formenti%20lab.gif index003004.jpg index004003.jpg
L’integrità funzionale dei globuli rossi dipende in particolar modo dalla permeabilità della loro membrana. Essi sono in grado di mantenere costante il volume cellulare e i gradienti ionici a cavallo della membrana plasmatica e di rispondere a particolari stimoli con variazioni della sua permeabilità. Trasporti attivi e passivi sono alla base dei flussi transmembranari. (Fig 1)
Fig 1 Riepilogo dei meccanismi di trasporto attraverso la membrana dei globuli rossi.
estratto da relazione tecnica Apr.1998
BIBLIOGRAFIA

1. ALPER, S. L. (1991). The band 3-related anion exchanger (AE) gene family. Annual Review of Physiology 53, 549-564.

2. ARCANGELI, A., DEL BENE, M. R., OLIVOTTO, M. & WANKE, E. (1989). Ion channels in cancer cells. 64, 65-79.

3. ARCANGELI, A., WANKE, E., OLIVOTTO, M., CAMAGNI, S. & FERRONI, A. (1987). Three types of ion channels are present on the plasma membrane of Friend erythroleukemia cells. Biochemical & Biophysical Research Communications 146, 1450-1457.

4. ARDUINI, A., HOLME, S., SWEENEY, J. D., DOTTORI, S., SCIARRONI, A. & CALVANI, M. (1997). Addition of L-carnitine to additive solution-suspended red cells stored at 4 degrees C reduces in vitro hemolysis and improves in vivo viability. Transfusion 37, 166-174.

5. BERGERON, L. J., STEVER, A. J. & LIGHT, D. B. (1996). Potassium conductance activated during regulatory volume decrease by mudpuppy red blood cells. American Journal of Physiology 270, R801-10.

6. BLUM, R. M. & HOFFMAN, J. F. (1971). The membrane locus of Ca-stimulated K transport in energy depleted human red blood cells. Journal of Membrane Biology 6, 315-328.

7. BROVELLI, A. (1997). Studio della cinetica di invecchiamento in vitro di emazie caricate con L-carnitina. (rapporto Sigma Tau)

8. CHRISTOPHERSEN, P. (1991). Ca2+-Activated K+ Channel from Human Erythrocyte Membranes: Single Channel Rectification and Selectivity. J. Membrane Biol. 119, 75-83.

9. CHRISTOPHERSEN, P. & BENNEKOU, P. (1991). Evidence for a voltage-gated, non-selective cation channel in the human red cell membrane. Biochimica et Biophysica Acta 1065, 103-106.

10. DALMARK, M. & WIETH, J. O. (1972). Temperature dependence of chloride, bromide, iodide, thiocyanate and salicylate transport in human red cells. Journal of Physiology 224, 583-610.

11. DAVIS-AMARAL, E. M., MUSCH, M. W. & GOLDSTEIN, L. (1997). Volume-activated osmolyte channel in skate erythrocytes: inhibition by pyridoxal derivatives. Journal of Experimental Zoology 279, 456-461.

12. DAVSON, H. (1937). The loss of potassium from the erythrocyte in hypotonic saline. J. Cell. Comp. Physiol. 10, 247

13. EGEE, S., HARVEY, B. J. & THOMAS, S. (1997). Volume-activated DIDS-sensitive whole-cell chloride currents in trout red blood cells. Journal of Physiology 504, 57-63.

14. FORMENTI, A., ARRIGONI, E., SANSONE, V., ARRIGONI-MARTELLI, E. & MANCIA, M. (1992). Effects of acetyl-L-carnitine on the survival of adult rat sensory neurons in primary cultures. Int. J. Devl. Neuroscience 10, 207-214.

15. FORMENTI, A., ARRIGONI, E. & MANCIA, M. (1993). Two distinct modulatory effects on calcium channels in adult rat sensory neurons. Biophysical Journal 64, 1029-1037.

16. FORMENTI, A., MARTINA, M., PLEBANI, A. & MANCIA, M. (1998). Multiple modulatory effects of dopamine on calcium channel kinetics in adult rat sensory neurons. Journal of Physiology In press.

17. FREEDMAN, J. C. & NOVAK, T. S. (1983). Membrane potentials associated with Ca-induced K conductance in human red blood cells: studies with a fluorescent oxonol dye, WW 781. Journal of Membrane Biology 72, 59-74.

18. GARDOS, G. (1958). The function of calcium in the potassium permeability of human erythrocytes. Biochimica et Biophysica Acta 30, 653-654.

