GROTHENDIECK-SERRE DUALITY

ZIYANG GAO

1. Preliminaries

1.1. Koszul Complex I.

Definition 1.1.1. (1) Let A be a commutative ring and E be a A-module. Then, for any A-morphism $u: E \rightarrow A$, we can define the Koszul Complex $K .(u) \in C^{\leqslant 0}(A)$ as follows:

$$
K_{n}(u)=\wedge^{n} E, n \geqslant 0
$$

$d_{n}: K_{n}(u) \rightarrow K_{n-1}(u)$, with $d_{n}\left(x_{1} \wedge \ldots \wedge x_{n}\right)=\sum(-1)^{i-1} u\left(x_{i}\right) x_{1} \wedge \ldots \wedge \hat{x_{i}} \wedge \ldots \wedge x_{n}$.
Clearly, $d^{2}=0, d_{1}=u$ and $d(a \wedge b)=d a \wedge b+(-1)^{p} a \wedge d b\left(a \in \wedge^{p} E, b \in \wedge^{q} E\right)$.
(2) A, E, u as above, M is an A-module, define $K .(u, M)=K .(u) \otimes_{A} M$, with $d(x \otimes m)=$ $d x \otimes m$.

Remarks 1.1.2. If $E=E_{1} \oplus E_{2}, u=u_{1}+u_{2}: E \rightarrow A$, where $u_{i}: E_{i} \rightarrow A$, then $K .(u, E)=K .\left(u_{1}\right) \otimes K .\left(u_{2}\right), \wedge^{n} E=\oplus_{p+q=n} \wedge^{p} E_{1} \otimes \wedge^{q} E_{2}, d=d_{1} \otimes 1+(-1)^{*} 1 \otimes d_{2}$.
Dually, we also have
[Definition 1.1.1.'] (1^{\prime}) For any morphism $v: A \rightarrow F$, we can define a complex $K \cdot(v) \in$ $C \geqslant 0(A)$ called the Koszul Complex, too, as follows:

$$
K^{n}(v)=\wedge^{n} F ; d: K^{n}(v) \rightarrow K^{n+1}(v), d(x)=v \wedge x
$$

Here we identify the morphism v with $v(1) \in F$.
(2') Similar definition for $K \cdot(v, N)$ with A, F, v as above and N an A-module.
[Remark 1.1.2.'] In this case, we also have: for $F=F_{1} \oplus F_{2}, v=\left(v_{1}, v_{2}\right), K \cdot(v)=$ $K \cdot\left(v_{1}\right) \otimes K^{\cdot}\left(v_{2}\right)$.
Lemma 1.1.3. For $f=\left(f_{1}, \ldots, f_{r}\right) \in A^{r}$, we have two Koszul complexes $K .(f)$ and $K \cdot(f)$.

$$
\begin{gathered}
K .(f): 0 \rightarrow A \rightarrow A^{r}\left(=\wedge^{r-1} A^{r}\right) \rightarrow \ldots \rightarrow\left(\wedge^{1} A^{r}=\right) A^{r} \xrightarrow{f} A \rightarrow 0, f\left(a_{1}, \ldots, a_{r}\right)=\sum f_{i} a_{i} . \\
K \cdot(f): 0 \rightarrow A \xrightarrow{f} A^{r}\left(=\wedge^{1} A^{r}\right) \rightarrow \ldots \rightarrow\left(\wedge^{r-1} A^{r}=\right) A^{r} \rightarrow A \rightarrow 0, f(a)=\left(f_{1} a, \ldots, f_{r} a\right) .
\end{gathered}
$$

Then $K \cdot(f)$ can be viewed as the naive dual of $K .(f)$. Furthermore, we have a canonical isomorphism between the two: $K \cdot(f)[r] \simeq K .(f)$.

Proof. The first part is immediate. For the second part, the isomorphism is defined as follows:

Let $\left\{e_{1}, \ldots, e_{r}\right\}$ be a basis of A^{r}. For any $I=\left\{i_{1}<\ldots<i_{p}\right\} \subset\{1, \ldots, r\}$, let $e_{I}=$ $e_{i_{1}} \wedge \ldots \wedge e_{i_{p}}$, then $e_{I} \mapsto \varepsilon(J, I) e_{J}$, where $J=\left\{j_{1}<\ldots<j_{r-p}\right\}$ is the complement of I in $\{1, \ldots, r\}$ and $\varepsilon(J, I)=\operatorname{sign}\left(j_{1}, \ldots, j_{r-p}, i_{1}, \ldots, i_{p}\right)$.

Lemma 1.1.4. Let $L \in C(A)$ and $x \in A, K .(x)=(0 \rightarrow A \xrightarrow{x} A \rightarrow 0)$. Then $K .(x) \otimes L \simeq$ Cone $(L \xrightarrow{x} L)$.

Proof. This is simply a computation.
Now we discuss a little about this lemma. For this, we get a distinguished triangle $L \xrightarrow{x} L \rightarrow K .(x) \otimes L \rightarrow$, so we get a long exact sequence:

$$
\ldots \rightarrow H^{q}(L) \xrightarrow{x} H^{q}(L) \rightarrow H^{q}(K .(x) \otimes L) \rightarrow H^{q+1}(L) \xrightarrow{x} \ldots
$$

Rewrite it into short exact sequences, and we can get:

$$
0 \rightarrow H^{0} K .\left(x, H^{q}(L)\right) \rightarrow H^{q}(K .(x) \otimes L) \rightarrow H^{-1} K .\left(x, H^{q+1}(L)\right) \rightarrow 0 .(*)
$$

Theorem 1.1.5 (Serre). Let A be a noetherian ring, M an A-module of finite type and $f=\left(f_{1}, \ldots, f_{r}\right) \in A^{r}$ with $f_{i} \in \operatorname{rad}(A)$, then the following conditions are equivalent:
(1) f is M-regular.
(2) $K .(f, M) \rightarrow M /\left(f_{1}, \ldots, f_{r}\right) M$ is quasi-isomorphism.
(3) $H^{-1} K \cdot(f, M)=0$.

Proof. (1) $\Rightarrow(2)$ Use induction on r. For $r=1$, the statement is just the definition.
Assume the statement is true for $m \leqslant r-1$, then let

$$
L=K \cdot\left(f_{1}, \ldots, f_{r-1}, M\right)=K .\left(f_{1}, \ldots, f_{r-1}\right) \otimes M
$$

then $K .\left(f_{r}\right) \otimes L \simeq K .\left(f_{1}, \ldots, f_{r}, M\right)$. Hence we have the exact sequence

$$
0 \rightarrow H^{0} K .\left(f_{r}, H^{q}(L)\right) \rightarrow H^{q} K .\left(f_{1}, \ldots, f_{r}, M\right) \rightarrow H^{-1} K .\left(f_{r}, H^{q+1}(L)\right) \rightarrow 0 .
$$

We are left to show that $H^{q} K .\left(f_{1}, \ldots, f_{r}, M\right)=0$ for all $q<0$. For $q \leqslant-2$, it follows from the above sequence and the inductive hypothesis. For $q=-1$, it is true since $\operatorname{Ker}\left(f_{r}: M /\left(f_{1}, \ldots, f_{r-1}\right) M \rightarrow M /\left(f_{1}, \ldots, f_{r-1}\right) M\right)=0$ by definition of M-regular.
$(2) \Rightarrow(3)$ trivial.
$(3) \Rightarrow(1)$ Also use induction on r. Again, the case $r=1$ is trivial. For $r \geqslant 2$, again let $L=K .\left(f_{1}, \ldots, f_{r-1}, M\right)$. First show that $\left(f_{1}, \ldots, f_{r-1}\right)$ is M-regular. By $\left(^{*}\right)$, we have an inclusion

$$
H^{q}(L) / f_{r} H^{q}(L) \hookrightarrow H^{q} K .\left(f_{1}, \ldots, f_{r}, M\right)
$$

