA1 ≃ Dét[W−1

A1 ],

where
WA1 := {α ∈ Dét | cone(α) ∈ EA1},

is called the class of A1-local weak-equivalences. By the adjunction 2.11, the Verdier
quotient functor

Dét → Dét/EA1 ≃ DAeff
ét (k; Λ)

admits a right-adjoint. So, this Verdier quotient is also a left Bousfield localization
of triangulated categories. By general theory of Bousfield localization of triangulated
categories, the category DAeff

ét (k; Λ) can be identified with the full triangulated
subcategory of Dét of EA1-local objects, called A1-local objects,

⊥EA1 := {G• ∈ Dét | HomD(F•, G•) = 0, ∀F• ∈ Eét}.

Notice that, by definiton of EA1 equivalently, G• ∈ Dét is an A1-local object if, for
any X ∈ Smk and n ∈ Z,

HomDét
(Λét(X)[n], G•) ∼= HomDét

(Λét(A1
X)[n], G•).

Notice that

HomDét
(Λét(X)[n], ) ∼= H0RHomShét(Smk,Λ)(Λét(X)[n], ) ∼=

∼= H−nRΓ(X, ) ∼= H−n(X, ) ∼= H−n(Xét, ),

where the last isomorphism holds because sheaf cohomology computed over the small
or big étale site of X is the same (see [Stacks, Tag 03YX]). Hence, being A1-local
for G• is equivalent to ask that

H−n(Xét, G•) ∼= H−n((A1
X)ét, G•),

where here, by G•, we mean the restriction of G• to the small étale sites.

By composition of the monoidal functor Λ with the canonical morphisms into
the left localization and the homotopy category, we get the covariant functor

M : Smk
Λ−→ Ch(PSh(Smk; Λ))→ LS(A1,ét)

Ch(PSh(Smk; Λ)),→ DAeff
ét (k; Λ).

which is monoidal, since the monoidal structure on Ch(PSh(Smk; Λ)) is compatible
with the projective (A1, ét)-local model structure.

Remark 2.2.13. By the equivalent description of DAeff
ét (k; Λ) in remark 2.2.12,

equivalently M is given by the composition of the functor Λ, the étale sheafification
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functor aét, the localization functor into the derived category and the Verdier quotient
functor

M : Smk
Λ−→ Ch(PSh(Smk; Λ))

aét−→ Ch(Shét(Smk; Λ))→ Dét → DAeff
ét (k; Λ).

Definition 2.2.14. Given X ∈ Smk, the object M(X) ∈ DAeff
ét (k; Λ) is called the

effective motive associated to X.

Definition 2.2.15. Given X ∈ Smk and Y ⊂ X a smooth closed subvariety, we
define the effective motive of the pair (X, Y )

M(X, Y ) := cone(M(Y )→M(X)).

Let x ∈ Gm be a k-rational point, i.e. a closed point x : Spec(k)→ Gm. We define
the Tate motive

Λ(1) := M(Gm, x)[−1]

and, for any q ≥ 0,
Λ(q) := Λ(1)⊗q.

For any M ∈ DAeff
ét (k; Λ), we denote by

M(q) :=M ⊗ Λ(q),

called the qth-Tate twist of M .

Definition 2.2.16. Given an object M ∈ DAeff
ét (k; Λ), we define, for any p ∈ Z and

q ≥ 0,
Hp(M,Λ(q)) := HomDAeff

ét (k;Λ)
(M,Λ(q)[p])

the étale motivic cohomology groups of M . In other words, étale motivic cohomology
groups are represented by the objects

Λ(q) ∈ DAeff
ét (k; Λ)

in the category DAeff
ét (k; Λ). For M = M(X) the effective motive associated to

X ∈ Smk, we write
Hp(X,Λ(q)) := Hp(M(X),Λ(q)),

called the étale motivic cohomology groups of X.

We only mention that there’s a further construction which gains the category of
étale motivic sheaves (see [Ayo13, §2.1])

DAét(k,Λ).

It is a monoidal triangulated category, which contains DAeff
ét (k; Λ) as a triangulated

subcategory. Intuitively, it can be thought as the analogous of the construction of
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the category of Chow motives obtained from the category of effective Chow motives.
Indeed it is the triangulated category obtained from DAeff

ét (k; Λ) by inverting the
Tate motive Λ(1) with respect to the tensor product. So, in DAét(k,Λ) we also have
the object

Λ(−1) := Λ(1)⊗−1.

and hence also Λ(q) for negative q. It can be proved that the inversion of the Tate
motive is sufficient to have duals for any object M ∈ DAét(k; Λ). So, DAét(k; Λ) is
a rigid monoidal triangulated category.

One of the reasons why these triangulated categories are considered good candidate
triangulated categories of mixed motives is that they are well related to the category
of Chow motives. Moreover, motivic cohomology groups are related to Chow groups.
Some of these relations are resumed in the following theorem.

Theorem 2.2.17. If Q ⊂ Λ and Q ⊂ k, then there exists a fully faithful tensor
contravariant embedding functor

CHMeff(k; Λ)op ↪→ DAeff
ét (k; Λ),

such that
SmProjk Smk

CHMeff(k; Λ)op DAeff
ét (k; Λ)

h M

R

commutes. The functor R is fully-faithful tensor functor, which maps the Lefschetz
motive 1(−1) ∈ CHMeff(k; Λ) into Λ(1)[2] ∈ DAeff

ét (k; Λ). An analogous result holds
with the non effective version. Moreover, for p = 2q, the étale motivic cohomology
group of X ∈ Smk computes the Chow group of codimension q with coefficients in Λ

CHq(X)Λ ∼= H2q(X,Λ(q)).

Proof. See [Voe, Prop. 2.1.4] and [Voe02] (or also [And04, Thm. 18.3.1.1] and
[MVW06, Cor. 19.2, Prop. 20.1, Rmk. 20.2]), which compare the category of Chow
motives to Voevodsky’s triangulated category of motives, together with [Ayo13,
Thm. B1], which compares Voevodsky’s triangulated category of motives to Ayoub’s
one.

Notice that, since h is a contravariant functor, while h is covariant, we should
think h as a motivic cohomology, while M as a motivic homology.

2.2.2 The Betti realization functor

One of the good features of the construction of DAeff
ét (k; Λ) is that analogous construc-

tions can be performed also in other similar contexts. Now, instead of the context of
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smooth algebraic varieties over a field k, we consider the context of smooth complex
analytic spaces described in the previous chapter. More precisely, we perform exactly
the same constructions of the previous section with the following variations.

• We replace the category Smk with AnSmC, the category of smooth analytic
spaces described in the previous chapter.

• We replace A1
k ∈ Smk with D1 ∈ AnSmC the open disk in C of radius 1

D1 := {z ∈ C | |z| < 1}.

• We replace the big étale site on Smk with the big étale-analytic site on AnSmC,
i.e. the site with underlying category AnSmC and covering families of an object
Y ∈ AnSmC the étale-analytic covers of Y (definition 1.4.18)

Resuming the main steps, we consider the category of complexes of presheaves of
Λ-modules over AnSmC

Ch(PSh(AnSmC; Λ)),

which is a stable model tensor category with the projective global model structure.
Then, we define the sets of morphisms

Sét-an := {Λ(W∗)[n]→ Λ(Y)[n] | Y ∈ AnSmC, W∗ → Y étale-analytic hypercover, n ∈ Z},
SD1 := {Λ(D1 × Y)[n]→ Λ(Y)[n] | Y ∈ AnSmC, n ∈ Z},
S(D1,ét-an) := SD1 ∪ Sét-an.

We take the left Bousfield localization

LS(D1,ét-an)
Ch(PSh(AnSmC; Λ)),

which is a model category with the projective (D1, ét-an)-local model structure. Its
homotopy category is a monoidal triangulated category, denoted by

AnDAeff(Λ) := Ho(LS(D1,ét-an)
Ch(PSh(AnSmC; Λ))).

Moreover, it holds the analogous of remark 2.2.12: equivalently, AnDAeff(Λ) can
be described as the Verdier quotient of the derived category of étale-analytic sheaves
of Λ-modules Dét-an := D(Shét-an(AnSmC; Λ))

AnDAeff(Λ) ≃ Dét-an/ED1 ≃ Dét-an[W−1
D1 ],

where

ED1 := ⟨cone(f) | f : Λét-an(D1 × Y)→ Λét-an(Y), Y ∈ AnSmC⟩
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and
WD1 := {α ∈ Dét-an | cone(α) ∈ ED1}.

We have a monoidal functor

Man : AnSmC
Λ−→ Ch(PSh(AnSmC; Λ))→ AnDAeff(Λ),

constructed analogously to M.
Now, consider the category DAeff

ét (k; Λ) for k = C. In this situation we can relate
the categories DAeff

ét (C; Λ) and AnDAeff(Λ) as follows. Consider the analytification
functor described in the previous chapter (definition 1.2.14), which restricts to
categories of smooth spaces

an : SmC → AnSmC

X ↦→ X(C).

It induces the adjunction between the categories of presheaves of Λ-modules

anp : PSh(SmC; Λ) PSh(AnSmC; Λ) : an
p.

Recall that the left adjoint anp is such that, for any F ∈ PSh(Smk; Λ) and Y ∈
AnSmC,

anpF (Y) = lim−→
Y→X(C)∈AnSmC

F (X)

and the right adjoint anp is such that, for any G ∈ PSh(AnSmC; Λ) and X ∈ SmC,

anpG(X) = G(X(C)).

This adjunction extends level-wise to an adjunction on categories of complexes

anp : Ch(PSh(SmC; Λ)) Ch(PSh(AnSmC; Λ)) : an
p. (2.12)

Proposition 2.2.18. The adjuction 2.12 is a Quillen pair with respect to the pro-
jective global model structures. It induces the Quillen pair

anp : LS(A1,ét)
Ch(PSh(SmC; Λ)) LS(D1,ét-an)

Ch(PSh(AnSmC; Λ)) : an
p.

(2.13)
with respect to the projective (A1, ét) and (D1, ét-an)-local model structures.

Proof. Consider the adjunction 2.12. It is a Quillen pair because the right adjoint anp

is a right Quillen functor, i.e. preserves fibrations and trivial fibrations. This is true
by definition of anp and since projective global fibrations and trivial fibrations can
be checked open-wise. To prove that 2.13 is a Quillen pair, consider the composition
of Quillen pairs 2.12 and the one given by left localization of Ch(PSh(AnSmC; Λ))
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with respect to S(D1,ét-an)

Ch(PSh(SmC; Λ)) Ch(PSh(AnSmC; Λ)) LS(D1,ét-an)
Ch(PSh(AnSmC; Λ)).

anp

anp

By the universal property of localization of model categories, it suffices to prove that
anp maps morphisms in S(A1,ét) into projective (D1, ét-an)-local weak-equivalences,
i.e. weak-equivalences of LS(D1,ét-an)

Ch(PSh(AnSmC; Λ)). Recall that anp preserves
representable functors, that is, for any X ∈ SmC,

anpΛ(X) ∼= Λ(X(C)).

Let U∗ → X be an étale hypercover of X. Then, anp maps

Λ(U∗)→ Λ(X)

into
Λ(U(C)∗)→ Λ(X(C)).

