
THE INTERSECTION FORMULA

FEDERICO BINDA

Abstract. Notes for a seminar in commutative algebra about Serre’s “Tor” formula.
The goal is to present and describe the minimum background material in order to un-
derstand Serre’s definition of intersection multiplicity.
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1. The Samuel multiplicity of an Ideal

Following [8], in this section we review some classical results on Samuel’s multiplicity.
Let B =

⊕
i≥0Bi be a graded ring, where B0 is Artinian and B is generated, as B0-

algebra, by r elements of degree 1. Recall that for a graded module M =
⊕

i≥0Mi, finitely
generated over B, we define the Hilbert function HM of M by HM(i) = length(Mi). This
function is polynomial-like and we call the associated polynomial the Hilbert polynomial
of M . We call the degree of the Hilbert function the degree of the associated Hilbert
polynomial.

Let A be a local Noetherian ring with maximal ideal m and let M be a finitely generated
module of dimension d. Let q ⊆ m be an ideal of A such that M/qM has finite length,
i.e. Supp(M/qM)(= Supp(M ⊗ A/q) = Supp(M) ∩ Supp(A/q)) = {m}, so that m is the
only prime ideal in the support of M containing q.

In our setting, we have the graded ring Gq(A) =
⊕

i≥0 q
i/qi+1, called the associated

graded ring of q, and the associated graded module Gq(M) =
⊕

i≥0 q
iM/qi+1M . So the

Hilbert function of M is HM(i) = length(qiM/qi+1M). Since

length(qiM/qi+1M) = length(M/qi+1M)− length(M/qiM)

we conclude that there exists a polynomial, called the Hilbert-Samuel polynomial (or,
when this will not create confusion, simply the Hilbert polynomial) of M with respect to
q, denoted Pq(M).

1
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1.1. Definition. The Samuel multiplicity of q on M , denoted e(q,M), is d! times the
coefficient of the term of degree d in the polynomial Pq(M). The multiplicity of q in A
or simply the multiplicity of q is e(q, A). The multiplicity of A is the multiplicity of the
maximal ideal m of A.

1.2. Remark. e(q,M) is an integer > 0.

1.3. Proposition. Let M be a module of dimension d and let q be an ideal of A such that
M/qM has finite length. Then

e(q,M) = d! lim
n→∞

length(M/qnM)

nd

Proof. Let Pq(M)(n) = adn
d + ad−1n

d−1 + . . . + a0 be the Hilbert polynomial of M .
By definition of Samuel multiplicity, the leading term of this polynomial is e(q,M)/d!.
Moreover, for n� 1, Pq(M)(n) = length(M/qnM). So we have:

d! lim
n→∞

length(M/qnM)

nd
= d! lim

n→∞

Pq(M)(n)

nd

= d! lim
n→∞

adn
d + ad−1n

d−1 + . . .+ a0
nd

= d!ad = e(q,M).

�

We recall some facts about regular local rings. Let k = A/m be the residue field of
A and let d = dimA. We say that A is regular if it satisfies one (and then all) of the
following equivalent conditions:

i) the maximal ideal m is generated by d elements;
ii) dimA = dimk(m/m2);

iii) the k-algebra G(A) =
⊕

i≥0m
i/mi+1 is isomorphic to k[X1, . . . , Xd].

1.4. Proposition. Let A be a regular local ring of dimension d with maximal ideal m and
residue field k.

i) The associated graded ring G(A) =
⊕

i≥0m
i/mi+1 is isomorphic to k[X1, . . . , Xd]

a polynomial ring over k in d variables.
ii) A is an integral domain.
iii) The multiplicity of A is one.

Proof. By assumption, there exist d elements, say x1, . . . , xd, such that m = (x1, . . . , xd).
Consider the epimorphism of graded rings ϕ : k[X1, . . . , Xd]→ G(A) defined by Xi 7→ xi
mod m2. Assume, by contradiction, that the map is not an isomorphism and let N =
Kerϕ. The degree of the Hilbert function of the graded ring G(A) is d− 1, since it is one
less the degree of the Hilbert-Samuel polynomial of m, which is equal to the dimension
of A. Moreover, we know that the degree of the Hilbert function of k[X1, . . . , Xd] is also
d − 1. Since k[X1, . . . , Xd] is an integral domain, (0) is prime and so the degree of the
Hilbert function of a proper quotient of k[X1, . . . , Xd] is at most d − 2. If N 6= 0, then
k[X1, . . . , Xd]/N ' G(A), so that G(A) is a proper quotient of k[X1, . . . , Xd], which is a
contradiction. This proves i).

For ii), we can prove, in general, the following lemma:
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1.5. Lemma. Let A be a Noetherian ring and let I ⊂ r(A) (the Jacobson radical of A).
Let GI(A) be the graded ring associated to the I-adic filtration of A. If GI(A) is a domain,
then so is A.

Proof. let a, b 6= 0 in A. By the Artin-Rees lemma, ∩In = 0. Hence there exist m,n ∈ N
such that a ∈ Im, a /∈ Im+1, b ∈ In, b /∈ In+1. Hence ā, b̄ 6= 0 in GI(A). Since it is a
domain, āb̄ = āb 6= 0, so ab 6= 0 in A. �

Since we have shown in i) that G(A) is an integral domain, by the previous lemma this
implies that A is an integral domain. From statement i), it also follows that the Hilbert-
Samuel polynomial of m is equal to the Hilbert-Samuel polynomial of a polynomial ring
in d variables. Hence length(A/mi) is equal to the dimension of the k-vector space of the
homogeneous polynomials of degree i in d variables, so that

length(A/mi) =

(
i+ d− 1

d

)
.

This polynomial is of degree d and leading coefficient 1/d!. Hence the Samuel multiplicity
of A is e(m, A) = 1. �

The following proposition describe the behaviour of the Hilbert-Samuel polynomials with
respect to short exact sequences.

1.6. Proposition. Let
0→M ′ →M →M ′′ → 0

be a short exact sequence of A-modules. Let q be an ideal of A such that M/qM , M ′/qM ′

and M ′′/qM ′′ have finite length. Then, if dimM = d and if ad, a
′
d and a′′d are the coeffi-

cients of degree d of the Hilbert-Samuel polynomials of M , M ′ and M ′′ respectively, with
respect to q, then

ad = a′d + a′′d.

Proof. See [8, p. 30]. �

Let A be a local ring of dimension r and q be an ideal of A such that M/qM has finite
length. Let er(q,M) denote r! times the coefficient of degree r in the Hilbert-Samuel
polynomial Pq(M). By the previous proposition, we have that er(q,−) is additive on
short exact sequences and that is zero for any module M of dimension d < r.

