Gut Microbiota Orchestrates Energy Homeostasis during Cold

Graphical Abstract

Highlights
- Cold exposure leads to marked changes in the gut microbiota composition
- Cold microbiota transplantation increases insulin sensitivity and WAT browning
- Cold exposure or cold transplantation increase the gut size and absorptive capacity
- Reconstitution of cold-suppressed A. muciniphila reverts the increased caloric uptake

Authors
Claire Chevalier, Ozren Stojanović, Didier J. Colin, ..., Nicola Zamboni, Siegfried Hapfelmeier, Mirko Trajkovski

Correspondence
mirko.trajkovski@unige.ch

In Brief
Cold exposure markedly shifts the composition of the gut microbiota. This "cold microbiota" mediates remodeling of the fat and intestinal tissues, helping the host to withstand periods of high energy demand.

Accession Numbers
GSE74228
Gut Microbiota Orchestrates Energy Homeostasis during Cold

Claire Chevalier,1,2,3 Ozren Stojanovic,1,2,8 Didier J. Colin,3 Nicolas Suarez-Zamorano,1,2 Valentina Tarallo,1,2 Christelle Veyrat-Durebex,1,8 Dorothée Rigo,1,2 Salvatore Fabbiani,1,2 Ana Stevanovic,1,2 Stefanie Hagemann,4 Xavier Montef,5 Yann Seimbille,3 Nicola Zamboni,6 Siegfried Happelmeier,4 and Mirko Trajkovski1,2,7,*

1Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
2Division of Biosciences, Institute of Structural and Molecular Biology, University College London (UCL), London WC1E 6BT, UK
3Centre for BioMedical Imaging (CIBM), Geneva University Hospitals, 1211 Geneva, Switzerland
4Division of Radiology, Geneva University Hospitals, 1211 Geneva, Switzerland
5Institute for Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
6Division of Biosciences, Institute of Structural and Molecular Biology, University College London (UCL), London WC1E 6BT, UK
7Co-first author
8Correspondence: mirko.trajkovski@unige.ch
http://dx.doi.org/10.1016/j.cell.2015.11.004

SUMMARY

Microbial functions in the host physiology are a result of the microbiota-host co-evolution. We show that cold exposure leads to marked shift of the microbiota composition, referred to as cold microbiota. Transplantation of the cold microbiota to germ-free mice is sufficient to increase insulin sensitivity of the host and enable tolerance to cold partly by promoting the white fat browning, leading to increased energy expenditure and fat loss. During prolonged cold, however, the body weight loss is attenuated, caused by adaptive mechanisms maximizing caloric uptake and increasing intestinal, villi, and microvilli lengths. This increased absorptive surface is transferable with the cold microbiota, leading to altered intestinal gene expression promoting tissue remodelling and suppression of apoptosis—the effect diminished by co-transplanting the most cold-downregulated strain Akkermansia muciniphila during the cold microbiota transfer. Our results demonstrate the microbiota as a key factor orchestrating the overall energy homeostasis during increased demand.

INTRODUCTION

Food intake, energy expenditure (EE), and body adiposity are homeostatically regulated, and malfunctions of this balance can cause obesity (Murphy and Bloom, 2006) (Faroq and O’Rahilly, 2005). Mammalian white adipose tissue (WAT) is an important regulator of the whole body homeostasis that stores energy in form of triglycerides (TGs). The brown adipose tissue (BAT) catabolizes lipids to produce heat, function mediated by the tissue-specific uncoupling protein 1 (Ucp1) abundantly present in the BAT mitochondria. BAT differentiation can be induced by prolonged cold exposure and beta-adrenergic stimulation that leads to elevated intracellular cyclic AMP (Cannon and Neder-gaard, 2004) (Young et al., 1984). The BAT is present at distinct anatomical sites, including the interscapular, perirenal, and axillary depots. Brown fat cells also emerge in subcutaneous WAT (SAT) (known as “beige” cells) in response to cold or exercise (Cousin et al., 1992) (Guerra et al., 2001), a process referred to as WAT browning. Loss of BAT function is linked to obesity and metabolic diseases (Lowell et al., 1993). Promotion of increased BAT development, on the other hand, increases EE without causing dysfunction in other tissues and is associated with a lean and healthy phenotype (Ghorbani et al., 1997; Guerra et al., 1998; Kopecky et al., 1995), suggesting the manipulation of the fat stores as an important therapeutic objective.

The gastrointestinal tract is the body’s largest endocrine organ that releases a number of regulatory peptide hormones that influence many physiological processes (Badman and Flier, 2005). The intestinal epithelium undergoes rapid self-renewal fueled by multipotent Lgr5-expressing stem cells located in the crypts of Lieberkuhn and is terminated by apoptosis/exfoliation of terminally differentiated cells at the tips of small intestinal villi (Sato et al., 2009). At the apical surface, the epithelial cells have microvilli that further substantially increase the absorptive area and mediate the secretory functions. The intestinal microbiota co-develops with the host, and its composition is influenced by several physiological changes (Koren et al., 2012; Liou et al., 2013; Ridaura et al., 2013). The colonization starts immediately after birth and is initially defined by the type of delivery and early feeding. After 1 year of age, the intestinal microbiota is already shaped and stabilized but continues to be influenced by environmental factors including diet (Sekirov et al., 2010). A wide range of pathologies have been associated with alterations of the gut microbial composition (e.g., asthma, arthritis, autism, or obesity) (Sommer and Bäckhed, 2013). The intestinal microbiota can also influence the whole-body metabolism by affecting energy balance (Bäckhed et al., 2004) (Chou et al., 2008) (Turnbaugh et al., 2006) (Koren et al., 2012) (Ridaura et al., 2013). The mechanisms and the nature of the phenotypic and morphological changes that regulate the energy
Figure 1. Body temperature regulation.