When $q=-1, H^{q} K .\left(f_{1}, \ldots, f_{r}, M\right)=0$, hence $H^{-1}(L)=f_{r} H^{-1}(L)$. Since A is noetherian and M is of finite type, $H^{-1}(L)$ is finitely generated over A, so $H^{-1}(L)=0$ since $f_{r} \in \operatorname{rad}(A)$. Now $\left(f_{1}, \ldots, f_{r-1}\right)$ is M-regular by induction. Furthermore, condition (3) implies that

$$
\operatorname{Ker}\left(f_{r}: M /\left(f_{1}, \ldots, f_{r-1}\right) M \rightarrow M /\left(f_{1}, \ldots, f_{r-1}\right) M\right)=0
$$

Hence $f=\left(f_{1}, \ldots, f_{r}\right)$ is M-regular
Corollary 1.1.6. Assume $f=\left(f_{1}, \ldots, f_{r}\right) \in A^{r}$ is regular and $B=A /\left(f_{1}, \ldots, f_{r}\right) A$. Then $E x t_{A}^{q}(B, A)=\left\{\begin{array}{ll}0 & q \neq r \\ B & q=r\end{array}\right.$.

Proof. Since $K .(f) \rightarrow B$ is a quasi-isomorphism,

$$
R \operatorname{Hom}_{A}(B, A)=\operatorname{Hom}_{A}(K .(f), A)=K \cdot(f) \simeq K .(f)[-r],
$$

hence

$$
E x t_{A}^{q}(B, A)=\left\{\begin{array}{ll}
H^{q-r} K \cdot(f)=0 & q \neq r \\
H^{0} K \cdot(f)=B & q=r
\end{array} .\right.
$$

1.2. Koszul Complex II. In this section, we generalize the discussion in section 1 to ringed spaces. In this section, we abuse the notations \mathcal{O}_{Y} and $i_{*} \mathcal{O}_{Y}$ when $i: Y \hookrightarrow X$ is a closed immersion.

Definition 1.2.1. Let $\left(X, \mathcal{O}_{X}\right)$ be a ringed space and $E \in \operatorname{Mod}(X)$, then for any mor$\operatorname{phism} u: E \rightarrow \mathcal{O}_{X}$, define the Koszul complex \mathcal{K}. (u) by

$$
\left(\ldots \rightarrow \wedge^{n} E \xrightarrow{d} \wedge^{n-1} E \rightarrow \ldots \rightarrow E \xrightarrow{u} \mathcal{O}_{X} \rightarrow 0\right)
$$

where d is the right interior product by u.
Definition 1.2.2. For $i: Y \hookrightarrow X$ a closed immersion defined by the ideal sheaf $I \subset \mathcal{O}_{X}$, we say that i is regular of codimension r if $\forall x \in Y, \exists U \subset X$ an open neighbourhood of x and an \mathcal{O}_{U}-module E locally free of rank r and an \mathcal{O}_{U}-linear map $u: E \rightarrow \mathcal{O}_{U}$, s.t. $H^{q} \mathcal{K} .(u)=0(q<0)$ and $\left.I\right|_{U}=u(E) \subset \mathcal{O}_{U}$. In other words, this is equivalent to say that \exists locally a squence $f=\left(f_{1}, \ldots, f_{r}\right) \in \mathcal{O}_{U}^{r}$ s.t. $\left.I\right|_{U}=\left(f_{1}, \ldots, f_{r}\right)$ and $\mathcal{K} .(f) \rightarrow \mathcal{O}_{U} / I \mathcal{O}_{U}$ is a resolution.

Remarks 1.2.3. If X is locally noetherian, then i is regular iff $\forall x \in Y, \exists x \in U$ open, s.t. I is defined by a sequence $f=\left(f_{1}, \ldots, f_{r}\right)$ of sections of \mathcal{O}_{X} s.t. $f_{x}=\left(\left(f_{1}\right)_{x}, \ldots,\left(f_{r}\right)_{x}\right) \in \mathfrak{m}_{x}^{r}$ is regular.

Proposition 1.2.4. If $i: Y \hookrightarrow X$ is a regular immersion of codimension r, \mathcal{I} be the ideal sheaf of $i, N_{Y / X}=\mathcal{I} / \mathcal{I}^{2}$, then
(1) $\mathcal{E} x t_{O_{X}}^{q}\left(\mathcal{O}_{Y}, \mathcal{O}_{X}\right)=\left\{\begin{array}{ll}0 & q \neq r \\ \omega_{Y / X} & q=r\end{array}\right.$, where $\omega_{Y / X}$ is a line bundle on Y. In other words, $R \mathcal{H}$ mom $_{\mathcal{O}_{X}}\left(\mathcal{O}_{Y}, \mathcal{O}_{X}\right) \simeq \omega_{Y / X}[-r]$.
(2) $N_{Y / X}$ is locally free of rank r.
(3) $\omega_{Y / X} \simeq\left(\wedge^{r} N_{Y / X}\right)^{\vee}$.
(4) For $F \in D^{+}(X)$, there exists a functorial isomorphism

$$
{\mathcal{E} x t_{\mathcal{O}_{X}}^{q}}^{\left(\mathcal{O}_{Y}, F\right) \simeq \mathcal{T} o r_{r-q}^{\mathcal{O}_{X}}\left(\mathcal{O}_{Y}, F\right) \otimes \omega_{Y / X} .}
$$

Proof. (1) For any $U=\operatorname{Spec} A$ open in $X, U \cap Y=\operatorname{Spec} B$, with $B=A /\left(f_{1}, \ldots, f_{r}\right)$ where $f=\left(f_{1}, \ldots, f_{r}\right)$ is regular, by [Cor], we have

$$
E x t_{\Gamma\left(U, \mathcal{O}_{X}\right)}^{q}\left(\Gamma\left(U \cap Y, \mathcal{O}_{Y}\right), \Gamma\left(U, \mathcal{O}_{X}\right)\right)=E x t_{A}^{q}(B, A)= \begin{cases}0 & q \neq r \\ B & q=r\end{cases}
$$

The conclusion then holds immediately.
(2) From the exact sequence

$$
0 \rightarrow \mathcal{I} \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{Y} \rightarrow 0
$$

we get

$$
N_{Y / X}=\mathcal{I} / \mathcal{I}^{2} \simeq \mathcal{T} \operatorname{or}_{1}^{\mathcal{O}_{X}}\left(\mathcal{O}_{Y}, \mathcal{O}_{Y}\right)
$$

Since i is regular, locally one has a Koszul complex $\mathcal{K} .\left(f_{1}, \ldots, f_{r}\right)=\left(0 \rightarrow \mathcal{O}_{X} \rightarrow \ldots \rightarrow\right.$ $\mathcal{O}_{X}^{r} \rightarrow \mathcal{O}_{X}$, which is a resolution of \mathcal{O}_{Y}. Hence locally
which proves (2). Also note that we can deduce

$$
\mathcal{T} o r_{q}^{\mathcal{O}_{X}}\left(\mathcal{O}_{Y}, \mathcal{O}_{Y}\right)=\wedge^{q}\left(\mathcal{O}_{Y}^{r}\right)
$$

and

$$
\wedge^{*} \mathcal{T}_{o r_{1}^{\mathcal{O}_{X}}}\left(\mathcal{O}_{Y}, \mathcal{O}_{Y}\right) \xrightarrow{\sim} \mathcal{T} o r_{*}^{\mathcal{O}_{X}}\left(\mathcal{O}_{Y}, \mathcal{O}_{Y}\right)
$$

