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Abstract. We show that, over an arbitrary commutative ring, the localizations of the categories

of dg categories, of unital and of strictly unital A∞ categories with respect to the corresponding

classes of quasi-equivalences are all equivalent. The same result is also proved at the ∞-categorical

level in the strictly unital case. As an application, we provide a new proof of the existence of

internal Homs for the homotopy category of dg categories in terms of the category of unital A∞

functors, thus yielding a complete proof of a claim by Kontsevich and Keller.
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Introduction

This paper extends and, at the same time, repairs some existing results about the homotopy

categories of differential graded (dg from now on) and A∞ categories. The study of these homotopy

categories has grown during the last two decades and it has produced several remarkable results.

Nonetheless most of them depend on the assumption that such categories are linear over a field. At

first sight this might look like a mild assumption but, as soon as we start thinking of applications

of dg or A∞ categories to algebraic or geometric problems such as deformation theory, it becomes

a priority to replace the ground field with any commutative ring.

This simple observation was the main incentive to reconsider our previous results in [5] whose

proofs deeply used the assumption that the categories are linear over a field. Unfortunately, the

effort to generalize our previous work drew our attention to the unpleasant presence in the literature
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of a couple of mistakes with deep repercussions on several papers, including [5]. We will come back

to them later in the introduction. For now we want to stress that our effort to find a way out

of them was not only successful but provided a wide generalization of all known results along the

lines that we would like to outline now.

Let us consider the category dgCat consisting of (small) dg categories defined over a commu-

tative ring k. Due to the work of Tabuada [24], dgCat has a model category structure which

allows one to consider its homotopy category Ho(dgCat), which is nothing but the localization of

dgCat with respect to all quasi-equivalences. The latter being special dg functors which induce

an equivalence at the homotopy level. If we can replace dgCat with the corresponding category of

A∞ categories, one can still consider its localization with respect to quasi-equivalences. Note that

the category of A∞ categories famously does not have a model structure with limits and colimits

(see, for example, [5, Section 1.5]).

The delicate issue about A∞ categories is that various notions of unit are available for them.

One can indeed take the category A∞Cat of strictly unital A∞ categories. Or, alternatively, the

category A∞Catu of unital A∞ categories. One could go further and consider cohomologically

unital A∞ categories A∞Catc. We will discuss these subtleties in detail in Section 1.3. For now

it is enough to keep in mind that we have natural faithful functors

dgCat ↪→ A∞Cat ↪→ A∞Catu ↪→ A∞Catc.

While strictly unital A∞ categories are natural generalizations of dg categories, unital ones

are those who appear when dealing with Fukaya categories. If we work with categories linear

over a commutative ring then A∞Catu and A∞Catc are different and the latter is, from many

perspectives, hard to deal with and too coarse. But when the ground ring is actually a field, these

two categories coincide. Thus, since the aim of this paper is to recover and extend the results

in [5] to categories which are linear over a commutative ring, we will stick only to the first three

categories in the above sequence of inclusions and to their localizations Ho(dgCat), Ho(A∞Cat)

and Ho(A∞Catu) with respect to the corresponding classes of quasi-equivalences.

The need for a comparison between the (homotopy) category of dg categories and the one of A∞

categories is pervasive. We will mention more applications later in the introduction. For now, it is

worth recalling that the core of the Homological Mirror Symmetry Conjecture, due to Kontsevich

[15], is indeed a comparison between dg enhancements of the bounded derived category of coherent

sheaves on a Calabi–Yau threefold and the Fukaya category (hence an A∞ category) on a mirror

Calabi–Yau threefold.

In order to state our first main result we need to introduce an additional category. If A and

B are unital A∞ categories, we can consider the A∞ category FunA∞Catu(A,B) which will be

carefully defined in Section 1.4. Its objects are the unital A∞ functors from A to B and two unital

A∞ functors F,G : A → B are equivalent F ≈ G if they are isomorphic in the 0-th cohomology

of FunA∞Catu(A,A). Hence we can take the quotient A∞Catu/ ≈ of A∞Catu with respect to

this equivalence relation. One can go further and look at all h-projective unital A∞ categories and

form the full subcategory A∞Catuhp ↪→ A∞Catu. Recall that an A∞ category A is h-projective if

the complex of morphism A(A,B) is such, for all A,B in A. From this it is clear that A∞Catuhp
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and A∞Catu coincide when k is a field. Anyway, in complete generality, we can form the quotient

A∞Catuhp/ ≈.

With this in mind, we can finally state our first main result.

Theorem A. The faithful functors dgCat ↪→ A∞Cat ↪→ A∞Catu induce natural equivalences

Ho(dgCat) ∼= Ho(A∞Cat) ∼= Ho(A∞Catu).

Moreover, these categories are equivalent to A∞Catuhp/ ≈.

The existence of the equivalence Ho(dgCat) ∼= Ho(A∞Cat) is the content of Theorem 3.6 while

the equivalence Ho(dgCat) ∼= Ho(A∞Catu) and the one between Ho(dgCat) and A∞Catu/ ≈
are proved in Theorem 4.1. Note that, if k is a field, the last part of Theorem A just says that

Ho(dgCat) and A∞Catu/ ≈ are equivalent.

One important application of the result above is about uniqueness of enhancements for algebraic

triangulated categories. Roughly, a triangulated category is algebraic if it admits a higher categor-

ical model: either dg or A∞ or ∞-stable categorical. The quest for the uniqueness of such a model

was initiated by a very influential conjecture by Bondal, Larsen and Lunts in [3] for geometric

triangulated categories. The conjecture was proved by Lunts and Orlov in the seminal paper [17]

and the result was then further extended in [1] and [7] (see also [9]) up to the last and most general

result in [4]. All these papers prove uniqueness of enhancements for larger classes of interesting

triangulated categories using the language of dg categories. Theorem A immediately implies that

such results extend to A∞ enhancements which are linear over any commutative ring.

Finally, it is important to note that, following [22], Theorem A implies an analogous ∞-

categorical version with several remarkable applications. Let us indeed denote by Ho(dgCat)∞

and Ho(A∞Cat)∞ the ∞-categorical enhancements of Ho(dgCat) and Ho(A∞Cat), respectively

(see Section 3.2 for more details). We then have the following.

Theorem B. The ∞-categories Ho(dgCat)∞ and Ho(A∞Cat)∞ are equivalent.

We should note that such a result is nothing but Theorem 1.1 in [19] for strictly unital A∞

categories. Unfortunately, as the authors later realized, the proof in loc. cit. turned out to be

wrong. If we stick to dg or A∞ categories which are linear over a field, Theorem B was proved

in [22]. Actually, we will explain in Section 3.2 that the same argument as in [22], together with

Proposition 3.1, yields a proof of Theorem B over an arbitrary commutative ring. It is worth

pointing out that, as observed in [19, Remark 1.2], Theorem B combined with the results in

[12] shows that Gepner–Haugseng’s model for the collection of all ∞-categories enriched in chain

complexes in [11] is equivalent to Ho(A∞Cat)∞.

We now want to discuss our main and highly nontrivial application of Theorem A: a new proof

for the existence of internal Homs in the homotopy category Ho(dgCat). In order to make this

precise, recall that given two dg categories A1 and A2, one can form their tensor product A1⊗A2

in dgCat. In order to get a well defined tensor product in Ho(dgCat) we need to derive it by

setting A1⊗LA2 := A1⊗Ahp
2 , where Ahp

2 stands for a h-projective resolution of A2 (see Section 4.1

for more details). The main result in [25], later reproved in [6], shows that the tensor product ⊗L
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has a right adjoint RHom in Ho(dgCat). Namely, we have a natural bijection

Ho(dgCat)(A1 ⊗L A2,A3) oo
1:1 // Ho(dgCat)(A1,RHom(A2,A3)),

for A1, A2 and A3 in dgCat.

