

Università degli Studi di Milano

Modelling Surface Motion in H_2 Dissociation on Cu(111)

Matteo Bonfanti

Chemical Physics and Electrochemistry Department Università degli Studi di Milano

Thursday March 11th, 2010

Matteo Bonfanti (CDTG@UniMi)

Outline

Introduction

2 Methods

Results

- Vibrations of Cu atoms
- Coupling between H₂ and Cu vibrations
- How vibrations affect barriers for H₂ dissociation

Final remarks

- Conclusions
- Further developments
- Acknowledgments

Outline

Introduction

2 Methods

Results

- Vibrations of Cu atoms
- Coupling between H₂ and Cu vibrations
- How vibrations affect barriers for H₂ dissociation

Final remarks

- Conclusions
- Further developments
- Acknowledgments

Outline

Introduction

2 Methods

Results

- Vibrations of Cu atoms
- Coupling between H₂ and Cu vibrations
- How vibrations affect barriers for H₂ dissociation

Final remarks

- Conclusions
- Further developments
- Acknowledgments

Introduction

2 Methods

Results

- Vibrations of Cu atoms
- Coupling between H₂ and Cu vibrations
- How vibrations affect barriers for H₂ dissociation

Final remarks

- Conclusions
- Further developments
- Acknowledgments

$H_2/Cu(111)$: previous results

Surface Oscillator Model

 $V_{SO}(X, Y, Z, r, \vartheta, \varphi, Q) = V_{6D}(X, Y, Z - Q, r, \vartheta, \varphi) + \frac{1}{2}\mu\omega^2 Q^2$

- V_{6D} is shifted along Z, as if the whole surface move with Q
- the potential for the surface vibration is quadratic

$H_2/Cu(111)$: sites and barriers

DFT method

- Supercell: 2x2 unit cell, 4 Cu layers and 5 vacuum layers
- Plane Waves: cutoff 350 eV, 8x8x1 k points
- **Functional**: GGA mixed PW91/RPBE **Specific Reaction Parameter** (SRP) approach $E^{MIX} = xE^{RPBE} + (1 - x)E^{PW91} x = 0.43$
- Calculations with DACAPO code

Vibrational Degrees of Freedom of the surface

- Localized DOF, not collective
- For each layer (up to the 3rd) motion of the nearest Cu atoms
- Cu atoms displacement perpendicular to the surface (Z direction)

Surface DOF: Potential Energy Curves

Matteo Bonfanti (CDTG@UniMi)

Surface DOF: Position Distribution

H₂ - Surface Coupling Potential

$$V_{7D}(\xi, Q) = V_{H2@Cu}(\xi) + V_{phonon}(Q) + V_{coupling}(\xi, Q)$$
$$\xi = (X, Y, Z, r, \vartheta, \varphi)$$

Matteo Bonfanti (CDTG@UniMi)

Surface Motion in $H_2/Cu(111)$

11/03/2010 10 / 17

SO Model Coupling

Agreement between SO Model and 1st layer atom motion

11/03/2010 1

< A

Barrier Displacement - 1st Layer Cu motion

Barrier: TtB Moving Cu atom: TOP

Barrier	Q (Å)	Geometry			
		θ (°)	∆r (Å)	∆Z (Å)	displ (Å)
BtH	-0.2	90.0	0.01	-0.07	0.07
	0.2	90.0	0.02	0.07	0.07
t2h	-0.2	90.0	-0.04	-0.14	0.14
	0.2	90.0	0.05	0.15	0.16
TtB	-0.2	90.0	-0.04	-0.16	0.16
	0.2	90.0	0.07	0.17	0.18
hcp	-0.2	83.0	-0.05	-0.08	0.09
	0.2	97.0	0.05	0.10	0.11

• **Bigger** ΔZ than Δr

- ΔZ similar to Q near the TOP Cu atom
- Tilting angle for hcp barrier, mostly geometrical effect

 $\Delta heta_{geom} = 4.4^{\circ}$

Barrier	Q (Å)	Geometry			
		θ (°)	∆r (Å)	∆Z (Å)	displ (Å)
BtH	-0.2	89.7	-0.03	0.01	0.03
	0.2	90.0	0.03	-0.01	0.03
t2h	-0.2	90.0	-0.02	0.00	0.02
	0.2	90.0	0.02	0.00	0.02
TtB	-0.2	90.0	-0.01	0.00	0.01
	0.2	90.1	0.01	0.00	0.01
hcp	-0.2	90.0	0.00	-0.01	0.01
	0.2	90.0	0.00	0.01	0.01

- Very small displacements, mainly Δr
- Small tilting (not reliable)

Barrier Height - 1st Layer vs 2nd Layer Cu motion

Matteo Bonfanti (CDTG@UniMi)

Surface Motion in $H_2/Cu(111)$

11/03/2010 14 / 17

• 1st layer Cu motion

- Shift along Z of the barrier position
- Small changes in barrier heigth
- 2nd layer Cu motion
 - Small displacement of the barriers
 - Linear dependence of barrier height on Q
- 3rd layer Cu motion
 - No coupling to *H*₂@*Cu*(111)

• **SO Model** reproduce the effect of the 1st Layer Cu motion

Further developments

- Investigate the effect of the 2nd layer Cu motion in H₂ dissociation with dynamics
 - Extend the SRP **Potential Energy Surface** including another DOF
 - Compute dynamical properties with 7D Quantum Dynamics
 - Check the validity of Vibrational Sudden Approximation:

$$\begin{array}{l} \boldsymbol{P}_{\nu_r j \, m_j \, \nu_Q}(\mathbf{k}) = \\ \left\langle \phi_{\nu_Q}(\boldsymbol{Q}) \, \middle| \, \boldsymbol{P}_{\nu_r j \, m_j}(\mathbf{k}; \, \boldsymbol{Q}) | \phi_{\nu_Q}(\boldsymbol{Q}) \right\rangle \end{array}$$

Geert-Jan Kroes
Mark Somers
Cristina Díaz

Leiden Institute of Chemistry

Universiteit Leiden

... and you, for your attention!

- Geert-Jan Kroes
- Mark Somers
- Cristina Díaz

Leiden Institute of Chemistry

Universiteit Leiden

... and you, for your attention!

