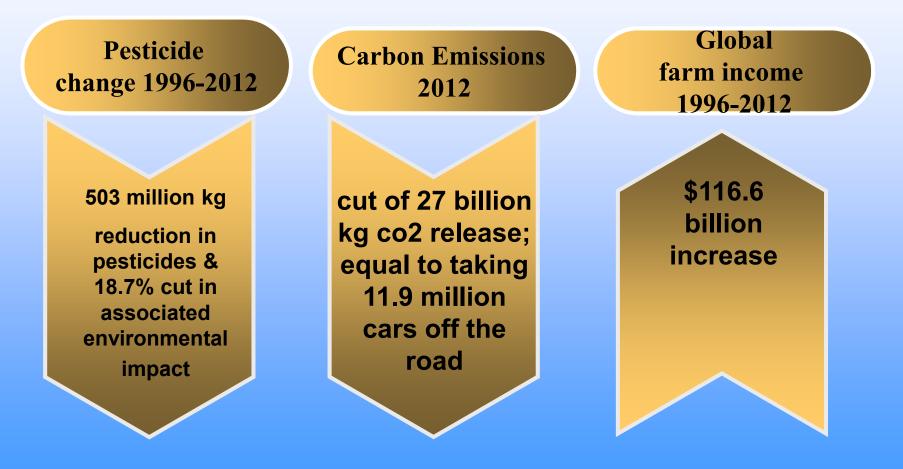
Global Impact of Biotech Crops: economic & environmental effects 1996-2012

Graham Brookes PG Economics Ltd UK

Background

- 9th annual review of global GM crop impacts
- Authors of 17 papers on GM crop impacts in peer review journals
- Current review in 2 open access papers in journal GM crops. <u>www.landesbioscience.com/journal/gmcrops</u>
- Full report available at <u>www.pgeconomics.co.uk</u>


Coverage

- Cumulative impact: 1996-2012
- Farm income & productivity impacts: focuses on farm income, yield, production
- Environmental impact analysis covering pesticide spray changes & associated environmental impact
- Environmental impact analysis: greenhouse gas emissions

Methodology

- Review and use of considerable economic impact literature plus own analysis
- Uses current prices, exch rates and yields (for each year) & update of key costs each year: gives dynamic element to analysis
- Review of pesticide usage (volumes used) or typical GM versus conventional treatments
- Use of Environmental Impact Quotient (EIQ) indicator
- Review of literature on carbon impacts fuel changes and soil carbon

Key Findings

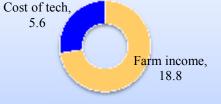
Farm income gains 2012: highlights

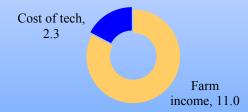
- Total farm income benefit \$18.8 billion
- Equal to adding value to global production of these four crops of 6%
- Average gain/hectare: \$117
- Income share: 50% each developed and developing countries

Farm income benefits: EU (US \$ million)

	2012	1996-2012	% of crop using technology 2012 (Spain)
Insect resistant corn	39.9	195.1	30

Year first used: IR corn 1998 Spain Average benefit/ha 1998-2012 \$205/ha


Other farm level benefits

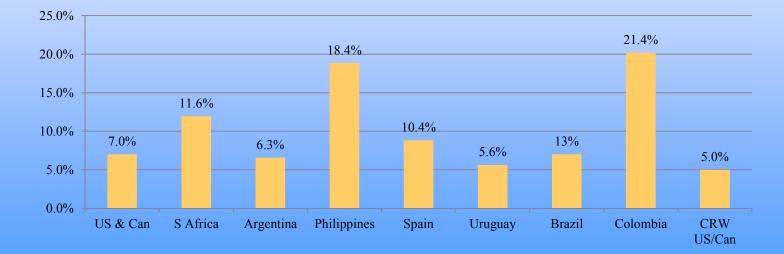

GM HT crops	GM IR crops	
Increased management flexibility/convenience	Production risk management tool	
Facilitation of no till practices	Machinery & energy cost savings	
Cleaner crops = lower harvest cost & quality premia	Yield gains for non GM crops (reduced general pest levels)	
Less damage in follow on crops	Convenience benefit	
	Improved crop quality	
	Improved health & safety for farmers/workers	

©PG Economics Ltd 2014 In US these benefits valued at \$10 billion 1996-2012

Cost of accessing the technology (\$ billion) 2012

 Distribution of total trait benefit: all (tech cost 23%) – every \$1 invested in seed = \$3.3 in extra income

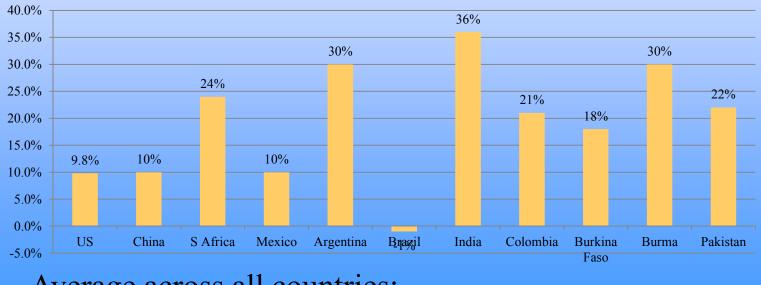
 Distribution of benefit: developing countries (tech cost 21%) every \$1 invested in seed = \$3.7 in extra income


Cost of tech goes to seed supply chain (sellers of seed to farmers, seed multipliers, plant breeders, distributors & tech providers)

