GROTHENDIECK-SERRE DUALITY

ZIYANG GAO

1. Preliminaries

1.1. Koszul Complex I.

Definition 1.1.1. (1) Let A be a commutative ring and E be a A-module. Then, for any A-morphism $u: E \to A$, we can define the Koszul Complex $K.(u) \in C^{\leq 0}(A)$ as follows:

$$K_n(u) = \wedge^n E, n \ge 0;$$

$$d_n: K_n(u) \to K_{n-1}(u), \text{ with } d_n(x_1 \wedge \dots \wedge x_n) = \sum_{i=1}^{n} (-1)^{i-1} u(x_i) x_1 \wedge \dots \wedge \hat{x_i} \wedge \dots \wedge x_n.$$

Clearly, $d^2 = 0, d_1 = u$ and $d(a \wedge b) = da \wedge b + (-1)^p a \wedge db(a \in \wedge^p E, b \in \wedge^q E)$.

(2) A, E, u as above, M is an A-module, define $K.(u, M) = K.(u) \otimes_A M$, with $d(x \otimes m) = dx \otimes m$.

Remarks 1.1.2. If $E = E_1 \oplus E_2$, $u = u_1 + u_2 : E \to A$, where $u_i : E_i \to A$, then $K.(u, E) = K.(u_1) \otimes K.(u_2)$, $\wedge^n E = \bigoplus_{p+q=n} \wedge^p E_1 \otimes \wedge^q E_2$, $d = d_1 \otimes 1 + (-1)^* 1 \otimes d_2$.

Dually, we also have

[Definition 1.1.1.'] (1') For any morphism $v : A \to F$, we can define a complex $K^{\cdot}(v) \in C^{\geq 0}(A)$ called the Koszul Complex, too, as follows:

$$K^{n}(v) = \wedge^{n} F; \ d: K^{n}(v) \to K^{n+1}(v), \ d(x) = v \wedge x.$$

Here we identify the morphism v with $v(1) \in F$.

(2') Similar definition for K(v, N) with A, F, v as above and N an A-module.

[**Remark 1.1.2.**'] In this case, we also have: for $F = F_1 \oplus F_2$, $v = (v_1, v_2)$, $K(v) = K(v_1) \otimes K(v_2)$.

Lemma 1.1.3. For $f = (f_1, ..., f_r) \in A^r$, we have two Koszul complexes $K_{\cdot}(f)$ and $K^{\cdot}(f)$.

$$K.(f): 0 \to A \to A^r (= \wedge^{r-1} A^r) \to \dots \to (\wedge^1 A^r =) A^r \xrightarrow{f} A \to 0, f(a_1, \dots, a_r) = \sum f_i a_i.$$

$$K^{\cdot}(f): 0 \to A \xrightarrow{f} A^{r}(= \wedge^{1}A^{r}) \to \dots \to (\wedge^{r-1}A^{r}=)A^{r} \to A \to 0, \ f(a) = (f_{1}a, \dots, f_{r}a).$$

Then $K^{\cdot}(f)$ can be viewed as the naive dual of $K_{\cdot}(f)$. Furthermore, we have a canonical isomorphism between the two: $K^{\cdot}(f)[r] \simeq K_{\cdot}(f)$.

Proof. The first part is immediate. For the second part, the isomorphism is defined as follows:

Let $\{e_1, ..., e_r\}$ be a basis of A^r . For any $I = \{i_1 < ... < i_p\} \subset \{1, ..., r\}$, let $e_I = e_{i_1} \land ... \land e_{i_p}$, then $e_I \mapsto \varepsilon(J, I)e_J$, where $J = \{j_1 < ... < j_{r-p}\}$ is the complement of I in $\{1, ..., r\}$ and $\varepsilon(J, I) = \operatorname{sign}(j_1, ..., j_{r-p}, i_1, ..., i_p)$.

Lemma 1.1.4. Let $L \in C(A)$ and $x \in A$, $K_{\cdot}(x) = (0 \to A \xrightarrow{x} A \to 0)$. Then $K_{\cdot}(x) \otimes L \simeq Cone(L \xrightarrow{x} L)$.

Proof. This is simply a computation.

Now we discuss a little about this lemma. For this, we get a distinguished triangle $L \xrightarrow{x} L \to K.(x) \otimes L \to$, so we get a long exact sequence:

 $\ldots \to H^q(L) \xrightarrow{x} H^q(L) \to H^q(K.(x) \otimes L) \to H^{q+1}(L) \xrightarrow{x} \ldots$

Rewrite it into short exact sequences, and we can get:

$$0 \to H^0K.(x, H^q(L)) \to H^q(K.(x) \otimes L) \to H^{-1}K.(x, H^{q+1}(L)) \to 0. \ (*)$$

Theorem 1.1.5 (Serre). Let A be a noetherian ring, M an A-module of finite type and $f = (f_1, ..., f_r) \in A^r$ with $f_i \in rad(A)$, then the following conditions are equivalent:

- (1) f is M-regular.
- (2) $K.(f, M) \rightarrow M/(f_1, ..., f_r)M$ is quasi-isomorphism.
- (3) $H^{-1}K.(f, M) = 0.$

Proof. $(1) \Rightarrow (2)$ Use induction on r. For r = 1, the statement is just the definition.

Assume the statement is true for $m \leq r - 1$, then let

$$L = K.(f_1, ..., f_{r-1}, M) = K.(f_1, ..., f_{r-1}) \otimes M,$$

then $K.(f_r) \otimes L \simeq K.(f_1, ..., f_r, M)$. Hence we have the exact sequence

$$0 \to H^0 K.(f_r, H^q(L)) \to H^q K.(f_1, ..., f_r, M) \to H^{-1} K.(f_r, H^{q+1}(L)) \to 0.$$

We are left to show that $H^q K.(f_1, ..., f_r, M) = 0$ for all q < 0. For $q \leq -2$, it follows from the above sequence and the inductive hypothesis. For q = -1, it is true since $\operatorname{Ker}(f_r: M/(f_1, ..., f_{r-1})M \to M/(f_1, ..., f_{r-1})M) = 0$ by definition of *M*-regular. (2) \Rightarrow (3) trivial.

