Children Orosensory Perception and Taste Masking of Paediatric Formulations

Paolo Gatti, PhD
Research Fellow and Manager Formulation

Milano, November 5th 2014
Palatability (pleasant mouthfeel) of oral dosage forms influences patients' adherence to therapeutic regimen.

"My diabetic research shows that test subjects are 98% more likely to take their diabetic pills if the pills are covered in chocolate."

Clinical Efficacy → Patient Healing

Clinical Efficacy ← Patient Compliance
Palatability has particular impact in case of pediatric patients.
Taste Masking: Key Facts

Chemical interaction: Flavour
→ Smell, Taste

Physical interaction: Texture

Mouthfeel

smoothness, roughness,…
→ viscosity, volume, slipperiness, grittiness,

Drug Dosage form
Developing pediatric medicines is a challenging work

Children are not simply “small adults”

also from a palatability achievement perspective
Pediatric Taste Masking: Challenges

• Taste perception
 • Well known physiology → tongue taste bud stimulated by chemicals
 • It has been shown differing between adult and children:
 • Children seems more sensitive to bitter taste than adults
 • Children like significantly more than adults food and beverages tasting sweet
 • This preference remains during childhood and starts to decline to adult level during adolescence
 • In a panel test 50% of child and adolescent but only 25% of adults chosen as their favourite a solution containing double amount of sugar than a standard cola
Pediatric Taste Masking: Challenges

• **Taste assessment**
 - Standard definition of *acceptable taste* does not exist
 - *In vivo* testing is still more reliable than *in vitro*
 - Lack of *in vitro – in vivo* correlation (IVIVC)
 - Ethical concern for taste study with healthy children
 - Regulatory authorities do not allow children enrollment in study that can be conducted with adults
 - “Swill and Spit” approach is allowed, depending on drug safety profile
 - Better embedding taste assessment in clinical studies with ill children
 - Concern about design and outcomes of studies with children
 - Questionnaire set-up, children communication skills
 - Answers reliability
 - Adult sensory Panels could requires specific sensitivity and training to provide reliable assessment of children taste response
Taste Masking: Evaluation

In Vivo Tests

Human panel
(Actual taste physio-/psychological process)

Bull Frog
Receptor → tongue, taste buds
Transmission → glossopharyngeal nerve + AC amplifier
Perception → current peak analysis

In Vitro Tests

Drug release in solution
(Only for some taste masking methods)

Perception → larger the amount of drug released at a certain time, poorer the effect of taste masking

“Electronic Tongue”
Receptor → membrane probes
Transmission → electronic circuit
Perception → statistical analysis software
Taste Masking: Evaluation

E-Tongue concepts

- sensors with specific properties
- change of sensor properties
- Amplification/recording

Major cons

Artificial sensors → In vitro – In vivo correlation to be confirmed, especially for taste inhibitors
Pediatric Taste Masking: Challenges

• **Drug and oral dosage form development**
 - Drug taste not usually considered as screening factor during lead selection process
 - Focus on pre-clinical safety, tolerability and efficacy and on physico-chemical properties
 - Tablets and capsules, the most used adults dosage forms can be easily taste masked
 - Early taste evaluation of compound with limited toxicity data available suffer of a lack of robust techniques
 - **Pediatric Investigation Plan (PIP) approach (EMEA)**
 - Usually must be agreed with EMEA's Pediatric Committee during early clinical development stage (i.e. Phase I) → sufficient data to guide pediatric formulation development (i.e. pediatric dose, taste, etc.) could not be available
 - Very likely pediatric clinical development is initiated with *enabling dosage form* that could require taste optimization at a later stage → bridging PK study is required in this case

• **Liquid dosage form preference**
 - Solid dosage forms are accepted by older children and adolescent, but younger children and their carers prefer liquid formulations
 - Highly soluble drugs are difficult to formulate as suspensions → taste masking difficulties
 - Strongly bitter compounds could be difficult to taste mask even in case they are poorly soluble → limited amount going into solution could be sufficient to overcome bitterness threshold
Pediatric Taste Masking Challenges