By proposition 1.4.16, U(C)∗ → X(C) is an étale-analytic hypercover of X(C).
So, Λ(U(C)∗) → Λ(X(C)) is a morphism in S(D1,ét-an) and then it is a projective
(D1, ét-an)-local weak-equivalence. Moreover, for any X ∈ SmC, anp maps

Λ(A1
C ×C X) ∼= Λ(A1

X)→ Λ(X)

into
Λ(C×X(C))→ Λ(X(C)).

Consider an étale-analytic cover D1 → C. 5 Let ND1
∗ → C be the étale-analytic

hypercover given by the Čech nerve. Then,

Λ(ND1
∗)→ Λ(C)

is a morphism in S(D1,ét-an), hence it is a projective (D1, ét-an)-local weak-equivalence.
Since D1 is connected, then the morphism

Λ(D1)→ Λ(ND1
∗),

induced by the canonical morphism D1 → ND1
∗, is a projective global weak-

equivalence, hence also a projective (D1, ét-an)-local weak-equivalence. Hence, the
composition

Λ(D1)→ Λ(ND1
∗)→ Λ(C)

is a projective (D1, ét-an)-local weak-equivalence. Tensoring with the identity of

5It exists. For example, take the composition of the biholomorphism of D1 with the Poincaré
plane and the holomorphic map z ↦→ (z − i)2.
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Λ(X(C)), which is a projective (D1, ét-an)-local weak-equivalence, we get that

Λ(D1 ×X(C)) ∼= Λ(D1)⊗Λ(X(C))→ Λ(C)⊗Λ(X(C)) ∼= Λ(C×X(C))

is a projective (D1, ét-an)-local weak-equivalence. The composition

Λ(D1 ×X(C))→ Λ(C×X(C))→ Λ(X(C))

is induced by the canonical projection D1 × X(C) → X(C). So, is a morphism
in S(D1,ét-an) and then it is a projective (D1, ét-an)-local weak-equivalence. By the
two-out-of-three property for weak-equivalences, we deduce that

Λ(C×X(C))→ Λ(X(C))

is a projective (D1, ét-an)-local weak-equivalence. Since the same can be said for all
shifted morphisms, this proves the statement.

The Quillen pair 2.13 induces the total derived adjunction

An∗ := Lanp : DAeff
ét (C; Λ) AnDAeff(Λ) : Ranp =: An∗.

Notice that, since anp preserves representable functors, that is

SmC AnSmC

PSh(SmC; Λ) PSh(AnSmC; Λ)

Λ

an

Λ

anp

commutes, then also

SmC AnSmC

DAeff
ét (C; Λ) AnDAeff(Λ)

M

an

Man

An∗

(2.14)

commutes.

Now, consider the point C0 ∈ AnSmC. We have the inclusion functor of the
category of analytic open subsets of C0 into SmAnC

u : Op(C0) ↪→ AnSmC.

As above, it induces an adjunction between categories of presheaves of Λ-modules

up : PSh(Op(C0); Λ) PSh(AnSmC; Λ) : u
p.
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Notice that, since Op(C0) is noting but the category with one object C0 and the
identity on it, then we have an equivalence of categories

PSh(Op(C0); Λ) ≃ Λ-mod

F ↦→ F (C0).

Via this equivalence of categories, the left adjoint up is such that, for any A ∈ Λ-mod
and Y ∈ AnSmC,

upA(Y) = lim−→
Y→C0∈AnSmC

A ∼= A.

That is, up assigns to each Λ-module the associated constant presheaf Acst. For
this reason, we denote by cst := up. The right adjoint up is such that, for any
F ∈ PSh(AnSmC; Λ),

upF (C0) = F (u(C0)) = F (C0).

That is, up is the global section functor over C0. For this reason, we denote by
up := Γ(C0, ). So, the above adjunction is

cst : Λ-mod PSh(AnSmC; Λ) : Γ(C0, ).

This adjunction extends level-wise to an adjunction on categories of complexes

cst : Ch(Λ) Ch(PSh(AnSmC; Λ)) : Γ(C0, ). (2.15)

Proposition 2.2.19. The adjunction 2.15 is a Quillen pair with respect to the
projective global model structure on Ch(PSh(AnSmC; Λ)). It induces a Quillen
equivalence

cst : Ch(Λ) LS(D1,ét-an)
Ch(PSh(SmAnC; Λ)) : Γ(C0, ) (2.16)

with respect to the projective (D1, ét-an)-local model structure on LS(D1,ét-an)
Ch(PSh(AnSmC; Λ)).

Proof. Consider the adjunction 2.15. It is a Quillen pair because the right adjoint
Γ(C0, ) is a right Quillen functor, i.e. preserves fibrations and trivial fibrations.
This is true because projective global fibrations and trivial fibrations can be checked
open-wise. The Quillen pair 2.16 is obtained composing the Quillen pairs

cst : Ch(Λ) Ch(PSh(AnSmC; Λ)) LS(D1,ét-an)
Ch(PSh(AnSmC; Λ)) : Γ(C0, ).

cst

Γ(C0, )

To prove that it is a Quillen equivalence, we need to prove that the total derived
adjunction

Lcst : D(Λ) AnDAeff(Λ) : RΓ(C0, ),
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is an equivalence of categories. Notice that, since projective global weak-equivalences
can be checked open-wise, then cst takes weak-equivalences in Ch(Λ) into pro-
jective global weak-equivalences, which are also projective (D1, ét-an)-local weak-
equivalences. That is, cst is an exact functor, so it doesn’t have to be left derived

Lcst = cst.

We prove that cst is essentially surjective and fully-faithful. We start with the
essential surjectivity. The proof consists of the following three steps.

• Step 1. We prove that D := D(PSh(AnSmC; Λ)) is compactly generated by
the objects Λ(Y), for Y ∈ AnSmC. It follows that D coincides with its smallest
triangulated subcategory closed by arbitrary direct sums and containing the
objects Λ(Y), for Y ∈ AnSmC. That is, D coincides with its triangulated
subcategory generated by Λ(Y), for Y ∈ AnSmC

D = ⟨Λ(Y) | Y ∈ AnSmC⟩.

Recall that, for D, being compactly generated by the objects Λ(Y), for Y ∈ AnSmC,
means that, for any family {F i

•}i∈I of objects in D

HomD(Λ(Y),⊕i∈IF i
•)
∼= ⊕i∈I HomD(Λ(Y), F i

•)

and, if F• ∈ D is such that, for any Y ∈ AnSmC and n ∈ Z,

HomD(Λ(Y)[n], F•) = 0,

then F• = 0. Since

HomD(Λ(Y)[n], ) ∼= H0RHomPSh(AnSmC;Λ)(Λ(Y)[n], ) ∼= H−nRΓ(Y , ) ∼= H−nΓ(Y , ),

we see that the first condition is satisfied, because cohomology commutes with
arbitrary direct sums in the category of Λ-modules. Also the second condition is
satisfied because

HnF•(Y) = 0,

for any Y ∈ AnSmC and n ∈ Z, means that F• ∈ Ch(PSh(AnSmC; Λ)) is quasi-
isomorphic to 0, that is, F• = 0 in D.

• Step 2 We prove that

AnDAeff(Λ) = ⟨Man(Dn) := Man(D1)⊗n | n ∈ Z⟩.

Since the triangulated functor

D→ AnDAeff(Λ)
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is the identity on objects, then, by step 1, it suffices to prove that, for any Y ∈
AnSmC,

Man(Y) ∈ ⟨Man(Dn) | n ∈ Z⟩.

Given Y ∈ AnSmC, notice that we can always construct

W∗ → Y

an étale-analytic hypercover of Y, such that each Wi is a disjoint union of disks
Dn := (D1)n. Indeed, since Y is smooth, there exists an open cover of Y given by a
disjoint union of open disks of Cn. Hence, we can constructW0 → Y an étale-analytic
cover given by a disjoint union of disks Dn. Then, we constructW∗ taking compatible
étale-analytic refinements of successive auto-intersections of W0, given by disjoint
unions of disks Dn. This is possible because open disks of Cn form a basis of open
subsets of Cn and all open disks of Cn are biholomorphic to Dn. Since

Λ(
∐
i∈I

Dn) ∼= ⊕i∈IΛ(Dn),

then,we deduce that
Λ(W∗) ∈ ⟨Λ(Dn) | n ∈ Z⟩.

Since in AnDAeff(Λ)
Man(W∗)→Man(Y)

is an isomorphism, then

Man(Y) ∈ ⟨Man(Dn) | n ∈ Z⟩.

• Step 3 We prove that AnDAeff(Λ) coincides with its triangulated subcategory
generated by Λcst the constant presheaf

AnDAeff(Λ) := ⟨Λcst⟩.

Since Λcst is in the image of the triangulated functor cst, it follows that cst is
essentially surjective.

Since in AnDAeff(Λ)

Man(Dn) ∼= Man(D1 × Dn−1)→Man(Dn−1)

is an isomorphism, then, by induction, we deduce that

Man(Dn) ∼= Man(C0) ∼= Λcst.

Then, step 3 follows from step 2.
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Finally, we prove that cst is fully-faithful. Notice that, since D(Λ) is compactly
generated by Λ, it suffices to prove that, for any n ∈ Z,

HomD(Λ)(Λ,Λ[n]) ∼= HomAnDAeff(Λ)(Λcst,Λcst[n]).

We have to compute hom-sets in AnDAeff(Λ). Recall that, by the analogous of
remark 2.2.12, it holds that, for any F•, G• ∈ Dét-an with G• D1-local object,

HomAnDAeff(Λ)(F•, G•) ∼= HomDét-an
(F•, G•).

Recall that G• ∈ Dét-an is D1-local if, for any Y ∈ AnSmC and n ∈ Z,

Hn(Yét-an, G•) ∼= Hn((D1 × Y)ét-an, G•).

Moreover, recall that by remark 1.4.19, the category of étale-analytic sheaves is
equivalent to the one of analytic ones, that is the ones with respect to the classical
topology of analytic open subsets. Then, sheaf cohomology of étale-analytic sheaves
can be computed equivalently as cohomology of their restriction to the classical
analytic site. So, equivalently, G• ∈ Dét-an is a D1-local object if, for any Y ∈ AnSmC
and n ∈ Z,

Hn(Yét-an, G•) ∼= Hn((D1 × Y)ét-an, G•),

where here, by G•, we mean the restriction of G• to the small étale-analytic sites.
By remark 1.4.19, this is equivalent to ask that

Hn(Yan, πanY∗G•) ∼= Hn((D1 × Y)an, πanY∗G•).

