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ZIYANG GAO

1. Preliminaries

1.1. Koszul Complex I.

Definition 1.1.1. (1) Let A be a commutative ring and E be a A-module. Then, for any
A-morphism u : E → A, we can define the Koszul Complex K.(u) ∈ C60(A) as follows:

Kn(u) = ∧nE, n > 0;

dn : Kn(u)→ Kn−1(u),with dn(x1 ∧ ... ∧ xn) =
∑

(−1)i−1u(xi)x1 ∧ ... ∧ x̂i ∧ ... ∧ xn.

Clearly, d2 = 0, d1 = u and d(a ∧ b) = da ∧ b+ (−1)pa ∧ db(a ∈ ∧pE, b ∈ ∧qE).
(2) A,E, u as above, M is an A-module, define K.(u,M) = K.(u)⊗AM , with d(x⊗m) =

dx⊗m.

Remarks 1.1.2. If E = E1 ⊕ E2, u = u1 + u2 : E → A, where ui : Ei → A, then
K.(u,E) = K.(u1)⊗K.(u2),∧nE = ⊕p+q=n ∧p E1 ⊗ ∧qE2, d = d1 ⊗ 1 + (−1)∗1⊗ d2.

Dually, we also have
[Definition 1.1.1.′] (1′) For any morphism v : A→ F , we can define a complex K .(v) ∈
C>0(A) called the Koszul Complex, too, as follows:

Kn(v) = ∧nF ; d : Kn(v)→ Kn+1(v), d(x) = v ∧ x.
Here we identify the morphism v with v(1) ∈ F .

(2′) Similar definition for K .(v,N) with A,F, v as above and N an A-module.
[Remark 1.1.2.′] In this case, we also have: for F = F1 ⊕ F2, v = (v1, v2), K .(v) =
K .(v1)⊗K .(v2).

Lemma 1.1.3. For f = (f1, ..., fr) ∈ Ar, we have two Koszul complexes K.(f) and K .(f).

K.(f) : 0→ A→ Ar(= ∧r−1Ar)→ ...→ (∧1Ar =)Ar f−→ A→ 0, f(a1, ..., ar) =
∑

fiai.

K .(f) : 0→ A
f−→ Ar(= ∧1Ar)→ ...→ (∧r−1Ar =)Ar → A→ 0, f(a) = (f1a, ..., fra).

Then K .(f) can be viewed as the naive dual of K.(f). Furthermore, we have a canonical
isomorphism between the two: K .(f)[r] ' K.(f).

Proof. The first part is immediate. For the second part, the isomorphism is defined as
follows:

Let {e1, ..., er} be a basis of Ar. For any I = {i1 < ... < ip} ⊂ {1, ..., r}, let eI =
ei1 ∧ ... ∧ eip , then eI 7→ ε(J, I)eJ , where J = {j1 < ... < jr−p} is the complement of I in
{1, ..., r} and ε(J, I) =sign(j1, ..., jr−p, i1, ..., ip). �
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Lemma 1.1.4. Let L ∈ C(A) and x ∈ A, K.(x) = (0→ A
x−→ A→ 0). Then K.(x)⊗L '

Cone(L
x−→ L).

Proof. This is simply a computation. �

Now we discuss a little about this lemma. For this, we get a distinguished triangle
L

x−→ L→ K.(x)⊗ L→, so we get a long exact sequence:

...→ Hq(L)
x−→ Hq(L)→ Hq(K.(x)⊗ L)→ Hq+1(L)

x−→ ...

Rewrite it into short exact sequences, and we can get:

0→ H0K.(x,Hq(L))→ Hq(K.(x)⊗ L)→ H−1K.(x,Hq+1(L))→ 0. (∗)

Theorem 1.1.5 (Serre). Let A be a noetherian ring, M an A-module of finite type and
f = (f1, ..., fr) ∈ Ar with fi ∈rad(A), then the following conditions are equivalent:

(1) f is M-regular.
(2) K.(f,M)→M/(f1, ..., fr)M is quasi-isomorphism.
(3) H−1K.(f,M) = 0.

Proof. (1)⇒(2) Use induction on r. For r = 1, the statement is just the definition.
Assume the statement is true for m 6 r − 1, then let

L = K.(f1, ..., fr−1,M) = K.(f1, ..., fr−1)⊗M,

then K.(fr)⊗ L ' K.(f1, ..., fr,M). Hence we have the exact sequence

0→ H0K.(fr, H
q(L))→ HqK.(f1, ..., fr,M)→ H−1K.(fr, H

q+1(L))→ 0.