 $(3) \Rightarrow (1)$ Also use induction on r. Again, the case r = 1 is trivial. For $r \ge 2$, again let $L = K.(f_1, ..., f_{r-1}, M)$. First show that $(f_1, ..., f_{r-1})$ is M-regular. By (*), we have an inclusion

$$H^{q}(L)/f_{r}H^{q}(L) \hookrightarrow H^{q}K.(f_{1},...,f_{r},M)$$

When $q = -1, H^q K.(f_1, ..., f_r, M) = 0$, hence $H^{-1}(L) = f_r H^{-1}(L)$. Since A is noetherian and M is of finite type, $H^{-1}(L)$ is finitely generated over A, so $H^{-1}(L) = 0$ since $f_r \in \operatorname{rad}(A)$. Now $(f_1, ..., f_{r-1})$ is M-regular by induction. Furthermore, condition (3) implies that

$$\operatorname{Ker}(f_r: M/(f_1, ..., f_{r-1})M \to M/(f_1, ..., f_{r-1})M) = 0$$

Hence $f = (f_1, ..., f_r)$ is *M*-regular

Corollary 1.1.6. Assume $f = (f_1, ..., f_r) \in A^r$ is regular and $B = A/(f_1, ..., f_r)A$. Then $Ext^q_A(B, A) = \begin{cases} 0 & q \neq r \\ B & q = r \end{cases}$.

Proof. Since $K_{\cdot}(f) \to B$ is a quasi-isomorphism,

$$RHom_A(B,A) = Hom_A(K.(f),A) = K^{\cdot}(f) \simeq K.(f)[-r],$$

hence

$$Ext_{A}^{q}(B,A) = \begin{cases} H^{q-r}K.(f) = 0 & q \neq r \\ H^{0}K.(f) = B & q = r \end{cases}.$$

1.2. Koszul Complex II. In this section, we generalize the discussion in section 1 to ringed spaces. In this section, we abuse the notations \mathcal{O}_Y and $i_*\mathcal{O}_Y$ when $i: Y \hookrightarrow X$ is a closed immersion.

Definition 1.2.1. Let (X, \mathcal{O}_X) be a ringed space and $E \in Mod(X)$, then for any morphism $u: E \to \mathcal{O}_X$, define the Koszul complex $\mathcal{K}.(u)$ by

$$(\dots \to \wedge^n E \xrightarrow{d} \wedge^{n-1} E \to \dots \to E \xrightarrow{u} \mathcal{O}_X \to 0),$$

where d is the right interior product by u.

Definition 1.2.2. For $i: Y \hookrightarrow X$ a closed immersion defined by the ideal sheaf $I \subset \mathcal{O}_X$, we say that i is regular of codimension r if $\forall x \in Y$, $\exists U \subset X$ an open neighbourhood of x and an \mathcal{O}_U -module E locally free of rank r and an \mathcal{O}_U -linear map $u: E \to \mathcal{O}_U$, s.t. $H^q \mathcal{K}.(u) = 0 (q < 0)$ and $I|_U = u(E) \subset \mathcal{O}_U$. In other words, this is equivalent to say that \exists locally a squence $f = (f_1, ..., f_r) \in \mathcal{O}_U^r$ s.t. $I|_U = (f_1, ..., f_r)$ and $\mathcal{K}.(f) \to \mathcal{O}_U/I\mathcal{O}_U$ is a resolution.

Remarks 1.2.3. If X is locally noetherian, then i is regular iff $\forall x \in Y, \exists x \in U$ open, s.t. I is defined by a sequence $f = (f_1, ..., f_r)$ of sections of \mathcal{O}_X s.t. $f_x = ((f_1)_x, ..., (f_r)_x) \in \mathfrak{m}_x^r$ is regular.

Proposition 1.2.4. If $i: Y \hookrightarrow X$ is a regular immersion of codimension r, \mathcal{I} be the ideal sheaf of $i, N_{Y/X} = \mathcal{I}/\mathcal{I}^2$, then

- (1) $\mathcal{E}xt^{q}_{\mathcal{O}_{X}}(\mathcal{O}_{Y},\mathcal{O}_{X}) = \begin{cases} 0 & q \neq r \\ \omega_{Y/X} & q = r \end{cases}$, where $\omega_{Y/X}$ is a line bundle on Y. In other words, $\mathcal{RHom}_{\mathcal{O}_{X}}(\mathcal{O}_{Y},\mathcal{O}_{X}) \simeq \omega_{Y/X}[-r].$
- (2) $N_{Y/X}$ is locally free of rank r.
- (3) $\omega_{Y/X} \simeq (\wedge^r N_{Y/X})^{\vee}$.
- (4) For $F \in D^+(X)$, there exists a functorial isomorphism

$$\mathcal{E}xt^q_{\mathcal{O}_X}(\mathcal{O}_Y,F)\simeq \mathcal{T}or^{\mathcal{O}_X}_{r-q}(\mathcal{O}_Y,F)\otimes \omega_{Y/X}.$$

Proof. (1) For any U = SpecA open in $X, U \cap Y = \text{Spec}B$, with $B = A/(f_1, ..., f_r)$ where $f = (f_1, ..., f_r)$ is regular, by [Cor], we have

$$Ext^{q}_{\Gamma(U,\mathcal{O}_{X})}(\Gamma(U\cap Y,\mathcal{O}_{Y}),\Gamma(U,\mathcal{O}_{X})) = Ext^{q}_{A}(B,A) = \begin{cases} 0 & q \neq r \\ B & q = r \end{cases}.$$

The conclusion then holds immediately.