Pediatric Age Preferred Oral Dosage Forms

<table>
<thead>
<tr>
<th></th>
<th>New born (0-4 weeks)</th>
<th>Infants and toddlers (1 m – 2 y)</th>
<th>Child preschool (2-5 y)</th>
<th>Child School (6-11 y)</th>
<th>Adolescent (12-18 y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drops</td>
<td>++++</td>
<td>++++++</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Liquid</td>
<td>++</td>
<td>++++++</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Fast dispersing tablet</td>
<td>+</td>
<td>++++</td>
<td>+++</td>
<td>++++++</td>
<td>++++++</td>
</tr>
<tr>
<td>Multiparticulate (included minitbt)</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td>++++++</td>
<td>++++++</td>
</tr>
<tr>
<td>Tablet (larger than 3 mm)</td>
<td>Not Applicable</td>
<td>+</td>
<td>+++</td>
<td>++++++</td>
<td>++++++</td>
</tr>
<tr>
<td>Chewable tablet</td>
<td>Not Applicable</td>
<td>+</td>
<td>+++</td>
<td>++++++</td>
<td>++++++</td>
</tr>
</tbody>
</table>

Modified From: Nunn T., EMA Workshop on Pediatric Formulations, November 2011
Taste Masking: How to Achieve

- Prevent/reduce direct contact between drug and taste buds
 - Solubility reduction
 - Physical barrier
 - Around dosage form
 - Around drug particles

- Create pleasant taste stimulation “cancelling” that of drug
 - Sweeteners, flavors and combination thereof
 - Enhancers

- Suppress taste bud response to drug stimulation
 - Substances competing with drug at taste bud receptor sites
 - Usually specific for each drug → Unlike to have “Universal suppressant”
Taste Masking: How to Achieve

Drug-Taste Buds Interaction reduction

Solubility reduction
- Chemical modification
 - Salts
 - Prodrugs
- Complexation
 - Inclusion complexes
 - Resinates

Rheology Modification
- Physical barrier
 - Coating layer
 - Fluid bed/pan coater
 - Multiple emulsions
 - Microencapsulation
 - Solid Dispersions
 - Hot melt extrusion
 - Hot melt granulation
Taste Masking: How to Achieve

Filed patent 1997-2007 for taste masking approaches

Taste Masking Technologies – Solubility Reduction
Complexation with ion-exchange resins

- **Ion exchange resin** ↔ Insoluble ionic materials that can exchange their mobile ions of equal charge with the surrounding medium
 - Structural portion: polymer matrix
 - i.e. Styrene crosslinked with divinylbenzene
 - Functional portion: ion active group

<table>
<thead>
<tr>
<th>Positively charged (Anion exchanger)</th>
<th>Negatively charged (Cation exchanger)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong exchanger</td>
<td></td>
</tr>
<tr>
<td>Quaternary ammonium</td>
<td>Sulfonic acid, Phosphonic acid</td>
</tr>
<tr>
<td>Weak exchanger</td>
<td></td>
</tr>
<tr>
<td>Tertiary amines</td>
<td>Carboxylic acid</td>
</tr>
<tr>
<td>Dowex 2, Amberlite IR 4B</td>
<td>Amberlite IRP 88 (USP/NF)</td>
</tr>
<tr>
<td>Counter ion</td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td>Sodium, potassium, ammonium</td>
</tr>
</tbody>
</table>

- Ion active group interacting with drug → **Drug Resinate**
 - Only drugs bearing acidic or basic functional group
 - Original counter ion displaced by the inonized drug in an equilibrium reaction
Taste Masking Technologies – Solubility Reduction
Complexation with ion-exchange resins

• **Drug resinate** → *Slow elution of drug from resinate in the mouth fluid reduces bitterness and nausea associated with bitter drugs*
 - Complex is stable at average pH and ion concentration of saliva
 - Complex quickly broken down interacting with ions available in GI tract

• **Drug resinate** → *solid or liquid dosage form taste masking*
 - Resinates are prepared suspending and stirring the resin solid particles in concentrated drug solution; washing to remove unbound drug, drying the resinate suspension if solid product is required
 - Drug load up to 50% can be achieved
 - Larger the drug molecule, lower the drug load because of steric restrictions
Taste Masking Technologies: Inclusion Complexes