Yield gains versus cost savings

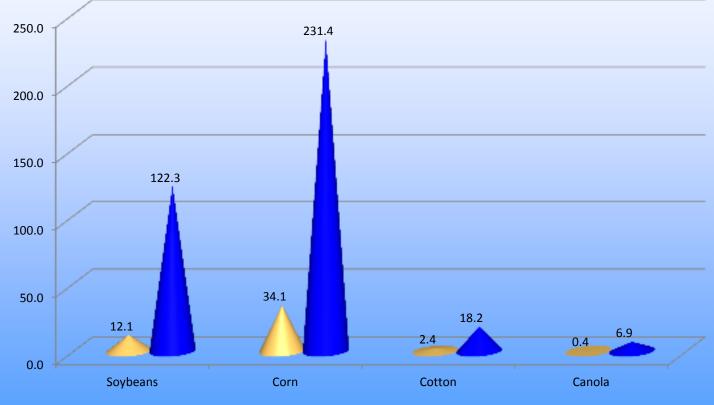
- 42% (\$49 billion) of total farm income gain due to yield gains 1996-2012
- Balance due to cost savings
- Yield gains mainly from GM IR technology & cost savings mainly from GM HT technology
- Yield gains greatest in developing countries & cost savings mainly in developed countries
- HT technology also facilitated no tillage systems allowed second crops (soy) in the same season in S America

IR corn: average yield increase 1996-2012



Average across all countries: +10.4%

IR cotton: average yield increase 1996-2012



Average across all countries: +16.1%

HT traits: yield and production effects

	Trait/country	Yield/production effect
	HT soy: Romania, Mexico, Bolivia	+23%, +7% & +15% respectively on yield
	HT soy: 2 nd generation: US & Canada	+10% to +11% yield
	HT soy Argentina & Paraguay	Facilitation of 2 nd crop soy after wheat: equal to +15% and +7% respectively to production level
	HT corn: Argentina, Brazil, Philippines	+10%, +3% & +5% respectively on yield
Side and	HT cotton: Mexico, Colombia, Brazil	+8%, +4% & +2% respectively on yield
	HT canola: US, Canada & Australia	+2.4%, +5.9% & +16.5% respectively on yield

Additional crop production arising from positive yield effects of biotech traits 1996-2012 (million tonnes)

2012 1996-2012

Additional conventional area required if biotech not used (m ha)

	2012	1996-2012
Soybeans	4.9	49.4
Maize	6.9	47.0
Cotton	3.1	23.6
Canola	0.2	3.9
Total	15.2	123.9

Price impacts

 Additional production from biotech has contributed to lowering world prices of grains and oilseeds

Crop/Commodity	Biotech benefit to world prices (2007 baseline)
Soybeans	-5.8%
Corn	-9.6%
Canola	-3.8%
Soy oil	-5%
Soymeal	-9%
Canola oil & meal	-4%

Source: Brookes G et al (2010) The production and price impact of biotech crops, Agbioforum 13 (1) 2010. www.agbioforum.org

Impact on pesticide use

- Since 1996 use of pesticides down by 503 m kg (-8.8%) & associated environmental impact -18.7% equivalent to 2 x total EU (28) pesticide active ingredient use on arable crops in one year
- Largest environmental gains from GM IR cotton: savings of 205 million kg insecticide use & 28% reduction in associated environmental impact of insecticides

Impact on greenhouse gas emissions

Lower GHG emissions: 2 main sources:

- Reduced fuel use (less spraying & soil cultivation)
- GM HT crops facilitate no till systems = less soil preparation = additional soil carbon storage

Reduced GHG emissions: 2012

- Reduced fuel use (less spraying & tillage) = 2.1 billion kg less carbon dioxide
- Facilitation of no/low till systems = 24.6 billion kg of carbon dioxide not released into atmosphere

Equivalent to removing 11.9 million cars — 41% of cars registered in the United Kingdom — from the road for one year

Reduced GHG emissions: 1996-2012

- less fuel use = 16.7 billion kg co2 emission saving (7.4 m cars off the road)
- additional soil carbon sequestration = 203 billion kg co2 saving if land retained in permanent no tillage. BUT only a proportion remains in continuous no till so real figure is lower (lack of data means not possible to calculate)

Concluding comments

- Technology used by 17.3 m farmers on 160 m ha in 2012
- Delivered important economic & environmental benefits
- + \$116.6 billion to farm income since 1996
- -503 m kg pesticides & 18.7% reduction in env impact associated with pesticide use since 1996
- Carbon dioxide emissions down by 27 billion kg in 2012: equal to 11.9 m cars off the road for a year

Concluding comments

- *GM IR technology*: higher yields, less production risk, decreased insecticide use leading to improved productivity and returns and more environmentally farming methods
- *GM HT technology*: combination of direct benefits (mostly cost reductions) & facilitation of changes in farming systems (no till & use of broad spectrum products) plus major GHG emission gains
- *Both technologies* have made important contributions to increasing world production levels of soybeans, corn, canola and cotton
- *GM HT technology* has seen over reliance on use of glyphosate by some farmers in North/South America: contributed to weed resistance problems and need to change/adapt weed control practices. Resulted in increases in herbicide use in last few years but environmental impact of herbicides used are still better than conventional crop alternative

EU 28

- Farm users of IR maize getting important economic and environmental gains
- IR maize delivering better quality (lower mycotoxins) grain (note we feed it to animals not humans!)
- Most EU farmers not getting benefit of higher yields and lower costs discouraged to use with non science-based co-existence rules or illegal national bans on planting
- EU farm sector losing out competitively with imports and on world markets
- EU citizens missing out on environmental benefits