A Ad libitum

B No food

C Control males

D Abx males

E Control females

F Abx females

G Phylum-level proportional abundance

H Phylum richness feces (%/100)

I Phylum richness cecum (%/100)

J Phylum color ranges

K Heatmap level

Legend on next page

©2015 Elsevier Inc.
homeostasis of the new host following microbiota transplantation remain poorly understood. Here, we show that the microbiota remodeling is an important contributor of the beige fat induction during cold and a key factor that promotes energy uptake by increasing the intestinal absorptive area, thus coordinating the overall energy homeostasis during increased energy demand.

RESULTS

Cold Exposure Changes the Gut Microbiota Composition

Short-term cold exposure for up to 10 days leads to increased EE relative to the energy uptake and suppresses BW and white fat mass gain (Figures S1A–S1F) (Wu et al., 2012, 2013). To investigate the importance of the acutely consumed food and caloric harvest during cold exposure, we restricted the food access during the initial 8 hr (hr) of cold exposure or depleted the intestinal microbiota using broad range antibiotics (Abx) administered in the drinking water. The higher fecal caloric content after complete microbiota depletion was confirmed using bomb calorimetry (Figure S1G) and was consistent with previous reports (El Kaoutari et al., 2013), suggesting lower energy harvest from the food. Restricting the food access during acute cold exposure led to decreased body temperature (Figures 1A and 1B) compared to ad libitum-fed control mice and to a marked drop in the blood glucose and BW at cold (Figures S1H–S1J). The decreased tolerance to cold and lowered blood glucose levels were also evident in the Abx-treated mice and the changes were relatively stable during short and long-term microbiota depletion up to 4 weeks of treatment (Figures 1C–1E and S1K–S1R), despite the stable food intake and slightly increased water consumption (Figures S1S and S1T). These data suggest that the energy harvest during acute cold contributes to maintaining the body temperature, and the intestinal microbiota is supporting this process.

We observed that over time, the overall fat loss was attenuated despite the stable food intake and EE (Figures S1A–S1F), suggesting compensatory mechanisms that enable increased caloric harvest from the consumed food. To investigate whether this prolonged cold exposure causes changes in the intestinal microbiota, we collected feces at days 0, 11, and 31 and cecum post-mortem of cold-exposed mice and room temperature (RT) controls. Profiling of the microbiota composition by 16S rRNA gene sequencing, following by principal coordinates analysis (PCoA) based on weighted UniFrac distance, showed major alterations of the microbiota content both in cecum and feces samples of cold-exposed animals (Figures 1F, S2A, and S2B).

As expected, Firmicutes was the richest phylum in all samples (on average 69.10%) (Figures 1I and 1J). Bacteroidetes was the most abundant phylum (on average 63.50%) in all samples except the cold-exposed day 31 samples (Figures S2C–S2E). We observed differences in operational taxonomic units (OTUs) abundance at phylum level in Bacteroidetes, Firmicutes, Verrucomicrobia, Deferrribacteres, Cyanobacteria, and Actinobacteria, and differences in OTU numbers at phylum-level in all the above plus Deferrribacteres based on factor summary bar chart. Individual species, or family-based hierarchical clustering using the average-neighbor method, confirmed the major shift of the microbiota composition and showed clustering of the samples from the cold-exposed versus the room temperature (RT) groups in both feces and cecum samples (Figures 1G, S2D, S2F, S3A, and S3B). Comparison of phylum level proportional abundance in feces showed shifts in proportions (Figures 1H and S2C), especially in the ratio Firmicutes/Bacteroidetes where Firmicutes abundance (from 18.6% in RT up to 60.5% under cold) increased over Bacteroidetes (from 72.6% in RT to 35.2% under cold). The Verrucomicrobia phylum was almost absent from both feces and cecum after the cold exposure (from 12.5% for the RT to 0.003% for the cold in cecum) (Figures 1H, S2C, and S2E). Interestingly, similar shifts, although less pronounced, are associated with genetic and high fat diet-induced obesity (Tu et al., 2006). The shifts in phylum abundance correlate with the richness of the species present in them. Firmicutes phylum increased its richness in feces up to 78.1% under cold exposure (compared to 65% in RT) and Bacteroidetes decreased it to 18.8% (compared to 29.7% in RT) (Figures 1I and 1J), without changing the overall bacterial diversity based on the Shannon diversity index (Figures S3C and S3D). From the 3,864 OTUs detected, using Welch t test done across the two groups of samples using the abundance metrics, 252 OTUs (within 44 families) were significantly different (p < 0.05). Of the selected families, there were mixed responses in Firmicutes, Proteobacteria, and Bacteroidetes, however, those within Actinobacteria,
Verrucomicrobia, and Tenericutes were less abundant in the cold samples, while RT samples were less abundant in Defteribacteres (Figure 1K). When looking at the most significantly changed OTUs using analysis of variance, Akkermansia muciniphila and S24-7 family were among the top nine most shifted bacteria (Figures S3G and S3H). Verrucomicrobia phylum was represented by eight different OTUs, all part of the same species: Akkermansia muciniphila, which we found highly decreased with cold exposure (Figures S3E and S3F). The changes in the major bacterial phyla were confirmed by qPCR in the sequenced, as well as in independent sets of SPF and conventional animals (Figures S3I–S3L). Together, these results demonstrate a major shift in lower gut microbiota in response to cold exposure.