(4) It's enough to show that

$$
\begin{equation*}
R \mathcal{H o m}_{\mathcal{O}_{X}}\left(\mathcal{O}_{Y}, F\right) \simeq i_{*}\left(L i^{*} F \otimes_{\mathcal{O}_{Y}}^{L} \omega_{Y / X}[-r]\right) \tag{*}
\end{equation*}
$$

for each $F \in D^{+}(X)$, then apply H^{q} to both sides. By the first part of the following lemma, the RHS(right hand side) of the above formula is just

$$
F \otimes_{\mathcal{O}_{X}}^{L} i_{*} \omega_{Y / X}[-r]=F \otimes_{\mathcal{O}_{X}}^{L} R \mathcal{H}_{\mathcal{H}_{\mathcal{O}_{X}}}\left(\mathcal{O}_{Y}, \mathcal{O}_{X}\right)
$$

By the second part of the following lemma, we see that this is canonically isomorphic to $R \mathcal{H} m_{\mathcal{O}_{X}}\left(\mathcal{O}_{Y}, F\right)$, which is exactly the LHS(left hand side).
(3) We set $F=\mathcal{O}_{Y}$ in (4), then we get

$$
R \mathcal{H} m_{\mathcal{O}_{X}}\left(\mathcal{O}_{Y}, \mathcal{O}_{Y}\right) \simeq \mathcal{O}_{Y} \otimes_{\mathcal{O}_{X}} i_{*} \omega_{Y / X}[-r]
$$

Note that $\otimes_{\mathcal{O}_{X}}^{L} i_{*} \omega_{Y / X}[-r] \simeq \otimes_{\mathcal{O}_{X}} i_{*} \omega_{Y / X}[-r]$ since $\omega_{Y / X}[-r]$ is locally free.
Apply H^{0} to the above formula, and note that $H^{0}\left(R \mathcal{H} m_{\mathcal{O}_{X}}\left(\mathcal{O}_{Y}, \mathcal{O}_{Y}\right)\right)=\mathcal{O}_{Y}$, we get

$$
\mathcal{O}_{Y} \simeq \mathcal{T}_{o r_{r}^{\mathcal{O}_{X}}}\left(\mathcal{O}_{Y}, \mathcal{O}_{Y}\right) \otimes \omega_{Y / X}
$$

In (2), we have already seen that $\mathcal{T} \operatorname{cr}_{r}^{\mathcal{O}_{X}}\left(\mathcal{O}_{Y}, \mathcal{O}_{Y}\right) \simeq \wedge^{r} N_{Y / X}$, thus $\omega_{Y / X} \simeq\left(\wedge^{r} N_{Y / X}\right)^{\vee}$.

Lemma 1.2.5. Let $i: Y \hookrightarrow X$ be a regular closed immersion, then one has

$$
F \otimes_{\mathcal{O}_{X}}^{L} i_{*} G \simeq i_{*}\left(L i^{*} F \otimes_{\mathcal{O}_{Y}}^{L} G\right)
$$

and

$$
F \otimes_{\mathcal{O}_{X}}^{L} R \mathcal{H o m}_{\mathcal{O}_{X}}\left(\mathcal{O}_{Y}, \mathcal{O}_{X}\right) \simeq R \mathcal{H o m}_{\mathcal{O}_{X}}\left(\mathcal{O}_{Y}, F\right)
$$

for $F \in D^{+}(X)$ and $G \in D^{b}(Y)$.
Proof. For the first part, first note that i^{*} is of finite cohomological dimension since $L i^{*}=\mathcal{O}_{Y} \otimes_{\mathcal{O}_{X}}^{L}$ and \mathcal{O}_{Y} admits a Koszul resolution. Hence $L i^{*}$ makes sense on $D^{+}(X)$.
We have a natural map between $L i^{*}\left(F \otimes_{\mathcal{O}_{X}}^{L} i_{*} G\right)$ and $L i^{*} F \otimes_{\mathcal{O}_{Y}}^{L} G$ defined by

$$
L i^{*}\left(F \otimes_{\mathcal{O}_{X}}^{L} i_{*} G\right) \rightarrow L i^{*} F \otimes_{\mathcal{O}_{Y}}^{L} L i^{*}\left(i_{*} G\right) \rightarrow L i^{*} F \otimes_{\mathcal{O}_{Y}}^{L} G,
$$

where the last map is given by the natural map $L i^{*} i_{*} G \rightarrow G$. This gives the desired map $F \otimes_{\mathcal{O}_{X}}^{L} i_{*} G \rightarrow i_{*}\left(L i^{*} F \otimes_{\mathcal{O}_{Y}}^{L} G\right)$ by the adjiontness of $L i^{*}$ and i^{*}.

To show this is an isomorphism, by canonical truncations(note that i^{*} is of finite cohomological dimension), we may assum that $F \in D^{b}(X)$. Replacing F by its flat resolution, we can see that

$$
F \otimes_{\mathcal{O}_{X}}^{L} i_{*} G=F \otimes_{\mathcal{O}_{X}} i_{*} G \simeq i_{*}\left(i^{*} F \otimes_{\mathcal{O}_{Y}} G\right)=i_{*}\left(L i^{*} F \otimes_{\mathcal{O}_{Y}}^{L} G\right) .
$$

For the second part, use the Koszul resolution $\mathcal{K} .(f)=\left(0 \rightarrow \mathcal{O}_{X} \rightarrow \ldots \rightarrow \mathcal{O}_{X}^{r} \rightarrow \mathcal{O}_{X}\right)$ of \mathcal{O}_{Y}. Note that this is a free resolution of \mathcal{O}_{Y}, then the conclusion follows immediately.

Next, we consider the projective case $X=\mathbb{P}_{Y}^{r}$, with $f: X \rightarrow Y$ the projection. We will show using the tool of Koszul complex that $\Omega_{X / Y}^{r} \simeq \mathcal{O}_{X}(-r-1)$.

We know that there is a canonical exact sequence

$$
0 \rightarrow \Omega_{X / Y}^{1} \xrightarrow{v} \mathcal{O}_{X}^{r+1}(-1) \xrightarrow{u} \mathcal{O}_{X} \rightarrow 0 .
$$

The Koszul complex of u is

$$
0 \rightarrow \wedge^{r+1}\left(\mathcal{O}_{X}^{r+1}\right)(-r-1) \rightarrow \ldots \rightarrow \mathcal{O}_{X}^{r+1}(-1) \rightarrow \mathcal{O}_{X} \rightarrow 0
$$