Since for any Y ∈ SmAnC, by proposition 1.1.4, sheaf cohomology of the constant
sheaf ΛY over Yan computes the singular cohomology of Y , which is such that

Hn(Yan,ΛY) ∼= Hn
Sing(Y ; Λ) ∼= Hn

Sing(D1 × Y ; Λ) ∼= Hn((D1 × Y)an,ΛD1×Y),

then the constant sheaf Λét-ancst ∈ Dét-an is a D1-local object. Notice that Λét-ancst is
canonically isomorphic to Λcst in Dét-an, hence also in AnDAeff(Λ), via the canonical
morphism of sheafification. Hence,

HomAnDAeff(Λ)(Λcst,Λcst[n])
∼= HomAnDAeff(Λ)(Λ

ét-an
cst ,Λét-ancst [n]) ∼=

∼= HomDét-an
(Λét-ancst ,Λét-ancst [n]) ∼=

∼= HomD(Λcst,Λ
ét-an
cst [n]) ∼= HomD(Λ)(Λ,Λ[n]),

where the third and the last bijections follow from the total derived adjunctions

D(Λ) D Dét-an

cst

RΓ(C0, )

aét-an
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Remark 2.2.20. Given Y ∈ SmAnC, let C• ∈ D(Λ) be the object corresponding
to Man(Y) ∈ AnDAeff(Λ) into D(Λ), via the equivalence of categories proved in
proposition 2.2.19. Then, we have the bijections, for any n ∈ Z,

HomAnDAeff(Λ)(Man(Y ),Λcst[n]) ∼= HomD(Λ)(C•,Λ[n])

Since Λcst ∼= Λét-ancst in Dét-an is a D1-local object, as seen in the proof of proposition
2.2.19, then

HomAnDAeff(Λ)(Man(Y ),Λcst[n]) ∼= HomDét-an
(Λét-an(Y),Λét-ancst [n]) ∼=

∼= Hi(Yét-an,Λét-ancst ) ∼= Hn
Sing(Y ; Λ).

On the other hand
HomD(Λ)(C•,Λ[n]) ∼= Hn(C∨

• ),

where C∨
• := HomΛ(C•,Λ) denotes the dual of C•. It follows that, in D(Λ), C∨

• is
isomorphic to the complex of singular cochains of Y with coefficients in Λ

C∨
•
∼= C•Sing(Y ; Λ),

hence C• is the complex of singular chains of Y with coefficients in Λ

C• ∼= CSing• (Y ; Λ).

Now, consider Λ = Q.

Definition 2.2.21. The composition of triangulated functors

Reff
Bet

∗
: DAeff

ét (C;Q)
An∗−−→ AnDAeff(Q)

RΓ(C0, )−−−−−−→ D(Q)

is called the (effective) Betti realization functor.

Remark 2.2.22. The Betti realization functor is monoidal, since it is composition
of the total derived of monoidal functors.

Remark 2.2.23. For any X ∈ SmC, we have the isomorphisms

Reff
Bet

∗
M(X) ∼= RΓ(C0, )An∗M(X) ∼= RΓ(C0, )Man(X(C)) ∼= CSing• (X(C);Q),

where the second holds by the commutative diagram 2.14 and the last holds by
remark 2.2.20. Hence, the Betti realization functor is such that, for any n ≥ 0,

Hn((Reff
Bet

∗
M(X))∨) ∼= Hn(CSing• (X(C);Q)∨) ∼= Hn(C•Sing(X(C);Q)) ∼= Hn

Bet(X).
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We only mention that an analogous construction can be performed with the non-
effective variant, obtaining a monoidal triangulated functor

R∗
Bet : DAét(C;Q)→ D(Q).

Since in DAét(C;Q) we have dual objects, then it holds that, for any X ∈ AnSmC,

Hn(R∗
Bet(M(X)∨)) ∼= Hn((R∗

BetM(X))∨) ∼= Hn
Bet(X).

That is, R∗
Bet maps M(X)∨, to be thought as the cohomological motive associated

to X, into a complex which computes the Betti cohomology of X. For this reason it
is called the Betti realization functor.

By construction, the Betti realization functor has a right adjoint

Reff
Bet

∗
: DAeff

ét (C;Q) AnDAeff(Q) D(Q) : Reff
Bet∗.

An∗

An∗

RΓ(C0, )
∼
cst

Consider Qcst
∼= M(Spec(C)) ∈ DAeff

ét (C;Q), the constant presheaf over SmC, and
An∗Qcst

∼= Man(C0) ∈ AnDAeff(Q), the constant presheaf over AnSmC, which are
the unit objects of their respective categories. By the adjunction (Reff

Bet

∗
,Reff

Bet∗), we
have the bijections, for any M ∈ DAeff

ét (C;Q) and n ∈ Z,

HomDAeff
ét (C;Q)(M,Reff

Bet∗R
eff
Bet

∗Qcst[n]) ∼= HomDAeff
ét (C;Q)(M,An∗An

∗Qcst[n]) ∼=
∼= HomAnDAeff(Q)(An

∗M,An∗Qcst[n]) ∼=
∼= HomAnDAeff(Q)(An

∗M,Qcst[n]).

In particular, if M = M(X) for some X ∈ SmC, it holds that

HomDAeff
ét (C;Q)(M(X),Reff

Bet∗R
eff
Bet

∗Qcst[n]) ∼= HomAnDAeff(Q)(An
∗M(X),Qcst[n]) ∼=

∼= HomAnDAeff(Q)(Man(X(C))),Qcst[n]) ∼=
∼= Hn

Sing(X(C);Q) = Hn
Bet(X),

where the second isomorphism holds by commutative diagram 2.14 and third was
proved in remark 2.2.20. In other words, the object

Reff
Bet∗R

eff
Bet

∗Qcst ∈ DAeff
ét (C;Q)

represents the Betti cohomology in the category DAeff
ét (C;Q). Moreover, notice that,

since the Betti realization is a monoidal functor, hence preserves the unit, then
Reff

Bet

∗Qcst
∼= Q. Hence

Reff
Bet∗R

eff
Bet

∗Qcst
∼= Reff

Bet∗Q.
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2.2.3 The comparison theorem

In analogy with the Betti cohomology, now we define an object in our triangulated
category of motives, which represents the algebraic de Rham cohomology.

Definition 2.2.24. We define the algebraic de Rham complex Ω•
k the object in

DAeff
ét (k; k) given by the complex of presheaves of k-vector spaces over Smk

Ω•
k : Sm

op
k → Ch(k)

X ↦→ Γ(X,Ω•
X/k),

where Ω•
X/k is the algebraic de Rham complex of X ∈ Smk defined in the previous

chapter (see subsection 1.3.2).

Remark 2.2.25. The complex of presheaves Ω•
k is in fact a complex of sheaves over

the big étale site on Smk . Indeed, for any X ∈ Smk, since the covers of X in the
big étale site on Smk are the same of the small étale site Xét, then it suffices to prove
that the restriction of Ω•

k to Xét is a complex of sheaves. This is true since, for each
p ≥ 0, by remark 1.5.8, the restriction of Ωp

k to Xét is the étale sheaf (Ωp
X/k)

ét. So,

we can see Ω•
k as an object of Dét. Moreover, notice that it is an A1-local object, i.e.,

for any X ∈ Smk and n ∈ Z,

Hn(Xét, (Ω
•
X/k)

ét) ∼= Hn((An
X)ét, (Ω

•
An
X/k

)ét).

Indeed, by A1-invariance property (proposition 1.5.6) and étale descent property
(proposition 1.5.9) of algebraic de Rham cohomology, it holds that

Hn(Xét, (Ω
•
X/k)

ét) ∼= Hn
AdR(X/k)

∼= Hn
AdR(A1

X/k)
∼= Hn((An

X)ét, (Ω
•
An
X/k

)ét).

Since Ω•
k is a A1-local object, then, by remark 2.2.12, it holds that, for any

X ∈ Smk and n ∈ Z,

HomDAeff
ét (k;k)

(M(X),Ω•
k[n])

∼= HomDét
(Λét(X),Ω•

k[n])
∼=

∼= Hn(X,Ω•
k)
∼= Hn(Xét, (Ω

•
X/k)

ét) ∼= Hn
AdR(X/k).

In other words, the object
Ω•
k ∈ DAeff

ét (k; k)

represents the algebraic de Rham cohomology in the category DAeff
ét (k; k).

Recall that in the previous section we defined the object

Reff
Bet∗Q ∈ DAeff

ét (C;Q),

which represents the Betti cohomology in DAeff
ét (C;Q). Now, assuming that we

have σ : k ↪→ C a field extension, we want to compare these two objects inside the
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category
DAeff

ét (k;C).

First, we need to describe some morphisms between triangulated categories of motives,
induced by the change of the base field and extension of scalars.

Since the property of being a smooth algebraic variety is stable under base change,
σ induces a functor

Smk → SmC

X ↦→ Xσ := X ×Spec(k) Spec(C).

It induces the usual adjunction between the categories of presheaves of Q-vector
spaces, which extends to the categories of complexes

σp : Ch(PSh(Smk;Q)) Ch(PSh(SmC;Q)) : σp. (2.17)

Proposition 2.2.26. The adjunction 2.17 is a Quillen pair with respect to the
projective global model structures. It induces the Quillen pair

σp : L(A1,ét)Ch(PSh(Smk;Q)) L(A1,ét)Ch(PSh(SmC;Q)) : σp. (2.18)

with respect to the projective (A1, ét)-local model structures

Proof. The adjunction 2.17 is a Quillen pair because σp is a right Quillen functor,
i.e. preserves fibrations and trivial fibrations. This is true by definition of σp and
since projective global fibrations and trivial fibrations can be checked open-wise. To
prove that 2.18 is a Quillen pair, using the universal property of localization of model
categories, it suffices to prove that σp maps morphisms in S(A1,ét) of Ch(PSh(Smk;Q))
into morphisms in S(A1,ét) of Ch(PSh(SmC;Q)). This is true because σp preserves
representable functors and morphisms in Smk of the kind

U∗ → X & A1
X → X

are such that their base change along σ

Uσ∗ → Xσ & A1
Xσ
→ Xσ

are in SmC, since the properties of being smooth and étale are stable under base
change.

The Quillen pair 2.18 induces the total derived adjunction

σ∗ := Lσp : DAeff
ét (k;Q) DAeff

ét (C;Q) : Rσp =: σ∗.
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Composing with the adjunction of the Betti realization, we get the adjunction

Reff
Bet

∗
,σ : DAeff

ét (k;Q) DAeff
ét (C;Q) DAeff

ét (C;Q) : Reff
Bet,σ∗.

σ∗

σ∗

Reff
Bet

∗

Reff
Bet∗

Remark 2.2.27. For any X ∈ Smk, it holds that, for any n ∈ Z

HomDAeff
ét (k;Q)(M(X),Reff

Bet,σ∗Q[n]) ∼= HomDAeff
ét (C;Q)(σ

∗M(X),Reff
Bet∗Q[n]) ∼=

∼= HomDAeff
ét (C;Q)(M(Xσ),R

eff
Bet∗Q[n]) ∼= Hn

Bet(Xσ).

That is, the object
Reff

Bet,σ∗Q ∈ DAeff
ét (k;Q)

represents the Betti cohomology of the base change along σ in DAeff
ét (k;Q).

