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Aim of these notes is to discuss the symmetric properties of a potential energy sur-
face for a molecule interacting with a surface. In particular the focus will be on the
characterization of the group of symmetry of the translation parallel to the surface.

1 Symmetry and Degrees of freedom

We consider the Potential Energy Surface (PES) for a gas-surface reactive reactive pro-
cess, e.g. the dissociative chemisorption of a molecule. As far as we are concerned with
the symmetrical properties, we can schematically divide the set of coordinates on which
the PES depend in three categories:
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1. Reaction coordinates, usually the dissociating bond length (r) and the component
of the center of mass along the normal to the surface (Z). Along these coordinates
the potential does not show any symmetry.

2. Rotational degrees of freedom of the molecule. Along these coordinates the poten-
tial shows the symmetry of the isolated molecule, lowered by the interaction with
the surface (and possibly by the internal degrees of freedom of the molecule taken
into account). In particular, the operations of symmetry for which the potential
is invariant are determined by the (X,Y) projections of the center of mass on the
surface plane. In general, we can say that the group of these symmetry will be a
subgroup of the point group of the molecule.

3. Translational degrees of freedom along the surface. The symmetry of the potential
along these coordinates is entirely determined by the symmetry properties of the
surface alone. As we will thoroughly discuss, the symmetry can be conveniently
described in terms of the so-called wallpaper symmetry groups. Note that in case of
molecule on surface, symmetry operations like rotations or translations on (X,Y)
might results in a change of angular degrees of freedom as well, so that it is in
general not possible to completely decouple the symmetrization in (X,Y) from the
angular coordinates. 1

In the following, we will describe the wallpaper groups and give some usuful group-
theoretical characterization of the groups of symmetries which are more interesting for
the description of molecule-surface interaction.

2 The wallpaper groups

The wallpaper groups are the 2D analogue of the more common crystallographic
groups. As the crystallographic groups describe 3D periodic arrangements of atoms
/ molecules, the wallpaper groups are the appropriate way to describe surfaces and to
take into account periodicity in 2 dimensions.
From a mathematical point of view, the 17 wallpaper groups are subgroups of ISO(2),

i.e. the group of the isometries in the plane. This continuous group is the set of trans-
formations of the plane which leave the euclidean distance invariant. The elements of

1We note that the translational symmetry can be broken when the motion of the surface atoms is
taken into account. However two considerations make us think that the description in terms of plane
symmetry group can still be useful:

• from a theoretical point of view, surface motion can be described in terms of surface phonons, that
have well de�ned properties with respect to the symmetries of the ideal surface. In particular,
they still span representation of the surface symmetry group (possibly non totally symmetric
representation).

• from a practical point of view, even when considering surface atoms motion PES are computed in
a supercell approach, in which by necessity translational symmetry is enforced.
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ISO(2) are the combination of a rotation (proper or improper) and a translation. In an
abstract setting, we will write isometries as

x′ = (O, τ) x x ∈ R2 O ∈ O(2) τ ∈ T (1)

where O(2) is the orthogonal group in 2 dimensions (proper/improper rotations of the
plane) and T is the group of translations in 2 dimensions. With the notation of Eq. 1,
we will mean a transformation that in a cartesian reference can be written as(

x′

y′

)
=
[
± cosϑ ∓ sinϑ
sinϑ cosϑ

](
x
y

)
+
(
τx
τy

)
where matrices with determinant equal to +1 or −1 are proper or improper rotations,
respectively. For the sake of conveniency, in the following we will often make use of a non
cartesian fractional reference. In the non-cartesian frame, the transformations of ISO(2)
will still be given by a formula such as

x′ = Ox + τ (2)

but the matrix O and the vector τ will have to be properly de�ned in the new reference
system. The group of the isometries is non abelian: it is very easy to show, as an
example, that a rotation and a translation do not in general commute. From a vector
representation of the action of the group elements (such as 2) it can be easily shown that
the group law is given by

(O2, τ2)(O1, τ1) = (O2O1, τ1 +O2τ1) (3)

The wallpaper groups are subgroups of ISO(2) that include a �nite number of proper/improper
rotations and a discrete (but in�nite) number of translations. It has been proven that
there are just 17 types of wallpaper group, and this restriction comes from the com-
patibility of periodicity with rotations (a periodic arrangement of objects permits the
presence of axis of rotations of order 2, 3, 4 and 6 only, the so-called crystallographic
restriction theorem).
We now will brie�y show the three wallpaper groups which are more related to metal

surfaces:

• the group p3m1, that describes the symmetry of a (111) surface
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The group p3m1 is characterized by a hexagonal lattice 2. In a single unit cell there are
3 axis of rotations, each of order 3. Re�ection axes lie on the lines connecting the nearest
rotations. The three rotation centers are not related by any symmetry operations, and
thus are independent points ( for the (111) surface they are simply the TOP, the HCP
and FCC sites ).