If we can prove that each sequence

$$
0 \rightarrow \Omega_{X / Y}^{i} \xrightarrow{\wedge^{i} v} \wedge^{i}\left(\mathcal{O}_{X}^{r+1}\right)(-i) \rightarrow \ldots \rightarrow \mathcal{O}_{X}^{r+1}(-1) \rightarrow \mathcal{O}_{X} \rightarrow 0, i \geqslant 0,
$$

is exact, then in particular, let $i=r$ and compare it with the previous sequence, we have a canonical isomorphism $\Omega_{X / Y}^{r} \simeq \mathcal{O}_{X}(-r-1)$. We conclude it in the following lemma.
Lemma 1.2.6. Let $\left(X, \mathcal{O}_{X}\right)$ be a ringed space,

$$
0 \rightarrow F \xrightarrow{v} E \xrightarrow{u} \mathcal{O}_{X} \rightarrow 0
$$

be an exact sequence of locally free sheaves of finite ranks. Then the Koszul complex of u

$$
\mathcal{K} .(u)=\left(0 \rightarrow \wedge^{n} E \xrightarrow{d_{n}} \wedge^{n-1} E \rightarrow \ldots \rightarrow E \xrightarrow{d_{1}=u} \mathcal{O}_{X} \rightarrow 0\right)
$$

where $n=r a n k E$ is acyclic and each sequence

$$
0 \rightarrow \wedge^{i} F \xrightarrow{\wedge^{i} v} \wedge^{i} E \xrightarrow{d} \wedge^{i-1} E \rightarrow \ldots \rightarrow E \xrightarrow{d} \mathcal{O}_{X} \rightarrow 0
$$

is exact. Hence $\wedge^{i} v$ induces an isomorphism $\wedge^{i} F \rightarrow B^{-i-1} \mathcal{K} .(u)(i \geqslant 0)$. In particular, taking $i=n-1$, we get an isomorphism $\wedge^{n-1} F \rightarrow \wedge^{n} E$ s.t.

commutes, which coincides with the isomorphism $\wedge^{n-1} F \rightarrow \wedge^{n} E$ given by taking the highest exterior power of the original exact sequence and locally defined by $u(b) a \mapsto b \wedge$ $\left(\wedge^{n-1} v\right)(a)$ for $a \in \wedge^{n-1} F(U), b \in E(U)$.

Proof. Without any loss, we may assume $E=\mathcal{O}_{X} \oplus F$ and u the projection since the three of them are all locally free of finite ranks. Then

$$
d_{i}: \wedge^{i} F \oplus\left(\mathcal{O}_{X} \otimes \wedge^{i-1} F\right)=\wedge^{i-1} E \rightarrow \wedge^{i-1} E=\wedge^{i-1} F \oplus\left(\mathcal{O}_{X} \otimes \wedge^{i-1} F\right)
$$

is induced by

$$
(a, 1 \otimes b) \mapsto(b, 0)
$$

Then it can be checked directly the exactness of the sequences. Take $i=n$, we get the acyclicality. The remainder is then obvious.

2. Grothendieck-Serre Global Duality

In this chapter, for simplicity, we just discuss the locally noetherian case unless it's specially stated.

2.1. The Functor $f^{!}$.

Definition 2.1.1. (1) Let $i: Y \hookrightarrow X$ be a closed immersion. Given $F \in D^{+}(X)$, define
$i^{!} F:=R \mathcal{H}$ om $\left._{\mathcal{O}_{X}}\left(i_{*} \mathcal{O}_{Y}, F\right)\right|_{Y}=i^{-1} R \mathcal{H o m}_{\mathcal{O}_{X}}\left(i_{*} \mathcal{O}_{Y}, F\right)=i^{*} R \mathcal{H} m_{\mathcal{O}_{X}}\left(i_{*} \mathcal{O}_{Y}, F\right)$,
i.e. $i_{*}!^{!} F=R \mathcal{H}$ om $_{\mathcal{O}_{X}}\left(\mathcal{O}_{Y}, F\right)$. Clearly, $i^{!} F \in D^{+}(Y)$. Moreover, this gives a functor from $D^{+}(X)$ to $D^{+}(Y)$. We would prove it later.
(2) Let $f: X \rightarrow Y$ be a smooth morphism with relative dimension d, then $\omega_{X / Y}=$ $\Omega_{X / Y}^{d}$ is a line bundle. Define a functor $f^{!}: D^{+}(X) \rightarrow D^{+}(Y)$ by

$$
f^{!} F:=f^{*} F \otimes_{\mathcal{O}_{X}}^{L} \omega_{X / Y}[d]
$$

for an element $F \in D^{+}(X)$.
(3) Let

be a commutative diagram with i a closed immersion and g smooth. We can define a functor $i!g$ from $D^{+}(X)$ to $D^{+}(Y)$. The main goal of this part is to prove that the last functor is independent of the choice of i and g.
Lemma 2.1.2. Suppose $i: Y \hookrightarrow X$ is a closed immersion, then
(1) $\left.\mathcal{H o m}_{\mathcal{O}_{X}}\left(\mathcal{O}_{Y}, F\right)\right|_{Y}$ is an injective \mathcal{O}_{Y}-module if F is an injective \mathcal{O}_{X}-module.
(2) In this case, $i^{!}$really is a functor.

Proof. (1) For every $G \in \operatorname{Mod}\left(\mathcal{O}_{Y}\right)$, since

$$
i_{*} G \otimes_{\mathcal{O}_{X}} i_{*} \mathcal{O}_{Y} \simeq i_{*} G \otimes_{i_{*} \mathcal{O}_{Y}} i_{*} \mathcal{O}_{Y} \simeq i_{*} G
$$

it's enough to prove that

$$
\operatorname{Hom}_{\mathcal{O}_{X}}\left(i_{*} G, \mathcal{H o m}_{\mathcal{O}_{X}}\left(i_{*} \mathcal{O}_{Y}, F\right)\right) \simeq \operatorname{Hom}_{\mathcal{O}_{Y}}\left(G, i^{-1} \mathcal{H o m}_{\mathcal{O}_{X}}\left(i_{*} \mathcal{O}_{Y}, F\right)\right)
$$

It's easy to see that $G \simeq i^{-1} i_{*} G$ by checking on stalks, so the RHS of the above formula can be rewritten as

$$
\operatorname{Hom}_{\mathcal{O}_{Y}}\left(i^{-1} i_{*} G, i^{-1} \mathcal{H o m}_{\mathcal{O}_{X}}\left(i_{*} \mathcal{O}_{Y}, F\right)\right) \simeq \operatorname{Hom}_{\mathcal{O}_{X}}\left(i_{*} G, i_{*} i^{-1} \mathcal{H o m}_{\mathcal{O}_{X}}\left(i_{*} \mathcal{O}_{Y}, F\right)\right)
$$

Taking $i_{*} i^{-1} \mathcal{H o m}_{\mathcal{O}_{X}}\left(i_{*} \mathcal{O}_{Y}, F\right) \simeq \mathcal{H o m}_{\mathcal{O}_{X}}\left(i_{*} \mathcal{O}_{Y}, F\right)$ into consideration (this is right since $i_{*} \mathcal{O}_{Y}$ is a locally finite presented \mathcal{O}_{X}-module, thus we can check on stalks), we get the conclusion.
(2) For any $Z \xrightarrow{j} Y \xrightarrow{i} X$ a composition of closed immersions and $F \in D^{+}(X)$, replace F by its injective resolution, then

$$
\begin{aligned}
j^{!} i^{!} F & =\left.\mathcal{H o m}_{\mathcal{O}_{Y}}\left(j_{*} \mathcal{O}_{Z},\left.\mathcal{H o m}_{\mathcal{O}_{X}}\left(i_{*} \mathcal{O}_{Y}, F\right)\right|_{Y}\right)\right|_{Z} \\
& \left.\simeq \mathcal{H o m}_{\mathcal{O}_{X}}\left((i j)_{*} \mathcal{O}_{Z}, \mathcal{H o m}_{\mathcal{O}_{X}}\left(i_{*} \mathcal{O}_{Y}, F\right)\right)\right|_{Z} \\
& \left.\simeq \mathcal{H o m}_{\mathcal{O}_{X}}\left(\left((i j)_{*} \mathcal{O}_{Z}\right) \otimes_{\mathcal{O}_{X}}\left(i_{*} \mathcal{O}_{Y}\right), F\right)\right|_{Z} \\
& \left.\simeq \mathcal{H o m}_{\mathcal{O}_{X}}\left((i j)_{*} \mathcal{O}_{Z}, F\right)\right|_{Z} \\
& =\left.R \mathcal{H o m}{\mathcal{O}_{X}}\left((i j)_{*} \mathcal{O}_{Z}, F\right)\right|_{Z} \\
& =(i j)^{!} F .
\end{aligned}
$$

Now we come to the main theorem of this part. For the rest of the whole section, we again abuse the notations \mathcal{O}_{Y} and $i_{*} \mathcal{O}_{Y}$ when $i: Y \hookrightarrow X$ is a closed immerstion.