Cold Microbiota Transplantation Increases Insulin Sensitivity

To investigate the importance of the microbiota changes during cold, we transplanted the microbiota from 30 days cold-exposed or control RT mice to germ-free (GF) mice by co-habitation and again confirmed the shifts in the donors and the recipient mice (Figures S3K and S3L). As expected, cold exposure of donor mice led to a marked increase in the insulin sensitivity (Figure 2A). Strikingly, cold microbiota transplanted mice also showed increased sensitivity to insulin (Figure 2B), suggesting that cold microbiota alone is sufficient to transfer part of this phenotype. The increased insulin sensitivity was further investigated using hyperinsulinemic-euglycemic clamp in awake and unrestrained mice. Cold mice showed a marked increase in the glucose infusion rates (GIR) needed to maintain the clamped glucose levels and an increase in the stimulated glucose disappearance (Rd) levels (Figures 2C, 2D, and S4A). To investigate the peripheral glucose uptake, we co-administered 2-[^14]C]deoxyglucose (2[^14]C]DG) during the clamp. While no changes were observed in the glucose uptake from interscapular BAT (iBAT), brain, soleus, or quadriceps muscle, there was a large increase in the uptake from inguinal subcutaneous and perigonadal (epididymal in males) visceral depots of the WAT (ingSAT and pgVAT, respectively) (Figure 2E). These observations were further corroborated in glucose-stimulated and basal conditions (Figures 2F and 2G), which in addition showed increased glucose uptake in iBAT. Interestingly, the cold microbiota transferred the fat-specific glucose disposal phenotype to the transplanted mice as measured by 2[^14]C]DG uptake (Figure 2H) and by positron emission tomography–computed tomography (microPET-CT). Specifically, both ingSAT and pgVAT, but not quadriceps muscle, showed increased [18F]fluorodeoxyglucose ([18F]FDG) uptake in the cold-transplanted mice (Figures 2I–2K) and had decreased ingSAT and pgVAT volumes and weights (Figures 3A–3F and S4B). Hounsfield unit (HU) analysis of the microCT scans revealed that cold microbiota-transplanted mice had higher ingSAT and pgVAT density compared to the controls (Figures 3G and 3H). Together, these data suggest that the cold microbiota contributes to the increased insulin sensitivity observed during cold exposure and leads to decreased total fat coupled with increased fat density.

Cold Microbiota Promotes Browning, Energy Expenditure, and Cold Tolerance

To investigate whether the higher density and the decreased fat amount (Figures 3A–3H) are originating from the differences in the adipocyte volume, we measured the adipocyte size distribution using high content imaging. Cold-transplanted mice had increased number of small and decreased number of large adipocytes in the ingSAT and pgVAT depots (Figures 3I–3L). The adipose depots excised from the cold-transplanted animals were darker in appearance. All these phenotypic events are characteristic features of mature beige adipocytes. Therefore, we investigated whether cold microbiota could affect the browning of the white fat depots and found that cold-transplanted mice had marked increase in the brown fat-specific markers in the ingSAT, and surprisingly, also in the pgVAT depots (Figures 3M and 3O). The increased browning of ingSAT was consistent with the increased Ucp1-positive cells in the cold-transplanted mice (Figure 3N). There was a tendency bordering significance toward increased brown fat marker expression in the interscapular BAT (iBAT) depots of the cold-transplanted mice, albeit at smaller scale compared to ingSAT and pgVAT (Figure 3P). Together, these data suggest that cold microbiota alone can be sufficient to induce beige/brown fat formation primarily in the ingSAT and pgVAT, and to a smaller magnitude, in the iBAT depots. The increased browning was consistent with the enhanced resting EE (REE) of the cold-transplanted mice (Figure 3Q), suggesting increased energy dissipation. To further investigate its functional relevance, we exposed the cold-transplanted mice to acute cold and monitored the internal body temperature, as well as ventrally or dorsally, indicative of the temperature emitted from ingSAT or iBAT depots. The rectal temperature measurements showed that the RT-transplanted mice had decreased body temperature following 4 hr of cold exposure, but only a mild temperature drop was detected in the cold-transplanted mice (Figures 4A and 4B). Accordingly, the infrared imaging and quantification of the different regions
Figure 4. Cold Microbiota Prevents Hypothermia

(A and B) Rectal temperature (A) or temperature change (B) of RT- or cold-transplanted mice before or after 4 hr of cold exposure (n = 8 per group). (C) Infrared images of representative RT- or cold-transplanted mice after 4 hr cold exposure. (D–F) Infrared temperature readings from eye (D), ventral (E), or dorsal (F) region of mice as in (C) before or after 4 hr of cold exposure. (G–I) Infrared temperature readings from eye (G), ventral (H), or dorsal (I) region of mice as in (C) before or after 12 hr of cold exposure.