The astonishing fact is that, well before the appearance of [25], Kontsevich envisioned that

such internal Homs should exist and could be described in terms of A∞ functors between the

corresponding dg categories. Such a claim, originally mentioned in [8], was later recasted by Keller

in his ICM talk [14] (see Section 4.3 therein) in the following form.

Claim (Kontsevich, Keller). Let A1 and A2 be dg categories such that A1 is h-projective and the

unit map k → A1(A,A) admits a retraction as a morphism of complexes, for all A ∈ A1. Then

the dg category FunA∞Cat(A1,A2), whose objects are strictly unital A∞ functors, is the category

of internal Homs between A1 and A2.

It turns out that, by using Theorem A, we can prove the following result which implies, as a

special case, the claim above (see Remark 5.3). At the same time, due to its gorgeous generality,

it provides a completely new proof of the result in [25] about the existence of internal Homs.

Theorem C. Given three dg categories A1,A2,A3, there is a natural bijection of sets

Ho(dgCat)(A1 ⊗L A2,A3) oo
1:1 // Ho(dgCat)(A1,FunA∞Catu(A

hp
2 ,A3))

proving that the symmetric monoidal category Ho(dgCat) is closed. In particular, we get a natural

bijection of sets

Ho(dgCat)(A1,A2) oo
1:1 // Isom(H0(FunA∞Catu(A

hp
1 ,A2)))

which is compatible with compositions in the first and second entry.

Some comments are now in order here. First of all, the first part of Theorem C implies that

the internal Hom dg category RHom(A2,A3) is isomorphic in Ho(dgCat) to the dg category

FunA∞Catu(A
hp
2 ,A3). The advantage is that, once we know that internal Homs can be described

as suitable equivalence classes of A∞ functors, then the claim about the compatibility with com-

positions becomes straightforward (see Section 5.2 for more details and a precise description of the

composition). This is less easy to achieve if one keeps the description of internal Homs in terms

of bimodules as in [25] (and [6]). Such a compatibility is indeed described as an open question in

the introduction of [25]. Theorem C provides an easy answer to it.

Related work and further applications. The first comparison has to be made with our previ-

ous paper [5]. Besides the obvious observation that our new results imply essentially all the ones

in [5], we should go back to our first claim in the introduction: the fact that this paper corrects

and overcomes some mistakes in the literature.

It was proved by Lefèvre-Hasegawa [16, Theorem 3.2.1.1] for A∞ algebras and later by Seidel

[23, Lemma 2.1] that any cohomologically unital A∞ algebra or category can be replaced with a

strictly unital one, at least when we work over a field. Similarly, [16, Theorem 3.2.2.1] and [23,

Remark 2.2] claim that the same is true for functors: an A∞ functors between strictly unital A∞

categories can be replaced by a strictly unital one, up to homotopy. Unfortunately, after carefully
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thinking about these claims, one realizes that none of them can be true in this generality. And the

falsity of the first claim about categories (and algebras) was indeed later observed by Seidel in an

erratum to [23].

While many technical parts of [5] remain valid (and will also be used in this paper) others,

heavily relying on the two claims above, have to be revisited. For example, [5, Proposition 2.5] is

easily seen to be false as soon as we consider A∞ categories A such that the complex A(A,A) has

trivial cohomology but it is not trivial, for some some A in A. This produces a cascade of problems

in the proof of [5, Theorem A] some of which can be overcome by readjusting the arguments while

some of them needs the new (and at the same time more general) approach which we adopt in

the present paper. A careful comparison shows that the new Theorem A replaces the old one for

most of its parts once we observe that the categories of cohomologically unital and of unital A∞

categories are the same, over a field. There is only one claim in [5] that is not covered by our new

results: the equivalence between Ho(dgCat) and A∞Cat/ ≈. Not only we cannot prove such a

claim but we actually expect it to be false (see Remark 4.14).

Moreover, for similar reasons, the description of the internal Homs in terms of strictly unital

A∞ functors has to be replaced by the one which uses unital A∞ functors. The result is that the

new Theorem C replaces and generalizes the old [5, Theorem B].

Finally, as we have already explained before, the techniques we develop to prove Theorem A for

categories linear over a commutative ring, allow us to provide a complete proof to Theorem 1.1 for

strictly unital A∞ categories and contained in [19]. Actually this takes the form of Theorem B. The

latter result together with Theorem C gives then access to the many very interesting applications

discussed in the second part of [19] (see, in particular, Sections 3.3 and 4 therein).

Plan of the paper. In Section 1 we briefly recall the basic definitions and constructions which

are used all along the paper. We refer to the existing literature for more details but an issue that

we try to analyze carefully is the difference between the various notions of unit for A∞ categories

(see Section 1.3).

In Section 2 we show the existence of a crucial pair of adjoint functors between the category of

dg categories and the one of A∞ categories (for later use in Section 5, the key step of the proof

needs to be treated in a more general setting, which makes Section 2 the more technical part

of the paper). Here we work with non-unital categories, and the analysis has to be refined in

Section 3 and Section 4 in order to deal with strictly unital and unital A∞ categories, thus proving

Theorem A. In Section 3.2 we outline the proof of Theorem B.

As for internal Homs, the proof of Theorem C, is carried out in Section 5 with a preliminary

discussion about multifunctors in Section 5.1. One of the aims of Section 5 is to clarify the

behaviour of composition for the new description of the dg category of internal Homs, which is

part of the statement of Theorem C.

Notation and conventions. We assume that a universe containing an infinite set is fixed.

Throughout the paper, we will simply call sets the members of this universe. In general the

collection of objects of a category need not be a set: we will always specify if we are requiring this

extra condition.
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We work over a commutative ring k. We will always assume that the collection of objects in a

k-linear category is a set.

The shift by an integer n of a graded k-module M =
⊕

i∈ZM
i will be denoted by M [n] =⊕

i∈ZM
n+i. If x ∈ M , we will often write x[n] to denote the same element in M [n]. If x is

homogeneous, say x ∈M i, then we set deg(x) := i and deg′(x) := i+ 1.

We recall the Koszul sign rule: if f : M → M ′ and g : N → N ′ are morphisms of graded k-
modules, with g homogeneous, then f ⊗ g : M ⊗N →M ′ ⊗N ′ maps x⊗ y, with x homogeneous,

to (−1)deg(g) deg(x)f(x)⊗ g(y).

Complexes (or dg modules) are cohomological (namely, the differential has degree +1).

1. Preliminaries on A∞ categories and functors

In this section we provide a concise introduction to A∞ categories and functors. In the whole

paper the subtle relation between the various notions of unit is crucial. We provide here the basic

definitions and properties which will be used later.

As in [5], we will follow the sign conventions in [16], which are different from (but equiva-

lent to) those used in other references, like [2] and [23]. In particular, given graded k-modules

M1, . . . ,Mi, N , a k-linear map f : Mi ⊗ · · · ⊗M1 → N of degree n is identified with the k-linear
map

(1.1) (−1)n+i−1ι−1
N ◦ f ◦ (ιMi ⊗ · · · ⊗ ιM1) : Mi[1]⊗ · · · ⊗M1[1] → N [1]

of degree n+ i− 1, where ιM : M [1] →M is the natural isomorphism of degree 1, for every graded

k-module M .

