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In the first part, we will consider a fixed model category C and f, g : A ⇒ B two maps
in C where A is cofibrant and B is fibrant.

Notation 1. Left and right homotopies are denoted as follows:

A t A f+g- B BI �s
B

A

∇
?
�

σ
A× I

h

6∂
0+
∂
1 -

A

k

6

(f,g)
- B ×B

∆

?

(d
0 ,d

1 ) -

Definition 2. (1) Let h : A × I → B and h′ : A × I ′ → B be two left homotopies
from f to g. By a left homotopy from h to h′ we mean a diagram

A× I tAtA A× I ′
h+h′- B
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where j0 + j1 is a cofibration and τ is a weak equivalence. Here A× I tAtAA× I ′
is the push-out of the maps ∂0 + ∂1 : AtA→ A× I and ∂′0 + ∂′1 : AtA→ A× I ′.

(2) Dually, let k : A→ BI and k′ : A→ BI′ be two rightarrow homotopies from f to
g. By a right homotopy from k to k′ we mean a diagram
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?
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where j̃0 + j̃1 is a fibration and t is a weak equivalence. Here BI ×B×B BI′ is the
pullback of the maps (d0, d1) : BI → B ×B and (d′0, d

′
1) : BI′ → B ×B.

Definition 3. Let h : A × I → B be a left homotopy from f to g and let k : A → BI

be a right homotopy from f to g. By a crrespondence between h and k we mean a map
H : A × I → BI s.t. H∂0 = k,H∂1 = sg, d0H = h and d1H = gσ. It’s good to bear in
mind the following diagrams:
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with the horizontal lines referring to left homotopies and the vertical lines referring to
right homotopies.

Lemma 4. Given BI and h : A × I → B, there is a right homotopy k corresponding
to h. Dually, given A × I and a right homotopy k : A → BI , there is a left homotopy
h : A× I → B corresponding to k.

Proof. Consider the commutative diagram:

A
sg - BI

A× I

∂1

?

(h,gσ)
- B ×B

(d0,d1)

?

Since the left arrow is a trivial cofibration, there exists an H : A × I → BI s.t. every
triangle commutes. Now k = H∂0 satisfies the condition. �

Lemma 5. Suppose h : A×I → B and h′ : A×I ′ → B are two left homotopies from f to
g and that k : A→ BI is a right homotopy from f to g. Suppose that h and k correspond.
Then h′ and k correspond iff h′ is left homotopic to h.

Proof. Let H : A× I → BI be a correspondence between h and k, and H ′ : A× I ′ → BI

be a correspondence between h′ and k. Let A× J , j0 + j1 and τ be as before. Then the
dotted arrow K exists in the diagram

A× I tAtA A× I ′
H+H′- BI

A× J

j0+j1

?

gτ
-

K
-

B

d1

?

and d0K : A× J → B is a left homotopy from h to h′.
Conversely, suppose given H : A × I → BI a correspondence between h and k, and a

left homotopy K : A×J → B from h to h′. Then j0 : A×I → A×J is a cofibration since
it’s the composition of j0 + j1 and A × I → A × I tAtA A × I ′ which is the pushout of
∂0 + ∂1. Also j0 is trivial since τj0 = σ. Hence the dotted arrow ϕ exists in the diagram

A× I H - BI

A× J

j0

?

(K,gτ)
-

ϕ
-

B ×B

(d0,d1)

?

and ϕj1 : A× I ′ → BI is a correspondence between h′ and k. �

Corollary 6. ∼l is an equivalence relation on the class of left homotopies from f to g and
the equivalence classes form a set πl1(A,B; f, g). Dually right homotopy classes of right
homotopies form a set πr1(A,B; f, g). Correspondence yields a bijection πl1(A,B; f, g) '
πr1(A,B; f, g).
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Proof. Lemma 5 yields the equivalence relation assertion. Lemma 4 shows that to give
an equivalent class of h is equivalent to give a k : A → BI with fixed BI , and thus the
equivalence classes form a set. The last assertion is clear from Lemma 5 and its dual. �

By Corollary 6, we may simply write the set as π1(A,B; f, g) and refer to an element
of this set as a homotopy class of homotopies from f to g.