(2) From the exact sequence

$$0 \to \mathcal{I} \to \mathcal{O}_X \to \mathcal{O}_Y \to 0,$$

we get

$$N_{Y/X} = \mathcal{I}/\mathcal{I}^2 \simeq \mathcal{T}or_1^{\mathcal{O}_X}(\mathcal{O}_Y, \mathcal{O}_Y).$$

Since *i* is regular, locally one has a Koszul complex $\mathcal{K}.(f_1, ..., f_r) = (0 \to \mathcal{O}_X \to ... \to \mathcal{O}_X^r \to \mathcal{O}_X)$, which is a resolution of \mathcal{O}_Y . Hence locally

$$\mathcal{T}or_1^{\mathcal{O}_X}(\mathcal{O}_Y,\mathcal{O}_Y) = \mathcal{H}^{-1}(\mathcal{K}.(f) \otimes_{\mathcal{O}_X} \mathcal{O}_Y) = \mathcal{O}_Y^r,$$

which proves (2). Also note that we can deduce

$$\mathcal{T}or_q^{\mathcal{O}_X}(\mathcal{O}_Y,\mathcal{O}_Y) = \wedge^q(\mathcal{O}_Y^r),$$

and

$$\wedge^* \mathcal{T}or_1^{\mathcal{O}_X}(\mathcal{O}_Y, \mathcal{O}_Y) \xrightarrow{\sim} \mathcal{T}or_*^{\mathcal{O}_X}(\mathcal{O}_Y, \mathcal{O}_Y).$$

(4) It's enough to show that

$$\mathcal{RH}om_{\mathcal{O}_X}(\mathcal{O}_Y, F) \simeq i_*(Li^*F \otimes^L_{\mathcal{O}_Y} \omega_{Y/X}[-r]) \tag{(*)}$$

for each $F \in D^+(X)$, then apply H^q to both sides. By the first part of the following lemma, the RHS(right hand side) of the above formula is just

$$F \otimes_{\mathcal{O}_X}^L i_* \omega_{Y/X}[-r] = F \otimes_{\mathcal{O}_X}^L R\mathcal{H}om_{\mathcal{O}_X}(\mathcal{O}_Y, \mathcal{O}_X).$$

By the second part of the following lemma, we see that this is canonically isomorphic to $R\mathcal{H}om_{\mathcal{O}_X}(\mathcal{O}_Y, F)$, which is exactly the LHS(left hand side).

(3) We set $F = \mathcal{O}_Y$ in (4), then we get

$$R\mathcal{H}om_{\mathcal{O}_X}(\mathcal{O}_Y,\mathcal{O}_Y)\simeq \mathcal{O}_Y\otimes_{\mathcal{O}_X}i_*\omega_{Y/X}[-r].$$

Note that $\otimes_{\mathcal{O}_X}^L i_* \omega_{Y/X}[-r] \simeq \otimes_{\mathcal{O}_X} i_* \omega_{Y/X}[-r]$ since $\omega_{Y/X}[-r]$ is locally free. Apply H^0 to the above formula, and note that $H^0(\mathcal{RHom}_{\mathcal{O}_X}(\mathcal{O}_Y, \mathcal{O}_Y)) = \mathcal{O}_Y$, we get

$$\mathcal{O}_Y \simeq \mathcal{T}or_r^{\mathcal{O}_X}(\mathcal{O}_Y, \mathcal{O}_Y) \otimes \omega_{Y/X}.$$

In (2), we have already seen that $\mathcal{T}or_r^{\mathcal{O}_X}(\mathcal{O}_Y, \mathcal{O}_Y) \simeq \wedge^r N_{Y/X}$, thus $\omega_{Y/X} \simeq (\wedge^r N_{Y/X})^{\vee}$.

Lemma 1.2.5. Let $i: Y \hookrightarrow X$ be a regular closed immersion, then one has

$$F \otimes_{\mathcal{O}_Y}^L i_*G \simeq i_*(Li^*F \otimes_{\mathcal{O}_Y}^L G)$$

and

$$F \otimes_{\mathcal{O}_X}^L R\mathcal{H}om_{\mathcal{O}_X}(\mathcal{O}_Y, \mathcal{O}_X) \simeq R\mathcal{H}om_{\mathcal{O}_X}(\mathcal{O}_Y, F)$$

for $F \in D^+(X)$ and $G \in D^b(Y)$.

Proof. For the first part, first note that i^* is of finite cohomological dimension since $Li^* = \mathcal{O}_Y \otimes_{\mathcal{O}_X}^L$ and \mathcal{O}_Y admits a Koszul resolution. Hence Li^* makes sense on $D^+(X)$.

We have a natural map between $Li^*(F \otimes_{\mathcal{O}_X}^L i_*G)$ and $Li^*F \otimes_{\mathcal{O}_Y}^L G$ defined by

$$Li^*(F \otimes_{\mathcal{O}_X}^L i_*G) \to Li^*F \otimes_{\mathcal{O}_Y}^L Li^*(i_*G) \to Li^*F \otimes_{\mathcal{O}_Y}^L G,$$

where the last map is given by the natural map $Li^*i_*G \to G$. This gives the desired map $F \otimes_{\mathcal{O}_X}^L i_*G \to i_*(Li^*F \otimes_{\mathcal{O}_Y}^L G)$ by the adjiontness of Li^* and i^* .

To show this is an isomorphism, by canonical truncations (note that i^* is of finite cohomological dimension), we may assum that $F \in D^b(X)$. Replacing F by its flat resolution, we can see that

$$F \otimes_{\mathcal{O}_X}^L i_*G = F \otimes_{\mathcal{O}_X} i_*G \simeq i_*(i^*F \otimes_{\mathcal{O}_Y} G) = i_*(Li^*F \otimes_{\mathcal{O}_Y}^L G).$$

For the second part, use the Koszul resolution $\mathcal{K}.(f) = (0 \to \mathcal{O}_X \to ... \to \mathcal{O}_X^r \to \mathcal{O}_X)$ of \mathcal{O}_Y . Note that this is a free resolution of \mathcal{O}_Y , then the conclusion follows immediately. \Box

Next, we consider the projective case $X = \mathbb{P}_Y^r$, with $f: X \to Y$ the projection. We will show using the tool of Koszul complex that $\Omega_{X/Y}^r \simeq \mathcal{O}_X(-r-1)$.

We know that there is a canonical exact sequence

$$0 \to \Omega^1_{X/Y} \xrightarrow{v} \mathcal{O}^{r+1}_X(-1) \xrightarrow{u} \mathcal{O}_X \to 0.$$

The Koszul complex of u is

$$0 \to \wedge^{r+1}(\mathcal{O}_X^{r+1})(-r-1) \to \dots \to \mathcal{O}_X^{r+1}(-1) \to \mathcal{O}_X \to 0.$$

If we can prove that each sequence

$$0 \to \Omega^i_{X/Y} \xrightarrow{\wedge^i v} \wedge^i (\mathcal{O}_X^{r+1})(-i) \to \dots \to \mathcal{O}_X^{r+1}(-1) \to \mathcal{O}_X \to 0, i \ge 0,$$

is exact, then in particular, let i = r and compare it with the previous sequence, we have a canonical isomorphism $\Omega_{X/Y}^r \simeq \mathcal{O}_X(-r-1)$. We conclude it in the following lemma.