1.1. Non-unital A∞ categories, functors and natural transformations. We start by recall-

ing the explicit definitions of non-unital A∞ categories, functors and (pre)natural transformations.

A conceptual explanation of the otherwise mysterious formulas appearing in this section will be

given in Section 1.2.

Definition 1.1. A non-unital A∞ category A consists of a set of objects Ob(A), of graded k-
modules A(A,A′) for every A,A′ ∈ A and of k-linear maps of degree 2− i

(1.2) mi = mi
A : A(Ai−1, Ai)⊗ · · · ⊗A(A0, A1) → A(A0, Ai),

for every i > 0 and every A0, . . . , Ai ∈ A. The maps must satisfy the A∞ associativity relations

(1.3)

n∑
k=1

n−k∑
i=0

(−1)i+k(n−i−k)mn−k+1 ◦ (id⊗n−i−k ⊗mk ⊗ id⊗i) = 0

for every n > 0.

In particular, (1.3) with n = 1 shows that m1 defines a differential on each A(A,A′), which will

always be regarded as a complex in this way. It is also important to observe that m1 satisfies the

graded Leibniz rule with respect to the composition defined by m2 (by the case n = 2) and that m2

is associative, up to a homotopy defined by m3 (by the case n = 3). This implies that we obtain

the non-unital graded cohomology category H(A) of A such that Ob(H(A)) = Ob(A),

H(A)(A,A′) =
⊕
i

H i
(
A(A1, A2)

)
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for every A,A′ ∈ A and (associative) composition induced from m2.

Definition 1.2. A non-unital A∞ functor F : A → B between two non-unital A∞ categories A

and B is a collection F = {Fi}i≥0, where F0 : Ob(A) → Ob(B) is a map of sets and

(1.4) Fi : A(Ai−1, Ai)⊗ · · · ⊗A(A0, A1) → B(F0(A0),F
0(Ai)),

for i > 0, are k-linear maps of degree 1− i, for every A0, . . . , Ai ∈ A. The maps must satisfy the

following relations

(1.5)

n∑
k=1

n−k∑
i=0

(−1)i+k(n−i−k)Fn−k+1 ◦ (id⊗n−i−k ⊗mk
A ⊗ id⊗i)

=
∑

i1+···+ir=n
i1,...,ir>0

(−1)
∑r−1

t=1

∑r
u=t+1(1−it)iumr

B ◦ (Fir ⊗ · · · ⊗ Fi1),

for every n > 0. A non-unital A∞ functor F is strict if Fi = 0 for every i > 1.

From (1.5) with n = 1 we see that F1 commutes with the differentials m1. Moreover, F1 preserves

the compositions m2, up to a homotopy defined by F2 (by the case n = 2). It follows that F0 and

F1 induces a non-unital graded functor H(F) : H(A) → H(B).

Remark 1.3. A non-unital A∞ category A such that mi = 0 for all i > 2 is called a non-unital dg

category ; for such categories m1 and m2 are usually denoted by d and ◦. A strict non-unital A∞

functor F between two dg categories is called a non-unital dg functor ; in this case one often writes

F instead of F0 or F1. There is a category A∞Catn (with objects the non-unital A∞ categories and

morphisms the non-unital A∞ functors) which contains as a subcategory dgCatn (with objects

the non-unital dg categories and morphisms the non-unital dg functors). While the composition in

dgCatn is the obvious one, the composition in A∞Catn is more subtle (see Section 1.2); however,

we will not need its explicit definition.

Definition 1.4. Given F,G : A → B in A∞Catn, a prenatural transformation θ : F → G of degree

p is given by k-linear maps of degree p− i

(1.6) θi : A(Ai−1, Ai)⊗ · · · ⊗A(A0, A1) → B
(
F0(A0),G

0(Ai)
)

for every i ≥ 0 and every A0, . . . , Ai ∈ A. We say that θ is a natural transformation if

(1.7)

n∑
k=1

n−k∑
i=0

(−1)i+k(n−i−k)θn−k+1 ◦ (id⊗n−i−k ⊗mk
A ⊗ id⊗i)

+
∑

i1+···+ir+k+j1+···+js=n
i1,...,ir,j1,...,js>0,k≥0

(−1)p+r(p−1)+
∑r

t=1(1−it)(n−
∑t−1

u=1 iu)+(p−k)
∑s

t=1 jt+
∑s−1

t=1

∑s
u=t+1(1−jt)ju

mr+s+1
B ◦ (Gjs ⊗ · · · ⊗ Gj1 ⊗ θk ⊗ Fir ⊗ · · · ⊗ Fi1) = 0

for every n ≥ 0.

Observe that θ0 can be identified with a collection of elements θ0A ∈ B
(
F0(A),G0(A)

)p
for every

A ∈ A. Moreover, (1.7) with n = 0 shows that these elements are closed, whereas the case n = 1
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implies that their images in cohomology define a natural transformation H(θ) : H(F) → H(G) of

degree p.

1.2. Reminder on the bar and cobar constructions. This section is a quick reminder about

the bar and cobar constructions. In [5, Sections 1.2 and 1.3] the reader can find definitions

and properties of some notions which are not recalled here, like those of (graded or dg) quiver,

cocategory and cofunctor. For a more detailed presentation see also [2].

We denote by dgcoCatn the category whose objects are non-unital cocomplete dg cocategories

and whose morphisms are non-unital dg cofunctors.

Given A ∈ A∞Catn, the bar construction B∞(A) ∈ dgcoCatn associated to A is simply

defined to be T
c
(A[1]) (where A is viewed as a graded quiver) as a non-unital graded cocat-

egory. As for the differential, an arbitrary choice of maps mi
A as in (1.2) determines a mor-

phism of graded quivers T
c
(A[1]) → A[1] of degree 1 (recall (1.1)), which extends uniquely to

a (idTc
(A[1]), idTc

(A[1]))-coderivation dA : T
c
(A[1]) → T

c
(A[1]) of degree 1. It is easy to see that

dA◦dA = 0 if and only if (1.3) holds for every n > 0, in which case we set B∞(A) := (T
c
(A[1]), dA).

Similarly, F : A → B in A∞Catn induces B∞(F) : B∞(A) → B∞(B) in dgcoCatn. More

precisely, an arbitrary choice of maps F0 : Ob(A) → Ob(B) and Fi for i > 0 as in (1.4) determines

a morphism of graded quivers T
c
(A[1]) → B[1] of degree 0, which extends uniquely to a graded

cofunctor F̂ : T
c
(A[1]) → T

c
(B[1]). Then one can check that dB ◦ F̂ = F̂ ◦ dA if and only if (1.5)

holds for every n > 0, in which case we set B∞(F) := F̂. Moreover, the composition in A∞Catn

is defined in such a way that

B∞ : A∞Catn → dgcoCatn

is a functor, which actually turns out to be fully faithful.