Definition 7. (1) Let f1, f2, f3 ∈ Hom(A,B), let h : A × I → B be a left homotopy
from f1 to f2 and let h′ : A × I ′ → B be a left homotopy from f2 to f3. By the
composition of h and h′, we mean the homotopy h′′ : A× I ′′ → B where A× I ′′ is
defined by pushout

A
∂′0- A× I ′

A× I

∂1

?
in1- A× I ′′

in2

?

A

σ′

-

σ ′′
-

σ′

-

and h′′in1 = h, h′′in2 = h′. Note that A × I ′′ is also a cylinder object with
∂′′0 = in1∂0, ∂

′′
1 = in2∂

′
1, σ

′′in1 = σ and σ′′in2 = σ′. This composition is denoted
by h · h′, and it gives a left homotopy from f1 to f3.

(2) If f, g ∈ Hom(A,B) and h : A × I → B is a left homotopy from f to g, then by
the inverse of h, we mean the left homotopy h′ : A × I ′ → B from g to f , where
A×I ′ is the cylinder object for A given by A×I ′ = A×I, ∂′0 = ∂1, ∂

′
1 = ∂0, σ

′ = σ
and where h′ = h. This inverse is denoted by h−1.

Hence, we have the following pictures:

f1
h

f2
h′

f3

g
h−1

f

Proposition 8. Composition of left homotopies induces maps πl1(A,B; f1, f2)×πl1(A,B; f2, f3)
→ πl1(A,B; f1, f3) and similarly for right homotopies. Composition of left and right ho-
motopies is compatible with the correspondence bijection of Corollary 6. Finally the cat-
egory with objects Hom(A,B), with a morphism from f to g defined to be an element of
π1(A,B; f, g) and with composition of morphisms defined to be induced by composition of
homotopies, is a groupoid, with the inverse of an element of πl1(A,B; f, g) represented by
h being represented by h−1.

Proof. Let h (resp. k) be a left (resp. right) homotopy from f1 to f2, let h′ (resp. k′) be
a left (resp. right) homotopy from f2 to f3, and let H (resp. H ′) be a correspondence
between h and k (resp. h′ and k′). Then we have the following correspondence between
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h · h′ and k · k′:
f3σ f3σ′

k′σ H ′k′

f2σ

k′

h′

s′f3

H sh′k

h

sf2

h′

sf3

Taking Lemma 5 into account, this proves the first two assertions of the proposition.
Composition os associative because (h · h′) · h′′ and h · (h′ · h′′) are both represented by

the picture

· h · h′ · h′′ ·
If h : A×I → B is a left homotopy from f to g and H : A×I → BI is a correspondence

of h with some right homotopy k, then the diagrams

gσ gσ gσ gσ

kσ H H sgσk

fσ

k

h

sg k

h

sg

gσ

sg

and Lemma 5 give fσ ·h ∼ h, h ·gσ ∼ h, proving the existence of identities and hence that
Hom(A,B) is a category. Finally let H ′ : A× I ′ → BI be H : A× I → BI , where A× I ′
is A× I with ∂′0 = ∂1, ∂

′
1 = ∂0, and σ′ = σ, and let H ′′ : A× I ′ → BI be a correspondence

of h−1 : A × I ′ → B with some k′′ : A → BI , and let H̃ : A × I → BI be H ′′. Then the
diagrams

gσ gσ fσ fσ

H ′ H H̃ H ′′

g

sg

h−1
f

k

h
g

sg

f

sf

h

k′′

h−1
f

sf

show that h−1 ·h ∼ gσ and h ·h−1 ∼ fσ proving the last assertion of the proposition. �

It is clear that if i : A′ → A is a map of cofibrant objects, then there is a functor
i∗ : Hom(A,B) → Hom(A′, B) which sends f into fi and a right homotopy k : A → BI

into ki : A′ → BI . Similarly if j : B → B′ is a map of fibrant objects, there is a functor
j∗ : Hom(A,B)→ Hom(A,B′).

