\odot Matricola:	SI NO
Nome:	
Algebra 1 – Prova Intermedia: I Esonero 18.11.13	

Rispondere alle domande su questo foglio usando gli appositi spazi e giustificando brevemente ma esaurientemente tutte le risposte.

- 1. Sia X un insieme. Vogliamo trovare delle condizioni su X che implichino l'esistenza di due sottoinsiemi X_1 e X_2 tali che $X_1 \cap X_2 = \emptyset$, $X = X_1 \cup X_2$ e $|X| = |X_1| = |X_2|$.
 - (a) Se X è finito, esistono tali insiemi ? [No]

Se X è finito, allora non ha alcun sottoinsieme proprio con la sua stessa cardinalità; dunque un insieme finito che soddisfi le ipotesi è necessariamente vuoto. La proposizione è dunque falsa in generale, e come controesempio possiamo prendere l'insieme $X = \{0\}.$

(b) Se $X = \mathbb{N}$, esistono tali insiemi ? [Sì]

Se definiamo X_1 come l'insieme dei numeri pari e X_2 come l'insieme dei numeri dispari, le proprietà richieste sono tutte soddisfatte.

- (c) Se X è numerabile, esistono tali insiemi ? Se sì, descriverli esplicitamente. [Sì] 2 Poiché X è numerabile, esiste una biezione ϕ di $\mathbb N$ in X. Denotando con $\mathbb P$ l'insieme dei numeri pari, si verifica allora facilmente che gli insiemi $X_1 = \phi(\mathbb P)$ e $X_2 = \phi(\mathbb N \setminus \mathbb P)$ soddisfano le proprietà richieste.
- 2. Sia $(\mathbb{N},+)$ il monoide additivo dei numeri naturali. Si fissino $k\in\mathbb{N}$ e $n\in\mathbb{N}^{\star}=\mathbb{N}\setminus\{0\}$. Si ponga per $x,y\in\mathbb{N}$

 $x\mathcal{R}y$ se x=y oppure $x\geq k, y\geq k$ e n divide x-y in \mathbb{Z} .

(a) \mathcal{R} è una relazione di equivalenza su \mathbb{N} ? [Sì]

Verifichiamo che siano soddisfatte le proprietà riflessiva, simmetrica e transitiva. Le prime due sono ovviamente soddisfatte. Per quanto riguarda la transitività, supponiamo $x\mathcal{R}y$ e $y\mathcal{R}z$, e proviamo che vale $x\mathcal{R}z$; l'ipotesi è dunque $\{(a) \ x = y \ oppure \ (b) \ x \ge k, y \ge k \ e \ n \ divide \ x - y \ in \ \mathbb{Z}\}$, e $\{(c) \ y = z \ oppure \ (d) \ y \ge k, z \ge k \ e \ n \ divide \ y - z \ in \ \mathbb{Z}\}$, e dobbiamo provare che vale $\{(e) \ x = z \ oppure \ (f) \ x \ge k, z \ge k \ e \ n \ divide \ x - z \ in \ \mathbb{Z}$. Ebbene, $\{(a) \ e \ (c) \ implicano \ (e); \ (a) \ e \ (d) \ implicano \ (f), \ così \ come \ (b) \ e \ (c); \ infine, \ (b) \ e \ (d) \ implicano \ (f), \ poiché se \ n \ divide \ sia \ x - y \ che \ y - z \ allora \ n \ divide \ anche \ (x - y) + (y - z) = x - z.$

2

(b) È vero che se $x\mathcal{R}y$ e $z\mathcal{R}t$ allora $(x+z)\mathcal{R}(y+t)$? [Sì]

La nostra ipotesi è $\{(a) \ x = y \ oppure \ (b) \ x \ge k, y \ge k \ e \ n \ divide \ x - y \ in \ \mathbb{Z}\},\ e$ $\{(c) \ z = t \ oppure \ (d) \ z \ge k, t \ge k \ e \ n \ divide \ z - t \ in \ \mathbb{Z}\};\ dobbiamo \ provare \ che \ vale$ $(e) \ x + z = y + t \ oppure \ (f) \ x + z \ge k, y + t \ge k \ e \ n \ divide \ (x + z) - (y + t) \ in \ \mathbb{Z}.$ Ebbene, (a) e (c) implicano (e); (a) e (d) implicano (f), così come (b) e (c); infine, (b) e (d) implicano (f), poiché se n divide sia x - y che z - t allora n divide anche (x + z) - (y + t) = (x - y) + (z - t).

3	Provare 1	oer	induzione	S11 n	> 1	che	2^{2n} –	1 è	divisibile	ner	3
υ.	I IOVAIC I	\mathcal{I}	madione	5 u 10	- 1	CIIC .	_		GI VIDIDIIC	DOL	Ο.

Per n=1 la proposizione è vera (l'espressione vale 3). Sia allora $n \geq 1$ e, supponendo vera la proposizione per n (ovvero, supponendo che esista $k \in \mathbb{Z}$ tale che $2^{2n} = 3k + 1$), la proviamo vera per n + 1. Si ha

$$2^{2(n+1)} = 4 \cdot 2^{2n} = 4(3k+1) = 3(4k+1) + 1,$$

da cui otteniamo che $2^{2(n+1)} - 1 = 3(4k+1)$ è divisibile per 3.

- 4. Sia data l'equazione diofantea 5kx + 3hy = 16 con $k, h, x, y \in \mathbb{Z}$.
 - (a) E' risolubile per ogni coppia k, h con (k, h) = 1? [No] 2 Per(k,h) = (3,5), l'equazione diventa 15(x+y) = 16, che non ha evidentemente alcuna soluzione nelle variabili x, y.

(b) Per
$$k = 2, h = 1$$
 le soluzioni sono $[\{(1+3t, 2-10t) : t \in \mathbb{Z}\}]$

Per(k,h) = (2,1) l'equazione diventa 10x + 3y = 16, che ha soluzioni poiché 10 e 3 sono coprimi. Si esprime facilmente l'MCD tra 10 e 3 come combinazione a coefficienti interi di questi due numeri: $1 = 1 \cdot 10 + (-3) \cdot 3$, da cui, moltiplicando per 16 entrambi i membri, si ricava la soluzione particolare (16, -48). E noto che da questa si ricava la soluzione generale

$$\{(16+3t, -48-10t) : t \in \mathbb{Z}\} = \{(1+3t, 2-10t) : t \in \mathbb{Z}\}.$$

5. Sia $S = \{(a,b) \mid a,b \in \mathbb{Z}_{20}\}$. Si definisca in S una legge \star ponendo $\forall (a,b), (c,d) \in S$

$$(a,b) \star (c,d) = (ac,ad + 5bc).$$

(a) È vero che ⋆ è commutativa? [No]

2 Si ha $(1,1) \star (1,2) = (1,7)$, mentre $(1,2) \star (1,1) = (1,11)$.

(b) È vero che ★ è associativa? [Sì]

2

2

Si ha

$$[(a,b)\star(c,d)]\star(e,f)=((ac)e,(ac)f+5(ad+5bc)e),$$

mentre

$$(a,b) \star [(c,d) \star (e,f)] = (a(ce), a(cf + 5de) + 5b(ce)).$$

Come si può facilmente verificare tenendo conto delle proprietà algebriche di \mathbb{Z}_{20} , le due espressioni sono uquali.

(c) È vero che la coppia
$$(0,1)$$
 è elemento neutro? [No]
$$Si\ ha\ (1,1)\star(0,1)=(0,1).$$