Finally, given F,G : A → B in A∞Catn (more generally, F and G could be given by arbitrary

maps F0,G0 : Ob(A) → Ob(B) and Fi,Gi for i > 0 as in (1.4)), a prenatural transformation

θ : F → G of degree p determines k-linear maps Tc(A[1])(A,A′) → B[1]
(
F0(A),G0(A′)

)
of degree

p− 1 for every A,A′ ∈ A, which extend uniquely to a (F̂, Ĝ)-coderivation θ̂ : Tc(A[1]) → T
c
(B[1])

of degree p − 1. Here we still denote by F̂, Ĝ : Tc(A[1]) → T
c
(B[1]) the extensions by 0 of F̂

and Ĝ. Again, it can be easily proved that dB ◦ θ̂ + (−1)pθ̂ ◦ dA = 0 (where we still denote by

dA : Tc(A[1]) → Tc(A[1]) the extensions by 0 of dA) if and only if θ is a natural transformation.

Remark 1.5. Given F : A → B in A∞Catn and a prenatural transformation θ : F → F of degree

1 such that θ0 = 0, we can define G0 := F0 and Gi := Fi + θi for i > 0. Then we can regard θ as a

prenatural transformation F → G, and it is not difficult to show that in this way Ĝ = F̂+ θ̂. This

clearly implies that G is a non-unital A∞ functor if and only if θ : F → G is a natural transformation.

As a matter of notation, we set

B := B∞|dgCatn : dgCatn → dgcoCatn,

which is a faithful (but not full) functor. Dually, the cobar construction yields a faithful (but not

full) functor

Ω: dgcoCatn → dgCatn.

In particular, for C ∈ dgcoCatn, Ω(C) is simply defined to be T(C[−1]) as a non-unital graded

category, with differential induced from the differential and the cocomposition in C.
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By [5, Proposition 1.21] there is an adjunction

Ω: dgcoCatn ⇄ dgCatn :B,

with counit denoted by α : Ω ◦ B → iddgCatn and unit denoted by β : iddgcoCatn → B ◦ Ω. Since

B∞ is fully faithful, for every A ∈ A∞Catn there exists unique γA ∈ A∞Catn(A,Ω(B∞(A)))

such that

βB∞(A) = B∞(γA) : B∞(A) → B∞(Ω(B∞(A))) = B(Ω(B∞(A))).

Denoting by In : dgCatn → A∞Catn the inclusion functor and setting

Un := Ω ◦ B∞ : A∞Catn → dgCatn,

it is clear that the A∞ functors γA : A → Ω(B∞(A)) = Un(A) (for A ∈ A∞Catn) define a natural

transformation γ : idA∞Catn → In ◦ Un.

1.3. Notions of unity. Now we need to discuss the various notions of units which will be used

in the rest of the paper.

Definition 1.6. A cohomologically unital A∞ category is a non-unital A∞ category A such that

H(A) is a category (i.e. H(A) is unital).

Definition 1.7 ([18, Definition 7.3 and Lemma 7.4]). An A∞ category A is unital if it is coho-

mologically unital and, denoting (for every A ∈ A) by eA ∈ A(A,A) a (closed degree 0) morphism

representing idA ∈ H(A)(A,A), the following morphisms of complexes

m2(−⊗ eA) : A(A,A′) → A(A,A′) m2(eA ⊗−) : A(A′, A) → A(A′, A)

are homotopic to the identity for every A,A′ ∈ A.

Definition 1.8. A strictly unital A∞ category is a non-unital A∞ category A such that for every

A ∈ A there exists a degree 0 morphisms idA ∈ A(A,A) satisfying the following properties:

(1) m2(−⊗ idA) = idA(A,A′) and m2(idA ⊗−) = idA(A′,A) for every A,A
′ ∈ A;

(2) mi(fi ⊗ · · · ⊗ f1) = 0 if i ̸= 2 and fj = idA for some j ∈ {1, . . . , i} and some A ∈ A.

For a non-unital A∞ category A, its augmentation is the strictly unital A∞ category A+ such

that Ob(A+) = Ob(A) and

A+(A,A′) =

A(A,A′) if A ̸= A′

A(A,A′)⊕ k 1A if A = A′,

with mi
A+ the unique extension of mi

A such that the additional morphisms 1A is the unit of A in

A+, for every A ∈ A and every i > 0. To avoid confusion, when A is strictly unital, the unit in A

is denoted by idA while the one on A+ is 1A, for every A ∈ A.

Similarly, we get cohomologically unital dg categories, unital dg categories and strictly unital

dg categories. In accordance to the existing literature, strictly unital dg categories will be simply

referred to as dg categories.
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Example 1.9. (i) In the special case of (dg or A∞) categories with only one object, then, for

obvious reasons, we will talk about (dg or A∞) algebras.

(ii) Given two (non-unital, cohomologically unital, unital or strictly unital) dg categories A

and B, we can define a (non-unital, cohomologically unital, unital or strictly unital) dg category

A⊗B, which is the tensor product of A and B. Its objects are the pairs (A,B) with A ∈ A and

B ∈ B, while (A ⊗ B)
(
(A,B), (A′, B′)

)
= A(A,A′) ⊗ B(B,B′). If A and B are A∞ categories,

then defining an appropriate tensor product is a more delicate issue which will be discussed in [21].

There is also a notion of homotopy unital A∞ category (which will not be used in this paper),

such that the following implications hold for A∞ categories (see [18, Section 8.12.]):

strictly unital =⇒ homotopy unital =⇒ unital =⇒ cohomologically unital

Remark 1.10. If k is a field, then an A∞ category is unital if and only if it is cohomologically

unital. This is simply due to the fact that, over a field, two morphisms of complexes are homotopic

if they induce the same map in cohomology.

Of course, there are also the corresponding notions of strictly unital, unital and cohomologically

unital A∞ functors (see [23, pp 23] and [18, Definition 8.1. and Proposition 8.2.]).

Definition 1.11. Let F : A → B be a non-unital A∞ functor.

F is cohomologically unital (respectively unital) if A and B are cohomologically unital (respec-

tively unital) and H(F) is unital.

F is strictly unital if A and B are strictly unital and the following properties are satisfied:

(1) F1(idA) = idF0(A) for every A ∈ A;

(2) Fi(fi ⊗ · · · ⊗ f1) = 0 if i > 1 and fj = idA for some j ∈ {1, . . . , i} and some A ∈ A.

Remark 1.12. Recalling Remark 1.10, we see that over a field there is no distinction between

unital and cohomologically unital.

The following definition is only partially standard.

Definition 1.13. A non-unital A∞ functor F : A → B is a quasi-isomorphism (respectively

a homotopy isomorphism) if F0 is bijective and F1 : A(A,A′) → B(F0(A),F0(A′)) is a quasi-

isomorphism (respectively a homotopy equivalence) of complexes for every A,A′ ∈ A.

WhenB is cohomologically unital (respectively unital), F : A → B is a quasi-equivalence (respec-

tively a homotopy equivalence) ifH(F) is essentially surjective and F1 : A(A,A′) → B(F0(A),F0(A′))

is a quasi-isomorphism (respectively a homotopy equivalence) of complexes for every A,A′ ∈ A.

Remark 1.14. Clearly every homotopy isomorphism (respectively homotopy equivalence) is a

quasi-isomorphism (respectively quasi-equivalence), and the viceversa holds if k is a field.

We will denote by A∞Cat (respectively A∞Catu) the subcategory of A∞Catn whose objects

are strictly unital (respectively unital) A∞ categories and whose morphisms are strictly unital

(respectively unital) A∞ functors. Similarly, dgCat denotes the subcategory of dgCatn whose

objects are strictly unital dg categories and whose morphisms are strictly unital dg functors.

Moreover, A∞Catdg will be the full subcategory of A∞Cat whose objects are dg categories.
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Remark 1.15. If k is a field, A∞Catu coincides with what was denoted by A∞Catc in [5].