(Figure 4C) demonstrated that cold microbiota-transplanted mice are fully resistant to cold stress as shown by the eye temperature measurements, representative of the internal body temperature (Figures 4D and 4G). Analysis of the dorsal and ventral infrared images showed that the inguinal and the interscapular regions contribute to the overall tolerance to cold. Specifically, while the differences in dorsal temperatures were transient between the groups (Figures 4E and 4H), the maximal ventral heat differences remained constant also after 12 hr of cold exposure (Figures 4F and 4I). These data suggest a mechanistic explanation for the increased insulin sensitivity and demonstrate that the cold microbiota alone is sufficient to induce tolerance to cold, increased EE, and lower fat content, and this effect is partially mediated by the browning of the white fat depots.

Figure 3. Cold Microbiota Promotes Browning of WAT

(A) 3D reconstitution of the ingSAT and pgVAT of cold- and RT-transplanted mice 21 days after transplantation using the CT scans. Scale bar, 5 mm. (B) Weight of fat pads of cold- or RT-transplanted mice after 5.5 weeks (n = 6 per group). (C–H) Inguinal or pgVAT volumes (C and E) or densities (G and H) of mice as in (A). Change in each fat pad volume (D and F) (n = 12 per group, except [E] and [F] where n = 6 per group) of same mice scanned at day 3 and day 21 after transplantation. (I and J) Cell size profiling of adipocytes from ingSAT (I), or pgVAT (J) of RT- or cold-transplanted mice 21 days after transplantation. The values show % from the total number of analyzed cells. Bars show mean of the pooled corresponding fractions from each animal ± SEM (n = 6 for each panel). (K and L) H&E staining on paraffin sections from ingSAT (K) or pgVAT (L) of RT- or cold-transplanted mice. (M, O, and P) Relative mRNA expression in ingSAT (M), pgVAT (O), or iBAT (P) of RT- or cold-transplanted mice (n = 6 per group), quantified by real-time PCR and normalized to the house keeping beta-2-microglobulin (B2M). (N) Immunohistochemistry of Ucp1 and DAPI on paraffin sections from ingSAT in RT- or cold-transplanted mice as in (K). (Q) Resting energy expenditure (REE) in RT- or cold-transplanted mice, measured between day 3 and day 21 after bacterial colonization (n = 6 per group). Scale bars in (K), (L), and (N), 100 μm.
Figure 5. Cold-Exposed and Cold Microbiota-Transplanted Mice Show Increased Intestinal Length and Caloric Uptake
(A and B) Oral glucose tolerance test (OGTT) of cold-exposed mice with or without Abx treatment (A), or RT- and cold microbiota-transplanted mice 16 days after transplantation (B) (n = 8 per group).

(legend continued on next page)
Cold-Exposed and Cold Microbiota-Transplanted Mice Have Increased Intestinal Absorptive Surface

Next, we monitored short-chain fatty acids (SCFAs), volatile compounds, and organic acids associated with gut flora activity using mass spectrometry (Tables S1 and S3). In lipid cecal extracts, butyrate, the primary energy source in colon and the most abundant SCFA (Ferreira et al., 2014), was markedly decreased in antibiotic-treated mice and, accordingly, increased upon gut flora transplantation (Table S2). Similarly, succinate, a frequent product of primary fermenters that is utilized by butyrogenic bacteria (Wichmann et al., 2013), was decreased in the absence of gut flora. We observed increase of propionate, butyrate, lactate, and succinate in cold-transplanted mice (Table S2). These results could indicate increased fermentation activity of cold over RT microbiota, associated with increased energy harvest.

As mentioned, during long-term cold exposure and after the initial weight loss, the BW stabilizes despite the constantly increased EE rates and heat production, suggesting increased nutrient absorption from the relatively stable food intake. Oral glucose tolerance tests (OGTT) in cold-exposed mice with or without microbiota depletion showed an elevated glucose peak following glucose gavage compared to RT controls (Figures 5A and S4C–S4G) after 15 min, but also faster clearance, consistent with the increased insulin sensitivity (Figure S4H). Interestingly, no differences were observed in the initial glucose peak when glucose was administered intraperitoneally (Figure S4I). This suggests that orally administered glucose is rapidly taken up in cold-exposed mice and in microbiota-depleted mice. The rapid glucose uptake was observed also in the cold-transplanted mice, which showed increased glucose peaks 7.5 and 15 min after glucose gavage (Figure SB) and no changes in the insulin release compared to the RT-transplanted (Figure S4J). This was consistent with increased triglyceride uptake and non-esterified fatty acid levels in the cold-transplanted mice (Figures 5C and 5D), suggesting increased total energy harvest levels following oral gavage in the cold-transplanted mice. To confirm that cold exposure leads to increase in the calorie uptake, we measured the fecal caloric content using bomb calorimetry and calculated the total energy uptake. Cold-exposed mice showed increased caloric uptake, and this was phenocopied in cold-exposed Abx-treated mice, but also in the cold-transplanted mice, suggesting the relative contribution of the different cell types composing it—stem cells and Paneth cells in the bottom of the crypt and enterocytes, goblet cells, and enteroendocrine cells along the villi. In our models, the number of the enteroendocrine cells was increased in the cold-exposed and cold-transplanted mice, proportional to the overall increase in the average cell number (Figures S5A–S5E). There was an antibiotics-dependent effect in the number of goblet cells, which were increased upon microbiota depletion, but no changes were observed in the cold-transplanted mice (Figures S5F–S5H, S5L, and S5M).

