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Abstract. The lecture divides in two parts. In the first part, our main subject is the
root space decomposition of semisimple Lie algebras, a useful method to describe the
representations of a Lie algebra. We will mainly focus on the case of C. We will first
characterize all irreducible representations of sl(2, F ) in terms of highest weight, then
study the general root space decomposition. The notion of root system will be introduced
here. The second part talks about the basic concept of a root system. We follow the
axiomatic approach (as in Serre [3], Humphreys [2]). We introduce bases, the Weyl group
and we explain its action on the set of bases (or, equivalently, on the Weyl chambers).
Finally we introduce the classification theorem, using the Cartan matrix, Coxeter graphs
and Dynkin diagrams.

1. Representation of sl(2, F )

In this section, we always assume that F is algebraically closed of character 0. Denote
by L = sl(2, F ) with standard basis

x =

(
0 1
0 0

)
, y =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
,

then [h, x] = 2x, [h, y] = −2y, [x, y] = h.
Now for any L-module V (i.e. a representation sl(2, F )→ gl(V )), h acts diagonally on

V since it is semisimple (see [2, §7]). So if we let Vλ = {v ∈ V |h.v = λv}, then V = ⊕Vλ.
When Vλ 6= 0, we call λ a weight of h and Vλ a weight space. We call n =max{λ|Vλ 6= 0}
(if it makes sense, i.e. all λ’s are real) the highest weight. Note the highest weight really
exists since dimV <∞.

1.0.1. Lemma. If v ∈ Vλ, then x.v ∈ Vλ+2 and y.v ∈ Vλ−2.

1.0.2. Theorem. For any non-negative integer n, there exists a unique(up to isomor-
phism) irreducible module of sl(2, F ) with the highest weight n, whose dimension is n+ 1
and weights are n, n− 2, ...,−n. Thus all its weight spaces have dimension 1.

Proof. (Sketch) Suppose α : sl(2, F )→ gl(V ) is an irreducible module with highest weight
n. Take 0 6= v0 ∈ Vn, define inductively vk+1 = 1

k+1
y.vk, and denote by v−1 = 0. Now we

claim that

h.vk = (n− 2k)vk,

x.vk = (n− k + 1)vk−1,

y.vk = (k + 1)vk+1.

1
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Then there exists k0 s.t. vk0 6= 0 but vk0+1 = 0. Now, by the second equation above,
k0 = n. So span{v0, ..., vn} is an invariant space of V , hence V =span{v0, ..., vn}. Under
this basis, the matrixes of α(h), α(x), α(y) are

n 0
n− 2

n− 4
. . .

0 −n

 ,


0 n 0

0 n− 1
. . . . . .

0 1
0 0

 ,


0 0
1 0

2 0
. . . . . .

0 n 0


respectively. This proves the uniqueness of the irreducible module with highest weight n.

Vice versa, use the three matrix above to define a module of sl(2, F ). It satisfies the
conditions required. �

1.0.3. Corollary. For a L-module V , in any decomposition of V into direct sum of irre-
ducible submodules, the number of summands is precisely dimV0 + dimV1.

2. Root Space Decomposition

In this section, L denotes a semisimple Lie algebra.

2.1. Maximal toral subalgebras and roots.

2.1.1. Definition. A toral subalgebra of L is a nonzero subalgebra of L consisting of
semisimple elements. A maximal toral subalgebra H of L is a toral subalgebra not properly
included in any other.

2.1.2. Lemma. A toral subalgebra of L is always abelian.

Proof. Let T be toral. We have to show that adTx = 0 for all x ∈ T . Now since F is
algebraically closed, adTx is diagonalizable. Hence it suffices to show that adTx has no
nonzero eigenvalues.

Suppose, on the contrary, that [x, y] = ay(a 6= 0) for some nonzero y ∈ T . Then
adTy(x) = −ay and this is an eigenvector of adTy of eigenvalue 0. On the other hand,
we can write x a a linear combination of eigenvectors of adTy; after applying adTy to x,
all that is left is a combination of eigenvetors which belong to nonzero eigenvalues, if any.
Contradiction! �

First of all, since L is semisimple, there exists a toral subalgebra (see [2]). By this
lemma, we can see that adL(H) is a commuting family of semisimple endomorphisms of
L, thus there exists a basis of L s.t. all adL(H)’s are diagonal matrices under this basis.
Hence if we denote by Lα = {x ∈ L|[h, x] = α(h)x,∀h ∈ H}, where α ∈ H∗, we have
L = ⊕Lα. Now let Φ = {0 6= α ∈ H∗|Lα 6= 0} be the set of all roots of L(relative to H),
then we have a root space decomposition

L = L0 ⊕
⊕
α∈Φ

Lα.

2.1.3. Remark. Before proceeding, I would like to make a note about the relationship
between Maximal Connected Abelian Lie subgroups of a Lie group and Maximal Toral
Subalgebras of its Lie algebra. This makes sense due to Ado’s Theorem. It is clear that
they are 1-to-1 corresponded.
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2.1.4. Proposition. (1) ∀α, β ∈ H∗, [Lα, Lβ] ⊂ Lα+β.
(2) If α + β 6= 0, then Lα ⊥ Lβ with respect to the Killing from κ.
(3) L0 = CL(H) = H.

Proof. (1) Use Jacobi-identity.
(2) Find h ∈ H s.t. (α+β)(h) 6= 0. Then if x ∈ Lα, y ∈ Lβ, associativity of the killing-

form allows us to write κ([h, x], y) = −κ([x, h], y) = −κ(x, [h, y]), so (α+β)(h)κ(x, y) = 0,
which forces κ(x, y) = 0.

(3) Use the note above. �

2.1.5. Corollary. The restriction of κ to H is nondegenerate.

Proof. Note that H = L0, κ nondegenerate and L0 is orthogonal to all Lα for α ∈ Φ. �

2.2. Connection with Representation. In this subsection, we denote by tα the dual
element of α ∈ H∗ in H. More explicitely, since κ|H is nondegenerate, every ϕ ∈ H∗

corresponds to a unique element tϕ ∈ H satisfying ϕ(h) = κ(tϕ, h) for all h ∈ H.

2.2.1. Proposition. The following statements hold:

(1) Φ spans H∗.
(2) If α ∈ Φ, then −α ∈ Φ.
(3) κ(tα, tα) 6= 0,∀α ∈ Φ. So hα := 2tα

κ(tα,tα)
is well-defined.

(4) If α ∈ Φ and xα is any nonzero element of Lα, then there exists yα ∈ L−α s.t.
xα, yα, hα = [xα, yα] span a three dimensional simple subalgebra Lα of L isomorphic

to sl(2, F ) via xα 7→
(

0 1
0 0

)
, yα 7→

(
0 0
1 0

)
, hα 7→

(
1 0
0 −1

)
.

Proof. (1) If not, then by duality there exists a nonzero h ∈ H s.t. α(h) = 0 for all
α ∈ Φ. But this means that [h, Lα] = 0 for all α ∈ Φ. Since [h,H] = 0, this in
turn forces [h, L] = 0, or h ∈ Z(L) = 0. Contradiction.

(2) Just note that κ(Lα, Lβ) = 0 if α + β 6= 0.
(3) First note that for x ∈ Lα and y ∈ L−α, we have [x, y] = κ(x, y)tα. Now for a

nonzero x ∈ Lα, we can find a y ∈ L−α s.t. κ(x, y) 6= 0. Modifying one by a
scalar, we may assume that κ(x, y) = 1, so [x, y] = tα. Suppose α(tα) = 0, then
[tα, x] = [tα, y] = 0. It follows that the subspace S of L spanned by x, y, tα is a
3-dimensional solvable algebra, S ∼=adLS ⊂ gl(L). In particular, adLs is nilpotent
for all s ∈ [S, S], so adLtα is both semisimple and nilpotent, i.e., adLtα = 0. This
says that tα ∈ Z(L) = 0, contradiction.

(4) Find a yα ∈ L−α satisfying the property. The rest is computation.
�

2.3. Summary of Properties of Φ. In this section, we denote by 〈β, α〉 = 2κ(β,α)
κ(α,α)

if

α, β ∈ Φ.

2.3.1. Theorem. Φ satisfies the following four properties:

i) span(Φ) = H∗, 0 /∈ Φ and Φ is finite;
ii) For any α ∈ Φ and c ∈ R, we have cα ∈ Φ ⇐⇒ c = ±1;
iii) If α, β ∈ Φ, then β − 〈β, α〉α ∈ Φ;
iv) If α, β ∈ Φ, then 〈β, α〉 ∈ Z.
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Proof. i) Proven. ii) (⇐) Already seen.
(⇒) Consider Lα as in (4) of the lemma above. It’s not hard to see that V = F · hα ⊕⊕
c∈R\{0} Lcα is the invariant space of Lα under the adjoint representation. Consider the

sub-representation of Lα on V and the action of hα on V . If cα ∈ Φ, then for x ∈ Lcα,
we have [hα, x] = 2cx, making 2c a weight corresponding to the weight space Lcα. Note
that all nonzero weights of V are of this form, and the weight space of 0 is just F · hα.

Note that Lα is an invariant subspace of V . Since the representation of sl(2, F ) is
completely reducible, there exists an invariant subspace V ′ of V s.t. V = Lα ⊕ V ′. Since
0 is not a weight of V ′, V ′ has no even weights. Hence the only even weights of V are ±2
and 0. So V = Lα. Note that this furthermore implies that dimLα = 1.

iii)& iv) It’s OK when β = ±α. For the other cases, β and α are linearly independent.
We can easily see that

⊕
k∈Z Lβ+kα is invariant under the adjoint representation of Lα on

L. Let’s consider the sub-representation of Lα on this subspace. Sice for every x ∈ Lβ+kα

we have [hα, x] = (〈β, α〉 + 2k)x, so β + kα ∈ Φ ⇐⇒ 〈β, α〉 + 2k is a weight. In the
case k = 0, β ∈ Φ, so 〈β, α〉 is a weight, which implies that 〈β, α〉 ∈ Z. Note that this
also indicates −〈β, α〉 is a weight, which corresponds to the case k = −〈β, α〉. Hence,
β − 〈β, α〉α ∈ Φ. �

2.3.2. Corollary (of the process of proof). ∀α ∈ Φ, dimLα = 1.

3. Abstract root systems

3.0.3. Definition. A subset Φ of an euclidean space E (i.e. a finite dimensional vector
space over R endowed with a positive definite symmetric bilinear form (α, β)) is called a
root system in E if the following axioms are satisfied:

(R1) Φ is finite and spans E , 0 /∈ Φ.
(R2) if α ∈ Φ, the only multiples of α in Φ are ±α.
(R3) if α ∈ Φ, the reflection σα leaves Φ invariant.

(R4) if α, β ∈ Φ, 2 (β,α)
(α,α)

=: 〈β, α〉 ∈ Z.

Axiom (R4) in the definition above restricts the possible angles occurring between pairs
of roots rather strictly. Recall that the cosine of the angle ϑ between α and β ∈ E is given

by the formula cosϑ = (α,β)
‖α‖‖β‖ . Therefore, using the definition, 〈β, α〉 = 2 ‖β‖‖α‖ cosϑ and

4 cos2 ϑ = 〈β, α〉〈α, β〉 ∈ Z≥0. Since 0 ≤ cos2 ϑ ≤ 1 and since 〈β, α〉 has the same sign of
〈α, β〉, the only possible values for 〈α, β〉 are 0,±1,±2,±3. As a consequence, we have
the following simple result:

3.0.4. Lemma. Let α, β be non-proportional roots in Φ. If (α, β) > 0 (i.e. if the angle
between the vectors α and β is strictly acute), then α − β is a root. If (α, β) < 0, then
α + β is a root.

3.0.5. Definition. The Weyl group W of a root system Φ consists of the subgroup of
GL(E) generated by all the reflections σα for α ∈ Φ.

For a given α, the reflection σα fixes the hyperplane Pα = {x ∈ E | (β, α) = 0} normal
to α and maps α 7→ −α. It’s easy to see that an explicit formula for σα is given by
σα(β) = β − 〈β, α〉α. By axiom (R3), W permutes the (finite) set Φ. This allow us to
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identify the Weyl group with a subgroup of the symmetric group on Φ. In particular, W
is finite.

3.1. Bases and Weyl chambers. From property (R1) above, it is clear that any root
system also contains a basis for E . We can refine this concept with a natural notion of a
base for the root system

3.1.1. Definition. A subset ∆ of Φ is called a base for Φ if

(B1) ∆ is a basis of E.
(B2) Each root β ∈ Φ can be written as β =

∑
α∈∆ kαα with integral coefficients kα

that are either all nonpositive or all nonnegative.

The roots in a base are called simple. Clearly the expression for β in (B2) is unique. This
allow us to define the height of a root β (relative to a fixed basis ∆) to be ht(β) =

∑
α∈∆ kα.

We say that a root is positive (resp. negative) if all kα are ≥ 0 (resp. ≤ 0). In order
to distinguish the two cases, we may write β � 0 or β ≺ 0 respectively. The collection
of positive and negative roots, relative to ∆, is denoted by Φ+ and Φ− (notice that
−Φ+ = Φ−).

It is not clear from the definition that a base actually exists for a root system Φ.
Indeed, all possible bases are related in a precise way and there is a concrete method for
constructing them. For each γ ∈ E , define Φ+(γ) as the set of roots lying on the positive
side of the hyperplane orthogonal to γ, i.e. Φ+(γ) = {α ∈ Φ | (γ, α) > 0}. Similarly we
define Φ−(γ) = {α ∈ Φ | (γ, α) < 0}. We call γ ∈ E regular if γ ∈ E \

⋃
α∈Φ Pα and

singular otherwise. When γ is regular we clearly have Φ = Φ+(γ) ∪ Φ−(γ). Finally, we
call α ∈ Φ+(γ) decomposable if α = β1 + β2 for some βi ∈ Φ+(γ) and indecomposable
otherwise. Now we can give the following statement:

3.1.2. Theorem. Let γ ∈ E be regular. Then the set ∆(γ) of all indecomposable roots in
Φ+(γ) is a base for Φ and every base is obtained in this manner.

The hyperplanes Pα (α ∈ Φ) define a partition of E into finitely many regions. The
connected components of E \

⋃
α∈Φ Pα are called the Weyl chambers of E . For a given

base ∆ of E , the unique Weyl chamber containing all vectors γ ∈ E which satisfies the
inequalities (γ, α) > 0 (α ∈ ∆) is called the fundamental Weyl chamber relative to ∆.
Each regular γ ∈ E belongs to precisely one Weyl chamber, denote C(γ). If C(γ) = C(γ′),
then γ and γ′ lie on the same side of each hyperplane Pα (α ∈ Φ), which is equivalent to
require that Φ+(γ) = Φ+(γ′) or ∆(γ) = ∆(γ′). Hence we have just proved the following:

3.1.3. Lemma. The set of Weyl chambers is in natural 1-1 correspondence with the set
of bases of Φ.

3.2. The Weyl group. The Weyl group sends one Weyl chamber onto another: if σ ∈ W
and γ ∈ E is regular, then σ(C(γ)) = C(σ(γ)). It is easy to show that W permutes the
bases: since σ ∈ W is both invertible and orthogonal (i.e. preserves the inner product on
E), σ sends ∆ to σ(∆), which is again a base. This two actions are in fact compatible with
the above correspondence between the Weyl chambers and bases. We will prove that W
permutes the bases of Φ (or, equivalently, the Weyl chambers) in a simply transitive way.
We will first prove the statement for W ′, the subgroup of W generated by the reflections
σα for α in a base ∆.
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3.2.1. Theorem. Given ∆ and ∆′ bases for a root system Φ, we have ∆′ = σ(∆) for some
σ ∈ W ′.
Proof. First, recall that a base ∆ for a given root system Φ is uniquely determined by its
fundamental Weyl chamber: we may represent it by selecting a vector γ which is regular.
Furthermore, it is thus sufficient to prove that W ′ acts transitively on Weyl chambers,
i.e. for any base ∆, there exists σ ∈ W ′ with (σ(γ), α) > 0 for all α ∈ ∆. This actually
says that we can “move” the Weyl chamber represented by γ onto the fundamental Weyl
chamber of the base ∆.

Define δ = 1
2

∑
α�0 α. Then, choosing σ ∈ W ′ such that (σ(γ), δ) is as large as possible,

we have (σ(γ), δ) ≥ (σασ(γ), δ) for all α ∈ ∆ (since of course σασ ∈ W ′ for α ∈ ∆). We
now need the following lemma:

3.2.2. Lemma. Let α be a simple root. Then σα permutes the positive roots other than α.

Using this result, we have that σα(δ) = δ − α. Now, by the linearity of the symmetric
form ( , ) (together with the fact that (σ(γ), σ(α)) = (γ, α)), we get:

(σ(γ), δ) ≥ (σασ(γ), δ) = (σ(γ), σα(δ)) = (σ(γ), δ − α) = (σ(γ), δ)− (σ(γ), α),

forcing (σ(γ), α) ≥ 0. However, since γ is regular, we cannot have (σ(γ), α) = 0 for any α,
because then γ would be orthogonal to σ−1α. So all inequalities are strict and therefore
σ(γ) lies in the fundamental Weyl chamber C(∆) as desired. �

To see that the Weyl group itself acts transitively on bases, it remains only to show
that W is indeed generated by a set of simple rotations, i.e. W = W ′. To prove this
statement we need two lemmas.

3.2.3. Lemma. For all α ∈ Φ, there exists σ ∈ W ′ such that σ(α) ∈ ∆.

Proof. Since W ′ acts transitively on bases (by the previous theorem), it suffices to prove
that each root α belongs to some base ∆′. Since the only multiple of α that appear in
Φ are ±α, the hyperplanes Pβ (β 6= ±α) are all distinct from Pα, i.e. the hyperplane
fixed by σ±α. So there exists γ ∈ Pα, γ /∈ Pβ for β 6= ±α (such a γ must exist: argue by
contradiction). Taking γ′ close enough to γ such that (γ′, α) = ε > 0 while |(γ′, β)| > ε
for all β 6= ±α, we have that α ∈ Φ+(γ′) cannot be decomposable, otherwise we would
have β1, β2 such that (γ′, α) = (γ′, β1) + (γ′, β2), leading to a contradiction. Then α must
belong to the base ∆(γ′). �

3.2.4. Lemma. The set of “simple reflections”, i.e. σα for α ∈ ∆, generates W.

Proof. To prove W = W ′, it is enough to show that each reflection σα (for α ∈ Φ any
root) is in W ′. Using the previous lemma, we have that there exists σ ∈ W ′ such that
β := σ(α) ∈ ∆. Then σβ = σσ(α) = σσασ

−1, so that σα = σ−1σβσ ∈ W ′. �

This completes the proof that W acts transitively on all possible bases of Φ.
When σ ∈ W is written as σα1 · · ·σαt with αi ∈ ∆ and t minimal, we call the expression

reduced of length `(σ) = t (relative to a fixed base ∆). By definition, `(1) = 0. If we
define the number n(σ) to be the number of positive roots α for which σ(α) is negative,
we can characterize the length in another way:

3.2.5. Lemma. For all σ ∈ W, `(σ) = n(σ).
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3.3. Irreducible root systems.

3.3.1. Definition. A root system Φ is called irreducible if it cannot be partitioned into
the union of two proper subsets such that each root in one set is orthogonal to each root
in the other.

Suppose ∆ is a base of Φ. We claim that Φ is irreducible if and only if ∆ cannot be
partitioned in the same way (i.e. into two proper subsets such that each root in one set
is orthogonal to each root in the other). For the “if” part, suppose that Φ = Φ1 ∪ Φ2

with (Φ1,Φ2) = 0. Unless ∆ is completely contained in Φ1 or in Φ2, this induces a similar
partition of ∆. But ∆ ⊂ Φ1 implies (∆,Φ2) = 0 and so (E ,Φ2) = 0 (since ∆ spans E), i.e.
Φ2 = 0. For the “only if” part, let Φ be irreducible but ∆ = ∆1 ∪∆2, with (∆1,∆2) = 0.
Each root is conjugate to a simple root (by lemma 3.2.3), so we can write Φ = Φ1 ∪ Φ2,
where Φi is the set of roots having a conjugate in ∆i. It is easy to see that if (α, β) = 0
(i.e. α ∈ Pβ or, equivalently, β ∈ Pα), then the two rotations σα and σβ commute, i.e.
σασβ = σβσα. Since W is generated by σα for α ∈ ∆, we can use the explicit formula
for computing simple reflections to show that each root in Φi is obtained from one in ∆i

by adding or subtracting (multiples of) elements of ∆i. In other words, Φi lies in the
subspace Ei of E spanned by ∆i and so, by the linearity of the inner product, we see that
(Φ1,Φ2) = 0. This forces Φ1 = ∅ or Φ2 = ∅, so that ∆1 = ∅ or ∆2 = ∅.

4. Classification

In this section, Φ denotes a root system of rank ` = dimR E , W its Weyl group and ∆
a fixed base of Φ.

4.1. The Cartan matrix. Fix an ordering (α1, . . . , α`) of the simple roots. Then we may
define the matrix (〈αi, αj〉) = Cij. This is call the Cartan matrix of Φ. In general, the
Cartan matrix is not symmetric; however, it has several immediately observable features.
For example, the elements of the diagonal are all 2, and all the off-diagonal entries are
integers of absolute value ≤ 3. When ` ≤ 2 we can describe all possible root systems Φ
by simply drawing a picture. If ` = 1 we have only one possibility, labelled A1.