In order to study the relation between A∞Catu and dgCat, later we will need the following

result (which comes from an A∞ categorical version of Yoneda’s lemma).

Lemma 1.16. Given A ∈ A∞Catu, there exists a homotopy isomorphism YA : A → RA with

RA ∈ dgCat.

Proof. See [2, Corollary 1.4]. □

Coming to prenatural transformations, we will consider the following notion.

Definition 1.17. Given F,G : A → B in A∞Catn with A strictly unital, a prenatural transforma-

tion θ : F → G is strictly unital if θi(fi⊗· · ·⊗f1) = 0 whenever i > 0 and there exists j ∈ {1, . . . , i}
such that fj = idA for some A ∈ A.

1.4. Category of functors and equivalence relations. Given A,B ∈ A∞Catn, there is a

natural non-unital A∞ category FunA∞Catn(A,B), whose set of objects is A∞Catn(A,B) and

whose morphisms are prenatural transformations (see [5, Section 1.4]). As for the maps mi =

mi
FunA∞Catn (A,B), for our aims it is enough to know that m1(θ)n is given by the left-hand-side of

(1.7), for every F,G ∈ A∞Catn(A,B) and every prenatural transformation θ : F → G of degree p.

Observe that, if B is (strictly) unital or is a dg category, then FunA∞Catn(A,B) has the same

property. When A and B are strictly unital (respectively unital), the full A∞ subcategory of

FunA∞Catn(A,B) whose set of objects is A∞Cat(A,B) (respectively A∞Catu(A,B)) will be

denoted by FunA∞Cat(A,B) (respectively FunA∞Catu(A,B)).

Definition 1.18. Let F,G ∈ A∞Catn(A,B).

(i) F and G are weakly equivalent (denoted by F ≈ G) if B is unital and F ∼= G in the (unital)

category H0
(
FunA∞Catn(A,B)

)
.

(ii) F and G are homotopic (denoted by F ∼ G) if F0 = G0 and there exists a prenatural

transformation θ : F → G of degree 0 such that θ0 = 0 and Gi = Fi +m1(θ)i for every i > 0.

Remark 1.19. As it is proved in [23, Section (1h)], homotopy is an equivalence relation. Since it

will be useful later, we also point out the following property, which can be directly deduced from

the proof. Let F,G,H ∈ A∞Catn(A,B) with F ∼ G and G ∼ H through homotopies θ1 and θ2,

respectively. Assuming that there exists n > 0 such that θi2 = 0 for i < n, then F ∼ H through a

homotopy θ such that θi = θi1 for i < n.

Remark 1.20. If F ∈ A∞Catn(A,B) and θ : F → F is a prenatural transformation of degree 0

such that θ0 = 0, then there exists G ∈ A∞Catn(A,B) such that F ∼ G with Gi = Fi +m1(θ)i for

every i > 0, where θ is regarded as a prenatural transformation F → G. Indeed, we set G0 := F0

and, for n > 0, we define inductively Gn as the sum of Fn and of the left-hand-side of (1.7) (which

involves Gi only with i < n, since θ0 = 0). Then Gi = Fi +m1(θ)i for i > 0 by construction, while

the fact that G ∈ A∞Catn(A,B) follows from Remark 1.5, taking into account that m1(θ) is a

natural transformation (because m1 ◦m1 = 0) of degree 1 and clearly m1(θ)0 = 0.
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Since ≈ is compatible with compositions, from the category A∞Catu one can obtain a quotient

category A∞Catu/ ≈ with the same objects and whose morphisms are given by

A∞Catu/ ≈ (A,B) := A∞Catu(A,B)/ ≈ .

Similarly one can construct A∞Cat/ ≈ from A∞Cat.

Later we will need the following results.

Lemma 1.21. Let F,F′ ∈ A∞Catn(A,B) with B unital. If there exists a natural transformation

θ : F → F′ of degree 0 such that H(θ) : )H(F) → H(F′) is an isomorphism, then F ≈ F′.

Proof. It follows from [18, Proposition 7.15]. □

Lemma 1.22. Let F : A → B be a homotopy equivalence (in particular, B is unital). Then A

and F are also unital and there exists G ∈ A∞Catu(B,A) such that G ◦ F ≈ idA and F ◦ G ≈ idB

(hence the image of F is an isomorphism in A∞Catu/ ≈).

Proof. It follows from [18, Theorem 8.8]. □

Corollary 1.23. Let F,F′ ∈ A∞Catn(A,B) with B unital. Then F ≈ F′ in each of the following

cases.

(1) B is strictly unital and F ∼ F′.

(2) There exists a homotopy equivalence G : B → B′ such that G ◦ F ≈ G ◦ F′.
(3) There exists a homotopy equivalence H : A′ → A such that F ◦ H ≈ F′ ◦ H.

Proof. If B is strictly unital and θ : F → F′ is a homotopy, it is straightforward to check that the

prenatural transformation θ̃ : F → F′ defined by θ̃i := θi for i > 0 and θ̃0(A) := idF0(A) for every

A ∈ A is a natural transformation (see also the paragraph before [23, Lemma 2.5]). Thus part (1)

follows from Lemma 1.21, whereas parts (2) and (3) are easy consequences of Lemma 1.22. □

2. The non-unital case

Using the notation introduced in Section 1.2, we first state the following result.

Proposition 2.1. There is an adjunction

(2.1) Un : A∞Catn ⇄ dgCatn : In,

whose unit is γ : idA∞Catn → In ◦Un and whose counit is α : Un ◦ In = Ω◦B → iddgCatn. Moreover,

γA (for every A ∈ A∞Catn) and αB (for every B ∈ dgCatn) are homotopy isomorphisms.

It is easy to see that the same proof of [5, Proposition 1.22] can be adapted to work when k
is an arbitrary commutative ring and with homotopy isomorphism in place of quasi-isomorphism.

However, when dealing with the strictly unital case in Section 3, it will be useful to know the

crucial proof of the fact that, for every A ∈ A∞Catn and every A,A′ ∈ A,

(2.2) γ1A : A(A,A′) → Un(A)(A,A′) = Ω(B∞(A))(A,A′)

is a homotopy equivalence of complexes. Actually we will prove a more general statement in

Section 2.3, from which we will also deduce a result that will be needed in Section 5. To this aim,

we first prove a technical result in Section 2.1 and then introduce the morphism which replaces

(2.2) in a more general setting in Section 2.2.
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2.1. A criterion for homotopy equivalence. We will need the following general and possibly

known result about filtered complexes. We include the proof since we could not find a suitable

reference.

Lemma 2.2. Let C be a complex of k-modules endowed with an ascending and exhaustive filtration

FnC (with n ∈ N) such that F0C = 0. Assume that for every n > 1 the exact sequence of complexes

0 → Fn−1C → FnC → grnC := (FnC)/(Fn−1C) → 0

splits as a sequence of graded modules and the complex grnC is null-homotopic. Then the inclusion

F1C ↪→ C is a homotopy equivalence of complexes.

Proof. We can assume that as a graded module C =
⊕

n>0Cn with FnC =
⊕

0<m≤nCm and

grnC = Cn. We will write C≤n or C<n+1 instead of FnC. For n > 0 we will denote by d≤n

the differential of C≤n (which is the restriction of the differential d of C) and by dn the induced

differential on Cn. Observe that d1 = d≤1 and

d≤n =

(
d<n en

0 dn

)
: C≤n = C<n ⊕ Cn → C≤n = C<n ⊕ Cn

for n > 1, where en : Cn → C<n is a degree 1 map such that

(2.3) d<n ◦ en = −en ◦ dn.

