PROVA INTERMEDIA DI ALGEBRA 2 CORSO DI LAUREA IN MATEMATICA ANNO ACCADEMICO 2011-2012, 26 APRILE 2012

NOME, COGNOME, MATRICOLA DELLO STUDENTE:

Esercizio 1. Nel gruppo delle permutazioni di 8 elementi S_8 , siano a=(1234)(5678) e b=(1537)(2846).

- (a) Qual è l'ordine di $a \in b$?
- (b) Elencare gli elementi del sottogruppo H=< a,b>.
- (c) Elencare gli ordini degli elementi e i sottogruppi di ${\cal H}$.
- (d) Quali dei sottogruppi propri di H sono normali?
- (e) Il gruppo H è isomorfo a un gruppo diedrale?

Esercizio 2. Sia V il gruppo $\mathbb{Z}_3 \oplus \mathbb{Z}_3$, e $G = \operatorname{GL}_2(\mathbb{Z}_3)$ il gruppo delle matrici invertibili, di dimensione 2×2 , a coefficienti in \mathbb{Z}_3 . (N.B., G è il gruppo degli automorfismi di V, e |G| = 48. Per ogni $\alpha \in G$ e $(a,b) \in \mathbb{Z}_3 \oplus \mathbb{Z}_3$, l'elemento $(a,b) \cdot \alpha \in \mathbb{Z}_3 \oplus \mathbb{Z}_3$ è il prodotto riga per colonna della riga (a,b) per la matrice α .)

- (a) Determinare i periodi degli elementi di V. Detto S l'insieme dei sottogruppi propri non banali di V, determinare il tipo di isomorfismo dei sottogruppi in S, e determinare la cardinalità di S.
- (b) Fissato $\alpha \in G$, si provi che $\langle (a,b) \rangle \mapsto \langle (a,b) \cdot \alpha \rangle$ definisce una biezione ϕ_{α} di \mathcal{S} in sé.
- (c) Provare che la mappa $\phi: G \to \operatorname{Sym}(\mathcal{S})$ definita da $\alpha \mapsto \phi_{\alpha}$ è un omomorfismo di gruppi, e determinarne nucleo ed immagine.
- (d) Si deduca dal punto precedente che G ha un sottogruppo normale di ordine 8.

Esercizio 3. Sia G un gruppo. Dati $h, k \in G$, definiamo l'elemento $[h, k] := h^{-1}k^{-1}hk$ e, dati H, K sottogruppi di G, definiamo il sottogruppo $[H, K] := \langle [h, k] : h \in H, k \in K \rangle$.

- (a) Provare che, per ogni $g,h,k\in G$, si ha $g^{-1}[h,k]g=[g^{-1}hg,g^{-1}kg]$. Dedurre che [G,G] è un sottogruppo normale di G.
- (b) Provare che il gruppo quoziente G/[G,G] è abeliano. Dedurre che, se T è un sottogruppo di G contenente [G,G], allora $T \subseteq G$.
- (c) Per $N \leq G$, provare che $N \trianglelefteq G$ se e solo se $[G,N] \subseteq N$; inoltre $N \leq Z(G)$ se e solo se [G,N]=1.
- (d) Per $N \leq G$, provare che $N \cap [G,G] = 1$ implica $N \leq Z(G)$.