• Cyclodextrines
 • Bucket shaped oligosaccharides that owing peculiar structure can entrap geust molecule in their internal cavity

• β-cyclodextrin and Hydroxypropyl- β-cyclodextrin (i.e. Kleptose® Roquette)
• Possible regulatory restrictions for pediatric applications
Taste Masking Technologies: Inclusion Complexes

- **Maltodextrines**
 - Starch derivatives containing soluble amylose fraction
 - Amylose is linear chain of α-D-glucose units joined together by α-1,4-glycosidic bonds. Because of hydrogen bonding, amylose acquires a spiral structure that contains six glucose units per turn.

- Amylose helical structure bears hydrophilic external surface and hydrophobic internal cavity that allows inclusion of drugs

- No significant regulatory restrictions even for pediatric applications

- Kleptose® Linecaps (Roquette) pea starch maltodextrine
Taste Masking Technologies: Inclusion Complexes Case Study
Kleptose® versus Kleptose® Linecaps

- Loperamide target drug
- In vitro taste assessment with Insient e-Tongue
- Maltodextrine complex taste masked better than HP-β-CDX

From Kleptose® Linecaps Technical Documentation (Roquette)
www.roquette.com
Microencapsulation
The coverage of a solid particle or liquid droplet by means of a polymeric coating

Fig. A KCl during the microencapsulation process with ethycellulose
Fig. B Example of liquid microencapsulation
Fig. C Final KCl microcapsule after drying step

Taste Masking Technologies Coating by Microencapsulation → Microcaps®

Microcaps is a registered trademark of Aptalis Pharma S.r.l.
Although spherical particles are shown (yellow), the Microcaps® coacervation process can be used for varying particle shapes, including needle-shaped, platelets, spheroid, etc.
Microencapsulation Case Study

Fexofenadine HCl for Pediatric Patients

<table>
<thead>
<tr>
<th>DRUG</th>
<th>• Fexofenadine HCl, 15 and 30 mg dosages, indicated for the relief of symptoms associated with seasonal allergic rhinitis, and for the treatment of uncomplicated skin manifestations of chronic idiopathic urticaria</th>
</tr>
</thead>
</table>
| **NEED** | • Provide an alternative delivery system to the Allegra® tablets* for easy administration in the form of a dry syrup / oro-dispersible granulate†
 • Taste-mask a bitter API
 • Suitable to be administered:
 ✓ in 50ml of water
 ✓ onto a tablespoon with few ml of water
 ✓ directly in the mouth avoiding water intake |
| **SOLUTION(S)** | • Use **Microcaps® taste masking technology** to develop an oral powder formulation
 • Granulation of Microcaps® with part of the excipients
 • Commercial presentation 300/600mg sachet |

ALLEGRA is a registered trademark of Aventisub II Inc.
†The formulation is particularly beneficial for pediatric use.
Fexofenadine Case Study
Results of Taste Masking Study by Partner

Overall taste masking acceptability rating of two different batches of Fexofenadine HCl microcapsules combined with sucrose/xanthan gum granulate (sample Prototype 36 and Prototype 47) vs placebo (composed only by sucrose/xanthan gum granulate) and vs Reference sachet product selected by Sanofi.

Score

Prototype 36 Placebo Prototype 47 Reference

7.9 8.3 8.2 9.1

Sample
Fexofenadine Case Study
Microencapsulation of the API

- Coating level 15% w/w ethylcellulose
- The PSD of the microcapsules was basically below 100 µm
- The assay was close to the theoretical value 850 mg/g (99-98%)
- DRT comparable to the Allegra® tablets (buffer pH 3.0 0.001M)
- Manufacturing of first clinical prototype to evaluate bioavailability and bioequivalence (Microcaps® prototype vs. Allegra® tablets) in healthy volunteers
Fexofenadine Case Study
Scale Up Production Protocol

Fexofenadine HCl bulk

80 gal reactor coupled with fluid bed dryer

Fexofenadine HCl Mic
Fexofenadine Case Study
Scale Up Protocol

Microcapsules directly mixed with sucrose/xanthan gum granulate, encompassed one scale mixture.