Now, let Λ ↪→ C be a field extension. The adjunction extension of scalars-forgetful
functor between the categories of Λ and C-vector spaces

⊗Λ C : V ectΛ V ectC : U.

extends to the categories of complexes of presheaves over Smk

⊗Λ C : Ch(PSh(Smk; Λ)) Ch(PSh(Smk;C)) : U. (2.19)

Proposition 2.2.28. The adjunction 2.19 is a Quillen pair with respect to the
projective global model structures. It induces the Quillen pair

⊗Λ C : L(A1,ét)Ch(PSh(Smk; Λ)) L(A1,ét)Ch(PSh(Smk;C)) : U. (2.20)

with respect to the projective (A1, ét)-local model structures

Proof. The adjunction 2.19 is a Quillen pair because the forgetful functor U is a
right Quillen functor, i.e. preserves fibrations and trivial fibrations. This is true
because projective global fibrations and trivial fibrations can be checked open-wise
and projective fibrations and projective trivial fibrations of complexes of C-vector
spaces are also of Λ-vectors spaces. To prove that 2.20 is a Quillen pair, using
the universal property of localization of model categories, it suffices to prove that
⊗Λ C maps morphisms in S(A1,ét) of Ch(PSh(Smk; Λ)) into morphisms in S(A1,ét)

of Ch(PSh(Smk;C)). This is true because ⊗Λ C maps the presheaf of Λ-vector
spaces represented by X in Ch(PSh(Smk; Λ))

Λ(X) : U ↦→ Λ[HomSmk
(U,X)]
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into the presheaf of C-vector spaces represented by X in Ch(PSh(Smk;C))

C(X) ∼= Λ(X)⊗Λ C : U ↦→ Λ[HomSmk
(U,X)]⊗Λ C ∼= C[HomSmk

(U,X)].

Notice that ⊗Λ C in the Quillen pair 2.19 is exact, since it is at the level of
vector spaces. Since it also preserves the set of morphisms S(A1,ét), then it is also
exact in the Quillen pair 2.20. Hence, the Quillen pair 2.20 induces the total derived
adjunction

⊗Λ C : DAeff
ét (k; Λ) DAeff

ét (k;C) : RU.

Now, we are able to state and prove the comparison result between the represen-
tative objects of algebraic de Rham and Betti cohomologies.

Theorem 2.2.29. Let σ : k ↪→ C be a field extension. Then, there exists a canonical
isomorphism in DAeff

ét (k;C)

Ω•
k ⊗k C ∼= Reff

Bet,σ∗Q⊗Q C.

Proof. The canonical isomorphism is obtained by composition of the following
canonical isomorphisms.

• We denote by Ω•
C0 the object inAnDAeff(C) given by the complex of presheaves

of C-vector spaces over AnSmC

Ω•
C0 : AnSm

op
C → Ch(C)
Y ↦→ Γ(Y ,Ω•

Y),

where Ω•
Y is the analytic de Rham complex of Y ∈ AnSmC. It is in fact

a complex of sheaves over the big étale-analytic site on AnSmC. Indeed,
for any Y ∈ AnSmC, since any cover of Y in the big étale-analytic site is
refined by one of the classical small analytic site Yan, then, it suffices to
prove that the restriction of Ω•

C0 to Yan is a complex of sheaves. This is true
since this restriction is Ω•

Y , which is a complex of sheaves over Yan. Consider
Cét-an
cst ∈ AnDAeff(C), the constant sheaf over the big étale-analytic site on

AnSmC. We have a canonical morphism of complexes of sheaves

Cét-an
cst → Ω•

C0 ,

such that, for any Y ∈ AnSmC, its restriction to the classical small analytic
site Yan is the canonical quasi-isomorphism 1.2 of the holomorphic version of
Poincaré Lemma

CY → Ω•
Y .
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Since any cover of Y in the big étale-analytic site is refined by one of the classical
small analytic site Yan, this implies that Cét-an

cst → Ω•
C0 is a quasi-isomorphism

of sheaves, hence an isomorphism in Dét-an and also in AnDAeff(C). Consider
Ccst, the constant presheaf over AnSmC, which is canonically isomorphic to
Cét-an
cst in AnDAeff(C), via the canonical morphism of sheafification. Hence, we

have the canonical isomorphisms in AnDAeff(C)

Ccst
∼= Cét-an

cst
∼= Ω•

C0 .

Applying the functor σ∗An∗, we obtain the canonical isomorphism inDAeff
ét (k;C)

Reff
Bet,σ∗C ∼= σ∗An∗Ccst

∼= σ∗An∗Ω
•
C0 .

Moreover, we have that in DAeff
ét (k;C)

Reff
Bet,σ∗C ∼= Reff

Bet,σ∗Q⊗Q C.

Indeed, reasoning as in step 1 and 2 of proposition 2.2.19, we see that
DAeff

ét (k;C) coincides with its triangulated subcategory generated by motives
associated to smooth algebraic varieties over k

DAeff
ét (k;C) = ⟨M(X) | X ∈ Smk⟩.

Hence, it suffices to prove that, for any X ∈ Smk and n ∈ Z,

HomDAeff
ét (k;C)

(M(X),Reff
Bet,σ∗C[n]) ∼= HomDAeff

ét (k;C)
(M(X),Reff

Bet,σ∗Q⊗Q C[n]).

On one hand, by remarks 2.2.20 and 2.2.27, we have that

HomDAeff
ét (k;C)

(M(X),Reff
Bet,σ∗C[n]) ∼= HomDAeff

ét (C;C)
(M(Xσ),R

eff
Bet∗C[n]) ∼= Hn

Sing(Xσ(C);C).

On the other hand, by remark 2.2.27, we have that

HomDAeff
ét (k;C)

(M(X),Reff
Bet,σ∗Q⊗Q C[n]) ∼= HomDAeff

ét (k;Q)(M(X),Reff
Bet,σ∗Q[n])⊗Q C ∼=

∼= Hn
Sing(Xσ(C);Q)⊗Q C.

Then, the wanted isomorphism follows because

Hn
Sing(Xσ(C);C) ∼= Hn

Sing(Xσ(C);Q)⊗Q C.

So, we obtained the canonical isomorphism in DAeff
ét (k;C)

Reff
Bet,σ∗Q⊗Q C ∼= σ∗An∗Ω

•
C0 . (2.21)

153



Chapter 2

• We want to prove that there exists a canonical isomorphism in DAeff
ét (C;C)

An∗Ω
•
C0
∼= Ω•

C.

Since DAeff
ét (C;C) coincides with its triangulated subcategory generated by

motives associated to smooth algebraic varieties over C, then, it suffices to
prove that, for any X ∈ SmC and n ∈ Z,

HomDAeff
ét (C;C)

(M(X),An∗Ω
•
C0 [n]) ∼= HomDAeff

ét (C;C)
(M(X),Ω•

C[n]).

On one hand, since Ω•
C represents the algebraic de Rham cohomology, then

HomDAeff
ét (C;C)

(M(X),Ω•
C[n])

∼= Hn
AdR(X/C).

On the other hand, analogously to remark 2.2.25, we see that Ω•
C0 is a D1-local

object. Analogously to the algebraic case, we deduce that Ω•
C0 represents the

analytic de Rham cohomology. So, we have

HomDAeff
ét (C;C)

(M(X),An∗Ω
•
C0 [n]) ∼= HomAnDAeff(C)(An

∗M(X),Ω•
C0 [n]) ∼=

∼= HomAnDAeff(C)(Man(X(C)),Ω•
C0 [n]) ∼=

∼= HomDét-an
(Cét-an(X(C)),Ω•

C0 [n]) ∼=
∼= Hn(X(C)an,Ω•

X(C)) = Hn
dR(X(C)).

Then, the wanted isomorphism follows from the comparison theorem between
algebraic and analytic de Rham cohomology (theorem 1.5.24). Applying
functor σ∗ we obtain the canonical isomorphism in DAeff

ét (k;C)

σ∗An∗Ω
•
C0
∼= σ∗Ω

•
C. (2.22)

• Finally, we prove that there exists a canonical isomorphism in DAeff
ét (k;C)

Ω•
k ⊗k C ∼= σ∗Ω

•
C. (2.23)

As in the previous point, it suffices to prove that for any X ∈ Smk and n ∈ Z,

HomDAeff
ét (k;C)

(M(X),Ω•
k ⊗k C[n]) ∼= HomDAeff

ét (k;C)
(M(X), σ∗Ω

•
C[n]).

On one hand, we have that

HomDAeff
ét (k;C)

(M(X),Ω•
k ⊗k C[n]) ∼= HomDAeff

ét (k;Q)(M(X),Ω•
k[n])⊗k C ∼=

∼= Hn
AdR(X/k)⊗k C.
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On the other hand, we have that

HomDAeff
ét (k;C)

(M(X), σ∗Ω
•
C[n])

∼= HomDAeff
ét (C;C)

(σ∗M(X),Ω•
C[n])

∼=
∼= HomDAeff

ét (C;C)
(M(Xσ),Ω

•
C[n])

∼=
∼= Hn

AdR(Xσ/C).

Then, the wanted isomorphism follows because we proved that (see the third
point in theorem 1.6.2)

Hn
AdR(X/k)⊗k C ∼= Hn

AdR(Xσ/C).

Putting together the canonical isomorphisms 2.21, 2.22 and 2.23, we obtain the
canonical isomorphism in DAeff

ét (k;C)

Reff
Bet,σ∗Q⊗Q C ∼= σ∗An∗Ω

•
C0
∼= σ∗Ω

•
C
∼= Ω•

k ⊗k C.

2.3 The Grothendieck Period Conjecture

In this section we describe a statement of the Grothendieck Period Conjecture.
References are [BC14, §1.4] (where is discussed also another formulation, involving
the motivic Galois group, and relations between them), [And+20, §1.3] and [And04,
§7.5].

2.3.1 The pure case

First, we consider the setting of smooth projective algebraic varieties. Let σ : Q ↪→ C
be the inclusion. Given X ∈ SmProjQ, recall that in subsection 2.1.2 we defined
the twisted algebraic de Rham cohomology

Hp
AdR(X/Q)(q) := Hp

AdR(X/Q)

and the twisted Betti cohomology

Hp
Bet(Xσ)(q) := (2πi)qHp

Bet(Xσ).

We also proved the existence of a canonical isomorphism between them, taking
coefficients in C,

ϖp,q : Hp
AdR(X/Q)(q)⊗Q C ∼= Hp(Xσ(C)an,CXσ(C))

∼= Hp
Bet(Xσ)(q)⊗Q C.
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Consider {ωj} a Q-basis of Hp
AdR(X/Q) and {γi} a Q-basis of HSing

p (Xσ(C);Q). Hence,
{(2πi)qγ̃i} is a Q-basis of Hp

Bet(Xσ)(q), where each γ̃i ∈ Hp
Sing(Xσ(C);Q) ∼= Hp

Bet(Xσ)
is the dual element of γi. Recall from subsection 1.6.2, that the representative matrix
of ϖp,q, with respect to the bases {ωj} and {(2πi)qγ̃i}, is given by[

1

(2πi)q

∫
γi

ωj

]
i,j

.

That is, we have, for any j,

ϖp,q(ωj) =
∑
i

(
1

(2πi)q

∫
γi

ωj

)
(2πi)qγ̃i.