Lemma 9. The diagram

π1(A,B; f, g)
i∗- π1(A′, B; fi, gi)

π1(A,B′; jf, jg)

j∗
?

i∗- π1(A′, B′, jfi, jgi)

j∗
?

commutes.
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Proof. Let α ∈ π1(A,B; f, g) and represent α by h : A × I → B, k : A → BI , and let H
be a correspondence between h and k. By Lemma 4, we may assume that σ : A× I → A
is a trivial fibration and s : B → BI is a trivial cofibration. So we may choose dotted
arrows in the diagrams:

A′ t A′ ∂0i+∂1i- A× I B
s′j - (B′)I

A′ × I

∂′0+∂′1
?

iσ′ -

ϕ
-

A

σ

?
BI

s
?

(jd0,jd1)-

ψ
-

B′ ×B′
(d′0,d

′
1)

?

Then ψH is a correspondence between jh and ψk. Hence ψk represents j∗α and so
ψki represents i∗j∗α. Similarly, Hϕ is a correspondence between ki and hϕ. Hence hϕ
represents i∗α and so jhϕ represents j∗i

∗α. Finally ψHϕ is a correspondence between
ψki and jhϕ which shows that i∗j∗α = j∗i

∗α. �

Notation 10. A pointed category is a category C with a zero object ∗. If X and Y are
arbitrary objects of C, we denote by 0 ∈ HomC(X, Y ) the composition X → ∗ → Y .
In a pointed model category, if A ∈ Cc and B ∈ Cf , we will abbreviate π1(A,B; 0, 0) to
π1(A,B). It’s a group by Proposition 8.

Theorem 11. Let C be a pointed model category. Then there is a functor (H◦C)◦×H◦C →
Grp, sending (A,B) 7→ [A,B]1, where [A,B]1 is determined up to canonical isomorphism
by [A,B]1 = π1(A,B) if A is cofibrant and B is fibrant. Furthermore, there are two
functors Σ,Ω : H ◦ C → H ◦ C(they are called the suspension functor and the loop functor
respectively) and canonical isomorphisms

[ΣA,B] ' [A,B]1 ' [A,ΩB]

of functors (H ◦ C)◦ × (H ◦ C)→ Sets where [X, Y ] = HomH◦C(X, Y ).

Proof. Let A be cofibrant. Choose a cylinder object A × I and let A × I π−→ ΣA be the
cofibre of ∂0 + ∂1 : A t A→ A× I, then ΣA is cofibrant. We shall define a bijection

ρ : π(ΣA,B)
∼−→ π1(A,B)

which is a natural transformation of functors to (sets) as B runs over Cf (Here, π(X, Y ) :=
HomC(X, Y )/ ∼). Let ϕ : ΣA → B be a map and let ρ(ϕ) be the element of π1(A,B)
represented by ϕπ : A× I → B. If ϕ, ϕ′ ∈ Hom(ΣA,B) and ϕ ∼ ϕ′, then there is a right
homotopy h : ΣA → BI from ϕ to ϕ′. Let H : A × I → BI be a correspondence of ϕ′π
with some right homotopy k from 0 to 0 and consider the diagram

0σ

Hk

ϕ′π

s0

hπs0

ϕπ

s0
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This shows that ϕπ corresponds to s0·k and ϕ′π corresponds to k, as s0·k and k represents
the same element of π1(A,B) so do ϕπ and ϕ′π and hence ρ(ϕ) = ρ(ϕ′). This shows that
ρ is well-defined. ρ is surjective by the definition of ΣA. Finally, if ρ(ϕ) = ρ(ϕ′), then
there is a left homotopy H : A × J → B from ϕπ to ϕ′π. Let H ′ : A × J → B be given
by H ′j0 = H ′j1 = ϕπ and let K be the dotted arrow in the diagram

A× I sϕπ - BI

A× J

j0

?
(H,H′)-

K
-

B ×B

(d0,d1)

?

(j0 was shown to be a trivial cofibration in the proof of Lemma 5.) Then Kj1 : A×I → BI

is a right homotopy from ϕπ to ϕ′π s.t. Kj1(∂0 +∂1) = 0 and so induces a right homotopy
ΣA→ BI from ϕ to ϕ′. This shows ρ is injective.