The multiplicity of two ideals can be the same even when one is properly contained in
the other. In fact, let A be the k-algebra k[[X, Y ]] where k is a field. It is well-known
that A is a local ring: it can be identified with k[X, Y ]m for m = (X, Y ) ⊂ k[X, Y ];
moreover, A is regular of dimension 2. Consider the two m-primary ideals a = (X2, Y 2)
and b = (X2, Y 2, XY ). Notice that, for all n, the ideal an by all monomials X iY j with
i + j = 2n and both even, while bn is generated by all monomials of total degree 2n.
The quotient bn/an is then generated by all monomials X iY j with i + j = 2n, i and j
odd. There are n such monomials and it’s easy to see that bn/an has finite length equal
to n. Hence, the Hilbert-Samuel polynomial of the module b/a is of degree 1 (indeed
P (b/a)(n) = n). By the additivity on short exact sequences, we actually have that the
Hilbert-Samuel polynomial of a and b differ by a polynomial of degree 1 and that the
leading coefficients are equal. This is a consequence of a more general fact, but first we
have to recall the following definition
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1.7. Definition. Let I be an ideal of a ring A and B is an extension of A. We say
that an element x ∈ B is integral over I if x satisfies a monic equation of the form
xn + an−1x

n−1 + . . .+ a0 with ai ∈ I i for all i.

Clearly for I = A we get back the usual definition of integral element of B over A. If I
and J are two ideals of A, we say that I is integral over J if every element of I is integral
over J in the sense of the previous definition. The condition that an ideal I is integral
over J is also referred to by saying that J is a reduction of I. There is a very nice relation
between integral extensions and multiplicity, given by the following proposition:

1.8. Proposition. Let p and q be m-primary ideals of a local ring (A,m) such that q ⊂ p.
If p is integral over q, then the multiplicity of p is equal to the multiplicity of q.

Proof. See [8, p. 36]. �

2. The Koszul Complex

In this section we follow [9] and again [8]. We need to recover some properties of the
so-called Koszul complex of a sequence of elements of a ring A. Following Serre, we may
begin with the “simple case”. Let A be a commutative ring (which we may assume to be
Noetherian, even if it is not strictly required for the time being) and let x be an element
of A. We denote by K(x) the following complex:

Ki(x) = 0 if i 6= 0, 1;

K1(x) = K0(x) = A;

with the map d : Ki(x)→ K0(x) given by the multiplication by x. We identify K0(x) with
A and we choose a basis of the free A-module K1(x) such that d(ex) = x. The derivation
d is thus defined by A-linearity d(aex) = ax for all a ∈ A.

Let M be an A-module; we write K(x,M) for the complex obtained by tensoring K(x)
with M , i.e. the tensor product complex K(x)⊗A M . Then we have:

K(x,M)n = Kn(x)⊗A M = 0 if n 6= 0, 1,

K(x,M)1 = K1(x)⊗A M ∼= M,

K(x,M)0 = K0(x)⊗A M ∼= M

and the derivation d⊗ 1 = d, d : K(x,M)1 → K(x,M)0 given by

d(ex ⊗m) = xm for all m ∈M.

We can compute the homology modules of this complex. They are:

H0(K(x),M) = M/d(M) = M/xM,

H1(K(x),M) = AnnM(x)/0 = AnnM(x) = Ker(xM : M →M),

Hi(K(x),M) = 0 if n 6= 0, 1.

We will denote Hi(K(x),M) by Hi(x,M).
The second step is to take a complex of A-modules L and consider the tensor product

complex K(x)⊗A L. The homology modules of this complex are related to the homology
modules of L in the following way:
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2.1. Proposition. For every p ≥ 0, we have an exact sequence:

0→ H0(x,Hp(L))→ Hp(K(x)⊗A L)→ H1(x,Hp−1(L))→ 0.

Proof. By definition of tensor product of two complexes, for all n we have:

(K(x)⊗A L)n =
⊕

p+q=n

K(x)p ⊗A Lq.

Since K(x)i = 0 for i 6= 0, 1, the above formula can be written as (K(x) ⊗A L)p =
(K(x)0 ⊗A Lp)⊕ (K1(x)⊗A Lp−1). If we consider K0(x) and K1(x) as A-modules, using
the natural injection and projection, we obtain the following exact sequence

0→ (K(x)0 ⊗A L)p → (K(x)⊗A L)p → (K1(x)⊗A L)p−1 → 0

so that we have an exact sequence of complexes. Using the fact that K0(x) = K1(x) = A,
we can write that sequence in a fancy way

0→ L→ K(x)⊗A L→ L[−1]→ 0,

where L[−1] is the complex obtained from L by a shift of −1 (i.e. L[−1]n = Ln−1) together
with a sign change on the boundary map (this is a convention designed to simplify the
notation). We have the corresponding long exact sequence of homology modules

. . .→ K1(x)⊗A Hp(L)
d⊗1−−→ K0 ⊗A Hp(L)→ Hp(K(x)⊗A L)→

→ K1(x)⊗A Hp−1(L)
d⊗1−−→ K0 ⊗A Hp−1(L)→ . . .

where the boundary map d ⊗ 1 is equal to scalar multiplication by x. Hence the above
exact sequence splits into short exact sequences:

0→ Xp → Hp(K(x)⊗A L)→ Yp−1 → 0

with

Xp = Coker(K1(x)⊗A Hp(L)→ K0 ⊗A Hp(L)) = H0(x,Hp(L))

Yp = Ker(K1(x)⊗A Hp−1(L)→ K0 ⊗A Hp−1(L)).

�

A complex of A-modules L is called an acyclic complex on M if Hp(L) = 0 for p > 0
and H0(L) = M . In other words, we have an exact sequence

. . .→ Ln → . . .→ L1 → L0 →M → 0.

From the previous proposition we get the following

2.2. Corollary. If L is an acyclic complex on M and if x ∈ A is not a zero-divisor in M ,
then K(x)⊗A L is an acyclic complex on M/xM .

Proof. Since L is acyclic, we get H0(x,Hp(L)) = H1(x,Hp−1(L)) = 0 for all p > 1,
so that, by the previous proposition, Hp(K(x) ⊗A L) = 0 for p > 1. For p = 1 we
have H0(x,H1(L)) = 0, hence H1(K(x) ⊗A L) ∼= H1(K(x) ⊗A H0(L)) = H1(K(x) ⊗A

M) = Ker(xM) = 0 since x is not a zero divisor for M . Similarly, for p = 0, we get
H0(K(x)⊗A L) ∼= H0(x,M) = M/xM . �
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Now we consider the general case. Let (x1, . . . , xr) be r elements of A. We denote by
K(x1, . . . , xr) the tensor product complex

K(x1, . . . , xr) = K(x1)⊗A K(x2)⊗A · · · ⊗A K(xr).