Moreover, we proved the compatibility of ϖp,q with the cycle class maps (proposition
2.1.15). That is, we have the commutative square, for any q ≥ 0,

CHq(X)Q H2q
Bet(Xσ)(q)

H2q
AdR(X/Q)(q) H2q(Xσ(C)an,CXσ(C)).

clqBet,X◦σ̃∗

clqAdR,X
(2.24)

Notice that this commutative square tells that Q-linear algebraic cycles of X induce
Q[π−1]-linear relations between periods of X as follows. Let α ∈ CHq(X)Q be the
rational class of a Q-linear algebraic cycle of X. We write

clqAdR,X(α) =
∑
j

ajωj & clqBet,X ◦ σ̃
∗(α) =

∑
i

bi(2πi)
qγ̃i,

with aj ∈ Q and bi ∈ Q. Then, by commutativity of 2.24, we have that, for any i,∑
j

aj
1

(2πi)q

∫
γi

ωj = bi,

which are Q[π−1]-linear relations between periods of X. More generally, using
Künneth formula, we can see that Q-linear algebraic cycles over products Xn =
X ×Q · · · ×Q X induce some polynomial relations with coefficients in Q[π−1] of
homogeneous degree n between periods of X.

Grothendieck conjectured that these are in fact all possible polynomial relations
between periods. More precisely, the conjecture can be stated as follows. We denote
by

Hp,q
ϖ (X) := Hp

AdR(X/Q)(q) ∩ Hp
Bet(Xσ)(q),

where the intersection is taken inside Hp(Xσ(C)an,CXσ(C)). As above, an element
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2.3. The Grothendieck Period Conjecture

in Hp,q
ϖ (X) induces a Q[π−1]-linear relation between periods of X. More generally,

an element in Hp,q
ϖ (Xn) induces a polynomial relation with coefficients in Q[π−1] of

homogeneous degree n between periods of X. By commutativity of the diagram 2.24,
we deduce that the algebraic de Rham and Betti cycle class maps induce a morphism

clqϖ,X : CHq(X)Q → H2q,q
ϖ (X).

This map assigns to each algebraic cycle the corresponding polynomial relation
between periods induced by it.

Conjecture 2.3.1 (Grothendieck Period Conjecture). Given X ∈ SmProjQ, we
say that the Grothendieck Period Conjecture holds for X, if, for any q ≥ 0, the
morphism

clqϖ,X : CHq(X)Q → H2q,q
ϖ (X).

is surjective.

The Grothendieck Period Conjecture can be expressed, equivalently, by stating
that a certain realization functor from the category of Chow motives is full. Let
σ : k ↪→ C be a field extension. Since algebraic de Rham and Betti cohomologies are
Weil cohomologies, we have realization functors from the category of Chow motives

RAdR : CHM(k;Q)→ V ectQ

and
RBet,σ : CHM(k;Q)→ CHM(C;Q)

RBet−−→ V ectQ,

where the first arrow maps Chow motives of the kind h(X) into h(Xσ).
We consider the Q-linear abelian category

V ectk,Q

whose objects are triples (Vk, VQ, ϖ), where Vk is a finite dimensional k-vector space,
VQ is a finite dimensional Q-vector space andϖ : Vk⊗kC ∼= VQ⊗QC is an isomorphism
of C-vector spaces. It is a tensor abelian category with tensor product the usual
tensor product of vector spaces and unit 1 := (k,Q, idC). Morphisms of triples are
given by morphisms of k-vector spaces between the first components and morphisms
of Q-vector spaces between the second components, which are compatible with the
isomorphisms given by the third component. The compatibility of algebraic de Rham
and Betti cycle class maps with the twisted algebraic de Rham isomorphism allows
to define a functor

Rϖ : CHM(k;Q)→ V ectk,Q,

which assigns to Chow motives of the kind h(X), the triple

(⊕i≥0H
i
AdR(X/k),⊕i≥0H

i
Bet(Xσ),⊕i≥0ϖ

i).
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Notice that composition with forgetful functors, given by the projections to the first
and second components, give back the algebraic de Rham realization functor

RAdR : CHM(k;Q)
Rϖ−−→ V ectk,Q → V ectk

and the Betti realization functor

RBet,σ : CHM(k;Q)
Rϖ−−→ V ectk,Q → V ectQ.

For this reason, we say that Rϖ is an enrichment of both algebraic de Rham and
Betti realization functors.

Definition 2.3.2. The enriched realization functor Rϖ is called the de Rham-Betti
realization functor.

Proposition 2.3.3. The Grothendieck Period Conjecture 2.3.1 is equivalent to ask
that the de Rham-Betti realization functor

Rϖ : CHM(Q;Q)→ V ectQ,Q

is full.

Proof. Notice that, given an object (VQ, VQ, ϖ) ∈ V ectQ,Q, to give a morphism

1 = (Q,Q, idC)→ (VQ, VQ, ϖ),

is equivalent to given an element in VQ and an element in VQ, which correspond via
the isomorphism ϖ : VQ ⊗Q C ∼= VQ ⊗Q C. This is also equivalent to give an element
in

Vϖ := VQ ∩ VQ,

where the intersection is considered inside VQ ⊗Q C ∼= VQ ⊗Q C. Recall from remark
2.1.23, that the algebraic de Rham and Betti cycle class maps can be recoverd as
morphisms induced on hom-sets by their respective realization functors:

cliAdR,X : CHi(X)Q ∼= HomCHM(Q;Q)(1, h(X)(i))→ HomgrV ectQ
(Q,H∗

AdR(X/Q)(i)) ∼= H2i
AdR(X/Q)(i)

and

cliBet,X : CHi(Xσ)Q ∼= HomCHM(C;Q)(1, h(Xσ)(i))→ HomgrV ectQ(Q,H
∗
Bet(Xσ)(i)) ∼= H2i

Bet(Xσ)(i).

Then, we see that the morphism on hom-sets induced by the de Rham-Betti realization
is

CHi(X)Q ∼= HomCHM(Q;Q)(1, h(X)(i))→ HomV ectQ,Q
(1, Rϖ(h(X)(i))) ∼= H2i,i

ϖ (X),
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which is exactly the morphism cliϖ,X , considered in the statement of the Grothen-
dieck Period Conjecture. So, fullness of the de Rham-Betti realization implies the
Grothendieck Period Conjecture. Viceversa, assume that the Grothendieck Period
Conjecture holds for any smooth projective algebraic variety over Q. For objects of
the kind h(X)(r), h(Y )(s) ∈ CHM(Q;Q), with X irreducible of dimension d, recall
from 2.7, that the morphism on hom-sets induced by the algebraic de Rham and
Betti realizations are given by suitable components of the corresponding cycle class
maps of the product X ×k Y . Then, we see that the morphism induced on hom-sets
by the de Rham-Betti realization is given by

cld+s−rϖ : CHd+s−r(X ×k Y )→ H2(d+s−r),d+s−r
ϖ (X ×k Y ),

which is surjective, by the Grothendieck Period Conjecture for X×kY . For general X,
the morphism induced on hom-sets is the direct sum of the ones obtained for each irre-
ducible component of X, so it is surjective. For general objects ph(X)(r), qh(Y )(s) ∈
CHM(Q;Q), by description of the algebraic de Rham and Betti realizations, we
see that the morphism induced on hom-sets by the de Rham-Betti realization is a
surjective restriction of the one obtained for h(X)(r), h(Y )(s) ∈ CHM(Q;Q). So,
the de Rham-Betti realization is full.

2.3.2 The mixed case

Now, we consider the more general setting of smooth algebraic varieties. Given
σ : k ↪→ C a field extension, we have a diagram in DAeff

ét (k;Q), for any q ≥ 0,

Q(q) Reff
Bet,σ∗Q(q)

Ω•
k Reff

Bet,σ∗C.

rqBet

rqAdR
(2.25)

The morphisms are defined as follows. In Reff
Bet,σ∗Q(q), by Q(q), we mean the object

Q(q) := (2πi)qQ ∈ D(Q). Notice that, since Reff
Bet

∗
,σ is a triangulated functor, hence

preserves exact triangles, then, by remark 2.2.23, Reff
Bet

∗
,σ maps Q(1) into the reduced

complex of singular chains of C×, shifted by −1. It is canonically quasi-isomorphic
to 2πiQ concentrated in degree 0. Hence, in D(Q)

Reff
Bet

∗
,σQ(1) ∼= 2πiQ = Q(1).

Since Reff
Bet

∗
,σ is a monoidal functor (remark 2.2.22), then

Reff
Bet

∗
,σQ(q) ∼= Reff

Bet

∗
,σQ(1)⊗q ∼= (Reff

Bet

∗
,σQ(1))⊗q ∼= (2πi)qQ = Q(q).
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The upper horizontal morphism is the composition

rqBet : Q(q)→ Reff
Bet,σ∗R

eff
Bet

∗
,σQ(q) ∼= Reff

Bet,σ∗Q(q),

where the first morphism is the unit of the adjunction (Reff
Bet

∗
,σ,R

eff
Bet,σ∗). The lower

horizontal morphism is the composition

Ω•
k → Ω•

k ⊗k C ∼= Reff
Bet,σ∗C,

where the isomorphism is the comparison theorem 2.2.29. The right vertical
morphism is obtained by applying the functor Reff

Bet,σ∗ to the inclusion

Q(q) = (2πi)qQ ↪→ C.

We have a canonical isomorphism in DAeff
ét (k;Q) (see [MVW06, Thm. 4.1])

Q(1) ∼= O×[−1],

where O× is the presheaf of k-vector spaces over Smk, such that X ↦→ OX(X)×. We
define

r1AdR : Q(1) ∼= O×[−1] d log−−→ Ω•
k.

The left vertical morphism is defined as

rqAdR : Q(q) ∼= Q(1)⊗q
(r1AdR)⊗q

−−−−−→ (Ω•
k)

⊗q → Ω•
k,

where the last morphism is given object-wise by product of algebraic forms.

It holds that the square 2.25 is commutative. For any X ∈ Smk and p ∈ Z,
applying the functor HomDAeff

ét (k;Q)(M(X), [p]) to the commutative square 2.25, we
obtain the commutative square

Hp(X,Q(q)) Hp
Bet(Xσ)(q)

Hp
AdR(X/k) Hp(Xσ(C)an,CXσ(C)).

(2.26)

For p = 2q and X ∈ SmProjk, we get back the commutative square 2.24. This
naturally leads to formulate the following generalization of the Grothendieck Period
Conjecture 2.3.1 for étale motivic cohomology groups. We denote by

Hp,q
ϖ (X) := Hp

AdR(X/k) ∩ Hp
Bet(Xσ)(q),

where the intersection is taken inside Hp(Xσ(C)an,CXσ(C)). By commutativity of the
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2.3. The Grothendieck Period Conjecture

diagram 2.26, we deduce a morphism

Hp(X,Q(q))→ Hp,q
ϖ (X).

Conjecture 2.3.4 (Generalized Grothendieck Period Conjecture). Given X ∈ SmQ,
we say that the Grothendieck Period Conjecture holds for X, if, for any p, q ≥ 0, the
morphism

Hp(X,Q(q))→ Hp,q
ϖ (X).

is surjective.
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Appendix A

Cohomology on sites

Just to recall and fix notations, we collect here some standard definitions and facts
in sheaf cohomology theory.