Blend homogeneity of this mixture that was likely, in part, a consequence of:

- High dilution (ratio microcapsules-sucrose/xanthan gum granulate 1:16.5)
- Significant difference in particle size between microcapsules ($d_{90} = 125\mu m$) and granulate (mean diameter = 400μm)
- The electrostatic charge of microcapsules

The mixing process was enhanced by:

- Granulating microcapsules with a portion of the excipients (ratio 1:7)
- Blending the obtained co-granulate with the remaining portion of inactive ingredients in a granulated form (ratio ≈ 1:1)
Fexofenadine Case Study
Scale Up Production Protocol

- Granulation with sucrose in top-spray fluid bed
- Fexofenadine HCl microcapsules

- Fexofenadine HCl microcapsules Co-Granulate

Granulation with sucrose in top-spray fluid bed
Fexofenadine Case Study
Scale Up Production Protocol

<table>
<thead>
<tr>
<th>Batch</th>
<th>Assay (mg/g)</th>
<th>RSD</th>
<th>% Recovery</th>
<th>% Released pH 3.0 @15 min (NLT 75%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>50.0</td>
<td>1.2</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>E</td>
<td>49.6</td>
<td>1.2</td>
<td>99</td>
<td>93</td>
</tr>
<tr>
<td>F</td>
<td>50.8</td>
<td>2.8</td>
<td>102</td>
<td>86</td>
</tr>
</tbody>
</table>
Fexofenadine Case Study

Powder Dosage Form in Sachets

Sachet 600 mg → 30 mg strength

Sachet 300 mg → 15 mg strength

<table>
<thead>
<tr>
<th>Batch</th>
<th>Assay (mg/g)</th>
<th>RSD</th>
<th>% Released pH 3.0 @ 15 min (NLT 75%)</th>
<th>Average filling weight (mg)</th>
<th>AV</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>14.9</td>
<td>2.7</td>
<td>88</td>
<td>299.6±12.4</td>
<td>9.8</td>
</tr>
<tr>
<td>H</td>
<td>30.6</td>
<td>1.6</td>
<td>92</td>
<td>599.4±11.2</td>
<td>5.1</td>
</tr>
<tr>
<td>I</td>
<td>14.8</td>
<td>2.0</td>
<td>88</td>
<td>297.8±7.3</td>
<td>5.8</td>
</tr>
<tr>
<td>L</td>
<td>30.3</td>
<td>2.3</td>
<td>93</td>
<td>604.3±10.8</td>
<td>4.3</td>
</tr>
<tr>
<td>M</td>
<td>15.2</td>
<td>2.0</td>
<td>87</td>
<td>306.4±5.7</td>
<td>4.6</td>
</tr>
<tr>
<td>N</td>
<td>30.9</td>
<td>1.9</td>
<td>85</td>
<td>605.0±7.6</td>
<td>4.6</td>
</tr>
</tbody>
</table>
VIREAD® for Pediatric Patients

DRUG

- VIREAD® (tenofovir disoproxil fumarate) once-daily 300 mg tablets were FDA approved in combination with other antiretroviral agents for the treatment of HIV-1 infection in adults and adolescents ages 12 and older, and for the treatment of HBV infection in adults and adolescents ages 12 and older.

NEED

- Provide a more convenient dosage formulation that enables ease of administration in the form of a sprinkled powder for pediatric patients while also providing highly effective taste masking of a bitter drug (API).

SOLUTION(S)

- Use Microcaps® taste masking technology to develop an oral powder for pediatric use.
- Commercial presentation is a multi-dose bottle with a calibrated measuring scoop.

PARTNER

- VIREAD® oral powder comes in a box that has a bottle of VIREAD® and a dosing scoop (see Figure A).

VIREAD is a registered trademark of Gilead Sciences, Inc.
VIREAD® - Microencapsulated Particles

Particle morphology after the application of a polymer coating

Coacervated Granule (50x) Coacervated Granule (90x)

- API
- Granule
- Polymer
- Matrix
Thanks for Your Attention

Questions?

Paolo Gatti, PhD
Research Fellow and Manager Formulation
pgatti@aptalispharma.com