One can show1 that Kp(x1, . . . , xn) is the free module generated by the elements ei1 ⊗
. . . ⊗ eip , i1 < i2 < . . . < ip, where ei = exi

is the generator of the free A-module K1(xi)
mentioned above. In particular, it is isomorphic to

∧p(Ar), the p-th exterior product
of Ar. Let M be an A-module. We write K(x1, . . . , xr;M) = K(x,M) for the tensor
product complex

K(x1, . . . , xr)⊗A M,

where x = (x1, . . . , xr). For all p, the module Kp(x1, . . . , xr;M) is a direct sum of modules
ei1 ⊗A · · · ⊗A eip ⊗A M , i1 < i2 < . . . < ip with derivations d : Kp(x,M) → Kp−1(x,M)
(see [6], Appendix C)

d(ei1 ⊗ . . .⊗ eip ⊗m) =

p∑
k=1

(−1)k+1xikei1 ⊗ . . .⊗ êik ⊗ . . .⊗ eip ⊗m.

We denote by Hp(x,M) the p-th homology module of the Koszul complex K(x,M). An
easy computation shows that

H0(x,M) = M/(x1, . . . , xr)M

H1(x,M) =
r⋂

i=1

Ker((xi)M : M →M) = {m ∈M |xim = 0 for all i}.

One of the main uses of the Koszul complex is as a criterion for a sequence of elements
to be regular for a module M , in the sense of the following

2.3. Definition. Let M be a non-zero module over a local ring A and let x1, . . . , xr be
a sequence of elements in the maximal ideal m. We say that x1, . . . , xr form a regular
sequence on M if, for every i, 1 ≤ i ≤ r, xi is not a zero-divisor in M/(x1, . . . , xi−1)M .

The following propositions describe the case where the homology modules of the com-
plex are zero for p > 0 (see [9, IV.A.2] for proofs).

2.4. Proposition. Under the preceding hypotheses, if for all i, 1 ≤ i ≤ r, xi is not a
zero-divisor in M/(x1, . . . , xi−1)M , then Hp(x,M) = 0 for p > 0.

2.5. Proposition. If A is Noetherian, M is finitely generated and the xi belong to the
radical Nil(A), then the following are equivalent:

(1) Hp(x,M) = 0 for p ≥ 1.
(2) H1(x,M) = 0.
(3) For every i, 1 ≤ i ≤ r, xi is not a zero-divisor in M/(x1, . . . , xi−1)M .

2.6. Corollary. Condition 3 does not depend on the order of the sequence (x1, . . . , xr).

1direct computation in lower degrees, then by induction.
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2.7. Remark. Notice that we are not assuming the local hypothesis in proposition 2.5.
The proof of the same result in the local case can be found in [8, p. 60]. However, the
exactness of the Koszul complex does not imply that the sequence is regular for nonlocal
rings: a regular sequence is defined as in the local case except that the condition that the
xi are in the maximal ideal is replaced by the condition that M/(x1, . . . , xr)M 6= 0. In
order to obtain a similar result we have to require (as Serre does) that the xi belong to
the radical. To see this, we can make the following example.

Let A = k[X, Y, Z] and consider the sequence XY,X − 1, XZ. This sequence is regular
for A (in the sense specified above). Indeed, A/(XY,X − 1, XZ) 6= 0; X − 1 is not a zero
divisor in A/(XY ) (thanks to the constant term −1). A/(XY,X − 1) ∼= k[Y, Z]/(Y ) and
XZ = Z in this quotient (since X = 1). Hence, again, we have that XZ is not a zero
divisor in A/(XY,X−1). Now consider the permutation XY,XZ,X−1 of the sequence:
this is not a regular sequence (XZ is a zero divisor in A/(XY )). However, the Koszul
complex K(XY,XZ,X − 1;A) is exact.

The map M 7→ K(x,M) is clearly functorial for a fixed sequence of elements x1, . . . , xr.
Notice that for all p, the module Kp(x1, . . . , xn) is free, being isomorphic to

∧p(Ar), hence
flat as A-module. In particular, this implies that the (covariant) functor M 7→ K(x,M)
is exact. So, if 0 → M ′ → M → M ′′ → 0 is an exact sequence of A-modules, we obtain
an exact sequence of complexes

0→ K(x,M ′)→ K(x,M)→ K(x,M ′′)→ 0

and the corresponding exact sequence of homology modules:2

0→ Hr(x,M
′)→ Hr(x,M)→ Hr(x,M

′′)→ Hr−1(x,M
′)→ . . .

. . .→ H0(x,M
′)→ H0(x,M)→ H0(x,M

′′)→ 0

Moreover, H0(x,M) = M/(x)M is isomorphic (naturally in M) to A/(x) ⊗A M . It is
possible (see [3], Chap. III, Proposition 5.2 and Corollary 5.3) to extend this isomorphism
of functors (in a unique way) to a natural transformation

ψi : Hi(x1, . . . , xr;M)→ TorAi (A/(x1, . . . , xr),M).

Suppose that conditions a), b) and c) of proposition 2.5 are satisfied for M = A (in
particular, this is equivalent of requiring that for 1 ≤ i ≤ r, xi is not a zero-divisor
in A/(x1, . . . , xi−1)). Then K(x1, . . . , xr) is an A-free (hence projective) resolution of
H0(x1, . . . , xr;A) = A/(x1, . . . , xr) and so the map ψi is an isomorphism for every i and
every M , i.e. the functors TorAi (A/(x1, . . . , xr),−) and Hi(x1, . . . , xr;−) are isomorphic.
Similarly we have natural maps

ϕi : ExtiA(A/(x1, . . . , xr),M)→ H i(HomA(K(x;M)) ∼= Hr−i(x;M)

that, in the same assumptions, turns out to be an isomorphism of functors.
Finally, we summarize some useful properties of the Koszul complex in the following

proposition:

2.8. Proposition. Let A be a local Noetherian ring and assume that the ideal x =
(x1, . . . , xr) is contained in the maximal ideal m of A. Let M be a finitely generated
A-module. Then:

2Notice that we clearly have Hr+1(x1, . . . , xr;M) = 0 for all A-modules M , since
∧r+1

(Ar) = 0.
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(1) The annihilator of Hi(x1, . . . , xr;M) contains (x1, . . . , xr) and AnnM for all i.
(2) If S is a multiplicative subset of A, then K(x, S−1M) = S−1K(x,M). Therefore

Hi(x, S
−1M) = S−1Hi(x,M).

Proof. See [9, p. 56] and [2, chap. 17]. �

3. Filtration of a Koszul complex

The Koszul complex on a set of elements has many properties that play an important
role for intersection multiplicities.

3.1. Definition. Let F be a bounded complex of modules such that, for all i, Hi(F ) has
finite length. Then we can define the Euler-Poincaré characteristic of F to be

χ(F ) =
∑
i

(−1)ilength(Hi(F )).

The Euler-Poincaré characteristic of a complex is additive on short exact sequences, i.e.
if

0→ E → F → G→ 0

is an exact sequence of bounded complexes with homology of finite length, then χ(F ) =
χ(G) + χ(E).

Let A be a local Noetherian ring and assume that the ideal x = (x1, . . . , xr) is contained
in the maximal ideal m of A. Let M be a finitely generated A-module such that M/xM
has finite length. The homology modules of the Koszul complex Hp(x,M) are the finitely
generated and, by prop. 2.8, are all annihilated by x + AnnM . Hence3 they have finite
length. We can then define the Euler-Poincaré characteristic

χ(x,M) =
r∑

p=0

(−1)plength(Hp(x,M)).

Since M/xM has finite length by assumption, dimA(M) ≤ r (using Chevalley definition
of dimension), hence the Hilbert-Samuel polynomial Px(M) has degree ≤ r. In section
1 we defined the Samuel multiplicity of an ideal to be r! times the term of degree r
of the Hilbert-Samuel polynomial. The main result of this section is to show that the
Samuel multiplicity of the ideal generated by x1, . . . , xr is equal to the Euler-Poincaré
characteristic of the Koszul complex K(x,M), i.e.

3.2. Theorem. Under the previous assumptions

χ(x,M) = er(x,M).

Proof. This is the proof given by Serre in [9]. A (slightly) different approach can be found
in [8].

Let K = K(x,M). We can write K as the direct sum of its components Kp =
Kp(x,M) ∼=

∧p(Ar). For every i ∈ Z, define the submodule F i(Kp) of Kp by F iKp =
xi−pKp where xj = A if j ≤ 0. Denote by F iK the complex obtained considering F iKp

(that is actually a subcomplex of the Koszul complex K). By definition we have that

3We know that p ∈ Supp(Hp(x,M)) if and only if p ⊇ AnnHp(x,M) ⊇ x+AnnM . Hence p ⊃ AnnM ,
so p ∈ Supp(M) and p ⊃ x. So p ∈ Supp(M/xM) = {m}.
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F 0K = K (since F 0Kp = Kp). Moreover, for every fixed p we have that xi−pKp =
F iKp ⊃ F i+1Kp = xi+1−pKp since xi−p ⊃ xi+1−p. Thus we get a decreasing filtration of
complexes

K = F 0K ⊃ F 1K ⊃ . . . ⊃ F iK ⊃ . . .

which is an x-good filtration of K, i.e. for all p the filtration (F iKp)i of Kp is x-good.
Let gr(A) be the graded ring associated with the x-adic filtration of A, that is

gr(A) = Gx(A) =
⊕
p

xi/xi+1.

So gr0(A) = A/x and gr1(A) = x/x2. Let ξ1, . . . , ξr be the classes of x1, . . . , xr in the
quotient x/x2 and denote by Ξ = (ξ1, . . . , ξr) the ideal of x/x2 generated by ξ1, . . . , ξr.
Let now gr(M) = Gx(M) be the graded module associated with the x-adic filtration of
M . Hence gr(M) is a graded gr(A)-module.

It worth noticing that the Koszul complexK(Ξ, gr(M)) is a graded complex, isomorphic
to gr(K) =

⊕
i F

iK/F i+1K (this can be seen by direct computation, using the explicit
description of the modules of the Kp as free modules generated by the elements ei1⊗ . . .⊗
eip , i1 < i2 < . . . < ip, where ei = exi

).
The homology modulesHp(Ξ, gr(M)) are all finitely generated modules over gr(A)/Ξ ∼=

A/x (since A is Noetherian). Since AnnM annihilates the modules Hp(x,M), using the
description of K(Ξ, gr(M)) in terms of the complex associated to the x-adic filtration
gr(K)) we see that AnnM actually annihilates Hp(Ξ, gr(M)). Hence we can give them
a structure of A/(x + AnnM)-module. Since M/xM has finite length, the unique prime
ideal that contains both x and AnnM is m. Hence A/(x+AnnM) is Artinian (Noetherian
of dim 0) and then, by a well-known result, Hp(Ξ, gr(M)) have finite length (for all p).

As a consequence, since Hp(Ξ, gr(M)) is the direct sum of the Hp(F
iK/F i+1K), we

have that there exists an m ≥ 0 such that Hp(F
iK/F i+1K) = 0 for all i > m and all p.

Without loss of generality, we can assume m ≥ r.
Notice that we can actually say more:

Claim. for all p and for i > m we have Hp(F
iK) = 0.

This can be shown in two steps: first, arguing by induction, it is possible to see that
Hp(F

iK/F i+jK) = 0 for p ∈ Z, i > m and j ≥ 0. Then the claim follows from a corollary
to Artin-Rees lemma (for details about this step of the proof, see [9, p. 58, §3.5-3.6]).

The claim can be reformulated as follows: for all p ∈ Z, the map, induced in homology
by K → K/F iK, Hp(x,M) = Hp(K)→ Hp(K/F

iK) is an isomorphism for i > m.
The next step is to show that the Euler-Poincaré characteristic χ(x,M) is equal, for

i > m to the characteristic χ(K/F iK). Indeed, by the claim, we have that

χ(x,M) =
r∑

p=0

(−1)plength(Hp(x,M)) =
r∑

p=0

(−1)plength(Hp(K/F
iK)).

The complex K/F iK has finite length. Since the length is additive on short exact se-
quences, a simple computation shows that the Euler-Poincaré characteristic of a complex
of finite length is equal to the characteristic of the corresponding homology complex.
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Hence we have:

χ(x,M) =
r∑

p=0

(−1)plength(Hp(K/F
iK)) =

r∑
p=0

(−1)plength(Kp/F
iKp) = χ(K/F iK).

But Kp/F
iKp = Kp/x

i−pKp
∼= Kp ⊗A A/x

i−p. Since Kp = Kp(x,M) is a direct sum of(
r
p

)
modules ei1 ⊗A · · · ⊗A eip ⊗AM where i1 < i2 < . . . < ip, Kp ⊗A A/x

i−p is isomorphic

to
(
r
p

)
copies of M ⊗A A/x

i−p ∼= M/xi−pM . Hence, if i > m, we have

χ(x,M) =
r∑

p=0

(−1)p
(
r

p

)
length(M/xi−pM).

If i is large enough we can rewrite this equality as

χ(x,M) =
r∑

p=0

(−1)p
(
r

p

)
Px(M)(i− p)

with the Hilbert-Samuel polynomials Px(M). By direct computation, the right side is
equal to er(x,M). �

As a consequence (by the properties of er(q,M) proved in section 1)

3.3. Corollary. We have χ(x,M) > 0 if dimA(M) = r and χ(x,M) = 0 if dimA(M) < r.

4. Reduction to the diagonal

In this paragraph we present the so-called reduction to the diagonal : it is a simple but
clever argument that reduced the question of intersection of arbitrary affine varieties to
a question of intersection of an algebraic set with a linear variety. Let k be a field. First
of all, recall that a subset V ⊂ An

k(k) is called an affine algebraic variety if the ideal
I(V ) = p is prime. It is well known that an affine algebraic set V is irreducible if and
only if I(V ) is prime (hence varieties are irreducible algebraic sets). So let V ⊂ An

k(k) be
an affine variety and let p = I(V ). We define the dimension dimV to be the dimension
of the Noetherian ring A = k[X1, . . . , Xn]/p (which is indeed a domain).

Let U, V be two affine varieties. The set U∩V needs not to be irreducible, but is clearly
an algebraic set (actually U ∩ V = V(p + q) where p and q are the ideals I(V ) and I(U)
resp.): consider an irreducible component W of V ∩ U . Then we have the inequality

dimW ≥ dimV + dimU − n.

Following Serre, this result can be restated in a purely algebraic language as follows:

4.1. Proposition. Let p and q be two prime ideals of the polynomial ring A = k[X1, . . . , Xn].
Let P be a minimal element of V(p + q). Then we have

ht(P) ≤ ht(p) + ht(q).

As we said above, the idea behind the proof is to look at A⊗k A and at the two prime
ideals corresponding to the product V × U and to the diagonal ∆ respectively. We need
two lemmas:
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4.2. Lemma. Let A′, A′′ be domains which are finitely generated k-algebras. For every
minimal prime ideal p of A′ ⊗k A

′′, we have

dim(A′ ⊗k A
′′/p) = dim(A′ ⊗k A

′′) = dimA′ + dimA′′.

Proof. By Noether normalization lemma, there exist two polynomial k-algebras B′ =
k[X1, . . . , Xn] and B′′ = k[Y1, . . . , Ym] such that A′ is an integral extension of B′ and A′′

is an integral extension of B′′. By the Going Up theorem, this implies dimA′ = dimB′

and dimA′′ = dimB′′. Notice that the tensor product

B′ ⊗k B
′′ = k[X1, . . . , Xn]⊗k k[Y1, . . . , Ym] ∼= k[X1, . . . , Xn, Y1, . . . , Ym]

is again a polynomial ring. Therefore, since we know the dimension of a polynomial
algebra, we have dim(B′ ⊗k B

′′) = dimB′ + dimB′′.
Now, since A′ is integral over B′, then A′ is finitely generated over B′. Similarly, A′′ is

finitely generated over B′′. But then the ring A′⊗kA
′′ is finitely generated over the product

B′⊗kB
′′ by the (tensor) products of the generators of A′ over B′ and of A′′ over B′′, hence

integral. Again by the Going Up theorem, we have dim(A′ ⊗k A
′′) = dim(B′ ⊗k B

′′). So
we have:

dim(A′ ⊗k A
′′) = dim(B′ ⊗k B

′′) = dimB′ + dimB′′ = dimA′ + dimA′′.

Let p be a minimal prime of A′ ⊗k A
′′. Let K ′, K ′′, L′, L′′ be the field of fractions of

A′, A′′, B′, B′′. We have the diagram of injections

0 - L′ ⊗k L
′′ - K ′ ⊗k K

′′

0 - B′ ⊗k B
′′

6

- A′ ⊗k A
′′

6

0

6

0

6

As K ′ is an L′ vector space, it is free over L′. Similarly K ′′ is free over L′′. Since direct
sums commute with tensor products, we have that K ′ ⊗k K

′′ is free over L′ ⊗k L
′′; in

particular, it is a torsion-free module over the polynomial algebra B′ ⊗k B
′′. Notice that

the intersection of the prime ideal p with B′ ⊗k B
′′ is 0. In fact, let x ∈ p ∩ B′ ⊗k B

′′:
notice that we can think at x as an element of A′⊗kA

′′. Since p is a minimal prime, then
it is associated to (0). Hence x ∈ p implies that x is a zero-divisor in A′⊗k A

′′. Therefore
there exists y ∈ A′ ⊗k A

′′ such that xy = 0. But then y is a B′ ⊗k B
′′-torsion element of

K ′ ⊗k K
′′, so x = 0.

As a consequence, we have that A′⊗k A
′′/p is integral over B′⊗k B

′′ and so, finally, we
get

dim(B′ ⊗k B
′′) = dim(A′ ⊗k A

′′/p)

and this completes the proof. �

4.3. Lemma. Let A be a k-algebra, let C = A⊗k A and let ϕ : C → A be the homomor-
phism defined by ϕ(a⊗ b) = ab. Then:

i) The kernel d of ϕ is the ideal of C generated by the elements 1⊗ a− a⊗ 1, for
a ∈ A.
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ii) If p and q are two ideals of A, the image via ϕ of the ideal p ⊗ A + A ⊗ q is
equal to p + q.

Proof. It’s a simple computation. For details, see [9, p. 48]. �

Now we can return to the proof of the proposition.

Proof. Consider the exact sequence

0→ p⊗k A+ A⊗k q→ A⊗k A→ A/p⊗k A/q→ 0.

Let I = ϕ−1(P) where ϕ : A ⊗k A → A is the multiplication map ϕ(a ⊗ b) = ab. Notice
that I ∈ V(d) (i.e. I ⊃ d = Kerϕ) and I ∈ V(q) where q := p ⊗ A + A ⊗ q. Thus
I ∈ V(q) ∩ V(d) = V(q+ d). Notice that I is actually a minimal prime ideal of V(q+ d),
since any J prime that contains q must contain also I (by definition). Let now Q be the
image of I in A/p⊗k A/q: it is prime and actually a minimal prime ideal of V(d′) where
d′ is the image of d in A/p⊗k A/q. So we have the following situation:

0→ q→ d ⊂ I → d′ ⊂ Q→ 0

and (d ⊂ I)
ϕ−→ (0 ⊂ P). By lemma 4.3, we have that the kernel d is generated by the n

elements Xi⊗ 1 + 1⊗Xi. Hence we can deduce that ht(Q) ≤ n. If Q0 is a minimal prime
ideal of A/p⊗k A/q contained in Q, then again we have ht(Q/Q0) ≤ n. So, according to
lemma 4.2, we have

dim((A/p⊗k A/q)/Q0) = dim(A/p) + dim(A/q).

Moreover, since also A/p⊗kA/q is finitely generated as k-algebra, we can use the formula

ht(Q/Q0) = dim((A/p⊗k A/q)/Q0)− dim((A/p⊗k A/q)/Q)

and so, using the fact that dim((A/p⊗k A/q)/Q) = dimA/P, we get

n ≥ ht(Q/Q0) = dimA/p + dimA/q− dimA/P

so that
n− dimA/P ≤ n− dimA/p + n− dimA/q

i.e. ht(P) ≤ ht(p) + ht(q). �

As we mentioned above, the proof is an algebraic analogue of the set-theoretic formula
V ∩W = (V ×W ) ∩ ∆. Notice also that the first lemma shows that every irreducible
component of the product of two algebraic (affine) varieties has dimension equal to the
sum of the dimensions of the two varieties.

5. Multiplicity of a module and intersection multiplicity of two
modules

Let A be a Noetherian ring. Assume that all A-modules mentioned in this section are
finitely generated.

5.1. Definition. An element of the free abelian group Z(A) generated by the elements of
Spec(A) is called a cycle of A. We say that a cycle Z is positive if it is of the form

Z =
∑
p

n(p)p with n(p) ≥ 0 for every p ∈ Spec(A)
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For each i, we denote by Zi(A) the free Abelian group with basis consisting of all prime
ideals p such that the dimension of A/p is i. The group Zi(A) is called the group of
cycles of A of dimension i. If we assume that A is local of dimension n (that implies, in
particular, that the dimension of A/p is bounded by n for all p ∈ Spec(A)), we have that
the group Z(A), also called the group of cycles of A, is the direct sum of its subgroups
Zi(A), 0 ≤ i ≤ n.

In order to understand the definition, we can consider the following example: let A =
k[X, Y ] be the polynomial ring in two variables over a field k. It is well-known that the
dimension of k[X, Y ] is, as one might expect, 2. As a consequence, the groups of cycles
Zk(A) are zero for all k except for k = 0, 1 and 2. The group Z0(A) consists of the free
Abelian group generated by the set of prime ideals such that A/p has dimension 0. Since
A/p is a domain, this implies that is actually a field. Hence Z0(A) is the free Abelian
group on the set of maximal ideals of A. If k is algebraically closed, by the Nullstellensatz,
this set is in one-to-one correspondence with the set of points (a, b) in k × k (actually
it is the set of closed points of Spec(A)). Z1(A) has a basis consisting of primes p with
codimension 1, which correspond to irreducible curves. Finally, Z2(A) is free of rank 1,
generated by the (0) ideal.

Let M be an A-module: we wish to define the group of cycles of M . A first, naive, idea
is to consider the set of associated primes of M and then take the free module generated
by them. Anyway, it turns out to be more useful to make a different choice. Notice (see
[9, V.A.1]) that the category of A-modules M such that dimA(M) ≤ i is abelian. Given
an exact sequence of A-modules

0→M ′ →M →M ′′ → 0

with M ′ and M ′′ of dimension less or equal than i, then, since Supp(M) = Supp(M ′) ∪
Supp(M ′′), also M has dimension less or equal than i. We provisionally denote by Ki(A)
the category of A-modulesM with dimA(M) ≤ i. Let p ∈ Spec(A) such that dim(A/p) = i
and let M ∈ Ki(A). Then the module Mp over Ap is of finite length (maybe zero): in fact,
if p /∈ Supp(M), then Mp = 0. If p ∈ Supp(M) we have4 that dim(A/p) = i = dimA(M)
and so Supp(Mp) = {pAp}. Denote the length of Mp as Ap-module by length(Mp). This
length satisfies the following property: if

0 ⊂M0 ⊂ . . . ⊂Mi ⊂ . . . ⊂Ms = M

is a finite filtration of M whose quotients Mi/Mi−i are of the form A/q, where q ∈ Spec(A),
then there are exactly length(Mp) quotients of the form A/p.

Thus, we can finally define the function zi : Ki(A)→ Zi(A) by

zi(M) =
∑

dimA/p=i

length(Mp)p.

We define zi(M) to be the cycle of dimension i associated to M . The function zi is zero
on Ki−1(A). As we have already observed in the example above, if A is a domain, then
Zn(A) ∼= Z for n = dim(A). Similarly, zn(M) is (by definition) the rank of the A-module
M .

4since dimA(M) = supp∈Supp(M)(coht p)



14 FEDERICO BINDA

Assume A is local and let m be its maximal ideal. Let q be an m-primary ideal. Recall
that by the so-called Dimension theorem, for every non-zero A-module M , the Hilbert-
Samuel polynomial Pq(M) is of degree equal to d = dimAM . Moreover, as we have seen
in section 1, its leading coefficient is e(q,M)/d!. More generally, we defined ei(q,M) for
all positive integer i and M module such that d = dimAM ≤ i to be 0 if d < i and e(q,M)
if d = i. Hence ei(q,M) is an additive function on Ki(A) which is zero on Ki−1(A). It can
be proved5 that any such function on Ki(A) factors through zi(M) defined above. Thus
we have the following additive formula:

ei(q,M) =
∑

dimA/p=i

length(Mp)ei(q, A/p)

Let x be an ideal of definition of A, generated by x1, . . . , xn where n = dimA. According
to theorem 3.2, the i-th homology module of the Koszul complex K(x,M) has finite
length for every A-module M and every i ≥ 0 and we have

χ(x,M) = en(x,M) =
n∑

i=0

(−1)iLi(x,M)

where Li(x,M) := length(Hi(x,M)).
In section 4, we introduced the viewpoint of the reduction to the diagonal: in particular,

given the k-algebra A = k[X1, . . . , Xn], we introduced A ⊗k A as the coordinate ring of
the product An

k(k) × An
k(k). Similarly, A/p ⊗k A/q can be seen as the coordinate ring

of U × V and (A ⊗k A)/d as the coordinate ring of the diagonal ∆. In particular, A
can be identified with (A ⊗k A)/d and this gives a A ⊗k A-module structure to A. The
isomorphism of U ∩V with the intersection (U×V )∩∆ is the expressed in algebraic form
as the base change6

A/p⊗A A/q ∼= (A/p⊗k A/q)⊗A⊗kA A.

This idea can be generalized as follows: let A be a k-algebra (k field, not necessarily
algebraically closed) and let M,N be two A-modules. Let B = A ⊗k A and let d be the
ideal generated by a⊗1−1⊗a, a ∈ A (is the kernel of the multiplication map ϕ of section
4). Then A ∼= B/d has a B module structure and we have the formula (see [3, Chap. IX,
2.8] and [9, p. 101])

TorBn (M ⊗k N,A) ∼= TorAn (M,N).

This is the new “reduction to the diagonal” argument. Using this isomorphism we get
a new way of computing the TorAn (M,N) using the Koszul complex. In fact, from the
definition of the Tor functor we have that given a projective resolution

→ Pn → . . .→ P0 → A

of A as B-module, there is a natural isomorphism between the homology modules of the
complex (M ⊗k N)⊗B P and the modules TorBn (M ⊗k N,A). Using the reduction to the
diagonal argument, we get the isomorphism (natural in M and N) between TorAn (M,N)
and Hn((M ⊗k N) ⊗B P ). In particular, if A is the polynomial ring k[X1, . . . , Xn], a

5This is more or less the universal property of the Grothendieck group of A. See [1, p.88]
6Recall that the support of a tensor product of modules M ⊗A N is simply the intersection of the

supports of the two modules M and N .
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projective resolution of A as B = A ⊗k A module is given (again, see [9] for details) by
the Koszul complex KB((Xi ⊗ 1− 1⊗Xi), B).

Now we need one last tool:

5.2. Proposition. Let A be a Noetherian ring such that, for every maximal ideal m, Am

is a domain. Then A is a direct product of a finite number of domains.

Proof. Since A is Noetherian, we can consider the decomposition of the nilradical of A
as a finite intersection of primes:

√
(0) = Nil(A) = p1 ∩ . . . ∩ pn: they are exactly the

minimal prime ideals of A. Let m be a maximal ideal of A. Then Am is a domain and so
it has exactly one minimal prime ideal (actually (0)). As a consequence, m must contain
exactly one of the p’s. Hence there is no maximal ideal m such that m ⊃ pi + pj for i 6= j
and so pi + pj = A, i.e. they are pairwise coprime. By CRT we get

A/
n⋂

i=1

pi = A/Nil(A) =
n∏

i=1

A/pi.

We claim that Nil(A) = 0, i.e. A is reduced. In fact, let x ∈ Nil(A) and let m a maximal
ideal of A containing the annihilator Ann(x). Then x ∈ Am is not zero but x is still
nilpotent there, contradicting the assumption that Am is a domain. �

5.3. Definition. A Noetherian ring A is called a regular ring if it has finite global homo-
logical dimension.

Equivalently, A is regular if the localization at every prime ideal is a regular local ring.
Since a regular local ring is a domain, from the previous proposition we get that every
regular ring A is a direct product of a finite number of regular domains. We need also
the following

5.4. Definition. A domain A is called of equal characteristic if, for every prime p, A/p
and A have the same characteristic. If A is a regular ring, A ∼=

∏n
i=1Bi, we say that A is

of equal characteristic if the components Bi are domains of equal characteristic, which is
to say if, for every prime p, the ring Ap is of equal characteristic.

We are finally ready to state the following result:

5.5. Theorem. If A is a regular ring of equal characteristic of dimension n, M and N
are two finitely generated A-modules and q a minimal prime ideal of Supp(M ⊗A N) =
Supp(M) ∩ Supp(N), then:

i) The Euler-Poincaré characteristic χq(M,N) :=
∑n

i=1 (−1)ilength(TorAi (M,N)q)
is well-defined and ≥ 0.

ii) dimAq Mq + dimAq Nq ≤ htA(q)
iii) dimAq Mq + dimAq Nq < htA(q) if and only if χq(M,N) = 0.

Where TorAi (M,N)q = Tor
Aq

i (Mq, Nq) is the localization at q.

The theorem is a generalization of the results that we collected along the way (in
particular theorem 3.2). We don’t give a proof, since it requires results and definitions
about completed tensor product and completed Tori. Details can be found in [9, pp. 102-
106].



16 FEDERICO BINDA

6. The Tor formula

In this section we will describe the connection with algebraic geometry. Let X = An
k(k)

be the n-dimensional affine space over a field k. We can assume, for simplicity, that
the field k is algebraically closed. Let U, V be two irreducible varieties and let W be an
irreducible component of U ∩ V . Suppose that the local ring A of An

k(k) at W

A = {f/g | f, g ∈ k[X1, . . . , Xn], g(W ) 6= 0} = k[X1, . . . , Xn]pW

(where pW is the prime ideal corresponding to W ) is a regular local ring. Then (see section
4) we have:

dimU + dimV ≤ n+ dimW.

When the equality holds in this formula, the intersection is called proper at W (and,
following Serre, we say that U and V intersect properly at W ).

Let now pU and pV be the prime ideals of the regular local ring A corresponding to
U and V respectively. If we apply theorem 5.5 to the modules A/pU and A/pV (finitely
generated over A) we get that the Euler-Poincaré characteristic:

(6.1) χA(A/pU , A/pV ) =
n∑

i=0

(−1)ilength(TorAi (A/pU , A/pV ))

is well defined; it is an integer ≥ 0.
Indeed the hypothesis of the theorem are satisfied: A is regular and, for M = A/pU ,

N = A/pV , we have Supp(M ⊗A N) = Supp(M) ∩ Supp(N) = {m} where m is the
maximal ideal of A, since M ⊗A N ∼= A/(pU + pV ) has finite length. Hence m is the
(unique) minimal prime ideal of Supp(M ⊗A N): using the Koszul complex and the
previous results, we get that the modules TorAi (A/pU , A/pV ) have finite length, i.e. the
Euler-Poincaré characteristic is well-defined. Finally, χA(A/pU , A/pV ) ≥ 0 using part i)
of the theorem.

6.1. Definition. The non negative integer χA(A/pU , A/pV ) in formula 6.1 is Serre’s defi-
nition of intersection multiplicity of U and V at W .

For7 X = An
k(k), the function I(X,U · V,W ) := χA(A/pU , A/pV ) satisfies the formal

properties of an intersection multiplicity (see below).
Let X be a non singular affine variety of dimension n and let A be its coordinate ring.

If a ∈ N and if M is an A-module of dimension less or equal than a, we defined, at the
beginning of section 5, the cycle za(M) =

∑
dimA/q=a length(Mq)q. It’s a positive cycle of

dimension a (i.e. za(M) ∈ Zi(A)) which is zero if (and only if) dimM < a. Using the
function I defined above, we want to define a product of cycles in Z(A).

6.2. Proposition. Let a, b, c ∈ N such that a + b = n + c. Let M , N be two A-modules
such that dimM ≤ a, dimN ≤ b and dimM ⊗A N ≤ c. Then the cycles

za(M) =
∑

dimA/q=a

length(Mq)q, zb(N) =
∑

dimA/p=b

length(Np)p

7We can restate the above results in the (slightly) more general situation where X is an algebraic
variety and U, V,W are three irreducible subvarieties of X, W being an irreducible component of U ∩ V .
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are defined and the intersection cycle (defined by linearity using the function I(X,U ·
V,W ) := χA(A/pU , A/pV )) za(M) · zb(N) is defined and coincides with the cycle

zc(TorA(M,N)) :=
∑

(−1)izc(TorAi (M,N)).