The setting is the following: we consider C a site and abelian sheaves over C.
We denote their category by Ab(C). If moreover we have a sheaf of rings O over C,
then we have a ringed site (C,O) and we can consider sheaves of O-modules over
C. We denote their category by Mod(O), which is a subcategory of Ab(C). Given
R a commutative ring with unit, we denote by R the constant sheaf of rings on C.
In this case, Mod(R) is the category of sheaves of R-modules over C. Notice that
taking R = Z, Mod(Z) is the category Ab(C). Mod(O) and Ab(C) are Grothendieck
categories, so we can use Homological Algebra techniques. Recall that, given an
additive functor G : B → A between Grothendieck categories, if G is left-exact, we
can consider the total right-derived functor between bounded below derived categories

RG : D+(B)→ D+(A).

It is computed by, for any X• ∈ D+(B),

RG(X•) ∼= G(I•),

where I• ∈ Ch+(B) is a complex of injective objects with a quasi-isomorphism
X• ∼−→ I•, called injective reslution. Composing with cohomology functors, we obtain
the right-derived functors of G, for each i ∈ Z,

RiG : Ch+(B)→ D+(B) RG−−→ D+(A) Hi

−→ A.

Given an object X ∈ B, we can think at it as an object of Ch+(B), as the complex
concentrated in degree 0. This defines a functor

B → Ch+(B).
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Composing with this functor, we obtain the family of functors, for each p ≥ 0,

RpG : B → Ch+(B) RpG−−→ A,

which form a universal δ-functor. More generally, to compute the total right-derived
functors of G, instead of I•, we can take A• ∈ Ch+(B) a complex of G-acyclic objects,
i.e. such that, for any i ∈ Z,

RpG(Ai) = 0 for each p > 0,

with a quasi-isomorphism X• ∼−→ A•, called G-acyclic resolution.

Cohomology of abelian sheaves

Let C be a site. Given an object U ∈ C, consider the global sections functor over U

Γ(U, ) : Ab(C)→ Z-mod

F ↦→ F (U).

It is a left-exact functor between Grothendieck categories. So we can consider its
total right-derived functor

RΓ(U, ) : D+(Ab(C))→ D+(Z).

Composing with cohomology functors, we get the functors, for each i ∈ Z,

Hi(U, ) : D+(Ab(C)) RΓ(U, )−−−−−→ D+(Z) Hi

−→ Z-mod.

Definition A.0.1. Given F • ∈ D+(Ab(C)), for each i ∈ Z, the abelian group

Hi(U, F •) := Hi(RΓ(U, F •))

is called the ith-cohomology group of U with coefficients in F •.

Let PAb(C) be the category of abelian presheaves over C and denote by e its
terminal object, the constant presheaf of the trivial group. Consider the functor

Γ(C, ) := HomPAb(C)(e, ) : Ab(C)→ Z-mod,

It is a left-exact functor between Grothendieck categories. So we can consider its
total right-derived functor

RΓ(C, ) : D+(Ab(C))→ D+(Z).
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Composing with cohomology functors, we get the functors, for each i ∈ Z,

Hi(C, ) : D+(Ab(C)) RΓ(C, )−−−−−→ D+(Z) Hi

−→ Z-mod.

Definition A.0.2. Given F • ∈ D+(Ab(C)), for each i ∈ Z, the abelian group

Hi(C, F •) := Hi(RΓ(C, F •))

is called the ith-cohomology group of C with coefficients in F •.

Notice that, if C has terminal object X, then e = hX , the presheaf represented
by X. By Yoneda Lemma,

Γ(C, ) ∼= Γ(X, ).

Hence, their total right-derived functors are isomorphic and for each, i ∈ Z,

Hi(C, ) ∼= Hi(X, ).

For example, this is the case of a localization site C/U , for some object U ∈ C,
which has terminal object U . The forgetful functor C/U → C is continuous and
cocontinuous. Hence, it induces the triple of adjoint functors

Ab(C) Ab(C/U).
j−1
U

jU∗

jU !

Moreover jU ! is exact. For any F ∈ Ab(C), we denote by

F
⏐⏐
U
:= j−1

U F.

Notice that, for any F ∈ Ab(C),

Γ(C/U, F
⏐⏐
U
) ∼= Γ(U, F

⏐⏐
U
) ∼= Γ(u(U), F ) ∼= Γ(U, F ),

i.e. we have the commutative diagram of left-exact functors

Ab(C) Z-mod.

Ab(C/U)

Γ(U, )

j−1
U

Γ(C/U, )

Recall that, given a composition of left-exact functors between Grothendieck cate-
gories

C G′
−→ B G−→ A,

if G′ takes injective objects into G-acyclic ones (for example, if G is right-adjoint to
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an exact functor, then it preserves injective objects, which are acyclic with respect
to any functor), then we have a natural isomorphism of total right-derived functors

R(GG′) ∼= RG ◦RG′

and the associated Grothendieck spectral sequence, for any X• ∈ D+(C),

Ep,q
2 = (RpG ◦RqG′)(X•)⇒ Rp+q(GG′)(X•),

functorial in X•. Since j−1
U is right-adjoint of jU !, which is exact, we can apply

this to the above commutative diagram of left-exact functors. We deduce a natural
isomorphism of total right-derived functors

RΓ(C/U) ◦Rj−1
U
∼= RΓ(U, ).

Since j−1
U is exact, then Rj−1

U = j−1
U . Hence, for any F • ∈ D+(Ab(C)), we have the

isomorphisms of abelian groups, for each i ∈ Z,

Hi(C/U, F •⏐⏐
U
) ∼= Hi(U, F •),

natural in F •. This tells that cohomology of an object can be seen as cohomology of
the associated localization site.

Cohomology of sheaves of modules

Let (C,O) be a ringed site. We have definitions analogous to the ones of in previous
paragraph. Given an object U ∈ C, consider the global sections functor over U

Γ(U, ) : Mod(O)→ O(U)-mod

F ↦→ F (U),

It is a left-exact functor between Grothendieck categories. So we can consider its
total right-derived functor

RΓ(U, ) : D+(Mod(O))→ D+(O(U)).

Composing with cohomology functors, we get the functors, for each i ∈ Z,

Hi(U, ) : D+(Mod(O)) RΓ(U, )−−−−−→ D+(O(U)) Hi

−→ O(U)-mod.

Definition A.0.3. Given F • ∈ D+(Mod(O)), for each i ∈ Z, the O(U)-module

Hi(U, F •) := Hi(RΓ(U, F •)).

is called the ith-cohomology group of U with coefficients in F •.
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Consider the functor

Γ(C, ) := HomMod(O)(O, ) : Mod(O)→ Γ(C,O)-mod,

where Γ(C,O) := EndMod(O)(O). It is a left-exact functor of Grothendieck categories.
So we can consider its total right-derived functor

RΓ(C, ) : D+(Mod(O))→ D+(Γ(C,O)).

Composing with cohomology functors, we get the functors, for each i ∈ Z,

Hi(C, ) : D+(Mod(O)) RΓ(C, )−−−−−→ D+(O(U)) Hi

−→ O(U)-mod.

Definition A.0.4. Given F • ∈ D+(Mod(O)), for each i ∈ Z, the Γ(C,O)-module

Hi(C, F •) := Hi(RΓ(C, F •))

is called the ith-cohomology group of C with coefficients in F •.

These definitions are not only the analogous of the ones for abelian sheaves. In
fact, they coincide with them. Given F ∈ Mod(O), denote by Fab the underlying
complex of abelian sheaves. This defines a functor

( )ab : Mod(O)→ Ab(C),

which is exact and takes injective objects into Γ(U, )-acyclic objects, for any object
U ∈ C. 1 For any U ∈ C, consider the functors

Γ(U, ( )ab) : Mod(O)→ Ab(C)→ Z-mod

and
Γ(U, ) : Mod(O)→ O(U)-mod→ Z-mod,

where the second functor is the forgetful functor, which is exact. These functors are
isomorphic, hence also their total right-derived functors are

RΓ(U, ) ◦ ( )ab ∼= RΓ(U, ) ◦R( )ab ∼= RΓ(U, ( )ab) ∼= RΓ(U, )

Hence, for any F • ∈ Mod(O) and for each i ∈ Z,

Hi(U, F •
ab)
∼= Hi(U, F •).

as abelian groups, where the first one is computed as cohomology of a complex of

1It can be proved using that Hp(U, ( )ab), cohomology of abelian sheaves, and Hp(U, ),
cohomology of sheaves of O-modules, are both universal δ-functors Mod(O)→ Z-mod, hence they
are isomorphic.
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abelian sheaves and the second as cohomology of a complex of sheaves of O-modules.

It also holds that
Hi(C, F •

ab)
∼= Hi(C, F •)

as abelian groups.

So, dealing with sheaf cohomology groups, we can simply think at complexes of
abelian sheaves. If moreover a complex of abelian sheaves is a complex of O-modules,
then the cohomology groups of U inherit the additional structure of O(U)-modules.

Functoriality morphisms

Let f : C → D be a morphism of sites, with associated continuous functor u : D → C.
Consider the inverse image functor

f−1 : Ab(D)→ Ab(C).

Recall that, for any G ∈ Ab(D), the abelian sheaf f−1G is the sheafification of the
abelian presheaf over C

U ↦→ lim−→
U→u(V )∈C

G(V ).

For any V ∈ D and G ∈ Ab(D), we have a canonical morphism of abelian groups

Γ(V,G)→ lim−→
u(V )→u(V ′)∈C

G(V ′)→ Γ(u(V ), f−1G),

where the second arrow is the canonical morphism of sheafification. This defines a
morphism of functors Ab(C)→ Z-mod

Γ(V, )→ Γ(u(V ), f−1 ),

which induces a morphisms between their total right-derived functors and hence
morphisms of abelian groups, for any G• ∈ D+(Ab(C)), for each i ≥ 0,

Hi(V,G•)→ Hi(u(V ), f−1G•), (A.1)

natural in G•.

If moreover f : (C,OC) → (D,OD) is a morphism of ringed sites, for any G• ∈
D+(Mod(OD)), the canonical morphism of abelian sheaves

f−1G• → f−1G• ⊗f−1OD OC = f ∗G•

induces canonical morphisms on cohomology of u(V ), for each i ≥ 0,

Hi(u(V ), f−1G•)→ Hi(u(V ), f ∗G•), (A.2)
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natural in G•. Composing morphisms A.1 and A.2, we get the canonical morphisms
of abelian groups

Hi(V,G•)→ Hi(u(V ), f ∗G•),

natural in G•. It is also a morphism of OD(V )-modules.

Čech cohomology

In the previous paragraphs we described a notion of cohomology with coefficients
in complexes of sheaves over a site. Now, we define a notion of cohomology with
coefficients in complexes of abelian presheaves. Let C be a category (we don’t need
the notion of site). We denote by PAb(C) the category of abelian presheaves over C.
PAb(C) is a Grothendieck category, so we can use Homological Algebra techniques.
Given an object U ∈ C, we can still consider the global sections functor over U on
the category PAb(C). However, since it is exact, its total right-derived functor is
trivial, so it is not an interesting object. A natural meaningful alternative in the
setting of abelian presheaves is given by the following functor. Assume that the
category C has fibered products (we can do without this assumption using Yoneda
embedding, but definitions are more involved). Given U = {Ui → U}i∈I a family of
morphisms over U in C, for any finite number of morphisms in U , we denote by

Ui0...in := Ui0 ×U · · · ×U Uin

their fiber product in C. Consider the functor

Ȟ
0
(U ; ) : PAb(C)→ Z-mod

P ↦→ ker

(∏
i0

P (Ui0)→
∏
i0,i1

P (Ui0i1)

)
.

Since it is a composition of limits, it is left-exact. So we can consider its total
right-derived functor

RȞ
0
(U ; ) : D+(PAb(C))→ D+(Z).

Composing with cohomology functors, we get the functors, for each i ∈ Z,

Ȟ
i
(U , ) : D+(PAb(C)) RȞ

0
(U ; )−−−−−−→ D+(Z) Hi

−→ Z-mod.

Definition A.0.5. Given P • ∈ D+(PAb(C)), for each i ≥ 0, the abelian group

Ȟ
i
(U ;P •) := Hi(RȞ

0
(U ;P •))

is called the ith-Čech cohomology group of U relative to U with coefficients in P •.
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Besides the usual computation via injective resolutions, Čech cohomology groups
can be computed also as the cohomology groups of an explicit complex of abelian
groups. Consider the case of a complex of abelian presheaves P concentrated in
degree 0. We will see the general case in the following paragraph. We define the
complex of abelian groups

Č•(U ;P ) :
∏
i0

P (Ui0)→
∏
i0,i1

P (Ui0i1)→
∏
i0,i1,i2

P (Ui0i1i2)→ · · · ,

called Čech complex of P relative to U . It can be proved that the family of functors

HpČ•(U ; ) : PAb(C)→ Z-mod

P ↦→ Hp(Č•(U ;P ))

is a universal δ-functor. Since

H0Č•(U ;P ) ∼= ker

(∏
i0

P (Ui0)→
∏
i0,i1

P (Ui0i1)

)
= Ȟ

0
(U ;P ),

we deduce that HpČ•(U ; ) is isomorphic to the universal δ-functor given by the

right-derived functors of Ȟ
0
(U ; )

RpȞ
0
(U ; ) : PAb(C)→ Z-mod

P ↦→ Ȟ
p
(U ;P ).

Hence Čech cohomology in P relative to U can be computed as cohomology groups
of the Čech complex of P relative to U

Ȟ
p
(U ;P ) ∼= Hp(Č•(U , P )).

If moreover C is endowed with a site structure, we can consider abelian sheaves
over C, which are in particular abelian presheaves over C. It is natural to ask if
cohomology groups of an object U ∈ C with coefficients in an abelian sheaf coincide
with Čech cohomology groups of U relative to some cover of U with coefficients in
the underlying abelian presheaf. In general they don’t, but there always exists a
spectral sequence relating them. We will see it in a successive paragraph.

Hyper-cohomology spectral sequences

Recall that to compute the total right-derived functor of a left-exact additive functor
G : B → A between Grothendieck abelian categories, we have to take injective
resolutions. Given an object X• ∈ D+(B), an injective resolution X• ∼−→ I• can be
obtained as follows. Assume that X• is concentrated in non-negative degrees. For
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each p ≥ 0, we take an injective resolution of Xp in B

Xp → Ip,0 → Ip,1 → Ip,2 → · · · .

We use the definition of injective object to construct a first quadrant double complex
I•,• with these injective resolutions on the pth-column

· · · · · · · · ·
↑ ↑ ↑
I0,2 → I1,2 → I2,2 → · · ·
↑ ↑ ↑
I0,1 → I1,1 → I2,1 → · · ·
↑ ↑ ↑
I0,0 → I1,0 → I2,0 → · · · .

Consider the total complex Tot⊕I•,• ∈ Ch+(B). A spectral sequences argument shows
that the canonical morphism X• → Tot⊕I•,• is a quasi-isomorphism. Moreover, since
finite direct sums of injective objects are injective, Tot⊕I•,• is a complex of injective
objects, hence it is an injective resolution of X•.

Now, consider the problem of computing the cohomology groups

Hi(RG(X•)) ∼= Hi(G(I•)).

Choosing the injective resolution I• = Tot⊕I•,• constructed above, this is the problem
of computing the cohomology groups of the total complex Tot⊕G(I•,•) because

Hi(G(I•)) = Hi(G(Tot⊕I•,•)) ∼= Hi(Tot⊕G(I•,•)).

Recall that, given a first quadrant double complex, there exist two spectral sequences
converging to the cohomology of its total complex. Consider the one whose page 1 is
obtained by computing vertical cohomology of the double complex and page 2 the
induced horizontal cohomology

Ep,q
1 = Hq(G(Ip,•))⇒ Hp+q(Tot⊕G(I•,•)).

Since on columns of I•,• we have injective resolutions of Xp, then

Hq(G(Ip,•)) ∼= RqG(Xp).

Hence, the above spectral sequence is

Ep,q
1 = RqG(Xp)⇒ Hp+q(RG(X•)).

Applying this spectral sequence to the left-exact functors defining cohomology
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and Čech cohomology we get

Ep,q
1 = Hq(U, F p)⇒ Hp+q(U,F•)

Ep,q
1 = Ȟ

q
(U ;P p)⇒ Ȟ

p+q
(U ;P •),

where notation is the same of the above corresponding paragraphs. These spectral
sequences are useful to reduce from cohomology with coefficients in a complex of
abelian sheaves to cohomology with coefficients in a single abelian sheaf, thought as a
complex concentrated in degree 0. The former is sometimes called hyper-cohomology,
to distinguish it from the latter special case (even if there’s no reason to do it). For
this reason these spectral sequences are called hyper-cohomology spectral sequences.
Moreover these spectral sequences are functorial.

Notice that the hyper-cohomology spectral sequence for Čech cohomology also
suggests a way to compute Čech cohomology with coefficients in P • ∈ D+(PAb(C)) as
cohomology of an explicit complex of abelian groups. Assume that P • is concentrated
in non-negative degrees. By functoriality of Čech complex, we can construct a first
quadrant double complex of abelian groups Č•(U ;P•) with Čech complexes of P p

on the pth-column

· · · · · · · · ·
↑ ↑ ↑∏

i0,i1,i2
P 0(Ui0i1i2) →

∏
i0,i1,i2

P 1(Ui0i1i2) →
∏

i0,i1,i2
P 2(Ui0i1i2) → · · ·

↑ ↑ ↑∏
i0,i1

P 0(Ui0i1) →
∏

i0,i1
P 1(Ui0i1) →

∏
i0,i1

P 2(Ui0i1) → · · ·
↑ ↑ ↑∏

i0
P 0(Ui0) →

∏
i0
P 1(Ui0) →

∏
i0
P 2(Ui0) → · · · .

We can consider the spectral sequence converging to the cohomology of its total
complex

Ep,q
1 = Hq(Č•(U ;P p))⇒ Hp+q(Tot⊕Č•(U ;P •)).

Since on columns of Č•(U ;P •) there are Čech complexes of P p, then

Hq(Č•(U ;P p)) ∼= Ȟ
q
(U ;P p).

Hence the above spectral sequence is isomorphic to the hyper-cohomology spectral
sequence for Čech cohomology. By uniqueness of the limit, it follows that Čech
cohomology can be computed as the cohomology of the total complex of Č•(U ;P •)

Ȟ
i
(U ;P •) ∼= Hi(Tot⊕C•(U ;P •)).
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Čech-to-derived spectral sequence and Leray’s Theorem.

We describe a spectral sequence relating cohomology groups to Čech cohomology
groups. Let C be a site. Consider the full embedding

ι : Ab(C) ↪→ PAb(C),

which associates to each abelian sheaf over C its underlying abelian presheaf. It has
a left-adjoint given by the sheafification functor, so it is left-exact. Hence we can
consider its total right-derived functor

H := Rι : D+(Ab(C))→ D+(PAb(C)).

Composing with cohomology functors, we get the functors, for each i ∈ Z,

Hi := Riι : D+(Ab(C)) H−→ D+(PAb(C)) Hi

−→ PAb(C).

They are such that, for any F ∈ Ab(C), for each q ≥ 0, Hq(F ) is the abelian presheaf
over C

U ↦→ Hq(U, F ).

Let U ∈ C be an object. By definition of sheaves over C, we have that, for any
F ∈ Ab(C) and for any U covering over U ,

Ȟ
0
(U ;F ) = F (U) = Γ(U, F ),

i.e. we have the commutative diagram of left-exact functors

Ab(C) Z-mod.

PAb(C)

Γ(U, )

ι Ȟ
0
(U , )

Since ι is right-adjoint to the sheafification functor, which is exact, we have the
Grothendieck spectral sequence, for any F • ∈ D+(Ab(C))

Ep,q
2 = Ȟ

p
(U ;Hq(F •))⇒ Hp+q(U, F •),

functorial in F •, called Čech-to-derived spectral sequence. In case this spectral
sequence degenerates, we can obtain isomorphisms between cohomology and Čech
cohomology. An example is given by the following theorem.

Theorem A.0.6 (Leray’s Theorem). Let C be a site and F • ∈ Ab(C). Assume that
F • is concentrated in non-negative degrees. Assume that C has fiber products. Let
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U = {Ui → U}i∈I be a cover of an object U ∈ C, such that, for any p ≥ 0

Hs(F p)(Ui0...in)
∼= Hq(Ui0...in , F

p) = 0 for each n ≥ 0, s > 0.

Then, for each i ∈ Z,
Hi(U ;F •) ∼= Ȟ

i
(U ;F •).

That is, cohomology of U with coefficients in F • can be computed as Čech cohomology
of U relative to U with coefficients in F • .

Proof. For any p ≥ 0, the Čech-to-derived spectral sequence applied to F p degenerates
at page 2, because

Er,s
2 = Ȟ

r
(U ;Hs(F p)) ∼= Hr(Č•(U ;Hs(F p))) ∼=

{
Ȟ
r
(U ;F p) if s =0

0 if s > 0.

It follows that, for each q ≥ 0,

Ȟ
q
(U ;F p) ∼= Hq(U, F p).

These isomorphisms define an isomorphism between the hyper-cohomology spectral
sequences of Čech cohomolgy and cohomology for F •. By uniqueness of the limit,
we deduce that, for each i ≥ 0,

H i(U , F •) ∼= H i(U, F •).

Leray spectral sequence.

Let f : C → D be a morphism of sites, with associated continuous functor u : D → C.
Consider the direct image functor

f∗ : Ab(C)→ Ab(D).

Recall that, for any f ∈ Ab(C), the abelian sheaf f∗F over D is

V ↦→ F (u(V )).

It is right-adjoint to the inverse image functor f−1, so is left-exact. Hence, we can
consider its total right-derived functor

Rf∗ : D
+(Ab(C))→ D+(Ab(D)).
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Composing with cohomology functors, we obtain the functors, for each i ∈ Z,

Rif∗ : D
+(Ab(C)) Rf∗−−→ D+(Ab(D)) Hi

−→ Ab(D).

Definition A.0.7. Given f : C → D a morphism of sites, the functor Rif∗ is called
the ith-higher direct image functor of f .

They are such that, for any F ∈ Ab(C), for each p ≥ 0, Rpf∗F is the sheafification
of the abelian presheaf over D

V ↦→ Hp(u(V ), F ).

Notice that, for any F ∈ Ab(C) and for any V ∈ D

Γ(V, f∗F ) = F (u(V )) = Γ(u(V ), F ),

i.e. we have the commutative diagram of left-exact functors

Ab(C) Z-mod.

Ab(D)

Γ(u(V ), )

f∗ Γ(V, )

Since f∗ is right-adjoint to f−1, which is exact, we have the Grothendieck spectral
sequence, for any F • ∈ D+(Ab(C)),

Ep,q
2 = Hp(V,Rqf∗F

•)⇒ Hp+q(u(V ), F •),

called the Leray spectral sequence for f and F •.
Recall that, given a first quadrant convergent spectral sequence Ep,q

2 ⇒ Hp+q, for
any p ≥ 0, we have canonical edge morphisms Ep,0

2 → Hp. The edge morphisms of
Leray spectral sequence give the canonical morphisms of abelian groups

Hp(V, f∗F
•)→ Hp(u(V ), F •),

natural in F •.
Moreover, if f : (C,OC)→ (D,OD) is a morphism of ringed sites, then, for any

F • ∈ D+(Mod(OC)), f∗F
• ∈ D+(Mod(OD)) and the above canonical morphisms are

also morphisms of OD(V )-modules.
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Appendix B

Grothendieck’s Theory of Chern
classes

We follow [Gro58]. Consider a contravariant functor into the category of commutative
graded rings

A∗ : SmProjopk → grRing

X ↦→ A∗(X) = ⊕i≥0A
i(X),

with a natural transformation of contravariant functors SmProjopk → Ab,

p1X : Pic→ A1,

called the first Chern class. Recall that, for any X ∈ SmProjk, Pic(X), the Picard
group of X, is the the abelian group of isomorphism classes of invertible sheaves
OX-modules of X (algebraic vector bundles of rank 1), with multiplication given
by tensor product of sheaves of OX-modules. It defines a contravariant functor
SmProjk → Ab with pullback maps given by the pullback of sheaves of modules.

We consider the following axioms.

CC1) For any i : Z ↪→ X closed immersion in SmProjk, where Z has codimension c
in X, we an homomorphism of abelian groups, for each i ≥ 0,

i∗ : A
i(Z)→ Ai+c(X),

called pushforward map.

CC2) The pushforward map is functorial, that is, for any Z
i
↪−→ Y

j
↪−→ X closed

immersions in SmProjk,
(ji)∗ = j∗i∗.

CC3) (Projection formula) For any i : Z ↪→ X closed immersion in SmProjk,
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x ∈ A∗(X) and y ∈ A∗(Z), it holds

y(i∗x) = i∗(i
∗(y)x).

CC4) (Projective bundle formula) Given X ∈ SmProjk and E an algebraic vector
bundle over X of rank r (finite locally free sheaf of OX-modules of rank r),
take its projectivization π : P(E)→ X (see [GW20, §13.7] ). Consider the class
of the tautological line bundle

OP(E)(1) ∈ Pic(P(E))

and denote its first Chern class in A1(P(E)) by

t := p1P(E)(OP(E)(1)).

Then, the pullback map p∗ : A∗(X) → A∗(P(E)) induces on A∗(P(E)) a
structure of A∗(X)-algebra, such that

A∗(P(E)) ∼= A∗(X)[t]/(tr).

CC5) Given X ∈ SmProjk and L ∈ Pic(X), which admits a regular section s ∈
L(X), we denote by i : Z(s) ↪→ X the closed immersion given by the zero
scheme associated to s, which has codimension 1 in X. Then, in A1(X)

i∗(1Z(s)) = p1X(L),

where 1Z(s) ∈ A0(Z(s)) is the unit of A∗(Z(s)).

With these data and axioms, given X ∈ SmProjk and E an algebraic vector bundle
over X, let

t := p1P(E)(OP(E)(1)).

By axiom CC4), we have that tr ∈ Ar(P(E)) can be written uniquely in A∗(P(E)) as

tr = (−1)r+1ar + (−1)rar−1t+ · · ·+ a1t
r−1 =

r∑
i=1

(−1)i+1ait
r−i,

with ai ∈ Ai(X), for i = 1, . . . , r. We define the ith-Chern class of E

ciX(E) :=

⎧⎪⎨⎪⎩
1 for i = 0,

ai for i = 1, . . . , r,

0 for i > r.
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Let
K0(X) := K0(Vect(X)),

be the Grothendieck group of the category of algebraic vector bundles over X (finite
locally free sheaves of OX-modules), called the 0th-algebraic K-group of X. It is a
ring with sum and multiplication given by direct sum and tensor product of sheaves
of OX-modules. There exists a map, for any X ∈ SmProjk,

cX : K0(X)→ A∗(X)

[E ] ↦→
∑
i≥0

ciX(E),

called the total Chern class of X, which is characterized by the following properties:

• It is a group homomorphism, where we consider on K0(X) the additive structure
and on A∗(X) the multiplicative structure.

• It’s natural in X, i.e. commutes with pullback maps.

• For any L ∈ Pic(X), cX([L]) = 1 + p1X(L).

This implies that each Chern class can be extended to a map on K0(X) (not a group
homomorphism!)

ciX : K0(X)→ Ai(X).

Moreover, if A∗(X) is a graded Q-algebra, there exists a map, for any X ∈ SmProjk

chX : K0(X)→
∏
i≥0

Ai(X),

called the Chern character of X, which is characterized by the following properties:

• It is a ring homomorphism.

• It’s natural in X, i.e. commutes with pullback maps.

• For any L ∈ Pic(X), chX([L]) =
∑

i≥0
1
i!
p1X(L)i.

An important example is given by the Chow group (see [Gro58, §4.3]). Gothendieck’s
theory of Chern classes, applied to this case, shades light on the connection between
algebraic cycles and algebraic vector bundles of an algebraic variety. Consider the
functor

CH∗ : SmProjopk → grRing

X ↦→ CH∗(X) = ⊕i≥0CH
i(X),

with first Chern class
p1X : Pic(X)→ CH1(X)
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the isomorphism of abelian groups between Cartier and Weil divisors (see [GW20,
Thm. 11.40]), which holds because X is locally factorial, by corollary 1.4.23. Axioms
CC1)-CC5) are satisfied (notice that axiom CC5) tells that the first Chern class is
exactly the isomorphism between Cartier and Weil divisors), so we can apply the
above constructions. Taking rational coefficients, i.e. considering the functor

CH∗
Q : SmProjopk → grRing

X ↦→ CH∗(X)Q = ⊕i≥0CH
i(X)⊗Z Q,

which still satisfies axioms CC1)-CC5), we can also construct the Chern character,
for any X ∈ SmProjk,

chX : K0(X)→ CH∗(X)Q.

Further, we see that we can refine the Chern character to an isomorphism of graded
rings. Let

K0(X) := K0(Coh(OX))

be the Grothendieck group of the category of coherent sheaves of OX-modules. It is
an abelian group with sum given by direct sum of sheaves of OX-modules. Since OX
is a coherent sheaf of OX-modules (proposition 1.2.20), then any algebraic vector
bundle over X is a coherent sheaf of OX-modules. Hence we have the inclusion
Vect(X) ↪→ Coh(X), which induces the group homomorphism

K0(X)→ K0(X)

[E ] ↦→ [E ],

called the Cartan homomorphism. For X smooth, a theorem of Serre (see [BS58,
Cor. 10]) asserts that any F ∈ Coh(X) admits a finite resolution of algebraic vector
bundles, i.e. there exists an exact sequence of sheaves of OX-modules

0→ En → · · · → E0 → F → 0,

where each Ei is an algebraic vector bundle. This allows to define a ring homomor-
phism

K0(X)→ K0(X)

[F ] ↦→
n∑
k=0

(−1)k[Ek],

which is the inverse of the Cartan homomorphism. So, in this case, K0(X) is also a
ring, with multiplication induced by the one on K0(X). The ring K0(X) is useful
because we can define the coniveau filtration on it:

K
(ν)
0 (X) := ⟨[F ] ∈ K0(X) | codimX(supp(F )) ≥ ν⟩,
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which is a descending filtration. The filtration respects the product on K0(X), i.e.
the graded group associated

gr∗K0(X) := ⊕ν≥0gr
νK0(X) = ⊕ν≥0K

(ν)
0 (X)/K

(ν+1)
0 (X)

is a graded ring. The Chern character for the rational Chow group factors through
the composition of the Cartan isomomorphism with the canonical morphism into
the graded ring

K0(X) ∼= K0(X)→ gr∗K0(X).

That is, we have a commutative diagram of rings

K0(X) CH∗(X)Q,

gr∗K0(X)

chX

ψX

where ψX is also a morphism of graded rings. Moreover, we can define a group
homomorphism, for each i ≥ 0,

CHi(X)→ K
(i)
0 (X)

[Z]→ [OZ ],

where by [OZ ] we mean the class of the coherent sheaf of OX-modules OX/IZ , where
IZ ⊂ OX is the sheaf of ideals corresponding to Z ⊂ X closed subscheme. By
definition of product in CH∗(X), it linearly extends to a morphism of rings

CH∗(X)→ K0(X),

which respects the filtrations (on CH∗(X), we mean the filtration induced by the
decomposition, which is such that the graded ring associated is CH∗(X) itself).
Hence, we have the induced morphism on graded rings

φX : CH∗(X)→ gr∗K0(X).

Taking rational coefficients, the graduation by coniveau on K0(X) splits, that is, the
canonical ring homomorphism

K0(X)Q → gr∗K0(X)Q

is an isomorphism. Using Grothendieck-Riemann-Roch’s Theorem (see [BS58])
applied to the closed immersions Z ↪→ X in SmProjk, we have that (ψX)Q and
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(φX)Q are such that, in each degree i ≥ 0,

(φX)Q ◦ (ψX)Q = (i− 1)!id & (ψX)Q ◦ (φX)Q = (i− 1)!id.

Hence, we have the commutative diagram of ring isomorphisms

K0(X)Q CH∗(X)Q

gr∗K0(X)Q

(chX)Q

where

CH∗(X)Q → gr∗K0(X)Q

[Z] ↦→ 1

(i− 1)!
[OZ ]

in each degree i ≥ 0, is also an isomorphism of graded rings. So, with rational
coefficients, the Chern character of the Chow group gives an isomorphism of rings
between the Chow group and the 0th K-group.

Given any other contravariant functor

A∗ : SmProjopk → grRing

X ↦→ A∗(X) = ⊕i≥0A
i(X),

with a natural transformation of contravariant functors SmProjopk → Ab

p1A : Pic→ A1,

which satisfies the axioms CC1)-CC5) and such that, for any X ∈ SmProjk, A∗(X)
is a graded Q-algebra, consider the Chern character

chA,X : K0(X)→ A∗(X).

Precomposing with the inverse of the rational Chern character for the Chow group,
we obtain a morphism of graded rings

clA,X : CH∗(X)Q
(chX)−1

Q−−−−−→ K0(X)Q
(chA,X)Q−−−−−→ A∗(X).

Explicitly, it is such that, for any [Z] ∈ CHi(X),

cliA,X([Z]) =
1

(i− 1)!
ciA,X([OZ ]),
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where we see the ith-Chern class ciA,X as a map from K0(X) via the Cartan isomor-
phism

ciA,X : K0(X) ∼= K0(X)→ Ai(X).
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