Denoting by in : C1 ↪→ C≤n the inclusion, we claim that there exist morphisms of complexes

pn : C≤n → C1 and degree −1 maps h≤n : C≤n → C≤n such that

idC1 = pn ◦ in,(2.4)

idC≤n
= in ◦ pn + d≤n ◦ h≤n + h≤n ◦ d≤n(2.5)

for every n > 0, and satisfying the compatibility conditions

(2.6) pn|C<n = pn−1, h≤n|C<n = h<n

for every n > 1. Assuming this, one can conclude the proof very easily. Indeed, the maps

p : C → C1 and h : C → C such that p|C≤n
= pn and h|C≤n

= h≤n for every n > 0 are well defined

(and unique), thanks to (2.6). Moreover, since each pn is a morphism of complexes and (2.4) and

(2.5) hold, also p is a morphism of complexes and (denoting by i : C1 ↪→ C the inclusion) we obtain

idC1 = p ◦ i, idC = i ◦ p+ d ◦ h+ h ◦ d,

thus proving that i is a homotopy equivalence.

So it remains to prove the claim, and to this purpose we proceed by induction on n. As we can

obviously take p1 = i1 = idC1 and h≤1 = 0, we assume that n > 1 and that the maps pm and hm

with all the required properties have already been chosen for 0 < m < n. In particular, pn−1 is a

morphism of complexes and

idC1 = pn−1 ◦ in−1,(2.7)

idC<n = in−1 ◦ pn−1 + d<n ◦ h<n + h<n ◦ d<n.(2.8)
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Moreover, since Cn is null-homotopic, there exists a degree −1 map hn : Cn → Cn such that

(2.9) idCn = dn ◦ hn + hn ◦ dn.

Setting

pn :=
(
pn−1 −pn−1 ◦ en ◦ hn

)
: C≤n = C<n ⊕ Cn → C1,

h≤n :=

(
h<n −h<n ◦ en ◦ hn
0 hn

)
: C≤n = C<n ⊕ Cn → C≤n = C<n ⊕ Cn,

(2.6) is certainly satisfied. Using, beyond the fact that pn−1 is a morphism of complexes, (2.3) and

(2.9), we obtain also

d1 ◦ pn = d1 ◦
(
pn−1 −pn−1 ◦ en ◦ hn

)
=
(
d1 ◦ pn−1 −d1 ◦ pn−1 ◦ en ◦ hn

)
=
(
pn−1 ◦ d<n −pn−1 ◦ d<n ◦ en ◦ hn

)
=
(
pn−1 ◦ d<n pn−1 ◦ en ◦ dn ◦ hn

)
=
(
pn−1 ◦ d<n pn−1 ◦ en ◦ (idCn − hn ◦ dn)

)
=
(
pn−1 −pn−1 ◦ en ◦ hn

)
◦

(
d<n en

0 dn

)
= pn◦d≤n,

which shows that pn is a morphism of complexes. Taking into account that pn ◦ in = pn−1 ◦ in−1,

(2.4) follows directly from (2.7). Finally, by (2.8), (2.9) and (2.3),

d≤n◦h≤n+h≤n◦d≤n =

(
d<n en

0 dn

)
◦

(
h<n −h<n ◦ en ◦ hn
0 hn

)
+

(
h<n −h<n ◦ en ◦ hn
0 hn

)
◦

(
d<n en

0 dn

)

=

(
d<n ◦ h<n + h<n ◦ d<n −d<n ◦ h<n ◦ en ◦ hn + en ◦ hn + h<n ◦ en − h<n ◦ en ◦ hn ◦ dn

0 dn ◦ hn + hn ◦ dn

)

=

(
idC<n − in−1 ◦ pn−1 (h<n ◦ d<n + in−1 ◦ pn−1) ◦ en ◦ hn + h<n ◦ en ◦ dn ◦ hn

0 idCn

)

=

(
idC<n − in−1 ◦ pn−1 in−1 ◦ pn−1 ◦ en ◦ hn

0 idCn

)
= idC≤n

− in ◦ pn,

which proves (2.5). □

Remark 2.3. The assumption that the sequence splits in Lemma 2.2 is essential. To see this, just

consider the case in which C is given by a non-split short exact sequence 0 → M
i−→ N → P → 0

and F1C is the subcomplex 0 → M
∼−→ i(M) → 0, while FnC = C for n > 1. On the other hand,

one can very easily prove that the inclusion F1C ↪→ C is a quasi-isomorphism of complexes, even

without that assumption.

2.2. The relevant morphism. In this section, we fix two non-unital A∞ categories A and B,

and we denote by C the non-unital dg cocategory B∞(A)+ ⊗ B∞(B)+. We will also consider the

dg quiver A+ ⊗B+.

Our aim here is to construct a suitable morphism of complexes

A+ ⊗B+
(
(A,B), (A′, B′)

)
→ Ω(C)

(
(A,B), (A′, B′)

)
where A,A′ ∈ A and B,B′ ∈ B. Its precise definition is in (2.16) below.
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Moving in this direction, note that, given A,A′ ∈ A and B,B′ ∈ B, we have

(2.10) A+ ⊗B+
(
(A,B), (A′, B′)

)
= A(A,A′)⊗B(B,B′)⊕A(A,A′)δB,B′ ⊕B(B,B′)δA,A′

as a dg k-module. In order to explicitly describe also Ω(C)
(
(A,B), (A′, B′)

)
, we first introduce

some notation.

For every i, j ∈ N, we denote by Ci,j

(
(A,B), (A′, B′)

)
the graded k-module⊕

A=A0,A1,...,Ai−1,Ai=A′∈A
B=B0,B1,...,Bj−1,Bj=B′∈B

A(Ai−1, Ai)[1]⊗ · · · ⊗A(A0, A1)[1]⊗B(Bj−1, Bj)[1]⊗ · · · ⊗B(B0, B1)[1],

which is meant to be 0 when i = 0 and A ̸= A′ or j = 0 and B ̸= B′ or i = j = 0. Given

m1, n1, . . . ,ml, nl ∈ N, we denote by C(m1,...,ml),(n1,...,nl)

(
(A,B), (A′, B′)

)
the graded k-module⊕

A=A0,A1,...,Al−1,Al=A′∈A
B=B0,B1,...,Bl−1,Bl=B′∈B

Cml,nl

(
(Al−1, Bl−1), (Al, Bl)

)
[−1]⊗ · · · ⊗ Cm1,n1

(
(A0, B0), (A1, B1)

)
[−1]

(in particular, C(i),(j)

(
(A,B), (A′, B′)

)
= Ci,j

(
(A,B), (A′, B′)

)
[−1]). For every m,n ≥ 0 we define

moreover

Lm,n

(
(A,B), (A′, B′)

)
:=

⊕
m1+···+ml=m
n1+···+nl=n

C(m1,...,ml),(n1,...,nl)

(
(A,B), (A′, B′)

)
.