Proof. The result follows from a direct computation: for details see [9, p. 113]. �

6.3. Remark. In the case M = A/pU , N = A/pV with dimM = a, dimN = b the
condition a + b = c + n is exactly the case of U and V which intersect properly at an
irreducible subvariety W of dimension c. Notice also that M ⊗A N ∼= A/(pU + pV ).

The product of cycles defined using the function I has the so called fundamental prop-
erties of intersection theory ; namely it’s commutative, associative, and satisfies two more
properties (the product formula and the reduction to the diagonal). This should convince
us that Serre’s definition of intersection multiplicity makes sense. Actually, it’s not hard
to show that the following result holds:

6.4. Theorem. With the above notations, we have:

(1) If U and V do not intersect properly at W , we have χA(A/pU , A/pV ) = 0
(2) If U and V intersect properly at W , χA(A/pU , A/pV ) > 0 and coincides with the

intersection multiplicity in the sense of Samuel.

We will not give the general definition of Samuel’s intersection multiplicity: the key
point here is that Samuel’s definition is strictly geometric, while Serre’s definition is purely
algebraic.

Here there is an idea of the proof. First consider the case where U is a complete
intersection in W , i.e. the ideal pU in the local ring A of X at W is generated by h
elements x1, . . . , xh with h = dimX − dimU = dimV − dimW . We have (see section 2)

TorAi (A/pU , A/pV ) = Hi(x, A/pV ).

Hence

χA(A/pU , A/pV ) =
∑
i

(−1)ilength(Hi(x, A/pV ))

and, by theorem 3.2, this gives χA(A/pU , A/pV ) = en(x, A/pV ) (where n = dimX and x
denotes the ideal of A/pV generated by the images of the xi’s). This number coincides
(actually we can take it as a definition) with Samuel’s definition of multiplicity of U and V
on W in the complete intersection case. The general case can be reduced to the previous
one using the reduction to the diagonal, which holds for both I and Samuel’s multiplicity.
Actually the diagonal ∆ is non singular and so is locally a complete intersection.

7. Examples and applications

In this section we prove that Serre’s definition of intersection multiplicity is the “right
one” at least in the case of affine plane curves. Consider the 2-dimensional affine plane
A2

k(k) over an algebraically closed field k. Let OP
∼= k[X, Y ](X−a,Y−b) be the local ring

at the point P = (a, b) ∈ A2
k(k). Let U and V be two irreducible curves and let P be a

point in the intersection. Let pU and pV be the prime ideals in OP corresponding to U
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and V respectively. From classical algebraic geometry, the intersection multiplicity of U
and V at P , µP (U, V ) is defined as follows:

µP (U, V ) = dimk(OP/(pU + pV )) = dimk(OP/pU ⊗OP
OP/pV ).

Then we have the following

7.1. Proposition. Let A = OP . Then we have µP (U, V ) = χA(A/pU , A/pV ).

Proof. Recall (see section 2) that, the Koszul complex of a commutative ring A for x ∈ A
is such that Hi(x,M) ∼= TorAi (A/x,M) for all i and M .

We use the definition of χA(A/pU , A/pV ); clearly dimA = 2, hence

χA(A/pU , A/pV ) =

= length(TorA0 (A/pU , A/pV ))− length(TorA1 (A/pU , A/pV )) + length(TorA2 (A/pU , A/pV ))

= length(A/pU ⊗ A/pV )− length(TorA1 (A/pU , A/pV )) + length(TorA2 (A/pU , A/pV ))

Let f ∈ A be the generator of the principal8 ideal pV and let M = A/pU . f is not a
zero divisor of M , since the two curves U and V are both irreducible and distinct (in
particular, they do no share irreducible components). So, using the Koszul complex, we
get:

(A/pU ⊗ A/pV ) ∼= H0(f,M) ∼= M/(f)M

(TorA1 (A/pU , A/pV )) ∼= H1(f,M) ∼= Ker(m→ fm) = 0

(TorA2 (A/pU , A/pV )) ∼= H2(f,M) = 0

Moreover

M/(f)M = (A/pU)/((f)A/pU) ∼= A/(pV + pU) ∼= A/pV ⊗A A/pU

hence we have done, since clearly dimk(A/(pV + pU)) = lengthA(A/pV ⊗A A/pU). �

7.2. Example. To see why the higher Tor are actually useful (so that Serre’s “Tor-
formula” is really the right one for computing the intersection numbers), we conclude
with the following example (taken from [5] and [4, p. 428]).

Consider the affine space A4
k(k) (over a fixed field k that may be chosen algebrically

closed). Let V be the plane V = V(x1−x3, x2−x4) and let U = V(x1x3, x1x4, x2x3, x2x4)
be the union of two planes meeting at a point. Notice that (x1, x2) ∩ (x3, x4) = (x1, x2) ·
(x3, x4) = (x1x3, x1x4, x2x3, x2x4), i.e. U = U1 ∪ U2 where U1 = V(x1, x2) and U2 =
V(x3, x4) are the two irreducible components. We want to (naively) compute the inter-
section multiplicity at the point P = (0, 0, 0, 0) for the two varieties using the definition
given for curves: in other words we have to compute the dimension as k-vector space of
the ring

k[x1, x2, x3, x4](x1,x2,x3,x4)

(x1 − x3, x2 − x4) + (x1x3, x1x4, x2x3, x2x4)
.

Actually (since localization commutes with the quotient), this dimension coincides with

dimk

( k[x1, x2, x3, x4]

(x1 − x3, x2 − x4) + (x1x3, x1x4, x2x3, x2x4)

)
(x1,x2,x3,x4)

:= dimk(D)

8It’s the localization of the principal ideal defining the curve V , hence it’s still principal.



THE INTERSECTION FORMULA 19

However D ' (k[x1, x2]/(x1
2, x1x2, x2

2))x1,x2 which has dimension 3. This number is what
we would call the “intersection multiplicity” at P of the two varieties after this naive
computation. Since the variety U is not irreducible, it is quite natural to check what
happens if we consider the two irreducible components. So let us compute the intersection
of U1 with V at P and of U2 with V at P . For example,

k[x1, x2, x3, x4]

(x1 − x3, x2 − x4) + (x1, x2)
' k

and clearly this does not change after localizing at x1, so the intersection multiplicity
of V ∩ U1 at P is 1. Similarly for V ∩ U2. So, since V meets each component of U
in one point P , we have, by linearity, that the intersection number is simply the sum
1 + 1 = 2 = I(A4, U ·V, P ). Clearly 2, that is the correct number, is different from 3, that
is the result of our first computation.
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