(C and D) Plasma triglycerides (C) and free fatty acids (D) during oral fat tolerance test in RT- or cold microbiota-transplanted mice as in (B) (n = 6 per group). (E and F) Total caloric uptake during 24 hr of cold- or RT-exposed (E), or RT-transplanted (F) mice (n = 8 per group). Mice were kept two per cage. Each cage was considered as one pooled sample (n = 4). Data in (E) and (F) show mean ± SEM. (G and H) Small intestine and colon lengths of cold-exposed mice with or without Abx treatment (n = 8 per group) (G) or cold-exposed and RT-kept GF mice (n = 6 per group) (H). (I) Representative images of cecum, small intestine, and colon of mice as in (E)–(H). (J) Small intestine and colon lengths of 30 days cold-exposed or RT-kept donor mice used for microbiota-transplantation, 23 days after start of cohabitation at RT (n = 6 per group). (K) Stomach, small intestine, cecum, and colon weights of donor mice as in (J). (L) Small intestine and colon lengths of RT- or cold microbiota-transplanted mice as in (B) (n = 8 per group), 21 days after transplantation, and GF controls (n = 4). (M) Representative images of cecum, small intestine, and colon of mice as in (J). (N–P) H&E staining of duodenum of cold-exposed mice with or without Abx treatment (N) and morphometric quantifications of duodenal perimeter (O) and villi length (P) (n = 8 per group in triplicates, data show mean ± SEM). See also Figures S5 and S6.
Olfm4 is a highly specific and robust marker for Lgr5 positive stem cells. Quantification of the Olfm4- cells showed increment only in the intestine of cold-exposed Abx-treated mice, consistent with their most profoundly enlarged intestine (Figures S6I–S6K). These data suggest that cold exposure leads to a number of changes in the intestinal composition, which in the case of the enteroendocrine cells, are in part transferable by cold microbiota transplantation.

Microvilli form the brush border on the apical epithelial surface of the small intestine, and a single enterocyte can have as many as 1,000 microvilli, each one formed by cross-linked actin bundles. They increase the surface area of the absorptive cell ~25-fold. Using quantitative electron microscopy (EM), we found that the microvilli length is substantially increased in the cold-exposed, as well as in microbiota-depleted mice (Figures 6A–6C), thus further largely increasing the intestinal surface area. Strikingly, these differences were also transferred in the cold microbiota-transplanted mice, which showed increased microvilli lengths (Figures 6D–6F). Together, these results demonstrate that during increased energy demand, specifically cold exposure, there is a dramatic increase in the intestinal absorptive surface area due to the increased intestinal, villi, and microvilli lengths, and cold microbiota transfer alone can be sufficient to induce these changes.

Reduced Apoptosis Underlies the Increased Intestinal Surface

To uncover the mechanisms of the microbiota-epithelium crosstalk responsible for the observed gut phenotype, we deep sequenced the transcriptome from proximal jejunum of RT, RT+Abx, Cold, and Cold+Abx mice. The expression profiles markedly differed between the groups (Figure 6G), and unbiased pathway enrichment analysis revealed changes in pathways involved in cytoskeletal remodeling, tissue growth, WNT signaling, apoptosis, and immune response with increased intestinal surface (Cold, RT+Abx, and Cold+Abx), when compared to RT mice (Figures 6H, 6I, and 6N). Anti-microbial response and TNF signaling, which promote apoptosis and cell shedding, and are activated by bacteria through NF-κB and TLR pathways (Haussmann, 2010; Spehlmann and Eckmann, 2009), were strongly suppressed in all microbiota-depleted mice (Figure S6N). Indeed, apoptosis and anti-apoptotic interleukin-15 signaling (Obermeier et al., 2006) were among the top-regulated pathways in the mice with increased intestinal surface (Figures 6H, 6I, and 6N). Using the TUNEL assay, we observed that compared to the RT mice, the apoptosis was markedly reduced in the villi of all other groups (Figure 6J). This phenotype was transferred in the cold-transplanted animals, which retained the anti-apoptotic phenotype of the GF and Abx-treated mice (Figures 6K–6O). Conversely, RT-transplanted mice acquired increased apoptosis, exhibited reduced expression of the anti-apoptotic Il15, Bcl2l1 (coding isoform Bcl2-XL), and Mcl1 expression (Pelletier et al., 2002) and showed increased caspase 3 activation (Figures 6M–6O). Concomitantly, the mice with increased intestinal surface had augmented vascularization and tissue remodeling gene expression and showed marked increase in the main apical (Sgif1, gene Slc5a1) and basolateral (Glu2, Slc2a2) glucose transporters (Figures 6I and 6M). Together, these data suggest a mechanistic explanation of the increased intestinal surface area and glucose permeability, which can be transferred by the cold microbiota transplantation.