Note that, in particular, L0,0

(
(A,B), (A′, B′)

)
= 0 and

L1,0

(
(A,B), (A′, B′)

)
= A(A,A′)δB,B′(2.11)

L0,1

(
(A,B), (A′, B′)

)
= B(B,B′)δA,A′(2.12)

L1,1

(
(A,B), (A′, B′)

)
=A(A,A′)⊗B(B,B′)⊕B(B,B′)⊗A(A,A′)

⊕ (A(A,A′)[1]⊗B(B,B′)[1])[−1]
(2.13)

Then the non-unital dg category Ω(C) has the same objects as A+ ⊗B+, and

Ω(C)
(
(A,B), (A′, B′)

)
=
⊕

m,n≥0

Lm,n

(
(A,B), (A′, B′)

)
as a graded k-module for every A,A′ ∈ A and B,B′ ∈ B. While the composition in Ω(C)

is the natural one given by the tensor product of the cobar construction, the differential on

Ω(C)
(
(A,B), (A′, B′)

)
extends (in such a way that the graded Leibnitz rule holds) µ+∆, where µ

and ∆ are determined, respectively, by the differential and the comultiplication on the dg cocate-

gory C. More precisely, given

c = (fm[1]⊗ · · · ⊗ f1[1]⊗ gn[1]⊗ · · · ⊗ g1[1])[−1] ∈ C(m),(n)

(
(A,B), (A′, B′)

)
with the fi and the gj homogeneous, we have

∆(c) =
∑

(i,j)∈Im,n

(−1)deg(c≤i,∅) deg
′(c∅,>j)+deg(c>i,∅)c>i,>j ⊗ c≤i,≤j ,
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where Im,n := {0, . . . ,m} × {0, . . . , n} \ {(0, 0), (m,n)}. Here > i and ≤ i (respectively > j and

≤ j) denote the (descending) intervals [m, i) = [m.i + 1] and [i, 1] (respectively [n, j) and [j, 1]),

and in general

c[i′,i),[j′,j) := (fi′ [1]⊗ · · · ⊗ fi+1[1]⊗ gj′ [1]⊗ · · · ⊗ gj+1[1])[−1]

for 1 ≤ i ≤ i′ ≤ m and 1 ≤ j ≤ j′ ≤ n. Obviously the empty interval is denoted also by ∅, while
the full interval [m, 1] or [n, 1] will be denoted by ∗. Clearly

∆
(
Lm,n

(
(A,B), (A′, B′)

))
⊆ Lm,n

(
(A,B), (A′, B′)

)
for every m,n ≥ 0. On the other hand, the component µ1 of µ induced from m1

A and m1
B is given

on c as above by

µ1(c) =

m∑
i=1

(−1)deg
′(c>i,∅)µ1i,0(c) +

n∑
j=1

(−1)deg
′(c∗,>j)µ10,j(c),

where

µ1i,0(c) := (fm[1]⊗ · · · ⊗ fi+1[1]⊗m1
A(fi)[1]⊗ fi−1[1]⊗ · · · ⊗ f1[1]⊗ gn[1]⊗ · · · ⊗ g1[1])[−1],

µ10,j(c) := (fm[1]⊗ · · · ⊗ f1[1]⊗ gn[1]⊗ · · · ⊗ gj+1[1]⊗m1
B(gj)[1]⊗ gj−1[1]⊗ · · · ⊗ g1[1])[−1].

Hence also in this case

µ1
(
Lm,n

(
(A,B), (A′, B′)

))
⊆ Lm,n

(
(A,B), (A′, B′)

)
for every m,n ≥ 0. As for the other components µi of µ induced from mi

A and mi
B with i > 1, for

our purposes it is enough to observe that

µi
(
Lm,n

(
(A,B), (A′, B′)

))
⊆

⊕
0<m′<m

Lm′,n

(
(A,B), (A′, B′)

) ⊕
0<n′<n

Lm,n′
(
(A,B), (A′, B′)

)
for every m,n ≥ 0. This implies that µ1 +∆ is a differential (often denoted simply by d) on each

Lm,n

(
(A,B), (A′, B′)

)
, which will be regarded as a complex in this way. Moreover,

L∗,0
(
(A,B), (A′, B′)

)
:=
⊕
m≥0

Lm,0

(
(A,B), (A′, B′)

)
L0,∗

(
(A,B), (A′, B′)

)
:=
⊕
n≥0

L0,n

(
(A,B), (A′, B′)

)
L>0

(
(A,B), (A′, B′)

)
:=

⊕
m,n>0

Lm,n

(
(A,B), (A′, B′)

)
are subcomplexes of Ω(C)

(
(A,B), (A′, B′)

)
, and obviously there is a decomposition

Ω(C)
(
(A,B), (A′, B′)

)
= L∗,0

(
(A,B), (A′, B′)

)
⊕ L0,∗

(
(A,B), (A′, B′)

)
⊕ L>0

(
(A,B), (A′, B′)

)
.

Now, for every A,A′ ∈ A and B,B′ ∈ B, we will consider the maps (see (2.13))

A(A,A′)⊗B(B,B′) → L1,1

(
(A,B), (A′, B′)

)
f ⊗ g 7→ (0, (−1)deg(f) deg(g)g ⊗ f, 0)

(2.14)
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and

L1,1

(
(A,B), (A′, B′)

)
→ A(A,A′)⊗B(B,B′)(

f ⊗ g, g′ ⊗ f ′, (f ′′[1]⊗ g′′[1])[−1]
)
7→ f ⊗ g + (−1)deg(f

′) deg(g′)f ′ ⊗ g′
(2.15)

It is easy to check that (2.14) and (2.15) are morphisms of complexes. Remembering (2.10), it is

then clear that (2.11), (2.12) and (2.14) define the morphism of complexes

(2.16) A+ ⊗B+
(
(A,B), (A′, B′)

)
→ Ω(C)

(
(A,B), (A′, B′)

)
=
⊕

m,n≥0

Lm,n

(
(A,B), (A′, B′)

)
we are interested in.

2.3. A general result. In order to prove the properties of (2.16) we first need the following key

result, whose proof is rather technical.

Lemma 2.4. Let A,A′ ∈ A and B,B′ ∈ B.

(1) The maps (2.14) and (2.15) are mutually inverse homotopy equivalences of complexes.

(2) Given m,n ∈ N with m > 1 or n > 1, the complex Lm,n

(
(A,B), (A′, B′)

)
is null-homotopic.

Proof. We start by observing that the composition of (2.15) with (2.14) is idA(A,A′)⊗B(B,B′), while

the composition of (2.14) with (2.15) is the map

ξ : L1,1

(
(A,B), (A′, B′)

)
→ L1,1

(
(A,B), (A′, B′)

)
(
f ⊗ g, g′ ⊗ f ′, (f ′′[1]⊗ g′′[1])[−1]

)
7→
(
0, (−1)deg(f) deg(g)g ⊗ f + g′ ⊗ f ′, 0

)
We define also ξ : Lm,n

(
(A,B), (A′, B′)

)
→ Lm,n

(
(A,B), (A′, B′)

)
to be 0 for m > 1, and to be the

identity for m = 1 and n = 0.

Therefore, in order to prove both (1) and (2) (where, by symmetry, we can assume m > 1), we

just need to find, when m > 1 or m = n = 1, a k-linear map

r : Lm,n

(
(A,B), (A′, B′)

)
→ Lm,n

(
(A,B), (A′, B′)

)
of degree −1 such that

d ◦ r + r ◦ d = id− ξ.