Lemma 1.2.6. Let (X, \mathcal{O}_X) be a ringed space,

$$0 \to F \xrightarrow{v} E \xrightarrow{u} \mathcal{O}_X \to 0$$

be an exact sequence of locally free sheaves of finite ranks. Then the Koszul complex of u

$$\mathcal{K}.(u) = (0 \to \wedge^n E \xrightarrow{d_n} \wedge^{n-1} E \to \dots \to E \xrightarrow{d_1=u} \mathcal{O}_X \to 0)$$

where $n = \operatorname{rank} E$ is acyclic and each sequence

$$0 \to \wedge^{i} F \xrightarrow{\wedge^{i} v} \wedge^{i} E \xrightarrow{d} \wedge^{i-1} E \to \dots \to E \xrightarrow{d} \mathcal{O}_{X} \to 0$$

is exact. Hence $\wedge^i v$ induces an isomorphism $\wedge^i F \to B^{-i-1}\mathcal{K}.(u) (i \ge 0)$. In particular, taking i = n - 1, we get an isomorphism $\wedge^{n-1} F \to \wedge^n E$ s.t.

commutes, which coincides with the isomorphism $\wedge^{n-1}F \to \wedge^n E$ given by taking the highest exterior power of the original exact sequence and locally defined by $u(b)a \mapsto b \wedge (\wedge^{n-1}v)(a)$ for $a \in \wedge^{n-1}F(U), b \in E(U)$.

Proof. Without any loss, we may assume $E = \mathcal{O}_X \oplus F$ and u the projection since the three of them are all locally free of finite ranks. Then

$$d_i: \wedge^i F \oplus (\mathcal{O}_X \otimes \wedge^{i-1} F) = \wedge^{i-1} E \to \wedge^{i-1} E = \wedge^{i-1} F \oplus (\mathcal{O}_X \otimes \wedge^{i-1} F)$$

is induced by

$$(a, 1 \otimes b) \mapsto (b, 0).$$

Then it can be checked directly the exactness of the sequences. Take i = n, we get the acyclicality. The remainder is then obvious.

2. GROTHENDIECK-SERRE GLOBAL DUALITY

In this chapter, for simplicity, we just discuss the locally noetherian case unless it's specially stated.

2.1. The Functor $f^!$.

- **Definition 2.1.1.** (1) Let $i: Y \hookrightarrow X$ be a closed immersion. Given $F \in D^+(X)$, define
 - $i^!F := R\mathcal{H}om_{\mathcal{O}_X}(i_*\mathcal{O}_Y, F)|_Y = i^{-1}R\mathcal{H}om_{\mathcal{O}_X}(i_*\mathcal{O}_Y, F) = i^*R\mathcal{H}om_{\mathcal{O}_X}(i_*\mathcal{O}_Y, F),$ i.e. $i_*i^!F = R\mathcal{H}om_{\mathcal{O}_X}(\mathcal{O}_Y, F)$. Clearly, $i^!F \in D^+(Y)$. Moreover, this gives a
 - functor from $D^+(X)$ to $D^+(Y)$. We would prove it later. (2) Let $f: X \to Y$ be a smooth morphism with relative dimension d, then $\omega_{X/Y} =$
 - $\Omega^d_{X/Y}$ is a line bundle. Define a functor $f^!: D^+(X) \to D^+(Y)$ by

$$f^!F := f^*F \otimes^L_{\mathcal{O}_X} \omega_{X/Y}[d]$$

for an element $F \in D^+(X)$.

(3) Let

be a commutative diagram with i a closed immersion and g smooth. We can define a functor $i^!g^!$ from $D^+(X)$ to $D^+(Y)$. The main goal of this part is to prove that the last functor is independent of the choice of i and g.

Lemma 2.1.2. Suppose $i: Y \hookrightarrow X$ is a closed immersion, then

- (1) $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{O}_Y, F)|_Y$ is an injective \mathcal{O}_Y -module if F is an injective \mathcal{O}_X -module.
- (2) In this case, $i^!$ really is a functor.

Proof. (1) For every $G \in Mod(\mathcal{O}_Y)$, since

$$i_*G \otimes_{\mathcal{O}_X} i_*\mathcal{O}_Y \simeq i_*G \otimes_{i_*\mathcal{O}_Y} i_*\mathcal{O}_Y \simeq i_*G,$$

it's enough to prove that

 $Hom_{\mathcal{O}_X}(i_*G, \mathcal{H}om_{\mathcal{O}_X}(i_*\mathcal{O}_Y, F)) \simeq Hom_{\mathcal{O}_Y}(G, i^{-1}\mathcal{H}om_{\mathcal{O}_X}(i_*\mathcal{O}_Y, F)).$

It's easy to see that $G \simeq i^{-1}i_*G$ by checking on stalks, so the RHS of the above formula can be rewritten as

 $Hom_{\mathcal{O}_Y}(i^{-1}i_*G, i^{-1}\mathcal{H}om_{\mathcal{O}_X}(i_*\mathcal{O}_Y, F)) \simeq Hom_{\mathcal{O}_X}(i_*G, i_*i^{-1}\mathcal{H}om_{\mathcal{O}_X}(i_*\mathcal{O}_Y, F)).$

Taking $i_*i^{-1}\mathcal{H}om_{\mathcal{O}_X}(i_*\mathcal{O}_Y, F) \simeq \mathcal{H}om_{\mathcal{O}_X}(i_*\mathcal{O}_Y, F)$ into consideration (this is right since $i_*\mathcal{O}_Y$ is a locally finite presented \mathcal{O}_X -module, thus we can check on stalks), we get the conclusion.

