

Universiteit Leiden

Independent Oscillator Models in System-Bath Quantum Dynamics modeling energy dissipation in H scattering on surfaces

Matteo Bonfanti

Theoretical Chemistry Group Leiden Institute of Chemistry

Thursday February 9th, 2012

Relaxation and Sticking Models

Conclusions

2 Relaxation and Sticking Models

Introduction • 0 0 0 0 0 0 Relaxation and Sticking Models

Conclusions

System-bath dynamics

- System: relevant part, experimentally probed
 ⇒ Few, important DOFs
- Bath: irrelevant part, but responsible for energy transfer
 - \Rightarrow Large number of DOFs of non-direct relevance

Quantum description is mandatory for inherently quantum systems and/or low-temperature baths..

Vibrational Relaxation and Atomic Sticking

- Energy transfer to the sorrounding
- Challenging problems: large set of degrees of freedom

Vibrational Relaxation

- Morse Potential for Graphite-H
- System Energy in time

^aG. A. Worth, H.-D. Meyer and L. S. Cederbaum, J.Chem.Phys. **109**, 3518 (1998)

^DM. Nest and H.-D. Meyer, J.Chem.Phys. **119**, 24 (2003)

Vibrational Relaxation and Atomic Sticking

- Energy transfer to the sorrounding
- Challenging problems: large set of degrees of freedom

Sticking

- Morse Potential for Graphite-H
- Sticking Probability, *i.e.* fraction of trapped norm

^aG. A. Worth, H.-D. Meyer and L. S. Cederbaum, J.Chem.Phys. **109**, 3518 (1998)

^DM. Nest and H.-D. Meyer, J.Chem.Phys. **119**, 24 (2003)

Conclusions

Independent Oscillator Model

- Quantum Model of dissipation
- System exchanges energy with a thermal bath of HO

$$H_{CL} = H_{system} + \sum_{n} \left\{ \frac{p_n}{2\mu_n} + \frac{1}{2}\mu_n \omega_n^2 q_n^2
ight\} + coupling$$

Conclusions

Independent Oscillator Hamiltonian

$$H = \frac{p^2}{2M} + V(s) + \sum_k \left\{ \frac{p_k^2}{2} + \frac{\omega_k^2}{2} \left(x_k - \frac{c_k s}{\omega_k^2} \right)^2 \right\}$$

$$H \equiv H^{\rm sys} + \Delta V(s) + H^{\rm int} + H^{\rm bath}$$

 $\begin{aligned} H^{\text{sys}} &= \frac{p^2}{2M} + V(s) : \text{system Hamiltonian} \\ \Delta V(s) &= \frac{1}{2} \left(\sum_k \frac{c_k^2}{\omega_k^2} \right) s^2 = \frac{1}{2} M \delta \Omega^2 s^2 : \text{"renormalization" potential} \\ H^{\text{int}} &= -\sum_k c_k x_k s : \text{interaction term} \\ H^{\text{bath}} &= \sum_k \frac{p_k^2}{2} + \frac{\omega_k^2}{2} x_k^2 : \text{"bath " Hamiltonian} \end{aligned}$

^aA.O. Caldeira and A.J. Leggett, Phys.Rev.A **31**, 1059 (1985)

Conclusions

Generalized Langevin Equation

Solving the classical IO Hamiltonian, the system experience a force due to the environment, given by

$$F^{\text{env}} = \xi(t) - M \int_{t_0}^{+\infty} \gamma(t-t') \dot{s}(t') dt'$$

where

$$\xi(t) = \sum_{k} \left\{ \left[x_{k}(t_{0}) - \frac{c_{k}}{\omega_{k}^{2}} s(t_{0}) \right] \cos(\omega_{k} t) + \frac{\dot{x}_{k}(t_{0})}{\omega_{k}} \sin(\omega_{k} t) \right\} c_{k}$$
$$M \kappa(t) = \sum_{k} \frac{c_{k}^{2}}{\omega_{k}^{2}} \cos(\omega_{k} t)$$
$$\gamma(t) = \Theta(t)\kappa(t)$$

^CR. Zwanzig, J.Stat.Phys. 9, 215 (1973)

Relaxation and Sticking Models

Conclusions

Recurrence Time

In simulations, we adopt a finite set of HO $\downarrow\downarrow$ **Poincaré's recurrence** After τ_{rec} the energy gets back to the system

Conclusions

Linear Chain Representation of the Bath

Performing a normal model transformation...