Cold Microbiota Increases Intestinal Absorption in an Akkermansia-muciniphila-Sensitive Manner

To finally demonstrate that the increased intestinal surface corresponds to enhanced absorptive capacity of the intestine, we did ex vivo experiments in isolated segments from the middle to proximal jejunum of the microbiota-transplanted mice. Mucosal to serosal D[1-14C] glucose (D[14C]G) apparent diffusion coefficient was higher in cold-transplanted mice (7.9 ± 0.8 pm/s) compared to the RT mice (6.0 ± 0.8 pm/s). These differences were not observed in the microbiota-depleted mice (RT+Abx, Cold, and Cold+Abx), which had similar ds glucose absorption rates (6.5 ± 0.7 pm/s) as the RT mice (6.0 ± 0.8 pm/s). The increased intestinal glucose absorption was consistent with the increased D[14C]G present in intestinal tissue after 1 hr of transport and lower residual D[14C]G levels in the lumen (Figures 7B and 7C). Cold microbiota mice also had prolonged intestinal transit time, proportional to the increase in the intestinal length of the corresponding animals (Figure 7D). Since the increased intestinal surface area was also present in the microbiota-depleted mice, we assumed that absence of certain bacterial strains, rather than increased abundance, could be responsible for the observed intestinal phenotype following the cold microbiota transplantation.

Figure 6. Presence and Composition of Microbiota Determine Length of Microvilli on Brush Border of Small Intestine

(A and D) Electron micrographs of jejunal enterocyte microvilli of cold-exposed mice with or without Abx treatment (A), or GF, RT-, and cold microbiota-transplanted mice 19 days after transplantation (D). Scale bars, 2 μm.

(B and E) Morphometric quantification of microvilli length distribution in (B) as in (A) and (E) as in (D). (C) and (F) Average microvilli lengths of mice as in (A) and (D), respectively.

(G) Principal component analysis (PCoA) of gene expression data in proximal jejunum of mice as in (A).

(I and M) Relative mRNA expression in proximal jejunum of mice as in (A), or GF, or RT- and cold microbiota-transplanted GF (M) quantified by RNA seq (I) or real-time PCR (M) and normalized to the average expression of the housekeeping Rplp0 (36b4) and Rps16 (GF are n = 4; rest are n = 8 per group). Significance in (I) was calculated using general linear model with negative binomial distribution.

(J and K) Terminal deoxynucleotidyl transferase (TdT) nick end labeling (TUNEL) assay for apoptotic cells double labeled with DAPI of proximal jejunum paraffin sections of mice as in (A) or (D). Scale bars, 200 μm.

(L) Semi-thick 1-μm thick EM sections of proximal jejunum stained with toluidine blue displaying apoptotic cells in dark blue (marked with arrowheads) of mice as in (D). Round, goblet cells. Scale bar, 20 μm.

(N and O) Western blotting of lysates from proximal jejunum of mice as in (D) and (A) and respective quantifications (O) normalized to loading controls. See also Figure S6.
Intestinal Length (cm)

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>35</th>
<th>36</th>
<th>37</th>
<th>38</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT transplanted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold transplanted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold transplanted + A. muciniphila</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cold vs. RT Transplantation

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold transplanted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold + A. muciniphila</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OGTT (normalized)

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold transplanted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold + A. muciniphila</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tissue Glucose after 1h Transport (pM Glucose/mg of wet tissue/cm)

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold transplanted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold + A. muciniphila</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lumen Glucose after 1h Transport (%)

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold transplanted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold + A. muciniphila</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Days of Cold Exposure

- Cold
- Cold + A. muciniphila

Microvilli Length (µm)

<table>
<thead>
<tr>
<th>Microvilli distribution (%)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold transplanted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold + A. muciniphila</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OGTT - Glycemia (mM)

<table>
<thead>
<tr>
<th>Small intestine</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>30</th>
<th>90</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold transplanted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold + A. muciniphila</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Microscopy Images

- EM
- Click-IT TUNEL
- OsO₄ / Toluidine blue

mRNA Expression

- Anti-apoptotic
- Remodelling
- Glucose uptake

(legend on next page)
transplantation. Akkermansia muciniphila (A. muciniphila) is a
Gram-negative bacterium that commonly constitutes 3%–5% of the gut microbial community. A. muciniphila within the mucus
layer is implicated in the control of host mucus turnover (Belzer
and de Vos, 2013), which improves gut barrier function and is
linked to obesity (Everard et al., 2013). Since A. muciniphila is
the most abundant species of the Verrucomicrobia, the most
negatively affected phylum in response to cold exposure, we
investigated whether this strain alone could revert part of the
transplanted phenotype. Co-transplantation of A. muciniphila
fully prevented the cold microbiota transferable increase of the
intestinal glucose absorption (Figures 7A–7C) and decreased the
intestinal transit time (Figure 7D). Moreover, the increased in-
testinal length caused by cold microbiota transplantation was
fully reverted in the cold microbiota + A. muciniphila-transplanted
animals (Figures 7E and S7A). These results were consistent with
the OGTT, which showed a limited increase in the glucose peak
15 min after the gavage (Figure 7F) and no differences in the insu-
lin levels between the groups (Figure S7B). Neither differences
were observed in the tolerance to insulin and cold, nor in the
expression of the beige fat markers (Figures S7C–S7J), together
suggesting that A. muciniphila does not negatively affect the
browning or the sensitivity to insulin. Interestingly, A. muciniphila colonization reverted the changes in the Bacteroi-
detes/Firmicutes ratio in the cold-transplanted mice (Figures S7K
and S7L). Therefore, we investigated the importance of the rest
of the bacterial consortium by mono-colonizing GF mice with
A. muciniphila and observed no differences in the intestinal length
and duodenum perimeter, while there was a small decrease of the
microvilli length bordering significance (Figures S7M–S7P), sug-
gest that A. muciniphila is necessary, but not sufficient to
revert the intestinal lengthening. In contrast, daily gavage of
A. muciniphila to cold-exposed mice decreased their BW and
fat mass gain and shortened their intestine and microvilli after
7 days of cold exposure. The Bacteroidetes/Firmicutes abun-
dance was not yet affected by the cold exposure at this time in-
terval, showing that changes in their ratio is not a prerequisite
for the intestinal remodeling, and change in A. muciniphila pre-
cedes the remodeling of these major phyla (Figures 7G–7J and
S7Q–S7T). A. muciniphila re-colonization during the cold expo-
sure decreased the OGTT peak and prevented the cold-
induced increase in the intestinal absorptive capacity (Figures
7K–7M and S7U). Accordingly, re-colonizing A. muciniphila re-
verted the cold-induced decrease in the apoptosis levels and
reduced the expression of the key tissue remodeling, anti-
apoptotic, and glucose uptake genes during cold (Figures
7N–7Q). Combined, these results underscore that the cold
exposure-induced decrease of A. muciniphila enables increasing the intestinal absorptive surface by altering several
key regulatory pathways, and co-transfer of this strain together
with the cold microbiota, or during the cold exposure, is suffi-
cient to prevent the adaptive increase in the intestinal absorp-
tive functions that maximize the caloric uptake during cold.

DISCUSSION

During evolution, mammals developed a number of adaptive re-
responses to energy scarcity. Microbial diversity of the human gut
is the result of co-evolution between microbial communities and
their hosts. We assumed that this co-evolution favored maxi-
mizing uptake of calories from the consumed food during pe-
riods of increased energy demand, such as cold exposure.
Indeed, cold exposure led to dramatic changes of the microbiota
composition, increasing Firmicutes versus Bacteroidetes ratios
and almost completely depleting the Verrucomicrobia phylum.
We found that these changes favored enhanced energy extrac-
tion during cold. Interestingly, in part this is rendered possible by
an adaptive mechanism of the host that increases the overall in-
testinal absorptive surface, due to a marked elongation of the to-
tal intestinal, villi, and microvilli lengths. When transplanted to
GF-recipient mice, the cold microbiota alone was sufficient to
promote this increased intestinal absorptive surface area by
lengthening the gut and the epithelial microvilli. Similar changes
in the gut morphology were observed in microbiota-depleted
mice, which is also a condition of negative energy balance, sug-
gest that the increase in the intestinal absorptive surface is a
general adaptive mechanism promoting caloric uptake when food
is available.

Figure 7. Cold Microbiota Increases Intestinal Absorption Due to Absence of A. muciniphila

(A–C) Ex vivo measurements of glucose transport in jejunal segments excised from RT-, cold-, and cold + A. muciniphila-transplanted mice (n = 5 per group); with mucosal to serosal glucose permeability (A), radioactive glucose tracer in tissue (B), and in the lumen (C) of jejenum segment after 1 hr of transport.

(D) Intestinal transit time of RT-, cold-, and cold + A. muciniphila-transplanted mice as in (A) (n = 6 per group).

(E) Intestinal length in mice transplanted with RT (n = 9), cold (n = 10), and cold + A. muciniphila (n = 6) microbiota 6 weeks after transplantation.

(F) OGTT in cold- (n = 10) and cold + A. muciniphila (n = 6)-transplanted male mice as in (A).

(G) Body weight change compared to day 0 of 7-week-old mice, exposed to cold for 7 days and gavaged daily with fresh A. muciniphila or vehicle (PBS) (n = 5 per group).

(H) Intestinal length of mice as in (G).

(I) Electron micrographs of jejunal enterocyte microvilli of mice as in (G) Scale bar, 2 μm.

(J) Morphometric quantification of microvilli length distribution of the EM images as shown in (I) (n = 5 per group).

(K) OGTT of mice as in (G) 6 days after start of treatment.

(L and M) Ex vivo measurements of glucose transport in jejunal segments excised from mice as in (G) (n = 5 per group); with mucosal to serosal glucose permeability (L), radioactive glucose tracer in tissue after 1 hr of transport (M).

(N) TUNEL assay for apoptotic cells double-labeled with DAPI of proximal jejunum paraffin sections of mice as in (G). Scale bar, 200 μm.

(O) Semi-fine 1-μm thick EM sections of proximal jejunum stained with toluidine blue showing apoptotic cells in dark blue (marked with arrowheads). Round, goblet cells. Scale bar, 20 μm.

(P and Q) Relative mRNA expression in proximal jejunum of mice as in (G) or (A), (P) or (Q), respectively, quantified by real-time PCR and normalized to the average expression of the house keeping Rplp0 (36b4) and Rps16.