• the group p6m, that describes the symmetry of a (111) surface with the approxi-
mation that the hollow sites are equivalent (even if in the true (111) surface they
are not for the di�erence in the 2nd and 3rd layer)

Like p3m1 (which is a subgroup of this group), p6m has an hexagonal lattice. The
di�erence with respect to p3m1 is in one of the rotation axis, that now has order 6,
and in the presence of re�ection axes along the sides of the unit cell (as represented in
�gure). The additional order 2 axes are the composition of the perpendicular intersection
of re�ection axes. Note that in this case the order 3 rotation centers are related by
symmetry (and in fact they corresponds to the hollow sites, that are now equivalent for
the approximation fcc = hcp)

2rigorously, the lattice is the set of points related to the origin by the pure translations of the group
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• the group p4m, describing the symmetry of a (100) surface

This group has a square unit cell, with two inequivalent axis of order 4 and symmetry
axis along the sides, the diagonals and the perpendiculars in the midpoints of the sides.
Rotation axis of order 2 arise at the perpendicular intersection of symmetry axis. Note
that in case the 4-fold rotations axes are the top and hollow sites, while the 2-fold rotation
axis is on the bridge site.

3 Wallpaper groups as semi-direct product of groups

In this section we want to introduce the notion of semidirect product of groups (which is
precisely de�ned in Appendix A) with the aim of easily characterize all the elements of
a wallpaper group. In some way, this discussion will let us distinguish the �translational
part� of a group from everything else.
First, we need to introduce the point group G0 of a wallpaper group G. We de�ne in

this way the set of those elements of the wallpaper group that do not include a translation,
i.e. those elements r in the form (O, 0) where 0 is the zero vector. As can be easily shown,
this set is a subgroup of the wallpaper group, since the composition of two such elements
does still belong to the subgroup. Intuitively, the point group is the set of symmetry
operations at the origin of the lattice.
In the case of p3m1, the point group is D3 (the planar analogue of C3v) which includes

the identity, two rotations of 2π/3 and 4π/3 around the origin and three symmetry axis at
angles 2π/3 one with each other. In the case of p6m, the point group is D6 (analogue of
C6v) with identity, 5 rotations of n2π/6 and 6 re�ections. In the case of p4m, the point
group is D4 (C4v) with identity, 3 rotations of nπ/2 and 4 re�ections.
The second ingredient we need is the lattice group T . The lattice group is the set

of all the elements t of the wallpaper group in the form (1, τ) where 1 is the identity of
O(2). Again, since the composition of two pure translations is still a translation, this a
subgroup of the wallpaper group.
We could feel tempted to say that any element of the wallpaper group is a combination

of an element of the point group and an element of the lattice group. In general this is
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not true, and does not hold for those group which are represented with a glide re�ection
(the combination of a translation of half cell and a re�ection) passing through the origin.
In fact in this case there will be symmetry elements in the form (O, σ) - with σ being
a translation that do not belong to the lattice group - that cannot be represented as
composition of a rotation of G0 and a translation of T .
The groups that not require the introduction of these glide re�ections are called sym-

morphic or split groups. The three cases of our interest are all symmorphic groups. Hence
if we focus on those groups, we are allowed to write any the elements of the wallpaper
group as

(O, τ) O ∈ G0 τ ∈ T

With the de�nitions of T and G0 we can see that three properties hold:

1. the only common element between the point group and the lattice group is the
identity T ∩G0 = {e}

2. T is a normal subgroup if G, i.e. for any g ∈ G and any t1 ∈ T , g−1t1g = t2 (which
can be proven directly with the composition Eq. 3)

3. any group element g can be obtained as a product of a r ∈ G0 and a t ∈ T , which
is formally written as TG0 = G - meaning with TG0 the set of all the products rt
with r ∈ G0 and a t ∈ T (just for symmorphic groups)

These properties are the axioms that allow us to write the wallpaper group as semi-direct
product of G0 and T

G = T nG0

Among the properties of the semi-direct product (see Appendix A), one particularly
interesting for our purposes is the fact that an element of G can be uniquely written as
product of a rotation of the rotation group and a translation of the lattice group

g = t r

4 Totally symmetric projector

We now focus on the totally symmetric representation of the wallpaper group, with the
aim of writing the totally symmetric projector.
From the theory of �nite group representation, once we have established the action of

our transformation group on a linear space, we know that a projector on a 1D represen-
tation is given by

P |ϕ〉 =
1
|G|

∑
g∈G

χ(g) g · |ϕ〉 (4)

where χ(g) is the character of the element g for the desired representation. In our case
we have an in�nite group, but we can make it �nite with Born-Von Karman periodic
boundary conditions (see Appendix B).
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Thanks to the semi-direct product structure, we can greatly simplify the enumeration
of all the elements of the wallpaper group. A sum over the elements of a semi-direct
product, in fact can be written as product of sum over the elements over the subgroups.
Suppose G = T nG0 and consider the expression∑

r∈G0

∑
t∈T

f(rt)

Since G0T = G (for a symmorphic group) the expression then include all the elements
of G. Furthermore, since the decomposition rt is unique, we can conclude that all the
elements of G are included in the summation just one time. We can thus identify∑

r∈G0

∑
t∈T

f(rt) =
∑
g∈G

f(g) (5)

Using this identity in the projector Eq. 4, we get

P |ϕ〉 =
1

|T ||G0|
∑
r∈G0

∑
t∈T

χ(rt) rt · |ϕ〉

The character of a product of elements is the product of the characters of the elements,
and then

P |ϕ〉 =

 1
|G0|

∑
r∈G0

χ(r) r

( 1
|T |
∑
t∈T

χ(t) t

)
· |ϕ〉 (6)

We can recognize in parentheses the projectors over the lattice group and the point
group. The characters here are the characters of the representation of G0 �induced� by
the representation of G (and equivalently for T ), in other words the trivial restriction
of the representation of G to the elements of its subgroup.
Eq. 6 proves in a rigourous way one reasonable fact: we can symmetrize a function

by �rst symmetrizing with respect to translational symmetry, and then to point group
symmetry (we can also invert the order, still building a proper symmetrized state).
Following the same key idea of converting a sum over the entire group in two sums

over the subgroups, the procedure can be easily generalized in case of representations
that are not one dimensional.

5 Irreps of the wallpaper groups

A general procedure exists to build the representation of a semi-direct product group
from its factor groups. Due to the complexity of this procedure, we will just describe the
result for the wallpaper groups in two extreme cases.
The main idea of this procedure is to start from the irreps of the lattice group (see

Appendix B for a brief overview of the irreps of a group of translations only). We can
�symmetry adapt� the irreps of the translation by building the set of representation that
are related by the action of the symmetry operations included in the point group G0.
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As en example, starting from a representation exp(−ık · t) we can obtain the related
represention exp(−ık · (gt)) where g is a symmetry operation in G0. Each representation
exp(−ık · (gt)) can be equivalently expressed with another k-vector k′ as exp(−ık′ · t).
The set of vectors k that are related by the symmetry operations of G0 form a so-called
star of k vectors.
A star contains at most a number of vectors equal to |G0|, the number of elements of

G0. Note however that a star might contain less than |G0| k-points. Generally speaking,
this will happen for high symmetry points of the reciprocal space. As an example, let k
be equal to the gamma point, k = 0 . Any transformation of G0 will relate the gamma
point to itself. Hence the star of the gamma point is made by the gamma point alone.
We will now describe the irreps obtained in the two cases in which we start from a non
symmetric k-point (hence with a star of dimension |G0|) or when we start from the most
symmetric k-point, i.e. the gamma point.

|G0|-dimensional star In this case, we obtain just a single wallpaper group irrep, of
dimension equal to N = |G0|. The representation can be generated by a vector composed
by all the functions composing a star. We build a N elements vector

exp(−ık1 · t)
exp(−ık2 · t)

· · ·
exp(−ıkN · t)


with the set of k-vectors k composing the star and we see how it transforms under the
action of a transformation of the wallpaper group.
In particular, the representation of a lattice translation τ will be a diagonal matrix of

the form 
exp(−ık1 · τ) 0 0

0 exp(−ık2 · τ) 0
0 0 · · · 0

0 exp(−ık3 · τ)


where g1, g2...gN are the elements of G0.
On the contrary the representations of the elements of G0 will not be diagonal, since

the action of g ∈ G0 in general brings a given k-vector to another k-vector of the star.

1 dimensional star In the case of a symmetric k-point, the representation built as in
the general case explained above can be reduced. In particular for the gamma point,
we get a set of irreps which is exactly the set of irreps of the point group G0 itself. In
this case, the representation of a pure translations is a unit matrix with dimension equal
to the dimension of the representation. The representation of the elements of G0 are
simply given by the corresponding representation of G0 alone. The representation of all
the other elements, can be build as product given the decomposition of the element on
the semi-direct product space.
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We remark that since among the irreps of G0 there will be the totally symmetric one,
the totally symmetric irrep of the wallpaper group will be obtained in the representation
of the gamma point star.

6 An example: the (111) surface

We now consider the (111) surface and we try to apply some ideas related to what
discussed above.

Fractional coordinates and reciprocal lattice To deal with periodicity, it is often con-
venient to de�ne a frame of reference in which the translations are expressed as vectors
of integer components. This reference is obtained by choosing the axes along two inde-
pendent directions of translation and scaling the coordinates by the unit cell dimensions.
In the case of the (111) surface, we can �x the origin on one of the 1st layer lattice
atoms, we choose two axis at 60◦ directed along other 1st layer atoms and we scale the
coordinates by the lattice constant. With this choice, the unit cell vectors will be given
(in cartesian coordinates) by

a1 = a(1, 0) a2 = a(
1
2
,

√
3

2
)

The transformation from a cartesian reference to a fractional reference will be

C :
(
u
v

)
=
[

1/a −1/a
√

3

0 2/a
√

3

](
x
y

)
whereas the inverse transformation will be

C−1 :
(
x
y

)
=
[
a a/2
0 a

√
3/2

](
u
v

)
The reciprocal lattice unit vectors obtained from a1 and a2 are (in cartesian coordi-

nates)

b1 =
2π
a

(1,− 1√
3

) a2 =
2π
a

(0,
2√
3

)

and give raise to an hexagonal lattice.

Symmetry group of (111) surface As discussed above, the (111) surface has symmetry
p3m1. All the elements of this group can be generated as composition of a translation
of the lattice and a proper/improper rotation of the point group D3

In fractional coordinates, all the translations are very easily expressed by vectors with
integer components:

r′ = T r ⇐⇒

{
u′ = u+ n1

v′ = v + n2
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The action of the elements ofD3 can be found from the rotation in cartesian coordinates
with the coordinate transformation

Rfractional = C−1RcartesianC

where C is the coordinate transformation from fractional to cartesian. In this way, we
can easily �nd the expression of the symmetry transformation in fractional coordinates:

• identity

r′ = 1 r ⇐⇒

{
u′ = u

v′ = v

[
+1 0
0 +1

]
• rotation of 2π

3

r′ = C(
2π
3

) r ⇐⇒

{
u′ = −u− v
v′ = u

[
−1 −1
+1 0

]

• rotation of 4π
3

r′ = C(
4π
3

) r ⇐⇒

{
u′ = v

v′ = −u− v

[
0 +1
−1 −1

]

• re�ection 1

r′ = σ r ⇐⇒

{
u′ = v

v′ = u

[
0 +1

+1 0

]
• re�ection 2

r′ = σC(
2π
3

) r ⇐⇒

{
u′ = u

v′ = −u− v

[
+1 0
−1 −1

]

• re�ection 3

r′ = σC(
4π
3

) r ⇐⇒

{
u′ = −u− v
v′ = v

[
−1 −1
0 +1

]

The semi-direct product decomposition of p3m1 in terms of its point group D3 and its
lattice group assure us that any element of the group can be uniquely written as

r′ = RT r ⇐⇒
(
u
v

)
= R

(
u
v

)
+
(
n1

n2

)
where R is one of the D3 operation described above.
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Symmetry of the k-space The action of the operators of D3 on the k vectors can
be found by transforming the expression of a generic exponential of a direct lattice -
reciprocal lattice product representation

exp (−ık · r) = exp (−2πı(k1u+ k2v))

By using the coordinates transformation reported above, we �nd

exp (−ık · 1r) = exp (−2πı(k1u+ k2v))

exp
(
−ık · C(

2π
3

)r
)

= exp (−2πık1(−u− v) +−2πık2u)) = exp (−2πı(k2 − k1)u− 2πı(−k1)u))

and analogous relation for the other transformation. So the k points transform according
to the following relations

1⇐⇒ k = k

C(
2π
3

)⇐⇒

{
k′1 = k2 − k1

k′2 = −k1

C(
4π
3

)⇐⇒

{
k′1 = −k2

k′2 = k1 − k2

σ ⇐⇒

{
k′1 = k2

k′2 = k1

σ(
2π
3

)⇐⇒

{
k′1 = k1 − k2

k′2 = −k2

σC(
4π
3

)⇐⇒

{
k′1 = −k1

k′2 = k2 − k1

when these points are represented on the reciprocal lattice for a given k1 k2, it becomes
evident that they are related by the same transformation of D3 but performed on the
reciprocal lattice instead of the direct lattice. As an example, a rotation of 2π

3 in the
direct lattice results in a rotation of −2π

3 in the reciprocal lattice.
With the transformation rules obtained above, we can build stars of k points and �nd

irreducible representation for p3m1. In particular, the irreps build with the star of the
gamma point will simply be the irreps of the D3 group (that can be simply found in the
character table of the isomorphic C3v group).

D3 E 2C3 3σ

A1 1 1 1

A2 1 1 -1

E 2 -1 0
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Totally symmetric Fourier series Suppose now we want to symmetrize a Fourier series
for a (111) surface. We start from an expresssion of the 2D Fourier series with the proper
translational symmetry. The basis function fmn will be

fmn = exp (2πıkmn · r)

where the vectors kmn are the vectors of the reciprocal lattice. Expressing r in fractional
coordinates, we can conveniently write

fmn = exp (2πı (mu+ nv))

As explained above, the totally symmetric projection can be done by �rst applying
the totally symmetric projection for the lattice group, and then the totally symmetric
projection for the point group. However, the fouries series already spans the totally sym-
metric representation of the lattice group. Hence we can simply obtained the symmetry
adapted Fourier series by applying the operations of the point group

f (p3m1)
mn =

1
|D3|

∑
R∈D3

R exp (2πıkmn · r) =
1
6

∑
R∈D3

exp (2πıkmn · Rr)

I have previously shown that such an expression can be related to a sum over the points
of a k-star. Hence the sum becomes

f (p3m1)
mn =

1
n

n∑
i=1

exp
(
2πıkimn · r

)
where the sum goes over the n elements of the star generated from the kmn vector. The
elements might be less then 6 in case the point kmn is invariant under some symmetry
operations of D3 (in the reciprocal space).
When we build the fouries series, we do not need to include all the possible k point

corresponding to integerm,n. In fact we need only to include the di�erent stars generated
by the k points. This can be very easily achieved by summing over the m,n values that
lie in a symmetry �unique� portion of the k space that can generate the whole k space
with the transformation of D3.

A Semi-direct product of groups

Before introducing the semi-direct product of groups, we recall some basic de�nitions of
group theory.

De�nition: Group A group is a set of elements G = {g} with a composition law
G×G→ G (called in di�erent ways depending on the context, i.e. �group addition� or
�group multiplication� or �group law�), that satisfy the following axioms

1. the composition is associative (g1 · g2) · g3 = g1 · (g2 · g3) = g3 · g2 · g3
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2. the identity belongs to the group ∃e ∈ G : g · e = e · g = g ∀g ∈ G

3. for each element, its inverse is in the group ∀g ∈ G∃g−1 ∈ G : g · g−1 = g−1 · g = e

A subgroup is a subset of a group that still meet the group axioms with the same com-
position law.

De�nition: Normal Subgroup A subgroup H of a group G is said to be normal when
∀g ∈ G and ∀h ∈ H we have that ghg−1 ∈ H.

If we write the set of elements obtained multiplying g and all the elements of H
as gH = {gh, ∀h ∈ H}, we can equivalently write that a subgroup is normal when
gHg−1 = H

Now we have all the necessary de�nitions to introduce the notion of semi-direct product
of subgroups.

De�nition: Semi-Direct Product Let G be a group with subgroups H and Q. H is a
normal subgroup of G. We say that G is the semi-direct product of H and Q (we write
G = H nQ ) if:

1. HQ = G, i.e. any element of G can be written as a product of an element of H
and an element of Q

2. the identity is the only element that belongs both to H and to Q, H ∩Q = {e}.

The importance of this notion, lies in the fact that it allows a unique decomposition of
each group element. This is essentialy the meaning of the following theorem.