Advantage: stronger approximation on the oscillators "far" from the system

fully correlated mean field level

^aK. H. Hughes, C. D. Christ and I. Burghardt, J.Chem.Phys. **131**, 024109 (2009)

^bR. Martinazzo, B. Vacchini, K. H. Hughes and I. Burghardt, J.Chem.Phys. **134**, 011101 (2011)

^CR. Martinazzo, K. H. Hughes and I. Burghardt, Phys.Rev.E 84, 030102 (2011) + (🗇 + (🖹 + (🖹 + (📜 + ()) 🔍

Conclusions

Our project

Aim of the work

Check the accuracy and the computational performances of the linear chain representation

- Problems: vibrational relaxation and sticking
- Bath properties: different bath models (analytical / from literature)
- Linear chain: different degree of approximation (no. of correlated oscillators)
- Methodology: MCTDH^a (Heidelberg's MCTDH Package^b)

^a H.-D. Meyer, U. Manthe and L. S. Cederbaum, Chem.Phys.Lett. 165, 73 (1990)
 M. H. Beck, A. Jäckle, G. A. Worth and H.-D. Meyer, Phys.Rep. 324, 1 (2000)

^bG. A. Worth, M. H. Beck, A. Jäckle and H.-D. Meyer, The MCTDH Package, Version 8.4 (2007)

Bath models

- The properties of the bath are defined by ω_n and the coupling
- Sampling of the spectral density of the bath, i.e. dissipation in the frequency-domain
- We considered different model spectral densities

Non Ohmic Baths

Relaxation and Sticking Models

Conclusions

▲□▶▲□▶▲□▶▲□▶ 三日 のへで

Example of Chain Dynamics

- WP Relaxation
- PPV Bath in chain form, 100 oscillators (15 fully correlated)

Conclusions

Results - Energy Relaxation

- Exact results at short time
- At longer time good qualitative behaviour
- Excellent agreement for non Ohmic Baths

Relaxation and Sticking Models

Conclusions

Results - Sticking

- *P*_{stick} decreases with increasing *E*_{inc}, as expected
- Excellent results with the chains
- For *E_{inc}* = 0.12 eV small error

Conclusions

・ロト ・ 同ト ・ ヨト ・ ヨ

Results - Long Time Relaxation

- For the same recurrence time, great reduction of CPU time
- The CPU time scales linearly with the recurrence time

Conclusions

Conclusions

- Very good results: even in the worse case qualitatively consistent behaviour
- Excellent agreement for realistic bath (including memory effects)
- Achieved a reduction of the computational cost of the simulation
- The recurrence time of the bath can be increased at a reasonable computational cost

^aM.Bonfanti, R.Martinazzo, K.H.Hughes, I.Burghardt and G.F.Tantardini Effective mode based wavefunctions for system bath quantum dynamics, in preparation (2011)

Relaxation and Sticking Models

Conclusions

Further developments

In future...

Application to a realistic sticking problem

Acknowledgments

 Gian Franco Tantardini, Dr. Rocco Martinazzo, Università degli Studi di Milano, Italy

UNIVERSITÀ DEGLI STUDI DI MILANO

- Irene Burghardt, Institute of Physics and Theoretical Chemistry, Goethe University Frankfurt, Germany
- Keith Hughes, School of Chemistry, Bangor University, United Kingdom

... and thank you, for your attention!

Acknowledgments

 Gian Franco Tantardini, Dr. Rocco Martinazzo, Università degli Studi di Milano, Italy

UNIVERSITÀ DEGLI STUDI di Milano

- Irene Burghardt, Institute of Physics and Theoretical Chemistry, Goethe University Frankfurt, Germany
- Keith Hughes, School of Chemistry, Bangor University, United Kingdom

... and thank you, for your attention!

Position correlation function

Bound State Probability