See also Figure S7.
In absence of microbiota, epithelial survival was promoted by removal of pro-apoptosis signals, upregulation of growth factor cascades, and increase in glucose transport. Colonization by different gut consortia interfered with these changes to different extents, either keeping most of them (cold microbiota) or restoring them to normal levels (RT or cold + A. muciniphila colonization). Cold exposure of the microbiota-depleted mice, however, further increased the intestinal length, suggesting that additional factors also contribute to this process. The observed increased intestinal absorptive capacity in absence of A. muciniphila could give additional explanation to its function in obesity, where absence of this bacterium enables increased uptake in surrounding of excess energy despite the constant intestinal length. This is consistent with our ex vivo data that show decreased glucose permeability in presence of A. muciniphila in isolated (2 cm long) jejunal segments and suggests that absence of this bacterium is necessary, but may not be sufficient to increase the intestinal length. Here, we demonstrate that also in conditions of negative energy balance and lean and healthy phenotype, A. muciniphila absence enables increased caloric uptake. All this suggests that this bacterium may act as an energy sensor that is abundant during caloric deficiency and is low when the energy is in excess, as a co-evolutionary mechanism enabling the energy uptake when available. Indeed, A. muciniphila is elevated in undernourished mice (Preidis et al., 2015) as a typical example of energy scarcity, while it is absent during cold where food intake is strongly increased. Maintaining the increased gut length and absorptive surface is energy-requiring. To ensure that the intestinal lengthening pays off, this process would need to depend on whether the energy needed to maintain the increased intestinal surface is justified in promoting overall increase in the energy balance, which is not the case in conditions of low food abundance. Seen in this context, A. muciniphila is a unique example of host microbial mutualism regulating the energy homeostasis and enabling positive energy balance.

In addition, our data demonstrate that the cold microbiota alone is sufficient to induce tolerance to cold, increased EE, as well as lower fat content, and this effect is at least, in part, mediated by browning of the white fat depots. This provides mechanistic explanation for the increased insulin sensitivity following cold microbiota transplantation, since increased browning protects against obesity and insulin resistance (Ghorbani et al., 2017; Guerra et al., 1998; Kopecky et al., 1995). A. muciniphila on the other hand could not explain the browning following microbiota transplantation, suggesting that additional changes in the intestinal microbiota are mediating this. Thus, discriminating and narrowing down the exact bacterial species affecting this would be an interesting area of future study. Fecal microbiota transplantation was reported almost 50 years ago (Eisenman et al., 1958) and has re-gained interest as a treatment option for several pathologies (Ley et al., 2006; Kelly, 2013; Khoruts, 2014). In the context of the increased obesity prevalence and energy unbalance, our study showing microbiota changes that promote weight loss and energy dissipation, imply microbiota as a key player mediating the tight control of the energy homeostasis with large therapeutic potential.

EXPERIMENTAL PROCEDURES

Animals

All C57Bl/6J (wild-type [WT]) mice (Charles River) were kept in a specific pathogen-free facility (SPF) in 12-hr day/night cycles, unless otherwise specified. Germ-free (GF) mice were on C57Bl/6 background from the germ-free facility of the University of Bern and were kept in sterile conditions until sacrificed, unless otherwise stated. All mice were kept two per cage. Fresh antibiotics (100 µg/ml neomycin, 50 µg/ml streptomycin, 100 U/ml penicillin, 50 µg/ml vancomycin, 100 µg/ml mitomycin, 1 mg/ml bacitracin, 125 µg/ml ciprofloxacin, 100 µg/ml ceftazidime, and 170 µg/ml gentamycin [Sigma; Alkaloid]) were administered in the drinking water and changed once a week as described (Grivennikov et al., 2013). Cold exposures were done at 6°C in a light- and humidity-controlled climatic chamber (TSE) in SPF conditions using individually ventilated cages. Acclimatized animals were allocated to groups based on their body weights and blood glucose levels to ensure equal starting points. Microbiota transplantations were done by co-housing GF mice with cold-exposed donors at RT for 10 days or by gavage of 20 mg fresh feces re-suspended in 400 µl sterile anaerobic PBS. Mice were treated with A. muciniphila by oral gavage at a dose of 2 × 10^8 cells/0.2 ml suspended in sterile anaerobic PBS as previously described (Everard et al., 2013). All experiments were started in 7- to 8-week-old male mice unless otherwise specified. All animal experiments were approved by the Swiss Federal and Geneva Cantonal authorities for animal experimentation.

Statistical Analysis

Unless otherwise specified in the figure legends, significance was calculated using non-paired two-tailed Student’s t test (\(p \leq 0.05 \), \(*p \leq 0.01 \), \(**p \leq 0.001 \)). Brackets in Figures S5G, S5D, and S5D indicate comparisons of all pairs in the dataset. All values in the figure panels show mean ± SD. All experiments were done at least three times, and the representative experiment is shown. Sample sizes and animal numbers were chosen based on power calculations of 0.8.

ACCESSION NUMBERS

The accession number for the sequencing data reported in this paper is NCBI GEO: GSE74228.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, seven figures, and three tables and can be found with this article online at http://dx.doi.org/10.1016/j.cell.2015.11.004.

AUTHOR CONTRIBUTIONS

C.C., O.S., N.S.Z., V.T., D.R., S.F., and A.S designed and performed experiments, analyzed data, prepared the figures, and wrote the manuscript with input from all co-authors.

ACKNOWLEDGMENTS

We thank Maria Gustafsson Trajkovska, Claes Wolheim, and Roberto Coppo for discussions and critical reading; Jean-Baptiste Cavin and André Bado for sharing expertise in intestinal loop; Christian Darmont for help with bomb calorimetry; Abdessalam Cherkhaoui and Jacques Schrenzel for the use of anaerobic incubator; (ERC-2013-StG-281904) to S.H. for partial support of the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC grant agreement 2014-613016/SEV-2012-0269; Seventh Framework Programme (FP/2007-2013)/ERC grant agreement 2014-613016/SEV-2012-0269.