Dually if we choose a path object BI and let ΩB be the fibre of (d0, d1) : BI → B×B,
then ΩB is fibrant and there is a bijection

π(A,ΩB)
∼−→ π1(A,B)

which is a natural transformation of functors as A runs over CC .
For general A,B, use the cofibrant replacement functor and the fibrant replacement

functor, then we can extend the functor we’ve obtained (from (H◦Cc)◦×H◦Cf to Grp) to a
funcotor (A,B) 7→ [A,B]1 from (H◦C)◦×H◦C to Grp unique up to canonical isomorphism
(note that it doesn’t have to be unique), and the bifuncotr [·, ·]1 is representable in the
first and second variables. �

Remarks 12. Actually, here we kind of abuse the notations of writing Σ for both the
functors on H ◦C and writing ΣA for the cofibre of AtA→ A×I when A ∈ Cc. Actually,
the former one is a left derived functor. So if we should encounter a situation where
this abuse of notations would lead to confusion, we shall denote the former one by LΣ.
Similarly, RΩ will be used for the loop functor on H ◦ C if necessary.

Now we proceed to develop an extra structure on H◦C, namely the long exact sequences
for fibrations and cofibrations. From now on, C denotes a fixed pointed model category.

Notation 13. If α : X → Y is a monomorphism in a category and β : Z → Y is a map,
then by α−1β we mean the unique map γ : Z → X with αγ = β, if such a map exists.

Let p : E → B be a fibration where B is fibrant and let i : F → E be the inclusion of

the fibre of p into E, then F and E are both fibrant. Let B
sB

−→ BI (dB
0 ,d

B
1 )

−−−−→ B × B be a
factorization of ∆B into a weak equivalence followed by a fibration. We shall construct
an object EI which is nicely related to BI .

Let E ×B BI (resp. BI ×B E) denote the fibre product of p : E → B and dB0 : BI → B
(resp. dB1 : BI → B), and let the fibre product sign ×BBI to the left (resp. dB1 :
BI → B to the right) of BI denote fibre products with dB0 (resp. dB1 ) in what follows.

Let E
sE

−→ EI (dE
0 ,p

I ,dE
1 )

−−−−−−→ E ×B BI ×B E be a factorization of (1E, s
Bp, 1E) into a weak

equivalence followed by a fibration. The notation EI , sE, etc. is justified because sE is a
weak equivalence and (dE0 , d

E
1 ) is a fibration since it is the composition of (dE0 , p

I , dE1 ) and
(pr1, pr3) : E ×B BI ×B E → E × E, which is the base extension of (dB0 , d

B
1 ) by p× p. A
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similar argument shows that (dE0 , p
I) : EI → E ×B BI (E ×B BI ×B E → E ×B BI is the

base extension of p : E → B by dB1 pr2) and (pI , dE1 ) are fibrations.
The map pr1 : E ×B BI → E is the base extension of dB0 by p and hence is a trivial

fibration. Hence the fibration (dE0 , p
I) : EI → E×BBI is trivial since 1E = pr1(dE0 , p

I)sE.

Lemma 14. The diagram

(14.1)

F ×E EI ×E F ⊂
pr2 - EI

F × ΩB

π

?
⊂

i×j- E ×B BI

(dE
0 ,p

I)
?

is cartesian where π = (pr1, j
−1pIpr2) and where j : ΩB ↪→ BI is the fibre of (dB0 , d

B
1 ).

Proof. (1) Claim: pdE0 = dB0 p
I , pdE1 = dB1 p

I .
The first equation can be shown by the commutative diagram:

EI

E ×B BI

(dE
0 ,p

I)
?

p1- E

dE
0

-

BI

p2
?

dB
0- B

p

?

and the second part can be proved similarly.
(2) Show that j−1pIpr2 is well-defined. In fact, by the commutative diagram:

F ×E EI pr1- F

EI

pr2
?

dE
0- E

i

?