For ` = 2 the situation is more complicated. However, as we mentioned in section 1,
there is just a limited number of possibilities for possible angles occurring between pairs
of roots (and this fact limits severely the possible root systems in rank 2). Indeed, when
α 6= ±β and ‖β‖ ≥ ‖α‖, we have:

Table 1.

〈α, β〉 〈β, α〉 ϑ ‖β‖2/‖α‖2

0 0 π/2 undetermined
1 1 π/3 1
−1 −1 2π/3 1

1 2 π/4 2
−1 −2 3π/4 2

1 3 π/6 3
−1 −3 5π/6 3
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If α and β are both simple roots and 〈α, β〉 and 〈β, α〉 are strictly positive (i.e., the
angle between α and β is acute), then (from the table) one of them, say 〈β, α〉, is equal
to 1. But then we have

σα(β) = β − 〈β, α〉α = β − α
so that ±(β − α) are roots. One of them, say α − β, must be positive. But then α =
(α − β) + β, contradicting the simplicity of α. We conclude that 〈β, α〉 and 〈α, β〉 are
both negative. From this it follows that there are actually exactly four (non isomorphic)
possibilities in rank 2.

Figure 1. Root systems in rank ` = 2

It worth noticing that A2, B2 and G2 are irreducible, while A1 × A1 is not. For the
systems of rank 2, the possible Cartan matrices are the following:

A1 × A1

(
2 0
0 2

)
;A2

(
2 −1
−1 2

)
;B2

(
2 −2
−1 2

)
;G2

(
2 −1
−3 2

)
.

The matrix clearly depends on the chosen ordering, but this turns out not be a serious
problem. The important point is that the Cartan matrix is independent on the choice of
the base ∆, thanks to the fact that W acts transitively on the collection of bases: if ∆′

is another base of Φ and if σ ∈ W is such that σ(∆) = ∆′, we can use again the explicit
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formula for a reflection (and the linearity of the inner product) to show that the integers
〈αi, αj〉 and 〈σ(αi), σ(αj)〉 are equal. We can actually say more: it turns out that the
Cartan matrix characterize Φ completely.

4.1.1. Proposition. Let Φ′ ⊂ E ′ be a root system for an Euclidean space E ′ with base
∆′ = (α

′
1, . . . , α

′

`). If 〈αi, αj〉 = 〈α′
i, α

′
j〉 for 1 ≤ i, j ≤ `, then the bijection αi 7→ α

′
i

extends in a unique way to an isomorphism ϕ : E → E ′ mapping Φ to Φ′ and satisfying
〈ϕ(α), ϕ(β)〉 = 〈α, β〉 for all α, β ∈ Φ. Therefore the Cartan matrix of Φ determines Φ
up to isomorphism.

Proof. Since ∆ is a basis of E as real vector space, (and, similarly, ∆′ is a basis of E ′ as
real vector space) there is a unique isomorphism of vector space that satisfies αi 7→ α

′
i.

Call it ϕ. Now we use the assumption 〈αi, αj〉 = 〈α′
i, α

′
j〉 for 1 ≤ i, j ≤ ` and the formula

for simple reflections. If α, β ∈ ∆, we have:

σϕ(α)(ϕ(β)) = σα′(β′) = β′−〈β ′
, α

′〉α′
= ϕ(β)−〈β, α〉ϕ(α) = ϕ(β−〈β, α〉α) = ϕ(σα(β)).

In other words, we have the following commutative diagram (for all α ∈ ∆)

E ϕ- E ′

E

σα

?
ϕ- E ′.

σ
α

′
?

As the Weyl groups W and W ′ are generated by simple reflections (i.e. by reflections
σα for α ∈ ∆), this commutativity gives rise to an isomorphism between the two groups,
given by the map σ 7→ ϕ ◦ σ ◦ ϕ−1. Then, as for all β ∈ Φ there exists σ ∈ W such that
α := σ(β) ∈ ∆, we have ϕ(β) = (ϕ ◦ σ ◦ ϕ−1)(ϕ(α)) ∈ Φ′. Then ϕ maps all β ∈ Φ to
Φ′. Finally, using again the formula for the reflections, we see that ϕ preserves all Cartan
integers. �

Hence, the proposition shows that is possible (in principle) to recover Φ from the
knowledge of the Cartan matrix.

4.2. Coxeter graphs and Dynkin diagrams. As mentioned previously, root systems
provide a (relatively) simple way of classifying semisimple Lie algebras: a non-trivial
result (that we are not going to prove, see [2, Chap. IV]) states that two semisimple
Lie algebras having the same root system — that is, the set of roots of L relative to a
maximal toral subalgebra H of L (which turns out to be a root system in our sense up to
an extension of the base field) — are isomorphic. On the other hand, the root systems
may themselves be classified by means of particular diagrams, called Dinkyn diagrams.
Each such diagram belongs to one of finitely many families of graphs.

The first step in defining such diagrams are Coxeter graphs. If α and β are positive
distinct roots, we know that 〈α, β〉〈β, α〉 ∈ {0, 1, 2, 3}. We define the Coxeter graph of Φ
to be a graph having ` vertices. Each vertex corresponds to a root αi ∈ ∆. Two vertex,
corresponding to α and β respectively (α 6= β), are connected by 〈α, β〉〈β, α〉 edges (so
that no edge exists between the vertices αi and αj if Cij = 0).

Irreducible root systems play a fundamental role in the classification process that we
will describe below. In particular we will use the following result about the lengths:



10 FEDERICO BINDA ZIYANG GAO

4.2.1. Lemma. Let Φ be an irreducible root system. Then at most two root lengths occur
in Φ and all roots of a given length are conjugate under the action of W.

In case Φ is irreducible with 2 distinct root lengths, we will speak about short and
long roots (referring to the corresponding lengths). If all roots are of equal length, we
conventionally call all of them long.

If all roots have equal length, i.e. ‖αi‖ = ‖αj‖ for all i, j, of course we have 〈αi, αj〉 =
〈αj, αi〉 = −1 (recall that 〈α, β〉 < 0 and 〈β, α〉 < 0 if α and β are simple roots). In this
case, the Coxeter graph determines the Cartan integers. However, this is not always the
case. For example, if ` = 2, we have the following possibilities: If more than one root

Figure 2. Coxeter graphs in rank ` = 2

length occurs, the graph fails to tell us which of a pair of vertices should correspond to
a short (simple) root and which to a long (when these vertices are connected by two or
three edges). This is the situation of B2 or G2.

When this occurs, we put an arrowhead on the lines joining the vertices pointing towards
the shorter root. The resulting diagram is called the Dynkin diagram of the root system.
For example we have:

Figure 3. Dynkin diagrams B2 and G2

To see that the Cartan matrix can be recovered from the Dynkin diagram, consider
another example:

It’s easy to see that the associated Cartan matrix is:
2 −1 0 0
−1 2 −2 0
0 −1 2 −1
0 0 −1 2


Recall that a root system is called irreducible if it cannot be written as the union of

two proper orthogonal subsets. We proved that this condition is equivalent to the same
condition written for a base ∆. It is clear, by definition, that a root system is irreducible
if and only if its Coxeter graph is connected. In general (since a root system is always
a finite set), there will be a (finite) number of connected components of the Coxeter
graph, corresponding to a partition of ∆ = ∆1 ∪ . . . ∪ ∆t and to a partition of E into
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E1⊕ . . .⊕Et, where Ei is the space span of ∆i (the sum is clearly direct, since all subspaces
are orthogonal). It is then easy to show that each root lies in one of the Ei, i.e. we have
a partition of Φ = Φ1 ∪ . . . ∪ Φt. Thus we have proved the following statement:

4.2.2. Proposition. Each root system Φ decomposes (uniquely, up to isomorphism) as
the union of irreducible root systems Φi, each of them is a root system of a subspace Ei of
E such that E = E1 ⊕ . . . Et.

The consequence of the previous proposition is that the classification of irreducible root
system is equivalent to the classification of connected Dynkin diagrams. In particular, we
have:

4.2.3. Theorem. If Φ is an irreducible root system of rank `, its Dynkin diagram is one
of the following (` vertices in each case):

4.3. Notes. The discussion in this paper follows [2], chap. II& III, §7, 8, 9, 10 and 11.
All the proofs that are not given here can be found, for example, there. The classical
reference for the subject is the book of Serre [3]. Milne’s course notes [1] follow, more
or less, the same approach of [2], with more emphasis on the connection with algebraic
groups.
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