SHARP COHOMOLOGY

Sharp cohomology theories: a road map

Luca Barbieri Viale

September 17, 2011
What is H^1 in algebraic geometry?
What is H^1 in algebraic geometry?

H^1 is just an avatar of Pic!
List $H^1(X)$ for X (smooth) proper over a suitable field
List $H^1(X)$ for X (smooth) proper over a suitable field

The representable sheaf Pic is such that:
List $H^1(X)$ for X (smooth) proper over a suitable field

The representable sheaf Pic is such that:

- $H^1(X, \mathcal{O}_X) = \text{Lie Pic}^0(X)$
List $H^1(X)$ for X (smooth) proper over a suitable field

The representable sheaf Pic is such that:

- $H^1(X, \mathcal{O}_X) = \text{Lie Pic}^0(X)$
- $H^1(X_{\text{an}}, \mathbb{Z}(1)) = \ker \text{Lie Pic}^0(X) \xrightarrow{\exp} \text{Pic}^0(X)$
H^1 of proper smooth schemes

List $H^1(X)$ for X (smooth) proper over a suitable field

The representable sheaf Pic is such that:

- $H^1(X, \mathcal{O}_X) = \text{Lie Pic}^0(X)$
- $H^1(X_{\text{an}}, \mathbb{Z}(1)) = \ker \text{Lie Pic}^0(X) \xrightarrow{\exp} \text{Pic}^0(X)$
- $H^1(X_{\text{fppf}}, \mathbb{Z}_\ell(1)) = \text{Pic}(X)_{\ell-\text{tors}}$
List $H^1(X)$ for X (smooth) proper over a suitable field

The representable sheaf Pic is such that:

- $H^1(X, O_X) = \text{Lie Pic}^0(X)$
- $H^1(X_{\text{an}}, \mathbb{Z}(1)) = \ker \text{Lie Pic}^0(X) \xrightarrow{\exp} \text{Pic}^0(X)$
- $H^1(X_{\text{fppf}}, \mathbb{Z}_\ell(1)) = \text{Pic} (X)_{\ell-\text{tors}}$
- $H^1(X_{\text{ét}}, \mathbb{Z}_\ell(1)) = \text{Pic} (X)_{\ell-\text{tors}}$ for $\ell \neq \text{characteristic}$
List $H^1(X)$ for X (smooth) proper over a suitable field

The representable sheaf Pic is such that:

- $H^1(X, \mathcal{O}_X) = \text{Lie Pic}^0(X)$
- $H^1(X_{\text{an}}, \mathbb{Z}(1)) = \ker \text{Lie Pic}^0(X) \xrightarrow{\exp} \text{Pic}^0(X)$
- $H^1(X_{\text{fppf}}, \mathbb{Z}_\ell(1)) = \text{Pic}(X)_{\ell-\text{tors}}$
- $H^1(X_{\text{ét}}, \mathbb{Z}_\ell(1)) = \text{Pic}(X)_{\ell-\text{tors}}$ for $\ell \neq$ characteristic
- $H^1_{\text{dR}}(X) = \text{Lie Pic}^{!}(X)$ in zero characteristic
List $H^1(X)$ for X (smooth) proper over a suitable field

The representable sheaf Pic is such that:

- $H^1(X, \mathcal{O}_X) = \text{Lie Pic}^0(X)$
- $H^1(X_{\text{an}}, \mathbb{Z}(1)) = \ker \text{Lie Pic}^0(X) \xrightarrow{\exp} \text{Pic}^0(X)$
- $H^1(X_{\text{fppf}}, \mathbb{Z}_\ell(1)) = \text{Pic}(X)_{\ell-\text{tors}}$
- $H^1(X_{\text{ét}}, \mathbb{Z}_\ell(1)) = \text{Pic}(X)_{\ell-\text{tors}}$ for $\ell \neq$ characteristic
- $H^1_{\text{dR}}(X) = \text{Lie Pic}^{\flat}(X)$ in zero characteristic
- $H^1_{\text{crys}}(X) = \text{Lie Pic}^{\text{crys}}(X)$ in positive characteristics
List $H^1(X)$ for X (smooth) not proper
List $H^1(X)$ for X (smooth) not proper

Let \overline{X} be a (smooth) proper compactification of X with boundary Y
List $H^1(X)$ for X (smooth) not proper

Let \overline{X} be a (smooth) proper compactification of X with boundary Y and send a divisor D supported on Y to $\mathcal{O}_{\overline{X}}(D)$

$$\text{Div}^0_Y(\overline{X}) \rightarrow \text{Pic}^0(\overline{X})$$
List $H^1(X)$ for X (smooth) not proper

Let \overline{X} be a (smooth) proper compactification of X with boundary Y and send a divisor D supported on Y to $\mathcal{O}_{\overline{X}}(D)$

$$\text{Div}^0_Y(\overline{X}) \to \text{Pic}^0(\overline{X})$$

We can see that

$$\text{Pic}^+(X) := [\text{Div}^0_Y(\overline{X}) \to \text{Pic}^0(\overline{X})] \rightsquigarrow H^1(X)$$
List $H^1(X)$ for X (smooth) not proper

Let \overline{X} be a (smooth) proper compactification of X with boundary Y and send a divisor D supported on Y to $\mathcal{O}_{\overline{X}}(D)$

$$\text{Div}^0_Y(\overline{X}) \to \text{Pic}^0(\overline{X})$$

We can see that

$$\text{Pic}^+(X) := [\text{Div}^0_Y(\overline{X}) \to \text{Pic}^0(\overline{X})] \sim H^1(X)$$

with the additional information given by the image of

$$H^1_Y(\overline{X}, \mathcal{O}_{\overline{X}}) \to H^1(\overline{X}, \mathcal{O}_{\overline{X}}) = \text{Lie Pic}^0(\overline{X})$$
List $H^1(X)$ for X (smooth) not proper

Let \overline{X} be a (smooth) proper compactification of X with boundary Y and send a divisor D supported on Y to $\mathcal{O}_{\overline{X}}(D)$

$$\text{Div}^0_Y(\overline{X}) \rightarrow \text{Pic}^0(\overline{X})$$

We can see that

$$\text{Pic}^+(X) := [\text{Div}^0_Y(\overline{X}) \rightarrow \text{Pic}^0(\overline{X})] \sim H^1(X)$$

with the additional information given by the image of

$$H^1_Y(\overline{X}, \mathcal{O}_{\overline{X}}) \rightarrow H^1(\overline{X}, \mathcal{O}_{\overline{X}}) = \text{Lie Pic}^0(\overline{X})$$

Actually, this subspace is clearly independent from the chosen compactification!
For any scheme X we get a smooth hypercovering \tilde{X} and we can see that

$$\text{Pic}^+(X) := \text{Pic}^+(\tilde{X}) \sim H^1(X) = H^1(\tilde{X})$$

That is $T_{Hodge}, T_{dR}, T_{\ell}, T_{\text{crys}}$ applied to the 1-motive $\text{Pic}^+(X)$ yield $H^1(X, \mathbb{Z}(1)), H^1(X_{\text{ét}}, \mathbb{Z}_{\ell}(1)), H^1_{dR}(X), H^1_{\text{crys}}(X)$.
For any scheme X we get a smooth hypercovering \tilde{X} and we can see that

$$\text{Pic}^+(X) := \text{Pic}^+(\tilde{X}) \simarrow H^1(X) = H^1(\tilde{X})$$

That is $T_{\text{Hodge}}, T_{\text{dR}}, T_{\ell}, T_{\text{crys}}$ applied to the 1-motive $\text{Pic}^+(X)$ yield $H^1(X, \mathbb{Z}(1)), H^1(X_{\text{ét}}, \mathbb{Z}_{\ell}(1)), H^1_{\text{dR}}(X), H^1_{\text{crys}}(X)$.