BI

pI

?
dB
0- B

p

?

we have that dB0 p
Ipr2 = pipr1 = 0. Similarly, dB1 p

Ipr2 = 0. So the dotted arrow
exists:

ΩB - ∗

EI pIpr2-

-

BI

j
?

(dB
0 ,d

B
1 )- B ×B

?

(3) By the diagram above, we have (dE0 , p
I)pr2 = (dE0 pr2, p

Ipr2) = (ipr1, jj
−1pIpr2) =

(i× j)π.
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(4) We have the following diagram which concludes:

X

F ×E EI ×E F pr2
-

λ
-

EI

ϕ

-

F × ΩB

π

?
i×j-

(ψ1,ψ2)

-

E ×B BI

(dE
0 ,p

I)
?

where λ = (ψ1, ϕ, i
−1dE1 ϕ). Here i−1dE1 ϕ can be defined since pdE1 ϕ = dB1 p

Iϕ =
dB1 jψ2 = 0 (The last equation can be deduced from the following diagram).

ΩB - ∗

X -

ψ2

-

BI

j
?

(dB
0 ,d

B
1 )- B ×B

?

�

By this lemma, we can see that π is a trivial fibration, and thus we can obtain in H ◦ C
a map

m : F × ΩB → F

given by the coposition F × ΩB
π−1

−−→ F ×E EI ×E F
pr3−−→ F .

In fact, m may be defined in another way.

Proposition 15. Let A be cofibrant and let the map m∗ : [A,F ] × [A,ΩB] → [A,F ] be
denoted by (α, λ) 7→ α · λ. If α ∈ [A,F ] is represented by u : A → F , if λ ∈ [A,ΩB] =
[A,B]1 is represented by h : A × I → B with h(∂0 + ∂1) = 0, and if h′ is a dotted arrow
in the diagram

A
iu- E

A× I

∂0

?
h-

h′
-

B

p

?

then α · λ is represented by i−1h′∂1 : A→ F .

Proof. Let H : A× I → BI be a correspondence of h with k : A→ BI . Let K be a lifting
in

A
sEh′∂1 - EI

A× I

∂1

?
(h′,H)-

K
-

E ×B BI

(dE
0 ,p

I)
?

Picture:

0
0σ

0 dE1 K∂0
dE
1 K h′∂1

H �pI

K

0

k

h
0

sB0

iu

K∂0

h′
h′∂1

sEh′∂1
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Now K∂0 : A→ EI induces a map K∂0 : A→ F ×E EI ×E E s.t. πK∂0 = (u, j−1k) (see
14.1) and hence by the definition of m we have that α · λ is represented by i−1dE1 K∂0 :
A → F . But i−1dE1 K : A × I → F is a homotopy from i−1dE1 K∂0 to i−1h′∂1 and this
proves the proposition. �

Proposition 16. The map m is independent of the choice of pI : EI → BI and is a right
action of the group object ΩB on F in H ◦ C.

Proof. m is independent of pI by Proposition 15 since the diagram there is independent
of pI . On the other hand, let α, λ, u, h, h′ be as in Proposition 15, let λ1 ∈ [A,B]1 be
represented by h1 : A× I → B and let h′1 be a dotted arrow in the first diagram:

A
h′∂1- E A

iu- E

A× I

∂0

?
h-

h′1
-

B

p

?
A× I ′
∂′0
?

h·h1-

h′·h′1
-

B

p

?

s.t. i−1h′1∂1 represents (α · λ) · λ1 by Proposition 15. As the composite homotopy h · h1

represents λ ·λ1, the second diagram and Proposition 15 show that i−1(h′ ·h′1)∂′1 represents
α · (λ · λ1). But (h′ · h′1)∂′1 = h′1∂1, hence (α · λ) · λ1 = α · (λ · λ1) and m is an action as
claimed. �

Definition 17. By a fibration sequence in H ◦C, we mean a diagram in H ◦C of the form

X × ΩZ → X → Y → Z

which for some fibration p : E → B in Cf is isomorphic to the diagram

(17.1) F × ΩB
m−→ F

i−→ E
p−→ B

constructed before.