(2) For any $Z \xrightarrow{j} Y \xrightarrow{i} X$ a composition of closed immersions and $F \in D^+(X)$, replace F by its injective resolution, then

$$j^{!}i^{!}F = \mathcal{H}om_{\mathcal{O}_{Y}}(j_{*}\mathcal{O}_{Z}, \mathcal{H}om_{\mathcal{O}_{X}}(i_{*}\mathcal{O}_{Y}, F)|_{Y})|_{Z}$$

$$\simeq \mathcal{H}om_{\mathcal{O}_{X}}((ij)_{*}\mathcal{O}_{Z}, \mathcal{H}om_{\mathcal{O}_{X}}(i_{*}\mathcal{O}_{Y}, F))|_{Z}$$

$$\simeq \mathcal{H}om_{\mathcal{O}_{X}}(((ij)_{*}\mathcal{O}_{Z}) \otimes_{\mathcal{O}_{X}} (i_{*}\mathcal{O}_{Y}), F)|_{Z}$$

$$\simeq \mathcal{H}om_{\mathcal{O}_{X}}((ij)_{*}\mathcal{O}_{Z}, F)|_{Z}$$

$$= R\mathcal{H}om_{\mathcal{O}_{X}}((ij)_{*}\mathcal{O}_{Z}, F)|_{Z}$$

$$= (ij)^{!}F.$$

Now we come to the main theorem of this part. For the rest of the whole section, we again abuse the notations \mathcal{O}_Y and $i_*\mathcal{O}_Y$ when $i: Y \hookrightarrow X$ is a closed immerstion.

Theorem 2.1.3. Suppose we have a commutative diagram

where i', i'' are closed immersions and g', g'' are smooth. Then there is a natural isomorphism

$$a(i', i'') : i''g'' \simeq i'''g'''$$

satisfying the transitive formula:

$$a(i_2, i_3) \circ a(i_1, i_2) = a(i_1, i_3)$$

for any triple $(i_1, g_1), (i_2, g_2), (i_3, g_3)$.

We say that these a(i', i'') form a transitive system. In order to prove this theorem, we still need some preparation.

Lemma 2.1.4. Let X, Y be locally noetherian, and $f: X \to Y$ be a flat morphism. Then

$$f^*R\mathcal{H}om(L,M) \xrightarrow{\sim} R\mathcal{H}om(f^*L,f^*M)$$

for $M \in D^+(Y)$ and $L \in D^b(Y)_{coh}$.

Proof. Replacing M by its injective resolution, then we get

$$f^*R\mathcal{H}om(L,M) = f^*\mathcal{H}om(L,M) \to \mathcal{H}om(f^*L,f^*M) \to R\mathcal{H}om(f^*L,f^*M),$$

which defines the map we want. To show it's an isomorphism, we may assume that Y is affine and noetherian, since the problem is local. Then there exists a quasi-isomorphism $L' \to L$ with each L'^i free of finite rank and $L'^i = 0$ when i is sufficiently large. Then it is clear.

Lemma 2.1.5. Consider a cartesian diagram

where i is closed immersion and f is flat. Then we have $g^*i! \simeq i'! f^*$.

Proof. We have to show that for any $F \in D^+(X)$, there is a natural isomorphism $i'_*g^*i^!F \simeq i'_*i'!f^*F$. But the LHS is

$$i'_*g^*i^!F = i'_*(g^*i^*R\mathcal{H}om_{\mathcal{O}_X}(\mathcal{O}_Y, F)) = f^*R\mathcal{H}om_{\mathcal{O}_X}(\mathcal{O}_Y, F),$$

while the RHS is

$$i'_*i''f^*F = R\mathcal{H}om_{\mathcal{O}_{X'}}(\mathcal{O}_{Y'}, f^*F) = R\mathcal{H}om_{\mathcal{O}_{X'}}(f^*\mathcal{O}_Y, f^*F)$$

Then our conclusion follows from the previous lemma.

Now we come back to the proof of the Theorem.

Proof of Theorem. Consider diagram , let $Z''' = Z' \times_Y Z''$, then we can complete the diagram as follows:

where i is the map determined by (i', i''). In general, i is not a closed immersion, but only an immersion, i.e. a composition of a closed immersion with an open immersion:

$$X \xrightarrow{closed} Z \xrightarrow{open} Z'''.$$

Thus we can replace Z''' by Z, and consider the diagram

where *i* and *i'* are both closed immersions and *h'* is smooth. If we can show that $i'' \simeq i'h''$, then we have

$$i''g'' \simeq i'h''g'' = i'h'''g''' \simeq i''g'''$$

And This gives the desired functor isomorphism.

Let $X' = X \times_{Z'} Z$, then we get the following cartesian diagram:

 $\begin{array}{c} X' \xrightarrow{j} Z \\ s \downarrow p \xrightarrow{i} h' \downarrow \\ V \xrightarrow{i'} Z' \end{array}$

Now suppose the relative dimension of h' is d, then $\forall F \in D^+(Z')$, we have

$$i^{!}h'^{!}F = s^{!}j^{!}h'^{!}F = s^{!}j^{!}(h'^{*}F \otimes \omega_{Z/Z'}[d]).$$

But

$$j^{!}(h'^{*}F \otimes \omega_{Z/Z'}[d]) = R\mathcal{H}om_{\mathcal{O}_{Z}}(\mathcal{O}_{X'}, h'^{*}F \otimes \omega_{Z/Z'}[d])|_{X'}$$
$$= (R\mathcal{H}om_{\mathcal{O}_{Z}}(\mathcal{O}_{X'}, h'^{*}F) \otimes \omega_{Z/Z'}[d])|_{X'}$$
$$= R\mathcal{H}om_{\mathcal{O}_{Z}}(\mathcal{O}_{X'}, h'^{*}F)|_{X'} \otimes \omega_{X'/X}[d]$$
$$= j^{!}h'^{*}F \otimes \omega_{X'/X}[d].$$

Hence

$$i'h''F = s'j'h''F = s'(j'h'^*F \otimes \omega_{X'/X}[d])$$

= $s'(p^*i''F \otimes \omega_{X'/X}[d]),$

where the third equality is according to Lemma 2.1.5. Hence it only remains to show that

$$s^!(p^*M \otimes \omega_{X'/X}[d]) = M$$

for any $M \in D^+(X)$. According to (*) in the proof of Proposition 1.2.4.(4), the LHS is

$$Ls^*(p^*M) \otimes^L \omega_{X/X'}[-d] \otimes s^* \omega_{X'/X}[d] = M \otimes \omega_{X/X'} \otimes s^* \omega_{X'/X}[d]$$

since $ps = 1_X$. But the canormal sheaf $N_{X/X'} \simeq s^* \Omega^1_{X'/X}$, and by Proposition 1.2.4.(3), it follows that

$$\omega_{X/X'} \simeq (\wedge^d N_{X/X'})^{\vee} = (s^* \omega_{X'/X})^{\vee},$$

and hence

$$M \otimes \omega_{X/X'} \otimes s^* \omega_{X'/X} \simeq M$$

which completes the proof.