We are left to show that HqK.(f1, ..., fr,M) = 0 for all q < 0. For q 6 −2, it follows
from the above sequence and the inductive hypothesis. For q = −1, it is true since
Ker(fr : M/(f1, ..., fr−1)M →M/(f1, ..., fr−1)M) = 0 by definition of M -regular.

(2)⇒(3) trivial.
(3)⇒(1) Also use induction on r. Again, the case r = 1 is trivial. For r > 2, again let

L = K.(f1, ..., fr−1,M). First show that (f1, ..., fr−1) is M -regular. By (*), we have an
inclusion

Hq(L)/frH
q(L) ↪→ HqK.(f1, ..., fr,M)

When q = −1, HqK.(f1, ..., fr,M) = 0, hence H−1(L) = frH
−1(L). Since A is noether-

ian and M is of finite type, H−1(L) is finitely generated over A, so H−1(L) = 0 since
fr ∈rad(A). Now (f1, ..., fr−1) is M -regular by induction. Furthermore, condition (3)
implies that

Ker(fr : M/(f1, ..., fr−1)M →M/(f1, ..., fr−1)M) = 0.

Hence f = (f1, ..., fr) is M -regular �

Corollary 1.1.6. Assume f = (f1, ..., fr) ∈ Ar is regular and B = A/(f1, ..., fr)A. Then

ExtqA(B,A) =

{
0 q 6= r

B q = r
.
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Proof. Since K.(f)→ B is a quasi-isomorphism,

RHomA(B,A) = HomA(K.(f), A) = K .(f) ' K.(f)[−r],

hence

ExtqA(B,A) =

{
Hq−rK.(f) = 0 q 6= r

H0K.(f) = B q = r
.

�

1.2. Koszul Complex II. In this section, we generalize the discussion in section 1 to
ringed spaces. In this section, we abuse the notations OY and i∗OY when i : Y ↪→ X is a
closed immersion.

Definition 1.2.1. Let (X,OX) be a ringed space and E ∈ Mod(X), then for any mor-
phism u : E → OX , define the Koszul complex K.(u) by

(...→ ∧nE
d−→ ∧n−1E → ...→ E

u−→ OX → 0),

where d is the right interior product by u.

Definition 1.2.2. For i : Y ↪→ X a closed immersion defined by the ideal sheaf I ⊂ OX ,
we say that i is regular of codimension r if ∀x ∈ Y , ∃U ⊂ X an open neighbourhood of
x and an OU -module E locally free of rank r and an OU -linear map u : E → OU , s.t.
HqK.(u) = 0(q < 0) and I|U = u(E) ⊂ OU . In other words, this is equivalent to say that
∃ locally a squence f = (f1, ..., fr) ∈ Or

U s.t. I|U = (f1, ..., fr) and K.(f)→ OU/IOU is a
resolution.

Remarks 1.2.3. If X is locally noetherian, then i is regular iff ∀x ∈ Y , ∃x ∈ U open, s.t.
I is defined by a sequence f = (f1, ..., fr) of sections of OX s.t. fx = ((f1)x, ..., (fr)x) ∈ mr

x

is regular.

Proposition 1.2.4. If i : Y ↪→ X is a regular immersion of codimension r, I be the ideal
sheaf of i, NY/X = I/I2, then

(1) ExtqOX
(OY ,OX) =

{
0 q 6= r

ωY/X q = r
, where ωY/X is a line bundle on Y . In other

words, RHomOX
(OY ,OX) ' ωY/X [−r].

(2) NY/X is locally free of rank r.
(3) ωY/X ' (∧rNY/X)∨.
(4) For F ∈ D+(X), there exists a functorial isomorphism

ExtqOX
(OY , F ) ' T orOX

r−q(OY , F )⊗ ωY/X .

Proof. (1) For any U =SpecA open in X, U ∩ Y =SpecB, with B = A/(f1, ..., fr) where
f = (f1, ..., fr) is regular, by [Cor], we have

ExtqΓ(U,OX)(Γ(U ∩ Y,OY ),Γ(U,OX)) = ExtqA(B,A) =

{
0 q 6= r

B q = r
.

The conclusion then holds immediately.
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(2) From the exact sequence

0→ I → OX → OY → 0,

we get
NY/X = I/I2 ' T orOX

1 (OY ,OY ).

Since i is regular, locally one has a Koszul complex K.(f1, ..., fr) = (0 → OX → ... →
Or

X → OX), which is a resolution of OY . Hence locally

T orOX
1 (OY ,OY ) = H−1(K.(f)⊗OX

OY ) = Or
Y ,

which proves (2). Also note that we can deduce

T orOX
q (OY ,OY ) = ∧q(Or

Y ),

and
∧∗T orOX

1 (OY ,OY )
∼−→ T orOX

∗ (OY ,OY ).

(4) It’s enough to show that

RHomOX
(OY , F ) ' i∗(Li

∗F ⊗L
OY

ωY/X [−r]) (∗)
for each F ∈ D+(X), then apply Hq to both sides. By the first part of the following
lemma, the RHS(right hand side) of the above formula is just

F ⊗L
OX

i∗ωY/X [−r] = F ⊗L
OX

RHomOX
(OY ,OX).

By the second part of the following lemma, we see that this is canonically isomorphic to
RHomOX

(OY , F ), which is exactly the LHS(left hand side).
(3) We set F = OY in (4), then we get

RHomOX
(OY ,OY ) ' OY ⊗OX

i∗ωY/X [−r].
Note that ⊗L

OX
i∗ωY/X [−r] ' ⊗OX

i∗ωY/X [−r] since ωY/X [−r] is locally free.
Apply H0 to the above formula, and note that H0(RHomOX

(OY ,OY )) = OY , we get

OY ' T orOX
r (OY ,OY )⊗ ωY/X .

In (2), we have already seen that T orOX
r (OY ,OY ) ' ∧rNY/X , thus ωY/X ' (∧rNY/X)∨.

�

Lemma 1.2.5. Let i : Y ↪→ X be a regular closed immersion, then one has

F ⊗L
OX

i∗G ' i∗(Li
∗F ⊗L

OY
G)

and
F ⊗L

OX
RHomOX

(OY ,OX) ' RHomOX
(OY , F )

for F ∈ D+(X) and G ∈ Db(Y ) .

Proof. For the first part, first note that i∗ is of finite cohomological dimension since
Li∗ = OY⊗L

OX
and OY admits a Koszul resolution. Hence Li∗ makes sense on D+(X).

We have a natural map between Li∗(F ⊗L
OX

i∗G) and Li∗F ⊗L
OY

G defined by

Li∗(F ⊗L
OX

i∗G)→ Li∗F ⊗L
OY

Li∗(i∗G)→ Li∗F ⊗L
OY

G,

where the last map is given by the natural map Li∗i∗G→ G. This gives the desired map
F ⊗L

OX
i∗G→ i∗(Li

∗F ⊗L
OY

G) by the adjiontness of Li∗ and i∗.
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To show this is an isomorphism, by canonical truncations(note that i∗ is of finite coho-
mological dimension), we may assum that F ∈ Db(X). Replacing F by its flat resolution,
we can see that

F ⊗L
OX

i∗G = F ⊗OX
i∗G ' i∗(i

∗F ⊗OY
G) = i∗(Li

∗F ⊗L
OY

G).

For the second part, use the Koszul resolution K.(f) = (0→ OX → ...→ Or
X → OX) of

OY . Note that this is a free resolution of OY , then the conclusion follows immediately. �

Next, we consider the projective case X = Pr
Y , with f : X → Y the projection. We will

show using the tool of Koszul complex that Ωr
X/Y ' OX(−r − 1).

We know that there is a canonical exact sequence

0→ Ω1
X/Y

v−→ Or+1
X (−1)

u−→ OX → 0.

The Koszul complex of u is

0→ ∧r+1(Or+1
X )(−r − 1)→ ...→ Or+1

X (−1)→ OX → 0.

If we can prove that each sequence

0→ Ωi
X/Y

∧iv−−→ ∧i(Or+1
X )(−i)→ ...→ Or+1

X (−1)→ OX → 0, i > 0,

is exact, then in particular, let i = r and compare it with the previous sequence, we have
a canonical isomorphism Ωr

X/Y ' OX(−r − 1). We conclude it in the following lemma.

Lemma 1.2.6. Let (X,OX) be a ringed space,

0→ F
v−→ E

u−→ OX → 0

be an exact sequence of locally free sheaves of finite ranks. Then the Koszul complex of u

K.(u) = (0→ ∧nE
dn−→ ∧n−1E → ...→ E

d1=u−−−→ OX → 0)

where n =rankE is acyclic and each sequence

0→ ∧iF
∧iv−−→ ∧iE

d−→ ∧i−1E → ...→ E
d−→ OX → 0

is exact. Hence ∧iv induces an isomorphism ∧iF → B−i−1K.(u)(i > 0). In particular,
taking i = n− 1, we get an isomorphism ∧n−1F → ∧nE s.t.

∧n−1F
∧n−1v- ∧n−1E

∧nE
? dn

-

commutes, which coincides with the isomorphism ∧n−1F → ∧nE given by taking the
highest exterior power of the original exact sequence and locally defined by u(b)a 7→ b ∧
(∧n−1v)(a) for a ∈ ∧n−1F (U), b ∈ E(U).

Proof. Without any loss, we may assume E = OX ⊕ F and u the projection since the
three of them are all locally free of finite ranks. Then

di : ∧iF ⊕ (OX ⊗ ∧i−1F ) = ∧i−1E → ∧i−1E = ∧i−1F ⊕ (OX ⊗ ∧i−1F )

is induced by
(a, 1⊗ b) 7→ (b, 0).
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Then it can be checked directly the exactness of the sequences. Take i = n, we get the
acyclicality. The remainder is then obvious. �

2. Grothendieck-Serre Global Duality

In this chapter, for simplicity, we just discuss the locally noetherian case unless it’s
specially stated.

2.1. The Functor f !.

Definition 2.1.1. (1) Let i : Y ↪→ X be a closed immersion. Given F ∈ D+(X),
define

i!F := RHomOX
(i∗OY , F )|Y = i−1RHomOX

(i∗OY , F ) = i∗RHomOX
(i∗OY , F ),

i.e. i∗i
!F = RHomOX

(OY , F ). Clearly, i!F ∈ D+(Y ). Moreover, this gives a
functor from D+(X) to D+(Y ). We would prove it later.

(2) Let f : X → Y be a smooth morphism with relative dimension d, then ωX/Y =
Ωd

X/Y is a line bundle. Define a functor f ! : D+(X)→ D+(Y ) by

f !F := f ∗F ⊗L
OX

ωX/Y [d]

for an element F ∈ D+(X).
(3) Let

X
i - Z

Y

f

?
g

-

be a commutative diagram with i a closed immersion and g smooth. We can define
a functor i!g! from D+(X) to D+(Y ). The main goal of this part is to prove that
the last functor is independent of the choice of i and g.

Lemma 2.1.2. Suppose i : Y ↪→ X is a closed immersion, then

(1) HomOX
(OY , F )|Y is an injective OY -module if F is an injective OX-module.

(2) In this case, i! really is a functor.

Proof. (1) For every G ∈Mod(OY ), since

i∗G⊗OX
i∗OY ' i∗G⊗i∗OY

i∗OY ' i∗G,

it’s enough to prove that

HomOX
(i∗G,HomOX

(i∗OY , F )) ' HomOY
(G, i−1HomOX

(i∗OY , F )).

It’s easy to see that G ' i−1i∗G by checking on stalks, so the RHS of the above
formula can be rewritten as

HomOY
(i−1i∗G, i

−1HomOX
(i∗OY , F )) ' HomOX

(i∗G, i∗i
−1HomOX

(i∗OY , F )).

Taking i∗i
−1HomOX

(i∗OY , F ) ' HomOX
(i∗OY , F ) into consideration (this is

right since i∗OY is a locally finite presented OX-module, thus we can check on
stalks), we get the conclusion.
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(2) For any Z
j−→ Y

i−→ X a composition of closed immersions and F ∈ D+(X), replace
F by its injective resolution, then

j!i!F = HomOY
(j∗OZ ,HomOX

(i∗OY , F )|Y )|Z
' HomOX

((ij)∗OZ ,HomOX
(i∗OY , F ))|Z

' HomOX
(((ij)∗OZ)⊗OX

(i∗OY ), F )|Z
' HomOX

((ij)∗OZ , F )|Z
= RHomOX

((ij)∗OZ , F )|Z
= (ij)!F.

�

Now we come to the main theorem of this part. For the rest of the whole section, we
again abuse the notations OY and i∗OY when i : Y ↪→ X is a closed immerstion.

Theorem 2.1.3. Suppose we have a commutative diagram

Z ′′ �
i′′

X
i′- Z ′

Y

f

?
g′

�
g′′ -

where i′, i′′ are closed immersions and g′, g′′ are smooth. Then there is a natural isomor-
phism

a(i′, i′′) : i′!g′! ' i′′!g′′!

satisfying the transitive formula:

a(i2, i3) ◦ a(i1, i2) = a(i1, i3)

for any triple (i1, g1), (i2, g2), (i3, g3).

We say that these a(i′, i′′) form a transitive system. In order to prove this theorem, we
still need some preparation.

Lemma 2.1.4. Let X, Y be locally noetherian, and f : X → Y be a flat morphism. Then

f ∗RHom(L,M)
∼−→ RHom(f ∗L, f ∗M)

for M ∈ D+(Y ) and L ∈ Db(Y )coh.

Proof. Replacing M by its injective resolution, then we get

f ∗RHom(L,M) = f ∗Hom(L,M)→ Hom(f ∗L, f ∗M)→ RHom(f ∗L, f ∗M),

which defines the map we want. To show it’s an isomorphism, we may assume that Y is
affine and noetherian, since the problem is local. Then there exists a quasi-isomorphism
L′ → L with each L′i free of finite rank and L′i = 0 when i is sufficiently large. Then it
is clear. �
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Lemma 2.1.5. Consider a cartesian diagram

Y ′
i′- X ′

Y

g

?
i- X

f

?

where i is closed immersion and f is flat. Then we have g∗i! ' i′!f ∗.

Proof. We have to show that for any F ∈ D+(X), there is a natural isomorphism i′∗g
∗i!F '

i′∗i
′!f ∗F . But the LHS is

i′∗g
∗i!F = i′∗(g

∗i∗RHomOX
(OY , F )) = f ∗RHomOX

(OY , F ),

while the RHS is

i′∗i
′!f ∗F = RHomOX′

(OY ′ , f
∗F ) = RHomOX′

(f ∗OY , f
∗F ).

Then our conclusion follows from the previous lemma. �

Now we come back to the proof of the Theorem.

Proof of Theorem. Consider diagram , let Z ′′′ = Z ′ ×Y Z ′′, then we can complete the
diagram as follows:

Z ′′′

Z ′′ �
i′′

�
X

i

6

i′- Z ′
-

Y

f

?
g′

�
g′′ -

where i is the map determined by (i′, i′′). In general, i is not a closed immersion, but only
an immersion, i.e. a composition of a closed immersion with an open immersion:

X
closed−−−→ Z

open−−→ Z ′′′.

Thus we can replace Z ′′′ by Z, and consider the diagram

Z

X
i′-

i
-

Z ′

h′

?

where i and i′ are both closed immersions and h′ is smooth. If we can show that i′! ' i!h′!,
then we have

i′!g′! ' i!h′!g′! = i!h′′!g′′! ' i′′!g′′!.

And This gives the desired functor isomorphism.
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Let X ′ = X ×Z′ Z, then we get the following cartesian diagram:

X ′
j - Z

X

s

6
p

?
i′-

i
-

Z ′

h′

?

where s is the section of X determined by (1X , i). Notice that in this case, p is smooth,
s is a closed immersion since both i and j are, and ps = 1X is smooth, thus s is actually
a regular closed immersion(we assume this).

Now suppose the relative dimension of h′ is d, then ∀F ∈ D+(Z ′), we have

i!h′!F = s!j!h′!F = s!j!(h′∗F ⊗ ωZ/Z′ [d]).

But

j!(h′∗F ⊗ ωZ/Z′ [d]) = RHomOZ
(OX′ , h

′∗F ⊗ ωZ/Z′ [d])|X′
= (RHomOZ

(OX′ , h
′∗F )⊗ ωZ/Z′ [d])|X′

= RHomOZ
(OX′ , h

′∗F )|X′ ⊗ ωX′/X [d]

= j!h′∗F ⊗ ωX′/X [d].

Hence

i!h′!F = s!j!h′!F = s!(j!h′∗F ⊗ ωX′/X [d])

= s!(p∗i′!F ⊗ ωX′/X [d]),

where the third equality is according to Lemma 2.1.5. Hence it only remains to show that

s!(p∗M ⊗ ωX′/X [d]) = M

for any M ∈ D+(X). According to (∗) in the proof of Proposition 1.2.4.(4), the LHS is

Ls∗(p∗M)⊗L ωX/X′ [−d]⊗ s∗ωX′/X [d] = M ⊗ ωX/X′ ⊗ s∗ωX′/X

since ps = 1X . But the canormal sheaf NX/X′ ' s∗Ω1
X′/X , and by Proposition 1.2.4.(3),

it follows that

ωX/X′ ' (∧dNX/X′)
∨ = (s∗ωX′/X)∨,

and hence

M ⊗ ωX/X′ ⊗ s∗ωX′/X 'M

which completes the proof. �

Definition 2.1.6. A morphism of schemes f : X → Y is smoothable if it can be decom-
posed as f = gi

X ⊂
i - Z

Y

f

?
g

�

where i is a closed immersion and g is a smooth morphism.

In this case, i!g! : D+(Y )→ D+(X) depends only of f , and we denote it by f !.
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Definition 2.1.7. A morphism of S-schemes f : X → Y is S-smoothable if there exists
a commutative diagram

X ⊂
i -

Y

f

?
g

�
?

S
?�

with i a closed immersion and g a smooth morphism s.t. the parallelogram is Cartesian.

Let f : X → Y and g : Y → Z be S-smoothable morphisms. Then there exists a
commutative diagram

X ⊂ - X1
⊂

i′- W

Y

f

?
⊂

i-

f2

�
Y1

h
�

T
?

Z

g

?

g2

�
Y2

?� ?�

S
? f1
�

g1

�

with f1, g1 smooth, X → X1, i : Y → Y1 closed immersions s.t. all the parallelograms
are Cartesian (thus f2, g2, h are smooth, i′ is a closed immersion.) It follows that X →
X1

i′−→ W is a closed immersion, and the morphism W
h−→ Y1

g2−→ Z is the base change of

the smooth morphism T → Y2
g1−→ S. Hence gf is S-smoothable. By Lemma, f !

2i
! ' i′!h!,

and thus (gf)! ' f !g!.

2.2. Trace Map. Now define a natural transformation of functors Trf : Rf∗f
! → id in

certain cases.

(1) Let i : Y → X be a closed immersion. For E ∈ D+(X), define Tri to be the
morphism

i∗i
!E ' RHomOX

(i∗OY , E)→ RHomOX
(OX , E) ' E

induced by OX → i∗OY .
(2) Let X = Pr

Y , f : X → Y be the projection. Define Trf : Rf∗ω[r] → OY , where
ω = ωX/Y = Ωr

X/Y as follows: we have a morphism c : OX → ω[r] in D(X) defined
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by
0 - ω - 0

0 - ∧r(Or+1
x )(−r)
?

- ... - OX
- 0

0 - OX

6

- 0

.

Since Rf∗(Oq
X(−i)) = 0 for 1 6 i 6 r and for all q, Rf∗(0 → ∧r(Or+1

X )(−r) →
... → Or+1

X (−1) → 0) = 0, Rf∗c is an isomorphism. We define Trf to be the
inverse of the composition of isomorphisms

OY
∼−→ Rf∗OX

Rf∗c−−→ Rf∗ω[r],

where the first morphism is the canonical map OY → f∗OX → Rf∗OX , which is
an isomorphism.

When Y is affine, the image of c under the morphism

HomD(X)(OX , ω[r]) ' Hr(X,ω) ' H0(Y,Rf∗ω[r])
H0(Y,Trf )
−−−−−−→ H0(Y,OY )

is 1.
For E ∈ D+(Y ), define Trf by

Rf∗f
!E = Rf∗(f

∗E ⊗ ω[r]) ' E ⊗L Rf∗ω[r]
E⊗LTrf−−−−−→ E,

where the isomorphism in the middle is the projection formula.
(3) The general case. Let f : X → Y be a morphism which can be factorize as

X ⊂
i- Pr

Y

Y

f

?
g

�

where i is a closed immersion and g is the projection. This is the case when, e.g.
f is projective and Y has an ample line bundle. Define Trf := Trg(Rg∗Tri g

!).
More specifically, for E ∈ D+(Y ), define Trf by the composition

Rf∗f
!E ' Rg∗i∗i

!g!E
Rg∗ Tri(g

!E)−−−−−−−→ Rg∗g
!E

Trg−−→ E.

This does not depend on the embedding, and is compatible with composition and
flat base change.(Assume it).

2.3. The Duality Theorem. Let f : X → Y be a projective morphism with Y noether-
ian, dimY <∞, Y having ample line bundle. Then the condition (3) above holds and so
dimX < ∞. Hence, f∗ has finite cohomological dimension. It follows that Rf∗ extends
to a functor D(X)→ D(Y )(sending D−(X)→ D−(Y ) and Db(X)→ Db(Y )).

For E,F ∈Mod(X), define a canonical morphism

f∗Hom(E,F )→ Hom(f∗E, f∗F )
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as follows. For U ⊂ Y open, an element in Γ(U, f∗Hom(E,F )) is a morphism E|f−1(U) →
F |f−1(U). It induces homomorphisms Γ(f−1(V ), E|f−1(U)) → Γ(f−1(V ), F |f−1(U)) for all
V ⊂ U open, which determine a morphism f∗E|U → f∗F |U , that is, an element in
Γ(U,Hom(f∗E, f∗F )).

For E,F ∈ C(X), we get a morphism of complexes

f∗Hom•(E,F )→ Hom•(f∗E, f∗F ).

For E ∈ D(X), F ∈ D+(X), take quasi-isomorphisms F → F ′, E → E ′ with F ′ ∈ C+(X),
F ′i injective, E ′i f∗-acyclic for all i. Then RHom(E,F ) ' Hom•(E ′, F ′). Observe that
Homi(E ′, F ′) is flasque for all i. In fact, for any L,M ∈ Mod(X) with M injective,
we have Hom(L,M) is flasque. For an open embedding j : U ↪→ X, any morphism
L|U →M |U can be extended to L as below since M is injective:

0 - j!j
∗L - L

M
?�

We define a morphism

Rf∗RHom(E,F )→ RHom(Rf∗E,Rf∗F )

by composition of canonical morphisms

Rf∗RHom(E,F ) ' f∗Hom•(E ′, F ′)→ Hom•(f∗E ′, f∗F ′)
→ RHom•(f∗E ′, f∗F ′) ' RHom(Rf∗E,Rf∗F )

For L ∈ D(X),M ∈ D+(Y ), define θf (L,M)(sometimes abbreviated θf ) to be the
composition

Rf∗RHom(L, f !M)→ RHom(Rf∗L,Rf∗f
!M)

RHom(Rf∗L,Trf )
−−−−−−−−−−→ RHom(Rf∗L,M),

where the first map is the canonical map defined above.

Theorem 2.3.1 (Grothendieck). For L ∈ D−(X)coh, M ∈ D+(Y )coh, the morphism θf

is an isomorphism.

Proof. f : X → Y can be factorized as

X ⊂
i- P = Pr

Y

Y

f

?
g

�

where i is a closed immersion and g is the projection. Then it is easily seen that θf (L,M) =
θg(Ri∗L,M) ◦ (Rg∗θi(L, g

!M)), with Ri∗L ∈ D−(P )coh and g!M ∈ D+(P )coh, so it is
enough to check that θi, θg are isomorphisms.

Let L ∈ D−(X)coh,M ∈ D+(P )coh. To show θi is an isomorphism, we may assume, by
canonical truncation(τ6), induction and ”way out functor”, that L ∈ Coh(X). We may
assume P affine. Then we can write

L ' (...→ L−1 → L0),
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with Li free of finite type. Using naive truncation σ>, we may assume L = OX . Then θi

is nothing but the canonical isomorphism

i∗RHomOX
(OX , i

!M) = i∗i
!M → RHomOP

(OX ,M).

Therefore, we may assume that f : X = Pr
Y → Y is the projection. Using τ6, we may

assume L is concentrated in degree 0, that is, L ∈ Coh(X). Then there is an exact
sequence

...→ OX(−n1)m1 → OX(−n0)m0 → L→ 0

with all ni > r+ 1. Using σ>, we may assume L = ω(−d) with d > 0(where ω = Ωr
X/Y '

OX(−r − 1)).
Then we have isomorphisms

Rf∗RHom(L, f !M) = Rf∗RHom(ω(−d), f ∗M ⊗ ω)[r] ' Rf∗(f
∗M)(d)[r]

'M ⊗L Rf∗OX(d)[r] 'M ⊗L f∗OX(d)[r],

where the last but second isomorphism is the projection formula, and isomorphisms

RHom(Rf∗L,M) = RHom(Rf∗ω(−d),M)

' Hom•(Rrf∗ω(−d)[−r],M)

'M ⊗Hom(Rrf∗ω(−d),OY )[r],

where we have used the fact that Rrf∗ω(−d) is a locally free sheaf of finite type. We have
to check

θf : f∗OX(d)→ Hom(Rrf∗ω(−d),OY )

is an isomorphism, that is, the pairing

f∗OX(d)⊗Rrf∗ω(−d)→ OY

is perfect. For V = Spec(A) ⊂ Y , the pairing

Γ(V, f∗OX(d))× Γ(V,Rrf∗ω(−d))→ Γ(V,OY )

is given by

(ta,
1

tbt0...tr
) 7→

{
0, if a 6= b

1, if a = b

where
∑
ai =

∑
bi = d, and thus is a perfect pairing. �

Applying RΓ to θf , we get an isomorphism

RHom(L, f !M)
∼−→ RHom(Rf∗L,M)

in D(Ab). Applying H i, we get Exti(L, f !M)
∼−→ Exti(Rf∗L,M).
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2.4. Some Discussions. In this part, suppose Y = Spec(k), f : X → Y projective.

Definition 2.4.1. KX := f !OY ∈ D+(X) is called a dualizing complex on X.

We have an immediate corollary of the last paragraph of the previous section:

Corollary 2.4.2. Let X/k be projective, L ∈ D−(X)coh. Then there is a perfect pairing
of finite dimensional k-spaces between Hj(X,L) and Ext−j(L,KX).

Proof. By the last paragraph of the previous section, Exti(L,KX) ' Exti(RΓ(X,L), k) =
Hom(H−i(X,L), k). Hence the corollary follow. �

Next, we first consider the case when X/k is smooth.

Corollary 2.4.3 (Serre). Let X/k be projective, smooth, purely of dimension d. Then
KX = ωX [d]. Hence there is a perfect pairing between Hj(X,L) and Extd−j(L, ωX). In
particular, for L locally free of finite type, Hj(X,L) is dual to Hd−j(X,L∨ ⊗ ωX), where
L∨ = Hom(L,OX).

Proof. We only need to prove that last assertion. For that, RHom(L, ωX) = L∨ ⊗ ωX , so
Extn(L, ωX) = HnRΓ(X,RHom(L, ωX)) = Hn(X,L∨ ⊗ ωX). �

In fact, the perfect paring is given by the natural pairing followed by Tr:

Hj(X,L)⊗Hd−j(X,L∨ ⊗ ωX)→ Hd(X,ωX)
Tr−→ k.

When d = 1, we get ”Roch’s half” of the Riemann-Roch theorem, which claims that for
L a line bundle, H1(X,L) is dual to H0(X,L∨ ⊗ ωX).

Corollary 2.4.4. Let X/k be projective, smooth, purely of dimension d. Then Hj(X,Ωi
X)

is dual to Hd−j(X,Ωd−i
X ).

This is somehow related to Hodge theory.
Then, we discuss KX in general.

Proposition 2.4.5. Let X/k be projective with dimX = n. Then KX ∈ D[−n,0](X)coh.

Proof. We have

X ⊂
i- P = PN

Y

Spec(k)

f

? g
�

with i a closed immersion. i∗KX = RHomOP
(OX , ωP )[N ], so it’s enough to show

Exti+N
OP

(OX , ωP ) = 0 for i /∈ [−n, 0], that is,

E j = ExtjOP
(OX , ωP ) = 0

for j < N − n or j > N . This holds for j > N since for all x ∈ X, ExtjOP
(OX , ωP )x =

Extj
OP,x

(OX,x, ωP,x), where ωP,x ' OP,x is regular of dimension 6 N . Note that for

q >> 0, E j(q) is generated by global sections. It then suffices to show for a fixed
j < N − n, Γ(P, E j(q)) = 0 for q >> 0. This is right since Ox, ωP ∈ Coh(P ) im-
plies that Γ(P, Extj(OX , ωP )(q)) = Extj

P (OX , ωP (q)) (we assume this), which is dual to
HN−j(P,OX(−q)) = HN−j(X,OX(−q)) = 0 since N − j > n = dimX. �
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Let A be a local ring with residue field k, M be an A-module. A is called Cohen-
Macaulay if its depth is equal to dimA. A scheme X is called Cohen-Macaulay if all its
local rings are Cohen-Macaulay.

Proposition 2.4.6. Let X/k be projective. Suppose X is Cohen-Macaulay and all irre-
ducible components have dimension n. Then KX ∈ D[−n,−n](X), and so KX ' ω◦X [n] with
ω◦X = H−n(KX)[n].

Proof. By the proof of the previous proposition, we only need to show that ∀j > N − n,
x ∈ X,

Extj
OP,x

(OX,x, ωP,x) = 0,

which follows from the equation

proj dimOP,x = dimOP,x − depthOP,x
OX,x

= dimOP,x − depthOX,x
OX,x

= dimOP,x − dimOX,x = N − n.

�

The sheaf ω◦X in the proposition is called the dualizing sheaf for X.
X is Cohen-Macaulay if, e.g., there is a regular k-immersion i of X into a projective

space over k.

X ⊂
i- P = PN

k

Spec(k) =S

f

?
g

�

In this case, we even have ω◦X is a line bundle. Indeed,

f !OY ' i!g!OY

= i!ωP [N ]

' i∗ωP ⊗ ωX/P [−(N − n)][N ] by (∗) in the proof of Proposition 1.2.4.(4)

= i∗ωP ⊗ ωX/P [n],

and hence ω◦X = i∗ωP ⊗ ωX/P .
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