Theorem 2.1.3. Suppose we have a commutative diagram

where $i^{\prime}, i^{\prime \prime}$ are closed immersions and $g^{\prime}, g^{\prime \prime}$ are smooth. Then there is a natural isomorphism

$$
a\left(i^{\prime}, i^{\prime \prime}\right): i^{\prime!} g^{\prime!} \simeq i^{\prime \prime!} g^{\prime \prime!}
$$

satisfying the transitive formula:

$$
a\left(i_{2}, i_{3}\right) \circ a\left(i_{1}, i_{2}\right)=a\left(i_{1}, i_{3}\right)
$$

for any triple $\left(i_{1}, g_{1}\right),\left(i_{2}, g_{2}\right),\left(i_{3}, g_{3}\right)$.
We say that these $a\left(i^{\prime}, i^{\prime \prime}\right)$ form a transitive system. In order to prove this theorem, we still need some preparation.

Lemma 2.1.4. Let X, Y be locally noetherian, and $f: X \rightarrow Y$ be a flat morphism. Then

$$
f^{*} R \mathcal{H o m}(L, M) \xrightarrow{\sim} R \mathcal{H o m}\left(f^{*} L, f^{*} M\right)
$$

for $M \in D^{+}(Y)$ and $L \in D^{b}(Y)_{c o h}$.
Proof. Replacing M by its injective resolution, then we get

$$
f^{*} R \mathcal{H o m}(L, M)=f^{*} \mathcal{H o m}(L, M) \rightarrow \mathcal{H o m}\left(f^{*} L, f^{*} M\right) \rightarrow R \mathcal{H} o m\left(f^{*} L, f^{*} M\right)
$$

which defines the map we want. To show it's an isomorphism, we may assume that Y is affine and noetherian, since the problem is local. Then there exists a quasi-isomorphism $L^{\prime} \rightarrow L$ with each $L^{\prime i}$ free of finite rank and $L^{\prime i}=0$ when i is sufficiently large. Then it is clear.

Lemma 2.1.5. Consider a cartesian diagram

where i is closed immersion and f is flat. Then we have $g^{*} i^{!} \simeq i^{\prime!} f^{*}$.
Proof. We have to show that for any $F \in D^{+}(X)$, there is a natural isomorphism $i_{*}^{\prime} g^{*} l^{!} F \simeq$ $i_{*}^{\prime} i^{\prime!} f^{*} F$. But the LHS is

$$
i_{*}^{\prime} g^{*} i^{!} F=i_{*}^{\prime}\left(g^{*} i^{*} R \mathcal{H o m}_{\mathcal{O}_{X}}\left(\mathcal{O}_{Y}, F\right)\right)=f^{*} R \mathcal{H} m_{\mathcal{O}_{X}}\left(\mathcal{O}_{Y}, F\right)
$$

while the RHS is

$$
i_{*}^{\prime} i^{\prime!} f^{*} F=R \mathcal{H} m_{\mathcal{O}_{X^{\prime}}}\left(\mathcal{O}_{Y^{\prime}}, f^{*} F\right)=R \mathcal{H} m_{\mathcal{O}_{X^{\prime}}}\left(f^{*} \mathcal{O}_{Y}, f^{*} F\right)
$$

Then our conclusion follows from the previous lemma.
Now we come back to the proof of the Theorem.
Proof of Theorem. Consider diagram, let $Z^{\prime \prime \prime}=Z^{\prime} \times_{Y} Z^{\prime \prime}$, then we can complete the diagram as follows:

where i is the map determined by $\left(i^{\prime}, i^{\prime \prime}\right)$. In general, i is not a closed immersion, but only an immersion, i.e. a composition of a closed immersion with an open immersion:

$$
X \xrightarrow{\text { closed }} Z \xrightarrow{\text { open }} Z^{\prime \prime \prime}
$$

Thus we can replace $Z^{\prime \prime \prime}$ by Z, and consider the diagram

where i and i^{\prime} are both closed immersions and h^{\prime} is smooth. If we can show that $i^{\prime!} \simeq i^{\prime} h^{\prime \prime}$, then we have

$$
i^{\prime!} g^{\prime!} \simeq i^{!} h^{\prime!} g^{\prime!}=i^{!} h^{\prime \prime!} \cdot g^{\prime \prime!} \simeq i^{\prime \prime!} g^{\prime \prime!}
$$

And This gives the desired functor isomorphism.

Let $X^{\prime}=X \times_{Z^{\prime}} Z$, then we get the following cartesian diagram:

where s is the section of X determined by $\left(1_{X}, i\right)$. Notice that in this case, p is smooth, s is a closed immersion since both i and j are, and $p s=1_{X}$ is smooth, thus s is actually a regular closed immersion(we assume this).
Now suppose the relative dimension of h^{\prime} is d, then $\forall F \in D^{+}\left(Z^{\prime}\right)$, we have

$$
i^{!} h^{\prime!} F=s^{!} j^{!} h^{\prime!} F=s^{!} j^{!}\left(h^{\prime *} F \otimes \omega_{Z / Z^{\prime}}[d]\right) .
$$

But

$$
\begin{aligned}
j^{!}\left(h^{\prime *} F \otimes \omega_{Z / Z^{\prime}}[d]\right) & =\left.R \mathcal{H o m}_{\mathcal{O}_{Z}}\left(\mathcal{O}_{X^{\prime}}, h^{\prime *} F \otimes \omega_{Z / Z^{\prime}}[d]\right)\right|_{X^{\prime}} \\
& =\left.\left(R \mathcal{H} m_{\mathcal{O}_{Z}}\left(\mathcal{O}_{X^{\prime}}, h^{\prime *} F\right) \otimes \omega_{Z / Z^{\prime}}[d]\right)\right|_{X^{\prime}} \\
& =\left.R \mathcal{H} \operatorname{lom}_{\mathcal{O}_{Z}}\left(\mathcal{O}_{X^{\prime}}, h^{\prime *} F\right)\right|_{X^{\prime}} \otimes \omega_{X^{\prime} / X}[d] \\
& =j^{!} h^{\prime *} F \otimes \omega_{X^{\prime} / X}[d] .
\end{aligned}
$$

Hence

$$
\begin{aligned}
i^{!} h^{\prime!} F & =s^{!} j^{!} h^{\prime!} F=s^{!}\left(j^{!} h^{\prime *} F \otimes \omega_{X^{\prime} / X}[d]\right) \\
& =s^{!}\left(p^{*} i^{\prime!} F \otimes \omega_{X^{\prime} / X}[d]\right),
\end{aligned}
$$

where the third equality is according to Lemma 2.1.5. Hence it only remains to show that

$$
s^{!}\left(p^{*} M \otimes \omega_{X^{\prime} / X}[d]\right)=M
$$

for any $M \in D^{+}(X)$. According to $(*)$ in the proof of Proposition 1.2.4.(4), the LHS is

$$
L s^{*}\left(p^{*} M\right) \otimes^{L} \omega_{X / X^{\prime}}[-d] \otimes s^{*} \omega_{X^{\prime} / X}[d]=M \otimes \omega_{X / X^{\prime}} \otimes s^{*} \omega_{X^{\prime} / X}
$$

since $p s=1_{X}$. But the canormal sheaf $N_{X / X^{\prime}} \simeq s^{*} \Omega_{X^{\prime} / X}^{1}$, and by Proposition 1.2.4.(3), it follows that

$$
\omega_{X / X^{\prime}} \simeq\left(\wedge^{d} N_{X / X^{\prime}}\right)^{\vee}=\left(s^{*} \omega_{X^{\prime} / X}\right)^{\vee}
$$

and hence

$$
M \otimes \omega_{X / X^{\prime}} \otimes s^{*} \omega_{X^{\prime} / X} \simeq M
$$

which completes the proof.
Definition 2.1.6. A morphism of schemes $f: X \rightarrow Y$ is smoothable if it can be decomposed as $f=g i$

where i is a closed immersion and g is a smooth morphism.
In this case, $i^{!} g^{!}: D^{+}(Y) \rightarrow D^{+}(X)$ depends only of f, and we denote it by $f^{!}$.

Definition 2.1.7. A morphism of S-schemes $f: X \rightarrow Y$ is S-smoothable if there exists a commutative diagram

with i a closed immersion and g a smooth morphism s.t. the parallelogram is Cartesian.
Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be S-smoothable morphisms. Then there exists a commutative diagram

with f_{1}, g_{1} smooth, $X \rightarrow X_{1}, i: Y \rightarrow Y_{1}$ closed immersions s.t. all the parallelograms are Cartesian (thus f_{2}, g_{2}, h are smooth, i^{\prime} is a closed immersion.) It follows that $X \rightarrow$ $X_{1} \xrightarrow{i^{\prime}} W$ is a closed immersion, and the morphism $W \xrightarrow{h} Y_{1} \xrightarrow{g_{2}} Z$ is the base change of the smooth morphism $T \rightarrow Y_{2} \xrightarrow{g_{1}} S$. Hence $g f$ is S-smoothable. By Lemma, $f_{2}^{!} i^{!} \simeq i^{!} h^{!}$, and thus $(g f)^{!} \simeq f^{!} g^{!}$.
2.2. Trace Map. Now define a natural transformation of functors $\operatorname{Tr}_{f}: R f_{*} f^{!} \rightarrow i d$ in certain cases.
(1) Let $i: Y \rightarrow X$ be a closed immersion. For $E \in D^{+}(X)$, define Tr_{i} to be the morphism

$$
i_{*} i^{!} E \simeq R \mathcal{H o m}_{\mathcal{O}_{X}}\left(i_{*} \mathcal{O}_{Y}, E\right) \rightarrow R \mathcal{H o m}_{\mathcal{O}_{X}}\left(\mathcal{O}_{X}, E\right) \simeq E
$$

induced by $\mathcal{O}_{X} \rightarrow i_{*} \mathcal{O}_{Y}$.
(2) Let $X=\mathbb{P}_{Y}^{r}, f: X \rightarrow Y$ be the projection. Define $\operatorname{Tr}_{f}: R f_{*} \omega[r] \rightarrow \mathcal{O}_{Y}$, where $\omega=\omega_{X / Y}=\Omega_{X / Y}^{r}$ as follows: we have a morphism $c: \mathcal{O}_{X} \rightarrow \omega[r]$ in $D(X)$ defined
by

Since $R f_{*}\left(\mathcal{O}_{X}^{q}(-i)\right)=0$ for $1 \leqslant i \leqslant r$ and for all $q, R f_{*}\left(0 \rightarrow \wedge^{r}\left(\mathcal{O}_{X}^{r+1}\right)(-r) \rightarrow\right.$ $\left.\ldots \rightarrow \mathcal{O}_{X}^{r+1}(-1) \rightarrow 0\right)=0, R f_{*} c$ is an isomorphism. We define Tr_{f} to be the inverse of the composition of isomorphisms

$$
\mathcal{O}_{Y} \xrightarrow{\sim} R f_{*} \mathcal{O}_{X} \xrightarrow{R f_{*} c} R f_{*} \omega[r],
$$

where the first morphism is the canonical map $\mathcal{O}_{Y} \rightarrow f_{*} \mathcal{O}_{X} \rightarrow R f_{*} \mathcal{O}_{X}$, which is an isomorphism.

When Y is affine, the image of c under the morphism

$$
\operatorname{Hom}_{D(X)}\left(\mathcal{O}_{X}, \omega[r]\right) \simeq H^{r}(X, \omega) \simeq H^{0}\left(Y, R f_{*} \omega[r]\right) \xrightarrow{H^{0}\left(Y, \operatorname{Tr}_{f}\right)} H^{0}\left(Y, \mathcal{O}_{Y}\right)
$$

is 1 .
For $E \in D^{+}(Y)$, define Tr_{f} by

$$
R f_{*} f^{!} E=R f_{*}\left(f^{*} E \otimes \omega[r]\right) \simeq E \otimes^{L} R f_{*} \omega[r] \xrightarrow{E \otimes^{L} \operatorname{Tr}_{f}} E
$$

where the isomorphism in the middle is the projection formula.
(3) The general case. Let $f: X \rightarrow Y$ be a morphism which can be factorize as

where i is a closed immersion and g is the projection. This is the case when, e.g. f is projective and Y has an ample line bundle. Define $\operatorname{Tr}_{f}:=\operatorname{Tr}_{g}\left(R g_{*} \operatorname{Tr}_{i} g^{\prime}\right)$. More specifically, for $E \in D^{+}(Y)$, define Tr_{f} by the composition

$$
R f_{*} f^{!} E \simeq R g_{*} i_{*} i^{!} g^{!} E \xrightarrow{R g_{*} \operatorname{Tr}_{i}\left(g^{\prime} E\right)} R g_{*} g^{!} E \xrightarrow{\operatorname{Tr}_{g}} E .
$$

This does not depend on the embedding, and is compatible with composition and flat base change.(Assume it).
2.3. The Duality Theorem. Let $f: X \rightarrow Y$ be a projective morphism with Y noetherian, $\operatorname{dim} Y<\infty, Y$ having ample line bundle. Then the condition (3) above holds and so $\operatorname{dim} X<\infty$. Hence, f_{*} has finite cohomological dimension. It follows that $R f_{*}$ extends to a functor $D(X) \rightarrow D(Y)$ (sending $D^{-}(X) \rightarrow D^{-}(Y)$ and $D^{b}(X) \rightarrow D^{b}(Y)$).

For $E, F \in \operatorname{Mod}(X)$, define a canonical morphism

$$
f_{*} \mathcal{H o m}(E, F) \rightarrow \mathcal{H o m}\left(f_{*} E, f_{*} F\right)
$$

as follows. For $U \subset Y$ open, an element in $\Gamma\left(U, f_{*} \mathcal{H o m}(E, F)\right)$ is a morphism $\left.E\right|_{f^{-1}(U)} \rightarrow$ $\left.F\right|_{f^{-1}(U)}$. It induces homomorphisms $\Gamma\left(f^{-1}(V),\left.E\right|_{f^{-1}(U)}\right) \rightarrow \Gamma\left(f^{-1}(V),\left.F\right|_{f^{-1}(U)}\right)$ for all $V \subset U$ open, which determine a morphism $\left.\left.f_{*} E\right|_{U} \rightarrow f_{*} F\right|_{U}$, that is, an element in $\Gamma\left(U, \mathcal{H o m}\left(f_{*} E, f_{*} F\right)\right)$.

For $E, F \in C(X)$, we get a morphism of complexes

$$
f_{*} \mathcal{H o m}^{\bullet}(E, F) \rightarrow \mathcal{H o m}^{\bullet}\left(f_{*} E, f_{*} F\right)
$$

For $E \in D(X), F \in D^{+}(X)$, take quasi-isomorphisms $F \rightarrow F^{\prime}, E \rightarrow E^{\prime}$ with $F^{\prime} \in C^{+}(X)$, $F^{\prime i}$ injective, $E^{\prime i} f_{*}$-acyclic for all i. Then $R \mathcal{H o m}(E, F) \simeq \mathcal{H o m}{ }^{\bullet}\left(E^{\prime}, F^{\prime}\right)$. Observe that $\mathcal{H o m}{ }^{i}\left(E^{\prime}, F^{\prime}\right)$ is flasque for all i. In fact, for any $L, M \in \operatorname{Mod}(X)$ with M injective, we have $\mathcal{H o m}(L, M)$ is flasque. For an open embedding $j: U \hookrightarrow X$, any morphism $\left.\left.L\right|_{U} \rightarrow M\right|_{U}$ can be extended to L as below since M is injective:

We define a morphism

$$
R f_{*} R \mathcal{H o m}(E, F) \rightarrow R \mathcal{H o m}\left(R f_{*} E, R f_{*} F\right)
$$

by composition of canonical morphisms

$$
\begin{aligned}
R f_{*} R \mathcal{H o m}(E, F) & \simeq f_{*} \mathcal{H o m}^{\bullet}\left(E^{\prime}, F^{\prime}\right) \rightarrow \mathcal{H o m}^{\bullet}\left(f_{*} E^{\prime}, f_{*} F^{\prime}\right) \\
& \rightarrow R \mathcal{H o m} \bullet\left(f_{*} E^{\prime}, f_{*} F^{\prime}\right) \simeq R \mathcal{H o m}\left(R f_{*} E, R f_{*} F\right)
\end{aligned}
$$

For $L \in D(X), M \in D^{+}(Y)$, define $\theta_{f}(L, M)$ (sometimes abbreviated $\left.\theta_{f}\right)$ to be the composition

$$
R f_{*} R \mathcal{H} \text { om }\left(L, f^{!} M\right) \rightarrow R \mathcal{H o m}\left(R f_{*} L, R f_{*} f^{!} M\right) \xrightarrow{R \mathcal{H o m}\left(R f_{*} L, \operatorname{Tr}_{f}\right)} R \mathcal{H o m}\left(R f_{*} L, M\right),
$$

where the first map is the canonical map defined above.
Theorem 2.3.1 (Grothendieck). For $L \in D^{-}(X)_{c o h}, M \in D^{+}(Y)_{c o h}$, the morphism θ_{f} is an isomorphism.
Proof. $f: X \rightarrow Y$ can be factorized as

where i is a closed immersion and g is the projection. Then it is easily seen that $\theta_{f}(L, M)=$ $\theta_{g}\left(R i_{*} L, M\right) \circ\left(R g_{*} \theta_{i}\left(L, g^{!} M\right)\right)$, with $R i_{*} L \in D^{-}(P)_{\text {coh }}$ and $g^{\prime} M \in D^{+}(P)_{c o h}$, so it is enough to check that θ_{i}, θ_{g} are isomorphisms.

Let $L \in D^{-}(X)_{c o h}, M \in D^{+}(P)_{\text {coh }}$. To show θ_{i} is an isomorphism, we may assume, by canonical truncation $\left(\tau_{\leqslant}\right)$, induction and "way out functor", that $L \in \operatorname{Coh}(X)$. We may assume P affine. Then we can write

$$
L \simeq\left(\ldots \rightarrow L^{-1} \rightarrow L^{0}\right)
$$

with L^{i} free of finite type. Using naive truncation σ_{\geqslant}, we may assume $L=\mathcal{O}_{X}$. Then θ_{i} is nothing but the canonical isomorphism

$$
i_{*} R \mathcal{H o m}_{\mathcal{O}_{X}}\left(\mathcal{O}_{X}, i^{!} M\right)=i_{*} i^{!} M \rightarrow R \mathcal{H o m}_{\mathcal{O}_{P}}\left(\mathcal{O}_{X}, M\right)
$$

Therefore, we may assume that $f: X=\mathbb{P}_{Y}^{r} \rightarrow Y$ is the projection. Using τ_{\leqslant}, we may assume L is concentrated in degree 0 , that is, $L \in \operatorname{Coh}(X)$. Then there is an exact sequence

$$
\ldots \rightarrow \mathcal{O}_{X}\left(-n_{1}\right)^{m_{1}} \rightarrow \mathcal{O}_{X}\left(-n_{0}\right)^{m_{0}} \rightarrow L \rightarrow 0
$$

with all $n_{i}>r+1$. Using σ_{\geqslant}, we may assume $L=\omega(-d)$ with $d \geqslant 0$ (where $\omega=\Omega_{X / Y}^{r} \simeq$ $\left.\mathcal{O}_{X}(-r-1)\right)$.

Then we have isomorphisms

$$
\begin{aligned}
R f_{*} R \mathcal{H o m}\left(L, f^{!} M\right) & =R f_{*} R \mathcal{H o m}\left(\omega(-d), f^{*} M \otimes \omega\right)[r] \simeq R f_{*}\left(f^{*} M\right)(d)[r] \\
& \simeq M \otimes^{L} R f_{*} \mathcal{O}_{X}(d)[r] \simeq M \otimes^{L} f_{*} \mathcal{O}_{X}(d)[r]
\end{aligned}
$$

where the last but second isomorphism is the projection formula, and isomorphisms

$$
\begin{aligned}
R \mathcal{H o m}\left(R f_{*} L, M\right) & =R \mathcal{H o m}\left(R f_{*} \omega(-d), M\right) \\
& \simeq \mathcal{H o m} \cdot\left(R^{r} f_{*} \omega(-d)[-r], M\right) \\
& \simeq M \otimes \mathcal{H o m}\left(R^{r} f_{*} \omega(-d), \mathcal{O}_{Y}\right)[r]
\end{aligned}
$$

where we have used the fact that $R^{r} f_{*} \omega(-d)$ is a locally free sheaf of finite type. We have to check

$$
\theta_{f}: f_{*} \mathcal{O}_{X}(d) \rightarrow \mathcal{H o m}\left(R^{r} f_{*} \omega(-d), \mathcal{O}_{Y}\right)
$$

is an isomorphism, that is, the pairing

$$
f_{*} \mathcal{O}_{X}(d) \otimes R^{r} f_{*} \omega(-d) \rightarrow \mathcal{O}_{Y}
$$

is perfect. For $V=\operatorname{Spec}(A) \subset Y$, the pairing

$$
\Gamma\left(V, f_{*} \mathcal{O}_{X}(d)\right) \times \Gamma\left(V, R^{r} f_{*} \omega(-d)\right) \rightarrow \Gamma\left(V, \mathcal{O}_{Y}\right)
$$

is given by

$$
\left(t^{a}, \frac{1}{t^{b} t_{0} \ldots t_{r}}\right) \mapsto\left\{\begin{array}{l}
0, \text { if } a \neq b \\
1, \text { if } a=b
\end{array}\right.
$$

where $\sum a_{i}=\sum b_{i}=d$, and thus is a perfect pairing.
Applying $R \Gamma$ to θ_{f}, we get an isomorphism

$$
R \operatorname{Hom}\left(L, f^{!} M\right) \xrightarrow{\sim} R \operatorname{Hom}\left(R f_{*} L, M\right)
$$

in $D(\mathcal{A} b)$. Applying H^{i}, we get $\operatorname{Ext}^{i}\left(L, f^{!} M\right) \xrightarrow{\sim} \operatorname{Ext}^{i}\left(R f_{*} L, M\right)$.
2.4. Some Discussions. In this part, suppose $Y=\operatorname{Spec}(k), f: X \rightarrow Y$ projective.

Definition 2.4.1. $K_{X}:=f^{!} \mathcal{O}_{Y} \in D^{+}(X)$ is called a dualizing complex on X.
We have an immediate corollary of the last paragraph of the previous section:
Corollary 2.4.2. Let X / k be projective, $L \in D^{-}(X)_{\text {coh }}$. Then there is a perfect pairing of finite dimensional k-spaces between $H^{j}(X, L)$ and $\operatorname{Ext}^{-j}\left(L, K_{X}\right)$.
Proof. By the last paragraph of the previous section, $\operatorname{Ext}^{i}\left(L, K_{X}\right) \simeq \operatorname{Ext}^{i}(R \Gamma(X, L), k)=$ $\operatorname{Hom}\left(H^{-i}(X, L), k\right)$. Hence the corollary follow.

Next, we first consider the case when X / k is smooth.
Corollary 2.4.3 (Serre). Let X / k be projective, smooth, purely of dimension d. Then $K_{X}=\omega_{X}[d]$. Hence there is a perfect pairing between $H^{j}(X, L)$ and $\operatorname{Ext}^{d-j}\left(L, \omega_{X}\right)$. In particular, for L locally free of finite type, $H^{j}(X, L)$ is dual to $H^{d-j}\left(X, L^{\vee} \otimes \omega_{X}\right)$, where $L^{\vee}=\mathcal{H o m}\left(L, \mathcal{O}_{X}\right)$.
Proof. We only need to prove that last assertion. For that, $R \mathcal{H o m}\left(L, \omega_{X}\right)=L^{\vee} \otimes \omega_{X}$, so $\operatorname{Ext}^{n}\left(L, \omega_{X}\right)=H^{n} R \Gamma\left(X, R \mathcal{H} o m\left(L, \omega_{X}\right)\right)=H^{n}\left(X, L^{\vee} \otimes \omega_{X}\right)$.

In fact, the perfect paring is given by the natural pairing followed by Tr :

$$
H^{j}(X, L) \otimes H^{d-j}\left(X, L^{\vee} \otimes \omega_{X}\right) \rightarrow H^{d}\left(X, \omega_{X}\right) \xrightarrow{\operatorname{Tr}} k
$$

When $d=1$, we get "Roch's half" of the Riemann-Roch theorem, which claims that for L a line bundle, $H^{1}(X, L)$ is dual to $H^{0}\left(X, L^{\vee} \otimes \omega_{X}\right)$.
Corollary 2.4.4. Let X / k be projective, smooth, purely of dimension d. Then $H^{j}\left(X, \Omega_{X}^{i}\right)$ is dual to $H^{d-j}\left(X, \Omega_{X}^{d-i}\right)$.

This is somehow related to Hodge theory.
Then, we discuss K_{X} in general.
Proposition 2.4.5. Let X / k be projective with $\operatorname{dim} X=n$. Then $K_{X} \in D^{[-n, 0]}(X)_{\text {coh }}$. Proof. We have

with i a closed immersion. $i_{*} K_{X}=R \mathcal{H o m}_{\mathcal{O}_{P}}\left(\mathcal{O}_{X}, \omega_{P}\right)[N]$, so it's enough to show $\mathcal{E} x t_{\mathcal{O}_{P}}^{i+N}\left(\mathcal{O}_{X}, \omega_{P}\right)=0$ for $i \notin[-n, 0]$, that is,

$$
\mathcal{E}^{j}=\mathcal{E} x t_{\mathcal{O}_{P}}^{j}\left(\mathcal{O}_{X}, \omega_{P}\right)=0
$$

for $j<N-n$ or $j>N$. This holds for $j>N$ since for all $x \in X, \mathcal{E} x t_{\mathcal{O}_{P}}^{j}\left(\mathcal{O}_{X}, \omega_{P}\right)_{x}=$ $\operatorname{Ext}_{\mathcal{O}_{P, x}}^{j}\left(\mathcal{O}_{X, x}, \omega_{P, x}\right)$, where $\omega_{P, x} \simeq \mathcal{O}_{P, x}$ is regular of dimension $\leqslant N$. Note that for $q \gg 0, \mathcal{E}^{j}(q)$ is generated by global sections. It then suffices to show for a fixed $j<N-n, \Gamma\left(P, \mathcal{E}^{j}(q)\right)=0$ for $q \gg 0$. This is right since $\mathcal{O}_{x}, \omega_{P} \in \operatorname{Coh}(P)$ implies that $\Gamma\left(P, \mathcal{E} x t^{j}\left(\mathcal{O}_{X}, \omega_{P}\right)(q)\right)=\operatorname{Ext}_{P}^{j}\left(\mathcal{O}_{X}, \omega_{P}(q)\right)$ (we assume this), which is dual to $H^{N-j}\left(P, \mathcal{O}_{X}(-q)\right)=H^{N-j}\left(X, \mathcal{O}_{X}(-q)\right)=0$ since $N-j>n=\operatorname{dim} X$.

Let A be a local ring with residue field k, M be an A-module. A is called CohenMacaulay if its depth is equal to $\operatorname{dim} A$. A scheme X is called Cohen-Macaulay if all its local rings are Cohen-Macaulay.

Proposition 2.4.6. Let X / k be projective. Suppose X is Cohen-Macaulay and all irreducible components have dimension n. Then $K_{X} \in D^{[-n,-n]}(X)$, and so $K_{X} \simeq \omega_{X}^{\circ}[n]$ with $\omega_{X}^{\circ}=H^{-n}\left(K_{X}\right)[n]$.
Proof. By the proof of the previous proposition, we only need to show that $\forall j>N-n$, $x \in X$,

$$
\operatorname{Ext}_{\mathcal{O}_{P, x}}^{j}\left(\mathcal{O}_{X, x}, \omega_{P, x}\right)=0,
$$

which follows from the equation

$$
\begin{aligned}
\operatorname{proj} \operatorname{dim} \mathcal{O}_{P, x} & =\operatorname{dim} \mathcal{O}_{P, x}-\operatorname{depth}_{\mathcal{O}_{P, x}} \mathcal{O}_{X, x} \\
& =\operatorname{dim} \mathcal{O}_{P, x}-\operatorname{depth}_{\mathcal{O}_{X, x}} \mathcal{O}_{X, x} \\
& =\operatorname{dim} \mathcal{O}_{P, x}-\operatorname{dim} \mathcal{O}_{X, x}=N-n .
\end{aligned}
$$

The sheaf ω_{X}° in the proposition is called the dualizing sheaf for X.
X is Cohen-Macaulay if, e.g., there is a regular k-immersion i of X into a projective space over k.

In this case, we even have ω_{X}° is a line bundle. Indeed,

$$
\begin{aligned}
f^{!} \mathcal{O}_{Y} & \simeq i^{!} g^{\prime} \mathcal{O}_{Y} \\
& =i^{!} \omega_{P}[N] \\
& \simeq i^{*} \omega_{P} \otimes \omega_{X / P}[-(N-n)][N] \quad \text { by }(*) \text { in the proof of Proposition 1.2.4.(4) } \\
& =i^{*} \omega_{P} \otimes \omega_{X / P}[n],
\end{aligned}
$$

and hence $\omega_{X}^{\circ}=i^{*} \omega_{P} \otimes \omega_{X / P}$.