Proposition 18. If 17.1 is a fibration sequence, so is

(18.1) ΩB × ΩE
n−→ ΩB

∂−→ F
i−→ E

where ∂ is the composition ΩB
(0,id)−−−→ F × ΩB

m−→ F and where n∗ : [A,ΩB]× [A,ΩE]→
[A,ΩB] is given by (λ, µ) 7→ ((Ωp)∗µ)−1 · λ.

Proof. We may assume that (17.1) is the sequence constructed above from a fibration p.
Let pI : EI → BI be as in the definition of m. Then pr1 : E ×B BI ×B ∗ → E is the base
extension of (dB0 , d

B
1 ) by (p, 0) : E → B×B and hence is a fibration; so we get a fibration

sequence

(18.2) ΩB × ΩE
n−→ ΩB

(0,j,0)−−−→ E ×B BI ×B ∗
pr1−−→ E.

We calculate n by Proposition 15. Let λ ∈ [A,ΩB] be represented by u : A → ΩB, let
µ ∈ [A,ΩE] be represented by h : A× I → E and let (h,H, 0) be a lifting in

A
(0,ju,0)- E ×B BI ×B ∗

0σ

A× I

∂0

?

h
-

(h,H,0)

-

E

pr1

?
ju

ph

H∂1
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where H : A × I → BI is pictured at the right. By Proposition 15, j−1H∂1 represents
n∗(λ, µ) in [A,ΩB]. Letting H ′ : A × I → BI be a correspondence of H∂1 with h′ :
A× I → B, we obtain the correspondence

0σ 0σ

H H ′ju

ph h′

sB0

of ju with ph · h′, which shows that λ = (Ωp)∗µ · n∗(λ, µ) or n∗(λ, µ) = [(Ωp)∗µ]−1 · λ.
Thus the map n in (18.2) is the same as that in (18.1).

The map F
(i,0,0)−−−→ E×BBI×B∗ is a weak equivalence since it may be factored F

(sEi,1F )−−−−−→
EI ×E F ' EI ×B ∗ → E ×B BI ×B ∗ where the last map is a trivial fibration (base

extension of EI (dE
0 ,p

I)
−−−−→ E ×B BI) and where the first map is a section of the trivial

fibration EI ×E F
pr2−−→ F (base extension of dE1 .) We shall show that the diagram in H ◦C

(18.3)

ΩB

F
(i,0,0) -

∂

�
E ×B BI ×B ∗

(0,j,0)

-

commutes. Let λ ∈ [A,ΩB] be represented by k : A→ BI and let H : A× I → BI be a
correspondence of k with h. Then ∂∗α = 0 ·α is represented by i−1h′∂1 : A→ F where h′

is the dotted arrow in

A
0- E

A× I

∂0

?
h-

h′
-

B

p

?

So (i, 0, 0)∗∂∗λ is represented by A
(h′∂1,0,0)−−−−−→ E ×B BI ×B ∗, (0, j, 0)∗λ is represented by

A
(0,k,0)−−−→ E×BBI×B ∗, and (h′, H, 0) : A× I → E×BBI×B ∗ is a left homotopy between

these maps, showing that the triangle (18.3) commutes in H ◦ C. As pr1 ◦ (i, 0, 0) = i, we
see that 1ΩB, (i, 0, 0), and 1E give an isomorphism of (18.1) with the fibration sequence
(18.2), and so by definition (18.1) is a fibration sequence. �

Proposition 19. Let 17.1 be a fibration sequence in H ◦ C, let ∂ : ΩB → F be defined as
in Proposition 18 and let A be any object of H ◦ C. Then the sequence

. . .→ [A,Ωq+1B]
(Ωq∂)∗−−−−→ [A,ΩqF ]

(Ωqi)∗−−−→ [A,ΩqE]
(Ωqp)∗−−−−→ . . .