19. GECK, P. & PFEIFFER, B. (1985). Na+ + K+ 2Cl- cotransport in animal cells--its role in volume regulation. Annals of the New York Academy of Sciences 456, 166-182.

20. GRYGORCZYK, R. & SCHWARZ, W. (1983). Properties of the Ca2+-activated K+ conductance of human red cells as revealed by the patch-clamp technique. Cell Calcium 4, 499-510.

21. GUNN, R. B., DALMARK, M., TOSTESON, D. C. & WIETH, J. O. (1973). Characteristics of chloride transport in human red blood cells. Journal of General Physiology 61, 185-206.

22. GUNTHER, T., VORMANN, J. & CRAGOE, E. J.,JR. (1990). Species-specific Mn2+/Mg2+ antiport from Mg2+-loaded erythrocytes. FEBS Letters 261, 47-51.

23. HALPERIN, J. A., BRUGNARA, C. & NICHOLSON-WELLER, A. (1989a). Ca2+-activated K+ efflux limits complement-mediated lysis of human erythrocytes. Journal of Clinical Investigation 83, 1466-1471.

24. HALPERIN, J. A., BRUGNARA, C., TOSTESON, M. T., VAN HA, T. & TOSTESON, D. C. (1989b). Voltage-activated cation transport in human erythrocytes. American Journal of Physiology 257, C986-96.

25. HALPERIN, J. A., BRUGNARA, C., VAN HA, T. & TOSTESON, D. C. (1990). Voltage-activated cation permeability in high-potassium but not low-potassium red blood cells. American Journal of Physiology 258, C1169-72.

26. HAMILL, O. P. (1983). Potassium and chloride channels in red blood cells. In Single-channel recording, eds. SAKMANN, B. & NEHER, E. pp. 451-471. New York and London: Plenum Press.

27. HARRIS, H. W.,JR. & ZEIDEL, M. L. (1993). Water channels. Current Opinion in Nephrology & Hypertension 2, 699-707.

28. HEINZ, A. & PASSOW, H. (1980). Role of external potassium in the calcium-induced potassium efflux from human red blood cell ghosts. Journal of Membrane Biology 57, 119-131.

29. HENTSCHEL, W. M., WU, L. L., TOBIN, G. O., ANSTALL, H. B., SMITH, J. B., WILLIAMS, R. R. & ASH, K. (1986). Erythrocyte cation transport activities as a function of cell age. Clinica Chimica Acta 157, 33-43.

30. HLADKY, S. B. (1977). Membrane Transport in red cells. In Membrane transport in red cells, eds. ELLORY, J. C. & LEV, V. L. pp. 173-175. London: Academic Press.

31. HUNTER, M. J. (1971). A quantitative estimate of the non-exchange-restricted chloride permeability of the human red cell. Journal of Physiology 218, 49P-50P.

32. JENNINGS, M. L. (1995). Rapid electrogenic sulfate-chloride exchange mediated by chemically modified band 3 in human erythrocytes. Journal of General Physiology 105, 21-47.

33. KORN, S. J., MARTY, A., CONNOR, J. A. & HORN, R. (1991). Perforated patch recording. Methods in Neurosciences 4, 264-373.

34. KRACKE, G. R. & DUNHAM, P. B. (1987). Effect of membrane potential on furosemide-inhibitable sodium influxes in human red blood cells. Journal of Membrane Biology 98, 117-124.

35. KREGENOW, F. M. (1971). The response of duck erythrocytes to nonhemolytic hypotonic media. Evidence for a volume-controlling mechanism. Journal of General Physiology 58, 372-395.

36. KREGENOW, F. M., ROBBIE, D. E. & ORLOFF, J. (1976). Effect of norepinephrine and hypertonicity on K influx and cyclic AMP in duck erythrocytes. American Journal of Physiology 231, 306-311.

37. LASSEN, U. V., PAPE, L. & VESTERGAARD-BOGIND, B. (1978). Chloride conductance of the amphiuma red cell membrane. Journal of Membrane Biology 39, 27-48.

38. LEINDERS, T., VAN KLEEF, R. G. D. M. & VIJVERBERG, H. P. M. (1992). Single CA2+-activated K+ channels in human erythrocytes:Ca2+ dependence of opening freguency but not of open lifetimes. Biochimica et Biophysica Acta 1112, 67-74.

39. LEW, V. F. & FERREIRA, H. G. (1978). Calcium transport and the properties of a calcium-activated potassium channel in red cell membranes. Curr. Top. Membr. Transp. 10, 217-271.

40. LEW, V. L., TSIEN, R. Y., MINER, C. & BOOKCHIN, R. M. (1982). Physiological [Ca2+]i level and pump-leak turnover in intact red cells measured using an incorporated Ca chelator. Nature 298, 478-481.

41. LIGHT, D. B., MERTINS, T. M., BELONGIA, J. A. & WITT, C. A. (1997). 5-Lipoxygenase metabolites of arachidonic acid regulate volume decrease by mudpuppy red blood cells. Journal of Membrane Biology 158, 229-239.

42. LOCHER, R., NEYSES, L., STIMPEL, M., KUFFER, B. & VETTER, W. (1984). The cholesterol content of the human erythrocyte influences calcium influx through the channel. Biochemical & Biophysical Research Communications 124, 822-828.

43. O'NEILL, W. C. (1987). Volume-sensitive Cl-dependent K transport in human erythrocytes. American Journal of Physiology 253, C883-8.

44. PAPE, L. & KRISTENSEN, B. I. (1984). A calmodulin activated Ca2+-dependent K+ channel in human erythrocyte membrane inside-out vesicles. Biochimica et Biophysica Acta 770, 1-6.

45. PARKER, J. C., GITELMAN, H. J., GLOSSON, P. S. & LEONARD, D. L. (1975). Role of calcium in volume regulation by dog red blood cells. Journal of General Physiology 65, 84-96.

46. PASSOW, H. (1986). Molecular aspects of band 3 protein-mediated anion transport across the red blood cell membrane. Reviews of Physiology Biochemistry & Pharmacology 103, 61-203.

47. POST, R. L. & JOLLY, P. C. (1957). The linkage of sodium, potassium and ammonium active transport across the human erythrocyte membrane. Biochimica et Biophysica Acta 25, 118-128.

48. RIDDICK, D. H., KREGENOW, F. M. & ORLOFF, J. (1971). The effect of norepinephrine and dibutyryl cyclic adenosine monophosphate on cation transport in duck erythrocytes. Journal of General Physiology 57, 752-766.

49. ROMERO, P. J. & ORTIZ, C. E. (1988). Electrogenic behavior of the human red cell Ca2+ pump revealed by disulfonic stilbenes. Journal of Membrane Biology 101, 237-246.

50. ROSSI, J. P. & SCHATZMANN, H. J. (1982). Is the red cell calcium pump electrogenic? Journal of Physiology 327, 1-15.


51. SACHS, J. R., KNAUF, P. A. & DUNHAM, P. B. (1975). Transport through red cell membrane. In The red blood cell, ed. SURGENOR, D. M. pp. 613-707. New York:

52. SCHATZMANN, H. J. (1975). Active calcium transport and Ca activated ATPase in human red cell. Curr. Top. Membr. Transp. 6, 125-168.

53. SEN, A. K. & POST, R. L. (1964). Stoichiometry and localization of adenosine triphosphate-dependent sodium and potassium transport in the erythrocyte. Journal of Biological Chemistry 239, 345-352.

54. SZASZ, I., SARKADI, B. & GARDOS, G. (1977). Mechanism of Ca2+-dependent selective rapid K+-transport induced by propranolol in red cells. Journal of Membrane Biology 35, 75-93.

55. TOSTESON, D. C. & HOFFMAN, J. F. (1960). Regulation of cell volume by active cation transport in high and low potassium sheep red cells. Journal of General Physiology 44, 169-194.

56. TOSTESON, M. T., HALPERIN, J. A., KISHI, Y. & TOSTESON, D. C. (1991). Palytoxin induces an increase in the cation conductance of red cells. Journal of General Physiology 98, 969-985.

57. VESTERGAARD-BOGIND, B. (1983). Spontaneous inactivation of the Ca2+-sensitive K+ channels of human red cells at high intracellular Ca2+ activity. Biochimica et Biophysica Acta 730, 285-294.

58. VIJVERBERG, H. P., LEINDERS-ZUFALL, T. & VAN KLEEF, R. G. (1994a). Differential effects of heavy metal ions on Ca(2+)-dependent K+ channels. Cellular & Molecular Neurobiology 14, 841-857.

59. WEINMAN, E. J. & CHARMRAS, H. (1996). Reconstitution of human red blood cell Na/H and Na/Na exchange transport. The American Journal of the Medical Sciences 321, 47-53.
Red Blood Cells
Informativa sulla Privacy