A SUBGRID PARAMETERISATION OF MOUNTAIN GLACIERS FOR USE IN REGIONAL CLIMATE MODELLING

Kotlarski S. & Jacob D.

Department of Atmosphere in the Earth System, Max Planck Institute for Meteorology
Bundesstraße 55, 20146 Hamburg, Germany

In most present-day climate models, the terrestrial cryosphere is represented in an extremely simplified way. Static glacier masks are used indicating whether a specific climate model grid box is covered by land ice or not. These masks remain constant throughout the model integration. Even in case of pronounced snow accumulation or melting of snow and ice the glaciated surface area does not change. Runoff generation is usually neglected over ice covered areas. This approach is suitable for short model integrations and for large ice sheets with a slow response to climatic forcing. For longer simulations and especially for assessing regional climate change and its impacts on runoff regimes in alpine regions, a more detailed description of processes attached to mountain glaciers is necessary.

Therefore, a subgrid parameterisation for mountain glaciers is being developed and implemented into the regional climate model REMO. It replaces the static glacier mask used so far. The total ice mass within a grid box is represented by a two-layer ice body covering a certain fraction of the total grid box area. Surface fluxes are derived separately for glaciated and non-glaciated sub areas. Area weighted mean fluxes are then calculated within the lowest atmospheric level. The glaciated fraction of an individual grid box is adjusting dynamically depending on accumulation and ablation conditions. Once snow cover has reached a certain age, snow can be transformed into glacier ice. Surface runoff and drainage originating from the glaciated land fraction are added to total grid box runoff thus closing the water balance. In order to assess the effect of changing ice volumes on runoff in glaciated catchments the routing scheme HD is coupled to REMO in an offline mode.

This contribution presents the overall concept as well as results of coupled model runs for today's climate in the European Alps.