Definition 2.1.6. A morphism of schemes $f : X \to Y$ is smoothable if it can be decomposed as f = gi

where i is a closed immersion and g is a smooth morphism.

In this case, $i'g': D^+(Y) \to D^+(X)$ depends only of f, and we denote it by f'.

Definition 2.1.7. A morphism of S-schemes $f : X \to Y$ is S-smoothable if there exists a commutative diagram

with i a closed immersion and g a smooth morphism s.t. the parallelogram is Cartesian.

Let $f:X\to Y$ and $g:Y\to Z$ be S-smoothable morphisms. Then there exists a commutative diagram

with f_1, g_1 smooth, $X \to X_1, i : Y \to Y_1$ closed immersions s.t. all the parallelograms are Cartesian (thus f_2, g_2, h are smooth, i' is a closed immersion.) It follows that $X \to X_1 \xrightarrow{i'} W$ is a closed immersion, and the morphism $W \xrightarrow{h} Y_1 \xrightarrow{g_2} Z$ is the base change of the smooth morphism $T \to Y_2 \xrightarrow{g_1} S$. Hence gf is S-smoothable. By Lemma, $f_2!i! \simeq i'!h!$, and thus $(gf)! \simeq f!g!$.

2.2. **Trace Map.** Now define a natural transformation of functors $\operatorname{Tr}_f : Rf_*f^! \to id$ in certain cases.

(1) Let $i: Y \to X$ be a closed immersion. For $E \in D^+(X)$, define Tr_i to be the morphism

$$i_*i^!E \simeq R\mathcal{H}om_{\mathcal{O}_X}(i_*\mathcal{O}_Y, E) \to R\mathcal{H}om_{\mathcal{O}_X}(\mathcal{O}_X, E) \simeq E$$

induced by $\mathcal{O}_X \to i_* \mathcal{O}_Y$.

(2) Let $X = \mathbb{P}_Y^r$, $f : X \to Y$ be the projection. Define $\operatorname{Tr}_f : Rf_*\omega[r] \to \mathcal{O}_Y$, where $\omega = \omega_{X/Y} = \Omega_{X/Y}^r$ as follows: we have a morphism $c : \mathcal{O}_X \to \omega[r]$ in D(X) defined

by

$$0 \longrightarrow \omega \longrightarrow 0$$

$$\downarrow$$

$$0 \longrightarrow \wedge^{r}(\mathcal{O}_{x}^{r+1})(-r) \longrightarrow \dots \longrightarrow \mathcal{O}_{X} \longrightarrow 0$$

$$\downarrow$$

$$0 \longrightarrow \mathcal{O}_{X} \longrightarrow 0$$

Since $Rf_*(\mathcal{O}^q_X(-i)) = 0$ for $1 \leq i \leq r$ and for all q, $Rf_*(0 \to \wedge^r(\mathcal{O}^{r+1}_X)(-r) \to \dots \to \mathcal{O}^{r+1}_X(-1) \to 0) = 0$, Rf_*c is an isomorphism. We define Tr_f to be the inverse of the composition of isomorphisms

$$\mathcal{O}_Y \xrightarrow{\sim} Rf_*\mathcal{O}_X \xrightarrow{Rf_*c} Rf_*\omega[r],$$

where the first morphism is the canonical map $\mathcal{O}_Y \to f_*\mathcal{O}_X \to Rf_*\mathcal{O}_X$, which is an isomorphism.

When Y is affine, the image of c under the morphism

$$\operatorname{Hom}_{D(X)}(\mathcal{O}_X, \omega[r]) \simeq H^r(X, \omega) \simeq H^0(Y, Rf_*\omega[r]) \xrightarrow{H^0(Y, \operatorname{Tr}_f)} H^0(Y, \mathcal{O}_Y)$$

is 1.
For $F \in D^+(Y)$, define Trachy

For $E \in D^+(Y)$, define Tr_f by

$$Rf_*f^!E = Rf_*(f^*E \otimes \omega[r]) \simeq E \otimes^L Rf_*\omega[r] \xrightarrow{E \otimes^L \operatorname{Tr}_f} E$$

where the isomorphism in the middle is the projection formula.

(3) The general case. Let $f: X \to Y$ be a morphism which can be factorize as

where *i* is a closed immersion and *g* is the projection. This is the case when, e.g. *f* is projective and *Y* has an ample line bundle. Define $\operatorname{Tr}_f := \operatorname{Tr}_g(Rg_*\operatorname{Tr}_i g^!)$. More specifically, for $E \in D^+(Y)$, define Tr_f by the composition

$$Rf_*f^!E \simeq Rg_*i_*i^!g^!E \xrightarrow{Rg_*\operatorname{Tr}_i(g^!E)} Rg_*g^!E \xrightarrow{\operatorname{Tr}_g} E$$

This does not depend on the embedding, and is compatible with composition and flat base change.(Assume it).

2.3. The Duality Theorem. Let $f: X \to Y$ be a projective morphism with Y noetherian, dim $Y < \infty$, Y having ample line bundle. Then the condition (3) above holds and so dim $X < \infty$. Hence, f_* has finite cohomological dimension. It follows that Rf_* extends to a functor $D(X) \to D(Y)$ (sending $D^-(X) \to D^-(Y)$ and $D^b(X) \to D^b(Y)$).

For $E, F \in Mod(X)$, define a canonical morphism

$$f_*\mathcal{H}om(E,F) \to \mathcal{H}om(f_*E,f_*F)$$

as follows. For $U \subset Y$ open, an element in $\Gamma(U, f_*\mathcal{H}om(E, F))$ is a morphism $E|_{f^{-1}(U)} \to F|_{f^{-1}(U)}$. It induces homomorphisms $\Gamma(f^{-1}(V), E|_{f^{-1}(U)}) \to \Gamma(f^{-1}(V), F|_{f^{-1}(U)})$ for all $V \subset U$ open, which determine a morphism $f_*E|_U \to f_*F|_U$, that is, an element in $\Gamma(U, \mathcal{H}om(f_*E, f_*F))$.