Theorem Let G be a group with subgroups H and Q. Let H be a normal subgroup.
Then the following statements are equivalent

1. G is the semi-direct product of H and Q, G = H nQ

2. any element g ∈ G can be uniquely written as h · q with h ∈ H and q ∈ Q

3. any element g ∈ G can be uniquely written as q · h with h ∈ H and q ∈ Q

Proof From 1. to 2. : From the de�nition of semi-direct product, we know G = HQ
and then g can be written as hq. Suppose it can also be written as h′q′. Then hq = h′q′

so h′−1h = q′q−1 ∈ H ∩Q = {1G}. Therefore h = h′ and q = q′ �
From 2. to 1. : From the hypotheses, it is obvious that HQ = G. Furthermore,

suppose that an element g̃ belongs both to H and Q. Then we can write it as g̃ · e, with
g̃ ∈ H and e ∈ Q, and we can write it as e · g̃, with e ∈ H and g̃ ∈ Q. For the unicity of
the representation, we conclude that g̃ = e. �
From 2. to 3. and viceversa : An element g can be written uniquely as hq, g = hq.

Introducing the identity e = qq−1 in the right hand side, we get g = qq−1hq. Since H
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is a normal subgroup, we know that h′ = q−1hq is still an element of H. Thus g can
be written uniquely as g = qh′, with h′ = q−1hq. The inverse can be proved with an
analogous argument.�

B Irreps of a group of sole translations

A group of translations {T} is an abelian group, generated by repeated application of
a number of �minimum� translations {Ai}Di=1 equal to the number of dimensions of the
geometrical space on which the transformation act. For example, a group of translation
in 3 dimension can be generated by the three translations A1,A2, A3 corresponding to
the three vectors of the �rst unit cell a1,a2,a3.
Starting from these very basic properties, it can be shown that the group has only 1D

representations (as any abelian groups), that can be conveniently represented in terms
of vectors of the reciprocal lattice. In particular, for any vector of the �rst brillouin zone
of the reciprocal lattice, there exist a representation of the group

Dk(T ) = exp(−ık · t) (7)

where T is a translation of vector t in a geometrical space and k is a vector of the
reciprocal lattice associated with the direct lattice generated by the translations. It is
easy to check from the properties of the complex exponential that each Dk(T ) is indeed
a representation of the group of the translation (i.e. Dk(T1 · T2) = Dk(T1)Dk(T2) ) and
that representations corresponding to k vectors that di�er by a reciprocal lattice vector
are equivalent.
We choose a convenient system of reference for the direct lattice {ai}Di=1 with the D

vectors de�ning the �rst unit cell. Consequently, we can de�ne the reciprocal system of
reference with the vectors {bj}Dj=1 obtained by the condition

ai · bj = 2π δij (8)

Since a translation vector will have integer components in the system of reference {ai}
, we easily obtain that the representation will be given by the formula

Dk(T ) = exp(−ı
∑

kiNi) (9)

where ki are the components of the �rst brillouin zone in the system of reference of the
reciprocal lattice and Ni are the integer components of the translation T = ΠiA

Ni
i .

The group of translation is in principle in�nite. For the sake of semplicity, in prob-
lems with translational symmetry it is often convenient to apply the particular Periodic
Boundary Conditions (PBC) that in solid-state physics are commonly known as Born-
Von Karman PBC.
In a group-theoretical framework, these conditions are equivalent to the assumption

that the translation group is cyclic, i.e. there exists a large integer number n such that
Tn = E, where E is the identity. As an example, we can �x a large integer N and set

ANi = E i = 1, D (10)
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for the translations de�ning the �rst unit cell. In this way, we can consider the group of
translation a large but �nite dimensional set, and we can apply the standard techniques
of the theory of representation of �nite groups without any relevant approximation.
Born-Von Karman conditions also have consequences on the allowed group represen-

tation. If the conditions of Eq. 10 are imposed, we have to force the representations of
Ai to be complex N-roots of the unit

Dk(Ai) = exp(−2πı
∑ n

(i)
j

N
) nj = 0, . . . , N − 1 (11)

so that Dk(E) = Dk(ANi ) =
[
Dk(Ai)

]N = 1. Since we can choose an integer number

n
(i)
j for each of the D indipendent translation of the �rst unit cell, we have ND possible

representation of the group. As expected for a �nite group, the number of representation
equals the cardinality of the group (i.e. its number of elements).

15