- For X proper we discover that $\text{Pic}^+(X)$ is just the semiabelian quotient of $\text{Pic}^0(X)$. Thus we may regard $H^1(X)$ as a quotient of a refined $H^1_\#(X)$.
For any scheme X we get a smooth hypercovering \tilde{X} and we can see that

$$\text{Pic}^+(X) := \text{Pic}^+(\tilde{X}) \leadsto H^1(X) = H^1(\tilde{X})$$

That is $T_{Hodge}, T_{dR}, T_\ell, T_{crys}$ applied to the 1-motive $\text{Pic}^+(X)$ yield $H^1(X, \mathbb{Z}(1)), H^1(X_{\text{ét}}, \mathbb{Z}_\ell(1)), H^1_{dR}(X), H^1_{crys}(X)$.

- For X proper we discover that $\text{Pic}^+(X)$ is just the semiabelian quotient of $\text{Pic}^0(X)$. Thus we may regard $H^1(X)$ as a quotient of a refined $H^1_\#(X)$.

- For X smooth just consider the formal completion at zero $\text{Inf}^0_{\text{Y}}(\overline{X})$ of

$$\ker H^1(\overline{X}, \mathcal{O}_{\overline{X}}) \rightarrow H^1(X, \mathcal{O}_X)$$

Thus $\text{Div}^0_{\text{Y}}(\overline{X}) \times \text{Inf}^0_{\text{Y}}(\overline{X})$ is a formal group and

$$\text{Pic}^+_a(X) := [\text{Div}^0_{\text{Y}}(\overline{X}) \times \text{Inf}^0_{\text{Y}}(\overline{X}) \rightarrow \text{Pic}^0(\overline{X})] \leadsto H^1_\#(X)$$

so that $H^1(X)$ is a subobject of $H^1_\#(X)$.
The **sharp** (singular, de Rham, etc.) cohomology

\[
(X, Z) \mapsto H_\#^*(X, Z)
\]

is at least a contravariant functor from pairs \((X, Z)\) with \(Z \subseteq X\) closed to **formal** groups (formal Hodge structures, etc.) which is provided with a long exact sequence of the triples.
The sharp (singular, de Rham, etc.) cohomology

$$(X, Z) \mapsto H^*_\#(X, Z)$$

is at least a contravariant functor from pairs (X, Z) with $Z \subseteq X$ closed to formal groups (formal Hodge structures, etc.) which is provided with a long exact sequence of the triples. That is:

1. $f^* : H^*_\#(X, Z) \to H^*_\#(X', Z')$ for a morphism $f : X' \to X$ such that $f|_{Z'} : Z' \to Z$ and
2. $H^*_\#(X, Y) \to H^*_\#(X, Z) \to H^*_\#(Y, Z) \to H^*_{\#}+1(X, Y)$ exact for $Z \subseteq Y \subseteq X$ closed in X
The sharp (singular, de Rham, etc.) cohomology

\[(X, Z) \rightsquigarrow H^\#_\ast(X, Z)\]

is at least a contravariant functor from pairs \((X, Z)\) with \(Z \subseteq X\) closed to formal groups (formal Hodge structures, etc.) which is provided with a long exact sequence of the triples. That is:

- \(f^* : H^\#_\ast(X, Z) \rightarrow H^\#_\ast(X', Z')\) for a morphism \(f : X' \rightarrow X\) such that \(f \mid_{Z'} : Z' \rightarrow Z\) and

- \(H^\#_\ast(X, Y) \rightarrow H^\#_\ast(X, Z) \rightarrow H^\#_\ast(Y, Z) \rightarrow H^\#_{\ast+1}(X, Y)\) exact for \(Z \subseteq Y \subseteq X\) closed in \(X\)

By the way, ordinary singular cohomology Hodge structure

\[H^\ast(X, Z) = H^\#{\ast}(X, Z)_{\text{ét}}\]

is the étale structure associated to the formal Hodge structure.
A formal Hodge structure of level $\leq n$ is given by

- $H := H_\mathbb{Z} \times H^0$ a formal group over \mathbb{C} such that $H_\mathbb{Z}$ is the underlying group of a level $\leq n$ mixed Hodge structure $H_{\text{ét}} = (H_\mathbb{Z}, W_*, F^*_{\text{Hodge}})$,

- $V := V_n \to \cdots \to V_1$ a diagram given by composable linear mappings of finite dimensional \mathbb{C}-vector spaces,

- an augmentation map $\nu : H \to V$

- a subdiagram $V^0 \subset V$ such that $V/V^0 \cong H_\mathbb{C}/F^n_{\text{Hodge}}$ yielding a commutative diagram

\[
\begin{array}{cccccc}
H_\mathbb{Z} & \overset{c}{\longrightarrow} & H_\mathbb{C}/F^n_{\text{Hodge}} & \longrightarrow & \cdots & \longrightarrow & H_\mathbb{C}/F^1_{\text{Hodge}} \\
\downarrow & & \uparrow & & \uparrow & & \\
H & \overset{\nu}{\longrightarrow} & V_n & \longrightarrow & \cdots & \longrightarrow & V_1
\end{array}
\]
FHS is the abelian category obtained by taking $\text{Colim}_n \text{FHS}_n$ where FHS_n are level $\leq n$ formal Hodge structures; note that we have a forgetful (faithful exact) functor $(H, V) \rightsquigarrow H_{\mathbb{Z}} \times H^0 \times \hat{V}^0$ from FHS to $\text{Fgrp}_{\mathbb{C}}$ formal groups.
Formal Hodge structures

FHS is the abelian category obtained by taking $\text{Colim}_n \text{FHS}_n$ where FHS_n are level $\leq n$ formal Hodge structures; note that we have a forgetful (faithful exact) functor $(H, V) \mapsto H_\mathbb{Z} \times H^0 \times \hat{V}^0$ from FHS to $\text{Fgrp}_\mathbb{C}$ formal groups.

**FHS}_{\text{ét}}$ is the full subcategory of FHS of étale structures, i.e., for $(H, V) \in \text{FHS}_n$ let

$$(H, V)_{\text{ét}} := (H_\mathbb{Z}, V/V^0) \cong (H_\mathbb{Z}, H_\mathbb{C}/F_{Hodge})$$

and say that (H, V) is étale if $(H, V)_{\text{ét}} = (H, V)$
Formal Hodge structures

FHS is the abelian category obtained by taking
\(\operatorname{Colim}_n \text{FHS}_n \) where \(\text{FHS}_n \) are level \(\leq n \) formal Hodge structures; note that we have a forgetful (faithful exact) functor \((H, V) \sim \to H_{\mathbb{Z}} \times H^0 \times \hat{V}^0\) from FHS to \(\text{Fgrp}_\mathbb{C} \) formal groups.

FHS_{\text{ét}} is the full subcategory of FHS of \(\text{étale} \) structures, i.e., for \((H, V) \in \text{FHS}_n\) let
\[
(H, V)_{\text{ét}} := (H_{\mathbb{Z}}, V / V^0) \cong (H_{\mathbb{Z}}, H^_/ F_{\text{Hodge}})
\]
and say that \((H, V)\) is \(\text{étale}\) if \((H, V)_{\text{ét}} = (H, V)\).

FHS^0 are the **connected** structures, i.e., \((H, V)_{\text{ét}} = 0\).
Formal Hodge structures

FHS is the abelian category obtained by taking $\text{Colim}_n \text{FHS}_n$ where FHS_n are level $\leq n$ formal Hodge structures; note that we have a forgetful (faithful exact) functor $(H, V) \sim \to H_\mathbb{Z} \times H^0 \times \hat{V}^0$ from FHS to $\text{Fgrp}_{\mathbb{C}}$ formal groups.

$\text{FHS}_{\text{ét}}$ is the full subcategory of FHS of étale structures, i.e., for $(H, V) \in \text{FHS}_n$ let

$$(H, V)_{\text{ét}} := (H_\mathbb{Z}, V/V^0) \cong (H_\mathbb{Z}, H_\mathbb{C}/F_{\text{Hodge}})$$

and say that (H, V) is étale if $(H, V)_{\text{ét}} = (H, V)$.

FHS^0 are the connected structures, i.e., $(H, V)_{\text{ét}} = 0$.

Denote $(H, V)_{\times} := (H, V/V^0)$. We have a canonical extension

$$0 \to (H, V)_{\text{ét}} \to (H, V)_{\times} \to (H^0, 0) \to 0$$
In this framework, for \((X, Z)\) with \(\dim X = n\) over \(\mathbb{C}\) we may seek for \(H^\#_\ast(X, Z) = (H^\ast(X, Z) \times H^0, V) \in \text{FHS}_n\) along with the canonical extension

\[
0 \rightarrow H^\ast(X, Z) \rightarrow H^\#_\ast(X, Z)/V^0 \rightarrow H^0 \rightarrow 0
\]
In this framework, for (X, Z) with $\dim X = n$ over \mathbb{C} we may seek for $H_\#^*(X, Z) = (H^*(X, Z) \times H^0, V) \in \text{FHS}_n$ along with the canonical extension

$$0 \to H^*(X, Z) \to H_\#^*(X, Z)/V^0 \to H^0 \to 0$$

For example, we have that $H_\#^1(X), H_\#^{1-dR}(X)$, etc. is sitting in an extension

$$0 \to H^1(X) \to H_\#^1(X)/V(\text{Pic}) \to V(\text{Alb})^\vee \to 0$$

where

- $V(\text{Pic}) :=$ the Lie algebra V^0 of the vector group given by the maximal additive subgroup of Pic^0
- $V(\text{Alb})^\vee :=$ the connected formal group $H^0 = \text{Inf}$ whose Lie algebra is just dual of the maximal additive subgroup of Faltings-Wüstholz Alb
Note that we also have that \((H^0, V)\) is a connected structure associated to any \((H, V)\) but it is not a substructure, in general.
Note that we also have that \((H^0, V)\) is a connected structure associated to any \((H, V)\) but it is not a substructure, in general.

\(\text{FHS}^s\) are the special structures, i.e., say that \((H, V)\) is special if \((H^0, V^0) := (H, V)^0\) is a substructure of \((H, V)\) or, equivalently, \((H, V)_{\text{ét}}\) is a quotient of \((H, V)\), so that we have an extension

\[
0 \to (H, V)^0 \to (H, V) \to (H, V)_{\text{ét}} \to 0
\]

in this case.
Note that we also have that \((H^0, V)\) is a connected structure associated to any \((H, V)\) but it is not a substructure, in general.

\(\text{FHS}^s\) are the special structures, \textit{i.e.}, say that \((H, V)\) is special if \((H^0, V^0) := (H, V)^0\) is a substructure of \((H, V)\) or, equivalently, \((H, V)_{\text{ét}}\) is a quotient of \((H, V)\), so that we have an extension

\[0 \to (H, V)^0 \to (H, V) \to (H, V)_{\text{ét}} \to 0\]

in this case.

This is the largest subcategory of FHS such that \(\text{MHS} = \text{FHS}_{\text{ét}}\) into \(\text{FHS}^s\) has a left adjoint and \(\text{FHS}^0 = \text{VSP}\) into \(\text{FHS}^s\) has a right adjoint.
Deligne’s Hodge realization for 1-motives with torsion can be further extended to an equivalence with graded polarizable (twisted) formal Hodge structures of level ≤ 1

$$T_\mathcal{f} : \text{Laumon 1-motives} \xrightarrow{\sim} \text{FHS}_1^p$$

where $T_\mathcal{f}([F \xrightarrow{u} G]) := (T_\mathcal{f}(F), \text{Lie}(G))$ where $T_\mathcal{f}(F)_{\text{ét}}$ is the underlying abelian group to $T_{\text{Hodge}}([F \xrightarrow{u} G]_{\text{ét}})$ and $T_\mathcal{f}(F)^0 = F^0$.
Deligne’s Hodge realization for 1-motives with torsion can be further extended to an equivalence with graded polarizable (twisted) formal Hodge structures of level ≤ 1

$$T_\mathfrak{f} : \text{Laumon 1-motives} \xrightarrow{\sim} \text{FHS}_1^p$$

where $T_\mathfrak{f}([F \xrightarrow{u} G]) := (T_\mathfrak{f}(F), \text{Lie}(G))$ where $T_\mathfrak{f}(F)_{\text{ét}}$ is the underlying abelian group to $T_{\text{Hodge}}([F \xrightarrow{u} G]_{\text{ét}})$ and $T_\mathfrak{f}(F)^0 = F^0$. Thus get a diagram

\[
\begin{array}{ccc}
\text{Deligne 1-motives} & \xrightarrow{T_{\text{Hodge}}} & \text{MHS}_1^p \\
\uparrow \downarrow & & \uparrow \downarrow \\
\text{Laumon 1-motives} & \xrightarrow{T_\mathfrak{f}} & \text{FHS}_1^p
\end{array}
\]

and

$$H^1_{\#}(X) := T_\mathfrak{f}(\text{Pic}^+(X))$$
For a Laumon 1-motive $M = [F \to G]$ set $M_\times := [F \to G/V(G)]$ where $V(G)$ is the maximal additive subgroup of G.

This is a sharp version of the de Rham comparison theorem.
For a Laumon 1-motive $M = [F \to G]$ set $M_\times := [F \to G/ V(G)]$ where $V(G)$ is the maximal additive subgroup of G. We get the sharp universal \mathbb{G}_a-extension $M^\# := [F \to G^\#]$ by the pull-back of the universal \mathbb{G}_a-extension $M^\#_\times$ along $M \to M_\times$.

This is a sharp version of the de Rham comparison theorem.
For a Laumon 1-motive $M = [F \to G]$ set $M_\times := [F \to G/V(G)]$ where $V(G)$ is the maximal additive subgroup of G. We get the sharp universal \mathbb{G}_a-extension $M^\#: [F \to G^\#]$ by the pull-back of the universal \mathbb{G}_a-extension $M^\#_\times$ along $M \to M_\times$. The sharp de Rham realization

$$T^\#_a(M) = \text{Lie}(G^\#) \quad H^1_{dR}(X) := T^\#_a(\text{Pic}^+_a(X))$$
For a Laumon 1-motive \(M = [F \to G] \) set \(M_\times := [F \to G/V(G)] \) where \(V(G) \) is the maximal additive subgroup of \(G \).

We get the sharp universal \(\mathbb{G}_a \)-extension \(M^\# := [F \to G^\#] \) by the pull-back of the universal \(\mathbb{G}_a \)-extension \(M^\#_\times \) along \(M \to M_\times \).

The sharp de Rham realization

\[
T^\#(M) = \text{Lie}(G^\#) \quad \quad H^1_{\#-dR}(X) := T^\#(\text{Pic}_a^+(X))
\]

For \((H, V) \in \text{FHS}_1\), similarly, we get the sharp envelope \((H, V)^\# \in \text{FHS}_1\). Note that if \((H, V)\) is étale, \textit{i.e.}, \(H^0 = V^0 = 0\), we get \((H, V)^\# \cong (H_\mathbb{Z}, H_\mathbb{C}/F_{\text{Hodge}}^0)^\# = (H_\mathbb{Z}, H_\mathbb{C})\).
For a Laumon 1-motive $M = [F \to G]$ set $M_\times := [F \to G/V(G)]$ where $V(G)$ is the maximal additive subgroup of G. We get the sharp universal \mathbb{G}_a-extension $M^\#: = [F \to G^\#]$ by the pull-back of the universal \mathbb{G}_a-extension $M^\#_\times$ along $M \to M_\times$.

The sharp de Rham realization

$$T_\#(M) = \text{Lie}(G^\#) \quad H^{1}_{\#-\text{dR}}(X) := T_\#(\operatorname{Pic}^+_{\text{a}}(X))$$

For $(H, V) \in \text{FHS}_1$, similarly, we get the sharp envelope $(H, V)^\# \in \text{FHS}_1$. Note that if (H, V) is étale, i.e., $H^0 = V^0 = 0$, we get $(H, V)^\# \cong (H_{\mathbb{Z}}, H_{\mathbb{C}}/F^0_{\text{Hodge}})^\# = (H_{\mathbb{Z}}, H_{\mathbb{C}})$. Actually

$$T_\#(M)^\# \cong T_\#(M^\#) = (T_\#(F), T_\#(M))$$

This is a sharp version of the de Rham comparison theorem.
Under T_\sharp Cartier duality corresponds to a canonical involution

\[T_\sharp(M)^\vee \cong T_\sharp(M^\vee) \]
Under $T_\$^\#$ Cartier duality corresponds to a canonical involution

$$T_\$^\#(M) ^\vee \cong T_\$^\#(M ^\vee)$$

Also for sharp de Rham

$$T_\#^\#(M) ^\vee \cong T_\#^\#(M ^\vee)$$
Under $T_{\#}$ Cartier duality corresponds to a canonical involution

$$T_{\#}(M)^{\vee} \cong T_{\#}(M^{\vee})$$

Also for sharp de Rham

$$T_{\#}(M)^{\vee} \cong T_{\#}(M^{\vee})$$

However, note that special structures are not compatible with Cartier duality.
Under T_\flat Cartier duality corresponds to a canonical involution

$$T_\flat(M)^\vee \cong T_\flat(M^\vee)$$

Also for sharp de Rham

$$T_\flat(M)^\vee \cong T_\flat(M^\vee)$$

However, note that special structures are not compatible with Cartier duality. For a Laumon 1-motive $M = [F \xrightarrow{u} G]$ we have: the realization $T_\flat(M) \in \text{FHS}_1$ is special \iff u is mapping F^0 to $V(G)$ (= the maximal additive subgroup of G).
Under $T\flat$ Cartier duality corresponds to a canonical involution

$$T\flat(M)^\vee \cong T\flat(M^\vee)$$

Also for sharp de Rham

$$T\#(M)^\vee \cong T\#(M^\vee)$$

However, note that special structures are not compatible with Cartier duality. For a Laumon 1-motive $M = [F \overset{u}{\rightarrow} G]$ we have: the realization $T\flat(M) \in \text{FHS}_1$ is special \iff u is mapping F^0 to $V(G)$ (= the maximal additive subgroup of G).

Example: the Cartier dual of $M = [\hat{A} \rightarrow A]$ for an abelian variety A is the universal \mathbb{G}_a-extension $\text{Pic}^{0,\#}(A)$ of the dual $\text{Pic}^0(A)$.
For $k \hookrightarrow \mathbb{C}$ let $D(Sch_k)^{op}$ be the following graph: objects are triples (X, Y, i) where $X \in Sch_k$ and $Y \subseteq X$ is closed and i is an integer, the arrows are as follows

a) $f^{op}: (X', Y', i) \rightarrow (X, Y, i)$ for any morphism $f : X \rightarrow X'$ such that $f|_Y : Y \rightarrow Y'$ and

b) $\delta^{op}: (Y, Z, i - 1) \rightarrow (X, Y, i)$ for any $Z \subseteq Y \subseteq X$ closed in X.

We get a canonical representation $H^\ast\# : D(Sch_k)^{op} \rightarrow Fgrp$ given by $(X, Y, i) \mapsto H^i\#(X, Y)$, forgetting the (formal) Hodge structure of the singular sharp cohomology of the pair (X_{an}, Y_{an}), i.e., by the contravariant functoriality and the long exact sequence of the triple.
For \(k \hookrightarrow \mathbb{C} \) let \(D(Sch_k)^{op} \) be the following graph: objects are triples \((X, Y, i)\) where \(X \in Sch_k \) and \(Y \subseteq X \) is closed and \(i \) is an integer, the arrows are as follows

a) \(f^{op} : (X', Y', i) \to (X, Y, i) \) for any morphism \(f : X \to X' \) such that \(f \mid_Y : Y \to Y' \) and

b) \(\delta^{op} : (Y, Z, i - 1) \to (X, Y, i) \) for any \(Z \subseteq Y \subseteq X \) closed in \(X \).

We get a canonical representation

\[
H^*_\# : D(Sch_k)^{op} \to Fgrp
\]

given by \((X, Y, i) \rightsquigarrow H^i_\#(X, Y)\), forgetting the (formal) Hodge structure of the singular sharp cohomology of the pair \((X_{an}, Y_{an})\), i.e., by the contravariant functoriality and the long exact sequence of the triple.
Given a representation \(T : D \to \mathcal{A} \) of any (small) graph \(D \) into a suitable abelian category \(\mathcal{A} \) there exists an abelian category \(\mathcal{C}(T) \), a forgetful (faithful, exact) functor \(F_T : \mathcal{C}(T) \to \mathcal{A} \) and \(\tilde{T} : D \to \mathcal{C}(T) \) such that \(F_T \circ \tilde{T} = T \) universally, i.e., \(\mathcal{C}(T) \) is initial (up to isomorphisms of functors) with respect to all these factorizations of the representation \(T \).
Sharp motives via Nori’s theorem

Given a representation $T : D \to \mathcal{A}$ of any (small) graph D into a suitable abelian category \mathcal{A} there exists an abelian category $\mathcal{C}(T)$, a forgetful (faithful, exact) functor $F_T : \mathcal{C}(T) \to \mathcal{A}$ and $\tilde{T} : D \to \mathcal{C}(T)$ such that $F_T \circ \tilde{T} = T$ universally, i.e., $\mathcal{C}(T)$ is initial (up to isomorphisms of functors) with respect to all these factorizations of the representation T.

For $T = H^*$ and $\mathcal{A} =$ finitely generated abelian groups call effective cohomological mixed motives the resulting abelian categories

$$\text{ECM} := \mathcal{C}(H^*)$$
Given a representation $T : D \to \mathcal{A}$ of any (small) graph D into a suitable abelian category \mathcal{A} there exists an abelian category $\mathcal{C}(T)$, a forgetful (faithful, exact) functor $F_T : \mathcal{C}(T) \to \mathcal{A}$ and $\tilde{T} : D \to \mathcal{C}(T)$ such that $F_T \circ \tilde{T} = T$ universally, i.e., $\mathcal{C}(T)$ is initial (up to isomorphisms of functors) with respect to all these factorizations of the representation T.

For $T = H^*$ and $\mathcal{A} = \text{finitely generated abelian groups}$ call effective cohomological mixed motives the resulting abelian categories

$$\text{ECM} := \mathcal{C}(H^*)$$

For $T = H^*_\#$ and $\mathcal{A} = \text{Fgrp}$ call effective cohomological sharp mixed motives the resulting abelian categories

$$\text{ECM}^\# := \mathcal{C}(H^*_\#)$$

Note that this is just a speculation!
Scholium

Existence of the sharp cohomology $H^*_\#$ functor such that

$$H^*_\#(X, Y) \to H^*_\#(X, Z) \to H^*_\#(Y, Z) \to H^*_{\#+1}(X, Y)$$

is exact for $Z \subseteq Y \subseteq X$ closed in X
Existence of the sharp cohomology $H^*_\#$ functor such that

$$H^*_\#(X, Y) \to H^*_\#(X, Z) \to H^*_\#(Y, Z) \to H^*_{\#+1}(X, Y)$$

is exact for $Z \subseteq Y \subseteq X$ closed in $X \implies$ existence of sharp motives with realisations

$$\begin{array}{c}
\text{ECM}^\# & \xrightarrow{R^\#} & \text{FHS}^p \\
\uparrow & & \uparrow \\
\text{ECM} & \xrightarrow{R_{Hodge}} & \text{MHS}^p
\end{array}$$
Existence of the sharp cohomology $H^\#_\ast$ functor such that

$$H^\#_\ast(X, Y) \rightarrow H^\#_\ast(X, Z) \rightarrow H^\#_\ast(Y, Z) \rightarrow H^\#_{\ast+1}(X, Y)$$

is exact for $Z \subseteq Y \subseteq X$ closed in $X \implies$ existence of sharp motives with realisations

$$\matrix{ ECM^\# & \xrightarrow{R^\#} & FHS^p \\ \uparrow & & \uparrow \\ ECM & \xrightarrow{R_{Hodge}} & MHS^p }$$

such that

$$\matrix{ Laumon 1\text{-}motives & \rightarrow & ECM^\# \\ \uparrow & & \uparrow & & \uparrow \\ Deligne 1\text{-}motives & \rightarrow & ECM }$$
Thanks!

References:

2000 S. Bloch & V. Srinivas: Enriched Hodge Structures in Algebra, arithmetic and geometry TIFR Studies in Math. 16

2009 S. LeKAus: Albanese and Picard 1-motives with \mathbb{G}_a-factors Manuscripta Math. 130 (4) 2009