For $E, F \in C(X)$, we get a morphism of complexes

$$f_*\mathcal{H}om^{\bullet}(E,F) \to \mathcal{H}om^{\bullet}(f_*E,f_*F).$$

For $E \in D(X), F \in D^+(X)$, take quasi-isomorphisms $F \to F', E \to E'$ with $F' \in C^+(X)$, F'^i injective, $E'^i f_*$ -acyclic for all *i*. Then $R\mathcal{H}om(E, F) \simeq \mathcal{H}om^{\bullet}(E', F')$. Observe that $\mathcal{H}om^i(E', F')$ is flasque for all *i*. In fact, for any $L, M \in Mod(X)$ with M injective, we have $\mathcal{H}om(L, M)$ is flasque. For an open embedding $j : U \hookrightarrow X$, any morphism $L|_U \to M|_U$ can be extended to L as below since M is injective:

We define a morphism

$$Rf_*R\mathcal{H}om(E,F) \to R\mathcal{H}om(Rf_*E,Rf_*F)$$

by composition of canonical morphisms

$$\begin{split} Rf_*R\mathcal{H}om(E,F) &\simeq f_*\mathcal{H}om^{\bullet}(E',F') \to \mathcal{H}om^{\bullet}(f_*E',f_*F') \\ &\to R\mathcal{H}om^{\bullet}(f_*E',f_*F') \simeq R\mathcal{H}om(Rf_*E,Rf_*F) \end{split}$$

For $L \in D(X), M \in D^+(Y)$, define $\theta_f(L, M)$ (sometimes abbreviated θ_f) to be the composition

$$Rf_*R\mathcal{H}om(L, f^!M) \to R\mathcal{H}om(Rf_*L, Rf_*f^!M) \xrightarrow{R\mathcal{H}om(Rf_*L, \mathrm{lr}_f)} R\mathcal{H}om(Rf_*L, M),$$

where the first map is the canonical map defined above.

Theorem 2.3.1 (Grothendieck). For $L \in D^{-}(X)_{coh}$, $M \in D^{+}(Y)_{coh}$, the morphism θ_{f} is an isomorphism.

Proof. $f: X \to Y$ can be factorized as

where *i* is a closed immersion and *g* is the projection. Then it is easily seen that $\theta_f(L, M) = \theta_g(Ri_*L, M) \circ (Rg_*\theta_i(L, g^!M))$, with $Ri_*L \in D^-(P)_{coh}$ and $g^!M \in D^+(P)_{coh}$, so it is enough to check that θ_i, θ_g are isomorphisms.

Let $L \in D^{-}(X)_{coh}$, $M \in D^{+}(P)_{coh}$. To show θ_i is an isomorphism, we may assume, by canonical truncation(τ_{\leq}), induction and "way out functor", that $L \in Coh(X)$. We may assume P affine. Then we can write

$$L \simeq (\dots \to L^{-1} \to L^0),$$

with L^i free of finite type. Using naive truncation σ_{\geq} , we may assume $L = \mathcal{O}_X$. Then θ_i is nothing but the canonical isomorphism

$$i_*R\mathcal{H}om_{\mathcal{O}_X}(\mathcal{O}_X, i^!M) = i_*i^!M \to R\mathcal{H}om_{\mathcal{O}_P}(\mathcal{O}_X, M).$$

Therefore, we may assume that $f: X = \mathbb{P}_Y^r \to Y$ is the projection. Using τ_{\leq} , we may assume L is concentrated in degree 0, that is, $L \in Coh(X)$. Then there is an exact sequence

$$\dots \to \mathcal{O}_X(-n_1)^{m_1} \to \mathcal{O}_X(-n_0)^{m_0} \to L \to 0$$

with all $n_i > r+1$. Using σ_{\geq} , we may assume $L = \omega(-d)$ with $d \geq 0$ (where $\omega = \Omega_{X/Y}^r \simeq \mathcal{O}_X(-r-1)$).

Then we have isomorphisms

$$Rf_*R\mathcal{H}om(L, f^!M) = Rf_*R\mathcal{H}om(\omega(-d), f^*M \otimes \omega)[r] \simeq Rf_*(f^*M)(d)[r]$$
$$\simeq M \otimes^L Rf_*\mathcal{O}_X(d)[r] \simeq M \otimes^L f_*\mathcal{O}_X(d)[r],$$

where the last but second isomorphism is the projection formula, and isomorphisms

$$R\mathcal{H}om(Rf_*L, M) = R\mathcal{H}om(Rf_*\omega(-d), M)$$

$$\simeq \mathcal{H}om^{\bullet}(R^r f_*\omega(-d)[-r], M)$$

$$\simeq M \otimes \mathcal{H}om(R^r f_*\omega(-d), \mathcal{O}_Y)[r],$$

where we have used the fact that $R^r f_* \omega(-d)$ is a locally free sheaf of finite type. We have to check

$$\theta_f: f_*\mathcal{O}_X(d) \to \mathcal{H}om(R^r f_*\omega(-d), \mathcal{O}_Y)$$

is an isomorphism, that is, the pairing

$$f_*\mathcal{O}_X(d)\otimes R^r f_*\omega(-d)\to \mathcal{O}_Y$$

is perfect. For $V = \operatorname{Spec}(A) \subset Y$, the pairing

$$\Gamma(V, f_*\mathcal{O}_X(d)) \times \Gamma(V, R^r f_*\omega(-d)) \to \Gamma(V, \mathcal{O}_Y)$$

is given by

$$(t^a, \frac{1}{t^b t_0 \dots t_r}) \mapsto \begin{cases} 0, \text{ if } a \neq b\\ 1, \text{ if } a = b \end{cases}$$

where $\sum a_i = \sum b_i = d$, and thus is a perfect pairing.

Applying $R\Gamma$ to θ_f , we get an isomorphism

$$R \operatorname{Hom}(L, f^!M) \xrightarrow{\sim} R \operatorname{Hom}(Rf_*L, M)$$

in $D(\mathcal{A}b)$. Applying H^i , we get $\operatorname{Ext}^i(L, f^!M) \xrightarrow{\sim} \operatorname{Ext}^i(Rf_*L, M)$.

2.4. Some Discussions. In this part, suppose $Y = \text{Spec}(k), f : X \to Y$ projective.

Definition 2.4.1. $K_X := f^! \mathcal{O}_Y \in D^+(X)$ is called a dualizing complex on X.

We have an immediate corollary of the last paragraph of the previous section:

Corollary 2.4.2. Let X/k be projective, $L \in D^{-}(X)_{coh}$. Then there is a perfect pairing of finite dimensional k-spaces between $H^{j}(X, L)$ and $\operatorname{Ext}^{-j}(L, K_X)$.

Proof. By the last paragraph of the previous section, $\operatorname{Ext}^{i}(L, K_{X}) \simeq \operatorname{Ext}^{i}(R\Gamma(X, L), k) = \operatorname{Hom}(H^{-i}(X, L), k)$. Hence the corollary follow.

Next, we first consider the case when X/k is smooth.

Corollary 2.4.3 (Serre). Let X/k be projective, smooth, purely of dimension d. Then $K_X = \omega_X[d]$. Hence there is a perfect pairing between $H^j(X, L)$ and $\operatorname{Ext}^{d-j}(L, \omega_X)$. In particular, for L locally free of finite type, $H^j(X, L)$ is dual to $H^{d-j}(X, L^{\vee} \otimes \omega_X)$, where $L^{\vee} = \mathcal{H}om(L, \mathcal{O}_X)$.

Proof. We only need to prove that last assertion. For that, $R\mathcal{H}om(L,\omega_X) = L^{\vee} \otimes \omega_X$, so $\operatorname{Ext}^n(L,\omega_X) = H^n R\Gamma(X, R\mathcal{H}om(L,\omega_X)) = H^n(X, L^{\vee} \otimes \omega_X)$.

In fact, the perfect paring is given by the natural pairing followed by Tr:

$$H^{j}(X,L) \otimes H^{d-j}(X,L^{\vee} \otimes \omega_{X}) \to H^{d}(X,\omega_{X}) \xrightarrow{\operatorname{Tr}} k.$$

When d = 1, we get "Roch's half" of the Riemann-Roch theorem, which claims that for L a line bundle, $H^1(X, L)$ is dual to $H^0(X, L^{\vee} \otimes \omega_X)$.

Corollary 2.4.4. Let X/k be projective, smooth, purely of dimension d. Then $H^j(X, \Omega_X^i)$ is dual to $H^{d-j}(X, \Omega_X^{d-i})$.

This is somehow related to Hodge theory.

Then, we discuss K_X in general.

Proposition 2.4.5. Let X/k be projective with dim X = n. Then $K_X \in D^{[-n,0]}(X)_{coh}$.

Proof. We have

with *i* a closed immersion. $i_*K_X = R\mathcal{H}om_{\mathcal{O}_P}(\mathcal{O}_X, \omega_P)[N]$, so it's enough to show $\mathcal{E}xt^{i+N}_{\mathcal{O}_P}(\mathcal{O}_X, \omega_P) = 0$ for $i \notin [-n, 0]$, that is,

$$\mathcal{E}^j = \mathcal{E}xt^j_{\mathcal{O}_P}(\mathcal{O}_X, \omega_P) = 0$$

for j < N - n or j > N. This holds for j > N since for all $x \in X$, $\mathcal{E}xt^{j}_{\mathcal{O}_{P}}(\mathcal{O}_{X}, \omega_{P})_{x} = \text{Ext}^{j}_{\mathcal{O}_{P,x}}(\mathcal{O}_{X,x}, \omega_{P,x})$, where $\omega_{P,x} \simeq \mathcal{O}_{P,x}$ is regular of dimension $\leq N$. Note that for q >> 0, $\mathcal{E}^{j}(q)$ is generated by global sections. It then suffices to show for a fixed j < N - n, $\Gamma(P, \mathcal{E}^{j}(q)) = 0$ for q >> 0. This is right since $\mathcal{O}_{x}, \omega_{P} \in Coh(P)$ implies that $\Gamma(P, \mathcal{E}xt^{j}(\mathcal{O}_{X}, \omega_{P})(q)) = \text{Ext}^{j}_{P}(\mathcal{O}_{X}, \omega_{P}(q))$ (we assume this), which is dual to $H^{N-j}(P, \mathcal{O}_{X}(-q)) = H^{N-j}(X, \mathcal{O}_{X}(-q)) = 0$ since $N - j > n = \dim X$.

Let A be a local ring with residue field k, M be an A-module. A is called Cohen-Macaulay if its depth is equal to dim A. A scheme X is called Cohen-Macaulay if all its local rings are Cohen-Macaulay.

Proposition 2.4.6. Let X/k be projective. Suppose X is Cohen-Macaulay and all irreducible components have dimension n. Then $K_X \in D^{[-n,-n]}(X)$, and so $K_X \simeq \omega_X^{\circ}[n]$ with $\omega_X^{\circ} = H^{-n}(K_X)[n]$.

Proof. By the proof of the previous proposition, we only need to show that $\forall j > N - n$, $x \in X$,

$$\operatorname{Ext}_{\mathcal{O}_{P,x}}^{j}(\mathcal{O}_{X,x},\omega_{P,x})=0,$$

which follows from the equation

proj dim
$$\mathcal{O}_{P,x} = \dim \mathcal{O}_{P,x} - \operatorname{depth}_{\mathcal{O}_{P,x}} \mathcal{O}_{X,x}$$

= dim $\mathcal{O}_{P,x} - \operatorname{depth}_{\mathcal{O}_{X,x}} \mathcal{O}_{X,x}$
= dim $\mathcal{O}_{P,x} - \operatorname{dim} \mathcal{O}_{X,x} = N - n.$

The sheaf ω_X° in the proposition is called the dualizing sheaf for X.

X is Cohen-Macaulay if, e.g., there is a regular k-immersion i of X into a projective space over k.

In this case, we even have ω_X° is a line bundle. Indeed,

$$f^{!}\mathcal{O}_{Y} \simeq i^{!}g^{!}\mathcal{O}_{Y}$$

$$= i^{!}\omega_{P}[N]$$

$$\simeq i^{*}\omega_{P} \otimes \omega_{X/P}[-(N-n)][N] \qquad \text{by (*) in the proof of Proposition 1.2.4.(4)}$$

$$= i^{*}\omega_{P} \otimes \omega_{X/P}[n],$$

and hence $\omega_X^{\circ} = i^* \omega_P \otimes \omega_{X/P}$.