→ [A,ΩE]
(Ωp)∗−−−→ [A,ΩB]

∂∗−→ [A,F ]
i∗−→ [A,E]

p∗−→ [A,B]

is exact in the following sense:

(1) (p∗)
−1(0) = Im(i∗)

(2) i∗∂∗ = 0 and i∗α1 = i∗α2 ⇐⇒ α2 = α1 · λ for some λ ∈ [A,ΩB]
(3) ∂∗(Ωi)∗ = 0 and ∂∗λ1 = ∂∗λ2 ⇐⇒ λ2 = (Ωp)∗µ · λ1 for some µ ∈ [A,ΩE]
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(4) The sequence of group homomorphisms from [A,ΩE] to the left is exact in the
usual sense.

Proof. We may assume (17.1) is the sequence constructed from the fibration p.

(1) Clearly pi = 0. If p∗α = 0 represent α by u : A → E, let h : A × I → B be s.t.
h∂0 = pu, h∂1 = 0. Since ∂0 is a trivial cofibration, we can find a k : A × I → E
s.t. ∂0k = u, pk = h. Then if β is represented by i−1k∂1, we have i∗β = α.

(2) With the notation of Proposition 15, we have that h′ is a homotoy from iu which
represents i∗α to h′∂1 which represents i∗(α · λ). Hence i∗(α · λ) = i∗α and in
particular i∗∂∗λ = i∗(0 · λ) = i∗0 = 0, so i∗∂∗ = 0. Conversely, given α1, α2 with
i∗α1 = i∗α2, represent αi by ui and let h : A× I → E be s.t. h∂0 = iu1, h∂1 = iu2

whence if λ is the class of ph, α1 · λ = α2 by Proposition 15.
(3) This follows from (2) and Proposition 18.
(4) This can be shown by repeated use of Proposition 18.

�

Proposition 20. The class of fibration sequences in H ◦ C has the following properties:

(1) Any map f : X → Y may be embedded in a fibration sequence F × ΩY → F →
X

f−→ Y .
(2) Given a diagram of solid arrows

F × ΩB
m- F

i - E
p- B

F ′ × ΩB′

γ×Ωα

?
m′- F ′

γ

?
i′- E ′

β

?
p′- B′

α

?

where the rows are fibration sequences, the dotted arrow γ exists.
(3) In any diagram above where the rows are fibration sequences, if α and β are iso-

morphisms, so is γ.
(4) Proposition 18.

Proof. (1) Any map in H ◦ C is isomorphic to a fibration of objects in Ccf .
(3) If A is any object in H ◦ C, then Proposition 19 gives a diagram

[A,ΩE] - [A,ΩB] - [A,F ] - [A,E] - [A,B]

[A,ΩE ′]

o
?

- [A,ΩB′]

o
?

- [A,F ′]

γ∗
?

- [A,E ′]

o
?

- [A,B′]

o
?

where the rows are exact in the sence of Proposition 19. However, this is enough to
conclude by the usual 5-lemma argument that γ∗ : [A,F ] → [A,F ′] is a bijection
for all A and hence that γ is an isomorphism.

(2) We may suppose by repacing the diagram by an isomorphic diagram if
necessary that the rows are constructed in the standard way from fibrations p and
p′ in Cf . Let B̃

u−→ B be a trivial fibration with B̃ cofibrant and let Ẽ
v−→ E ×B B̃

be a trivial fibration with Ẽ cofibrant, then pr1 : E×B B̃ → E is a trivial fibration
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and pr2 : E ×B B̃ → B̃ is a fibration. So we obtain a diagram

F̃
ĩ - Ẽ

pr2v- B̃

F

ε

?
i - E

pr1v

?
p- B

u

?

in C, where pr1v and u are weak equivalences. It follows easily from the calculation
given in Proposition 15 that

F̃ × ΩB̃
m̃- F̃

F × ΩB
?

m- F
?

commutes. Hence by (3) the ∼ sequnce is isomorphic to first row of the original
diagram and so we may suppose that the rows of the original diagram are not only
constructed in the standard way from fibrations p and p′ but that E and B are
in Ccf . Then α and β are represented by maps u and v in C with p′v ∼ up. As
E is cofibrant, we may modify v s.t. p′v = up. Then we may take γ : F → F ′ in
the original diagram to be the map in C induced by v. By Proposition 15, both
squares commute.

�


