GROTHENDIECK-SERRE DUALITY

ZIYANG GAO

1. PRELIMINARIES
1.1. Koszul Complex I.

Definition 1.1.1. (1) Let A be a commutative ring and E be a A-module. Then, for any
A-morphism v : E — A, we can define the Koszul Complex K.(u) € CS(A) as follows:

K, (u) =AN"E,n >0

d, : K, (u) — K, 1 (u),with d,(x1 A ... Nzy) = Z(—l)iilu(xi)xl AN NS NN Ty,

Clearly, d> = 0,d; = v and d(a Ab) =da Ab+ (—1)Pa Adb(a € APE,b € N1E).
(2) A, E,u as above, M is an A-module, define K.(u, M) = K.(u)®4 M, with d(x®@m) =
dx @ m.

Remarks 1.1.2. If £ = E; & Ey,u = u; + us : E — A, where u; : E; — A, then
K.(U, E) == K(Ul) X K.(Ug), AN'E = ®p+q=n AP El X /\qEQ, d= dl X 1 + (—1)*1 X dg.

Dually, we also have
[Definition 1.1.1.] (1') For any morphism v : A — F, we can define a complex K (v) €
C?%(A) called the Koszul Complex, too, as follows:

K"(v) = A"F; d: K"(v) — K" (v), d(z) =v Az.

Here we identify the morphism v with v(1) € F.

(2") Similar definition for K- (v, N) with A, F,v as above and N an A-module.
[Remark 1.1.2.] In this case, we also have: for ' = F| @ Fy, v = (v1,v2), K'(v) =
K'(’Ul) X K'(’UQ).

Lemma 1.1.3. For f = (f1,..., fr) € A", we have two Koszul complezes K.(f) and K-(f).
K(f):0—=A— A (=ANTTA") — .. — (NA” =)A" LA- 0, f(ar,...,a,) = Zfiai.

K(f):0— A =R AT(=ANAT) — .= (NTTAT =)A" — A — 0, f(a) = (fia, ..., fa).

Then K (f) can be viewed as the naive dual of K.(f). Furthermore, we have a canonical
isomorphism between the two: K- (f)[r] ~ K.(f).

Proof. The first part is immediate. For the second part, the isomorphism is defined as
follows:

Let {ej,...,e,} be a basis of A". For any I = {i; < ... < i} C {1,...,7}, let e =
e, N ... Ne,, then ey — (J, I)ey, where J = {j; < ... < j,_p} is the complement of I in
{1,...;r} and e(J, 1) =sign(Ji, .-y Jreps 01y oy Up)- O

1
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Lemma 1.1.4. Let L € C(A) andv € A, K.(z) = (0 - A5 A —0). Then K.(v)® L ~
Cone(L % L).

Proof. This is simply a computation. OJ

Now we discuss a little about this lemma. For this, we get a distinguished triangle
L% L — K.(r)® L —, so we get a long exact sequence:

. — HY(L) S HY(L) — HY(K.(z)® L) — HI"Y(L) = ...
Rewrite it into short exact sequences, and we can get:

0— H°K.(z, HY(L)) — HY(K.(z) ® L) — H 'K.(z, H*"' (L)) — 0. (%)
Theorem 1.1.5 (Serre). Let A be a noetherian ring, M an A-module of finite type and
f={(f1,., fr) € A" with f; €rad(A), then the following conditions are equivalent:

(1) f is M-regular.

(2) K.(f,M)— M/(f1,..., [r)M is quasi-isomorphism.
(3) H-LK.(f, M) = 0.

Proof. (1)=(2) Use induction on r. For r = 1, the statement is just the definition.
Assume the statement is true for m < r — 1, then let

L - K.(fl, ceey frfl, M) - K'(fl? ceey frfl) ® ]\47
then K.(f,) ® L ~ K.(fi,..., fr, M). Hence we have the exact sequence
0— HK.(f,, HY(L)) — H'K.(f1, ..., fr, M) — H'K.(f,, H""(L)) — 0.

We are left to show that HIK.(fy,..., fr, M) = 0 for all ¢ < 0. For ¢ < —2, it follows
from the above sequence and the inductive hypothesis. For ¢ = —1, it is true since
Ker(f.: M/(f1, .oy fro1)M — M/(f1, ..., fr—1)M) = 0 by definition of M-regular.
(2)=-(3) trivial.
(3)=-(1) Also use induction on r. Again, the case r = 1 is trivial. For r > 2, again let
L=K.f1,..., fr—1,M). First show that (fi,..., fr_1) is M-regular. By (*), we have an
inclusion

HY(L)/f,H(L) — HUK.(f1, . fr. M)

When q = —1, HIK.(f1, ..., fr, M) = 0, hence H'(L) = f.H*(L). Since A is noether-
ian and M is of finite type, H~'(L) is finitely generated over A, so H~'(L) = 0 since
fr €rad(A). Now (fi,..., fr—1) is M-regular by induction. Furthermore, condition (3)
implies that

Ker(fr : M/(fl: ceny frfl)M — ]\4-/(]017 ceny frfl)M> =0.

Hence f = (f1,..., f;) is M-regular O

Corollary 1.1.6. Assume f = (f1,..., fr) € A" is reqular and B = A/(f1, ..., fr)A. Then
0 r

Ext,(B, A) = a7

B qg=r
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Proof. Since K.(f) — B is a quasi-isomorphism,
RHoma(B, A) = Homa(K.(f), A) = K (f) = K.(f)[-r],

hence

qFr

TTK(f) =0

Exth (B, A) = {HOK o)

O

1.2. Koszul Complex II. In this section, we generalize the discussion in section 1 to
ringed spaces. In this section, we abuse the notations Oy and i,Oy wheni:Y — X is a
closed immersion.

Definition 1.2.1. Let (X, Ox) be a ringed space and E € Mod(X), then for any mor-
phism u : E — Oy, define the Koszul complex K.(u) by

(. > AELAIE S S ES 0y —0),
where d is the right interior product by wu.

Definition 1.2.2. For i : Y — X a closed immersion defined by the ideal sheaf I C Oy,
we say that ¢ is regular of codimension r if Vx € Y, 3U C X an open neighbourhood of
x and an Op-module E locally free of rank r and an Opy-linear map v : £ — Oy, s.t.
HIC.(u) =0(¢ < 0) and I|y = u(F) C Op. In other words, this is equivalent to say that
3 locally a squence f = (fi,..., fr) € Of s.t. Ily = (f1,..., fr) and K.(f) — Oy /IOy is a

resolution.

Remarks 1.2.3. If X is locally noetherian, then ¢ is regular iff Vo € Y, 4z € U open, s.t.
I is defined by a sequence f = (fi, ..., f;) of sections of Ox s.t. fo = ((f1)z, -, (fr)z) €M
is regular.

Proposition 1.2.4. Ifi:Y — X is a reqular immersion of codimension r, I be the ideal
sheaf of i, Ny;x =I/I?, then

(1) Ext}, (Oy,0x) = 0 a7 7’; where wy/x s a line bundle on Y. In other
Wy/x 4=T
words, RHome, (Oy, Ox) ~ wy,x[—7].
(2) Nyx is locally free of rank r.
(3) wy/x ~ (/\rNy/X)v.
(4) For F € DT(X), there exists a functorial isomorphism

Eatl (Oy,F) ~Torl*(Oy,F) ® wy/x.

Proof. (1) For any U =SpecA open in X, UNY =SpecB, with B = A/(f1,..., f») where
f=(f1,..., fr) is regular, by [Cor|, we have

0 q#r

Ext? )
B q=r

L oo LU NY,0y),T(U,0x)) = Eat’y(B, A) = {

The conclusion then holds immediately.
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(2) From the exact sequence
0—-7Z—0O0x — 0Oy —0,

we get
Ny/X = I/I2 ~ TOT?X (Oy, Oy)
Since i is regular, locally one has a Koszul complex K.(f1,..., f;) = (0 - Ox — ... —
O% — Ox), which is a resolution of Oy. Hence locally

Tor*(Oy, Oy) = HTH(K.(f) ®ox Oy) = OF,
which proves (2). Also note that we can deduce
TOT?X(Oy, Oy) = N(0%),
and
N Tor?* (Oy,Oy) = TorPX (Oy, Oy).
(4) It’s enough to show that
RHomo, (Oy, F) ~ i,(Li*F ®%,_ wy,x[—]) (%)

for each FF € DT(X), then apply H? to both sides. By the first part of the following
lemma, the RHS(right hand side) of the above formula is just

F ®p, iwy/x[-1] = F ®%, RHomo, (Oy, Ox).

By the second part of the following lemma, we see that this is canonically isomorphic to
RHome, (Oy, F), which is exactly the LHS(left hand side).
(3) We set F' = Oy in (4), then we get

RHOTTLOX (Oy, Oy) >~ OY ®(’)X i*wY/X[—r].

Note that ®éxi*wY/X[—r] ~ R0, lwyyx[—7] since wy,x[—r] is locally free.
Apply H? to the above formula, and note that H°(RHomeo, (Oy,Oy)) = Oy, we get

Oy ~ Tor%x(0y,0y) ® Wy /x -
In (2), we have already seen that 7 or®x (Oy, Oy) ~ A"Ny/x, thus wy x ~ (A"Ny,x)".
O
Lemma 1.2.5. Leti:Y — X be a reqular closed immersion, then one has
F®p, .G ~ i, (Li*F @5, G)
and
F ®g, RHomo, (Oy,Ox) ~ RHomo, (Oy, F)
for F € DY(X) and G € D*(Y) .
Proof. For the first part, first note that ¢* is of finite cohomological dimension since
Li* = Oy®p, and Oy admits a Koszul resolution. Hence Li* makes sense on D (X).
We have a natural map between Li*(F ®§_ i,.G) and Li*F ®§_ G defined by
Li*(F ®g, i.G) — Li*F @, Li*(i.G) — Li*F ®%, G,

where the last map is given by the natural map Li*i,G — G. This gives the desired map
F ®éx i.G — i (Li*F ®éy () by the adjiontness of Li* and i*.



GROTHENDIECK-SERRE DUALITY 5

To show this is an isomorphism, by canonical truncations(note that i* is of finite coho-
mological dimension), we may assum that F' € D®(X). Replacing F' by its flat resolution,
we can see that

F®p, .G =F ®o, i,G ~i,(i'F ®o, G) = i.(Li'F @, G).

For the second part, use the Koszul resolution K.(f) = (0 —» Ox — ... = O% — Ox) of
Oy . Note that this is a free resolution of Oy, then the conclusion follows immediately. [

Next, we consider the projective case X =P}, with f : X — Y the projection. We will
show using the tool of Koszul complex that (' . ~ Ox(—r — 1).
We know that there is a canonical exact sequence

0— Qﬁ(/y = O (=1) = Ox — 0.
The Koszul complex of u is
0— ATHOEY) (=r = 1) — ... = OFH(~1) — Ox — 0.
If we can prove that each sequence
0 — Qiy 2% N(OF) (i) = ... — O (=1) = Ox — 0,0 > 0,

is exact, then in particular, let ¢ = r and compare it with the previous sequence, we have
a canonical isomorphism Q' - >~ Ox(—r — 1). We conclude it in the following lemma.

Lemma 1.2.6. Let (X,Ox) be a ringed space,
0F3L3EL0y—0
be an exact sequence of locally free sheaves of finite ranks. Then the Koszul complex of u
K.(u)=(0—A"E Dy N L B AT 0 — 0)
where n =rankE is acyclic and each sequence
0= ANF 2N ANE L ANTE L L EL 00 -0
is exact. Hence N'v induces an isomorphism N'F — B™1C.(u)(i = 0). In particular,
taking i = n — 1, we get an isomorphism AN"'F — A"E s.t.

/\n—lF Q /\n—lE

| <

N'"E
commutes, which coincides with the isomorphism A" 'F — A"E given by taking the

highest exterior power of the original exact sequence and locally defined by u(b)a — b A
(A" 1) (a) fora e N"TE(U),b e E(U).

Proof. Without any loss, we may assume E = Ox @ F and u the projection since the
three of them are all locally free of finite ranks. Then
di  NF®(Ox @NTF)=ANT'E - NTITE=ANTTF @ (Ox @ ATUF)
is induced by
(a,1®b) — (b,0).
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Then it can be checked directly the exactness of the sequences. Take i = n, we get the
acyclicality. The remainder is then obvious. 0

2. GROTHENDIECK-SERRE GLOBAL DUALITY

In this chapter, for simplicity, we just discuss the locally noetherian case unless it’s
specially stated.

2.1. The Functor f'.

Definition 2.1.1. (1) Let ¢ : Y — X be a closed immersion. Given F' € DT (X),
define

i'F := RHomo, (i,Oy, F)|y =i 'RHomo, (i,Oy, F) = i* RHomo, (i,Oy, F),

ie. i,i'F = RHomo,(Oy,F). Clearly, i'FF € DT(Y). Moreover, this gives a
functor from D*(X) to DT(Y). We would prove it later.

(2) Let f: X — Y be a smooth morphism with relative dimension d, then wyx/,y =
Q% y is a line bundle. Define a functor f': D¥(X) — D*(Y) by

f'F = f*F®p, wxyld

for an element F' € DT (X).
(3) Let

be a commutative diagram with ¢ a closed immersion and g smooth. We can define
a functor i'¢' from D*(X) to D¥(Y). The main goal of this part is to prove that
the last functor is independent of the choice of ¢ and g.
Lemma 2.1.2. Suppose i :Y — X is a closed immersion, then
(1) Homo, (Oy, F)|y is an injective Oy -module if F is an injective O x-module.
(2) In this case, i really is a functor.
Proof. (1) For every G eMod(Oy ), since
Z*G ®OX ’L*Oy ~ Z*G ®i*(:)y Z*Oy ~ ’L*G,
it’s enough to prove that
Homo, (i.G, Homo, (i.Oy, F)) ~ Homoe, (G,i "Homo, (i,.Oy, F)).

It’s easy to see that G ~ i~'i,G by checking on stalks, so the RHS of the above
formula can be rewritten as

Homo, (i 'i.G, i "Homoe, (i.0y, F)) ~ Homo, (i,.G, i,i " "Homo, (i.0y, F)).

Taking i.i "Homo, (1.0y, F) ~ Home, (i.Oy, F) into consideration (this is
right since 7,0y is a locally finite presented Ox-module, thus we can check on
stalks), we get the conclusion.
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(2) For any Z Ly L Xa composition of closed immersions and F' € DT (X), replace
F' by its injective resolution, then

ji'F = Homo, (7,07, Homo, (i,0y, F)|y)|z
~ Homo, ((ij)«Oz, Home, (i.0y, F))|z
~ Homoy (((1))+0z) Qo (i:0y), F)|z
~ Homo, ((1)«Oz, F)|z
= RHomo, ((i7)+Oz, F)|z#
— (ij)F
0

Now we come to the main theorem of this part. For the rest of the whole section, we
again abuse the notations Oy and i,Oy when ¢ : Y — X is a closed immerstion.

Theorem 2.1.3. Suppose we have a commutative diagram

Z" X A
g g
Y

where i',i" are closed immersions and ¢', g" are smooth. Then there is a natural isomor-
phism

a(@, i) i"g" ~i"g"
satisfying the transitive formula:
a(iz, i3) o a(iy, iz) = a(iy, is)
for any triple (i1, g1), (i2, 92), (43, g3)-

We say that these a(i,7”) form a transitive system. In order to prove this theorem, we
still need some preparation.

Lemma 2.1.4. Let XY be locally noetherian, and f : X — 'Y be a flat morphism. Then
f*RHom(L, M) = RHom(f*L, f*M)
for M € DT(Y) and L € D*(Y)con.
Proof. Replacing M by its injective resolution, then we get
f*RHom(L, M) = f*Hom(L, M) — Hom(f*L, f*M) — RHom(f*L, f*M),

which defines the map we want. To show it’s an isomorphism, we may assume that Y is
affine and noetherian, since the problem is local. Then there exists a quasi-isomorphism
L' — L with each L free of finite rank and L’* = 0 when ¢ is sufficiently large. Then it
is clear. O
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Lemma 2.1.5. Consider a cartesian diagram

’i,

Y — X'
=
g f
Yy ——~ X
where i is closed immersion and f is flat. Then we have g*i' ~ i" f*.

Proof. We have to show that for any F' € D*(X), there is a natural isomorphism 7/, g*i' F’ ~
i'i" f*F. But the LHS is

i.gi'F =i, (g"i" RHomo, (Oy, F)) = f*RHomo, (Oy, F),
while the RHS is
iLi" f*F = RHomo _,(Oy, f*F) = RHomo , (f*Oy, f*F).
Then our conclusion follows from the previous lemma. O

Now we come back to the proof of the Theorem.

Proof of Theorem. Consider diagram , let Z" = Z' xy Z"  then we can complete the
diagram as follows:

Z///
Z" Z/X\ A
" f /
g g
Y

where i is the map determined by (¢’,47”). In general, i is not a closed immersion, but only
an immersion, i.e. a composition of a closed immersion with an open immersion:

X closed 7 open Z”/.

Thus we can replace Z"” by Z, and consider the diagram

/1

X—.7
where i and i’ are both closed immersions and A’ is smooth. If we can show that " ~ i'h",
then we have
i//! g//!‘

i/!g,! ~ Z-!h/!g/! — i!h"!g"! ~

And This gives the desired functor isomorphism.
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Let X' = X xz Z, then we get the following cartesian diagram:

x 1.z

s‘ \p i h’\

X7
where s is the section of X determined by (1x,7). Notice that in this case, p is smooth,
s is a closed immersion since both ¢ and j are, and ps = 1x is smooth, thus s is actually

a regular closed immersion(we assume this).
Now suppose the relative dimension of 4’ is d, then VF € D1 (Z'), we have

W' F =8'30'F =85 (W F ®@wgz[d).

But
J'(W*F ®@wzz|d) = RHomo,(Ox, W*F @ wzz[d])|x
= (RHomo,(Ox/, h*F) @ wzz[d])| x:
= RHomo, (Ox:, " F)|x ® wxsx|d]
= j'W*F @ wyx[d).
Hence

iW'F ='W F = §'(j'h*F ®@ wyrx|d))
= s'(p""F @ wx/x[d]),
where the third equality is according to Lemma 2.1.5. Hence it only remains to show that
s'(p"M @ wxix[d]) = M
for any M € DT (X). According to (%) in the proof of Proposition 1.2.4.(4), the LHS is
Ls*(p*M) @* wx/x[—d] ® s'wxx[d] = M @ wx/x» @ s"wx/x

since ps = 1x. But the canormal sheaf Nx/x/ ~ s*Qﬁ(,/X, and by Proposition 1.2.4.(3),
it follows that
Wx/xr ~ (/\dNX/X/)V = (S*WX’/X)V7
and hence
M@ wx)x @ s"wxx ~ M
which completes the proof. 0
Definition 2.1.6. A morphism of schemes f : X — Y is smoothable if it can be decom-
posed as f = gt
pg—

A

Y

where ¢ is a closed immersion and ¢ is a smooth morphism.

In this case, i'g' : DT(Y) — D*(X) depends only of f, and we denote it by f'.
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Definition 2.1.7. A morphism of S-schemes f : X — Y is S-smoothable if there exists
a commutative diagram

with ¢ a closed immersion and g a smooth morphism s.t. the parallelogram is Cartesian.

Let f: X — Y and g : Y — Z be S-smoothable morphisms. Then there exists a
commutative diagram

X ¢© X < W
1211
i pd
Y——Y T

7|
g
//
2
g1
f
S

with f1, 91 smooth, X — Xi,7 : Y — Y] closed immersions s.t. all the parallelograms
are Cartesian (thus fs, g2, h are smooth, ' is a closed immersion.) It follows that X —

X1 ", W is a closed immersion, and the morphism W LR Y: & Z is the base change of

the smooth morphism 7' — Y, 25 S. Hence ¢f is S-smoothable. By Lemma, fiit ~ "R},
and thus (gf)' ~ f'g".

2.2. Trace Map. Now define a natural transformation of functors Try : Rf, f' —id in
certain cases.

(1) Let i : Y — X be a closed immersion. For E € D*(X), define Tr; to be the
morphism

Z*l'E x~ RHOTTL@X (i*Oy, E) — RHOW@X (Ox, E) ~ F

induced by Ox — 7,0y
(2) Let X =P}, f: X — Y be the projection. Define Try : Rf.w[r] — Oy, where
w = wx)y = ¥y )y as follows: we have a morphism ¢ : Ox — wlr] in D(X) defined
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0 Ox 0
Since Rf.(0%(—i)) = 0 for 1 < i < r and for all ¢, Rf.(0 — A"(O%)(~r) —
.o = OFH(=1) — 0) = 0, Rf.c is an isomorphism. We define Tr; to be the
inverse of the composition of isomorphisms

Oy & Rf.Ox “% Rf.w[rl,
where the first morphism is the canonical map Oy — f.Ox — Rf.Ox, which is
an isomorphism.
When Y is affine, the image of ¢ under the morphism

HO(Y,Try)
_—

Homp(x)(Ox,wr]) ~ H'(X,w) ~ H°(Y, Rf.w|r]) HO(Y, Oy)

is 1.
For E € D*(Y), define Try by
! % I E®YTry
Rf.['E=Rf.(ffEQuw[r]) ¥ E®" Rf.wlr]| — F,
where the isomorphism in the middle is the projection formula.
The general case. Let f: X — Y be a morphism which can be factorize as

X‘.pr

f \ /

Y
where 7 is a closed immersion and ¢ is the projection. This is the case when, e.g.
f is projective and Y has an ample line bundle. Define Tr; := Tr,(Rg. Tr; ¢').
More specifically, for E € DT (Y'), define Try by the composition

Rg. Tr;(g" Try

Rff'E~ Rgivitg¢ E 298, po o g e g

This does not depend on the embedding, and is compatible with composition and
flat base change.(Assume it).

2.3. The Duality Theorem. Let f : X — Y be a projective morphism with Y noether-
ian, dimY < oo, Y having ample line bundle. Then the condition (3) above holds and so
dim X < oco. Hence, f, has finite cohomological dimension. It follows that Rf, extends
to a functor D(X) — D(Y)(sending D~ (X) — D~ (Y) and D*(X) — D!(Y)).

For E, F € Mod(X), define a canonical morphism

fsHom(E, F) — Hom(f.E, f.F)
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as follows. For U C Y open, an element in I'(U, f,Hom(E, F)) is a morphism E|s-1 ) —
F|s-1 . Tt induces homomorphisms I'(f~1(V), E|j-11n) — T(f1(V), Flp-11)) for all
V' C U open, which determine a morphism f,E|y — f.F|y, that is, an element in
DU, Hom(f.E, f.F)).
For B, F € C(X), we get a morphism of complexes
fiHom®(E, F) — Hom®(f.E, f.F).

For F € D(X), F € D*(X), take quasi-isomorphisms F — F'| E — E' with F' € C*(X),
F'" injective, E" f,-acyclic for all i. Then RHom(FE, F) ~ Hom®*(E', F"). Observe that
Hom'(E', F') is flasque for all 7. In fact, for any L, M € Mod(X) with M injective,
we have Hom(L, M) is flasque. For an open embedding j : U — X, any morphism
L|y — M|y can be extended to L as below since M is injective:

0—— jij*L — L

M
We define a morphism

Rf.RHom(E,F) — RHom(Rf.E, Rf.F)
by composition of canonical morphisms
Rf.RHom(E,F) ~ f,Hom*(E', F') — Hom*(f.E', f.F")
— RHom*(f.E', f F") ~ RHom(Rf.E, Rf.F)

For L € D(X),M € D*(Y), define 0;(L, M)(sometimes abbreviated ;) to be the
composition

Rf.RHom(L, f' M) — RHom(Rf.L, Rf.f M) e B-LT)

where the first map is the canonical map defined above.

Theorem 2.3.1 (Grothendieck). For L € D™ (X)eon, M € DT(Y)con, the morphism 6
18 an isomorphism.

Proof. f: X — Y can be factorized as

RHom(Rf.L, M),

XL Pp=P,

|«

where i is a closed immersion and g is the projection. Then it is easily seen that 0¢(L, M) =
0,(Ri.L, M) o (Rg.0;(L,g'M)), with Ri,L € D™ (P).n and ¢'M € D*(P)en, so it is
enough to check that 6;,0, are isomorphisms.

Let L € D™ (X)eon, M € DT (P)con- To show 6; is an isomorphism, we may assume, by
canonical truncation(7¢), induction and ”way out functor”, that L € Coh(X). We may
assume P affine. Then we can write

L~(..—L*'—L"%,
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with L* free of finite type. Using naive truncation o>, we may assume L = Ox. Then 6;
is nothing but the canonical isomorphism

i,RHomo, (Ox,i'M) = i,i'M — RHome,(Ox, M).

Therefore, we may assume that f : X = P§, — Y is the projection. Using 7¢, we may
assume L is concentrated in degree 0, that is, L € Coh(X). Then there is an exact
sequence

.= Ox(—n1)™ — Ox(—ng)™ — L — 0

with all n; > r + 1. Using 0>, we may assume L = w(—d) with d > 0(where w = )y =~
Ox(—T - 1))
Then we have isomorphisms
Rf.RHom(L, f'M) = Rf.RHom(w(—d), f*M @ w)[r] ~ Rf.(f*M)(d)[r]
~ M @ Rf,Ox(d)[r] ~ M @ f,0x(d)[r],

where the last but second isomorphism is the projection formula, and isomorphisms
RHom(Rf.L, M) = RHom(R f.w(—d), M)
~ Hom®(R" fow(—d)[—r], M)
~ M @ Hom(R" f.w(—d), Oy)[r],

where we have used the fact that R" f.w(—d) is a locally free sheaf of finite type. We have
to check

0r: f.Ox(d) — Hom(R" fuw(—d), Oy)
is an isomorphism, that is, the pairing
f:Ox(d) ® R" fiw(—=d) — Oy
is perfect. For V' = Spec(A) C Y, the pairing
I'(V, £.0x(d)) x T(V, R" fw(—d)) — T'(V, Oy)

is given by
(1 1 ) o 0,?fa7éb
tbto...tr 1, fa=10
where Y a; = > b; = d, and thus is a perfect pairing. O

Applying RI" to 0, we get an isomorphism
RHom(L, f'M) = RHom(Rf,L, M)

in D(Ab). Applying H', we get Ext’(L, f'M) = Ext'(Rf.L, M).
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2.4. Some Discussions. In this part, suppose Y = Spec(k), f : X — Y projective.
Definition 2.4.1. Kx := f'Oy € D*(X) is called a dualizing complex on X.
We have an immediate corollary of the last paragraph of the previous section:

Corollary 2.4.2. Let X/k be projective, L € D™ (X)n. Then there is a perfect pairing
of finite dimensional k-spaces between H'(X, L) and Ext™ (L, Kx).

Proof. By the last paragraph of the previous section, Ext’(L, Kx) ~ Ext’(R['(X, L), k)
Hom(H (X, L), k). Hence the corollary follow.

1l

Next, we first consider the case when X /k is smooth.
Corollary 2.4.3 (Serre). Let X/k be projective, smooth, purely of dimension d. Then
Kx = wxl|d]. Hence there is a perfect pairing between H’(X,L) and Ext®™(L,wyx). In
particular, for L locally free of finite type, H' (X, L) is dual to H* (X, LY ® wy), where
LY = Hom(L,Ox).
Proof. We only need to prove that last assertion. For that, RHom(L,wx) = LY @ wx, so
Ext"(L,wx) = H"RI'(X, RHom(L,wx)) = H"(X, LY @ wy). O

In fact, the perfect paring is given by the natural pairing followed by Tr:

HI(X,L)® H* (X, LY @ wy) — HY(X,wy) - k.

When d = 1, we get "Roch’s half” of the Riemann-Roch theorem, which claims that for
L a line bundle, H'(X, L) is dual to H*(X, LY @ wx).
Corollary 2.4.4. Let X/k be projective, smooth, purely of dimension d. Then HI(X, Q%)
is dual to HY7 (X, Q4.

This is somehow related to Hodge theory.

Then, we discuss Kx in general.
Proposition 2.4.5. Let X/k be projective with dim X = n. Then Kx € DIE(X) 0.

Proof. We have '
X—5%p=pPY

| A

Spec(k)
with ¢ a closed immersion. @Ky = RHomo, (Ox,wp)[N], so it’s enough to show
537tg,fv(0x,wp) =0 for ¢ ¢ [—n, 0], that is,

g = Extl, (Ox,wp) =0

for j < N —n or 7 > N. This holds for j > N since for all x € X, Extfgp((’)x,wp)x =
Extépym(OX,z,wp@), where wp, ~ Op, is regular of dimension < N. Note that for
q >> 0, £(q) is generated by global sections. It then suffices to show for a fixed
j < N—mn, I'(P,&(q)) = 0 for ¢ >> 0. This is right since O,,wp € Coh(P) im-
plies that T'(P, Ext/(Ox,wp)(q)) = Ext’(Ox,wp(q)) (we assume this), which is dual to
HN=I(P,Ox(—q)) = H¥"79(X,0x(—q)) = 0 since N — j > n = dim X. O
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Let A be a local ring with residue field k&, M be an A-module. A is called Cohen-
Macaulay if its depth is equal to dim A. A scheme X is called Cohen-Macaulay if all its
local rings are Cohen-Macaulay.

Proposition 2.4.6. Let X/k be projective. Suppose X is Cohen-Macaulay and all irre-
ducible components have dimension n. Then Kx € DI"""(X), and so Kx ~ w$[n] with
wg = H™(Kx)[n].

Proof. By the proof of the previous proposition, we only need to show that Vj > N — n,
r e X, A
EXt?ﬁpyz(OX,za wP,a:) =0,
which follows from the equation
projdim Op, = dim Op, — depthy, Ox,
= dim Op, — depthy,  Ox,

=dimOp, —dimOx, = N —n.

O

The sheaf w$ in the proposition is called the dualizing sheaf for X.
X is Cohen-Macaulay if, e.g., there is a regular k-immersion ¢ of X into a projective
space over k.

X% p=p
f\ /
9
Spec(k) =S
In this case, we even have w% is a line bundle. Indeed,
f'Oy ~=i'g Oy
= i!wp[N]

~ i*wp ® wx/p[—(N — n)][N] by () in the proof of Proposition 1.2.4.(4)

=i'wp ® wx,p[n/,

and hence w$ = i*wp ® wx/p.
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