More generally, we define r for m > 0 as follows. By linearity an element of Lm,n

(
(A,B), (A′, B′)

)
can be assumed to be of the form

c = cl ⊗ · · · ⊗ c1 ∈ C(m1,...,ml),(n1,...,nl)

(
(A,B), (A′, B′)

)
,

wherem1+· · ·+ml = m, n1+· · ·+nl = n and ck ∈ C(mk),(nk)

(
(Ak−1, Bk−1), (Ak, Bk)

)
homogeneous

(for k = 1, . . . , l), with A0 = A, Al = A′, B0 = B and Bl = B′. Given 1 ≤ i ≤ j ≤ l, we will often

use the shorthand c[j,i] := cj ⊗ · · · ⊗ ci, as well as its variants c[j,i), c(j,i] and c(j,i) (with obvious

meanings). Setting

t := max
{
k ∈ {1, . . . , l} | mk > 0

}
s′ := min

{
k ∈ {1, . . . , t} | mi = 0 for k < i < t

}
s :=

s′ if (mt, nt) = (1, 0)

t otherwise
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(note that they are well defined because m > 0), we define recursively

r(c) :=

t−1∑
k=s

(−1)deg(c
[l,t))+deg′(ct) deg(c(t,k))c[l,t) ⊗ c(t,k) ⊗ r(ct ⊗ ck)⊗ c(k,1]

(so r(c) = 0 if s = t, in particular if (mt, nt) ̸= (1, 0)). If (mt, nt) = (1, 0), ct = f ∈ A(At−1, At)

and ck = (fmk
[1]⊗ · · · ⊗ f1[1]⊗ gnk

[1]⊗ · · · ⊗ g1[1])[−1] (with s ≤ k < t), then

r(ct ⊗ ck) := (−1)deg(f)(f [1]⊗ fmk
[1]⊗ · · · ⊗ f1[1]⊗ gnk

[1]⊗ · · · ⊗ g1[1])[−1].

For the rest of the proof we assume m > 1 or m = n = 1. First we note that ξ(c) = c[l,t)⊗ ξ(c[t,1]).

Indeed, we can assume t < l, and then ξ(c) = ξ(c[t,1]) = 0 if m > 1, whereas ξ(c) = c and

ξ(c[t,1]) = c[t,1] if m = n = 1 (in which case l = 2, (m2, n2) = (0, 1) and (m1, n1) = (1, 0)). Since

moreover

(d ◦ r+ r ◦ d)(c) = d
(
(−1)deg(c

[l,t))c[l,t)⊗ r(c[t,1])
)
+ r
(
d(c[l,t))⊗ c[t,1]+(−1)deg(c

[l,t))c[l,t)⊗ d(c[t,1])
)

= (−1)deg(c
[l,t))d(c[l,t))⊗r(c[t,1])+c[l,t)⊗d

(
r(c[t,1])

)
+(−1)deg

′(c[l,t))d(c[l,t))⊗r(c[t,1])+c[l,t)⊗r
(
d(c[t,1])

)
= c[l,t) ⊗ (d ◦ r + r ◦ d)(c[t,1]),

it is enough to prove that

(2.17) (d ◦ r + r ◦ d)(c[t,1]) = c[t,1] − ξ(c[t,1]).

We have

d
(
r(c[t,1])

)
= d
( t−1∑
k=s

(−1)deg
′(ct) deg(c(t,k))c(t,k) ⊗ r(ct ⊗ ck)⊗ c(k,1]

)
=

t−1∑
k=s

(−1)deg
′(ct) deg(c(t,k))+deg(c(t,k))c(t,k) ⊗ d

(
r(ct ⊗ ck)

)
⊗ c(k,1]

+
t−1∑
k=s

k−1∑
i=1

(−1)deg
′(ct) deg(c(t,k))+deg′(c[t,i))c(t,k) ⊗ r(ct ⊗ ck)⊗ c(k,i) ⊗ d(ci)⊗ c(i,1]

+
t−1∑
k=s

t−1∑
i=k+1

(−1)deg
′(ct) deg(c(t,k))+deg(c(t,i))c(t,i) ⊗ d(ci)⊗ c(i,k) ⊗ r(ct ⊗ ck)⊗ c(k,1]

and

r
(
d(c[t,1])

)
= r
( t∑
i=1

(−1)deg(c
[t,i))c[t,i) ⊗ d(ci)⊗ c(i,1]

)
= r
(
d(ct)⊗ c(t,1]

)
+

t−1∑
i=s

(−1)deg(c
[t,i))+deg′(ct) deg(c(t,i))c(t,i) ⊗ r

(
ct ⊗ d(ci)

)
⊗ c(i,1]

+

t−1∑
i=1

t−1∑
k=max{i+1,s}

(−1)deg(c
[t,i))+deg′(ct) deg(c(t,k))c(t,k) ⊗ r(ct ⊗ ck)⊗ c(k,i) ⊗ d(ci)⊗ c(i,1]

+

t−1∑
i=1

i−1∑
k=s

(−1)deg(c
[t,i))+deg′(ct) deg′(c(t,k))c(t,i) ⊗ d(ci)⊗ c(i,k) ⊗ r(ct ⊗ ck)⊗ c(k,1],
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whence

(2.18) (d ◦ r + r ◦ d)(c[t,1])

= r
(
d(ct)⊗c(t,1]

)
+

t−1∑
k=s

(−1)deg(c
t) deg(c(t,k))c(t,k)⊗

(
d
(
r(ct⊗ck)

)
+(−1)deg(c

t)r
(
ct⊗d(ck)

))
⊗c(k,1].

First we assume (mt, nt) ̸= (1, 0), in which case the right-hand-side of (2.18) is just r
(
∆(ct)⊗c(t,1]

)
.

If mt > 1 then

(d ◦ r + r ◦ d)(c[t,1]) = r
(
(−1)

deg(ct
mt,∅

)
ctmt,∅ ⊗ ct<mt,∗ ⊗ c(t,1]

)
= (−1)

deg(ct
mt,∅

)
r(ctmt,∅ ⊗ ct<mt,∗)⊗ c(t,1] = ct ⊗ c(t,1] = c[t,1],

hence (2.17) holds in this case. If mt = 1 and nt > 0 then

(d ◦ r + r ◦ d)(c[t,1]) = r
((

(−1)deg(c
t
1,∅)ct1,∅ ⊗ ct∅,∗ − (−1)deg(c

t
1,∅) deg

′(ct∅,∗)ct∅,∗ ⊗ ct1,∅
)
⊗ c(t,1]

)
= (−1)deg(c

t
1,∅)r(ct1,∅ ⊗ ct∅,∗)⊗ c(t,1]

+ (−1)deg(c
t
1,∅)

t−1∑
k=s′

(−1)deg
′(ct

1,∅)
(
deg(ct∅,∗)+deg(c(t,k))

)
ct∅,∗ ⊗ c(t,k) ⊗ r(ct1,∅ ⊗ ck)⊗ c(k,1]

− (−1)deg(c
t
1,∅) deg

′(ct∅,∗)
t−1∑
k=s′

(−1)deg(c
t
∅,∗)+deg′(ct

1,∅) deg(c
(t,k))ct∅,∗ ⊗ c(t,k) ⊗ r(ct1,∅ ⊗ ck)⊗ c(k,1] = c[t,1],

thus proving (2.17) also in this case.

Finally we assume (mt, nt) = (1, 0). Then we have

r
(
d(ct)⊗ c(t,1]

)
=

t−1∑
k=s

(−1)deg(c
t) deg(c(t,k))c(t,k) ⊗ r

(
m1

A(ct)⊗ ck
)
⊗ c(k,1],

and so from (2.18) we obtain

(2.19) (d ◦ r + r ◦ d)(c[t,1])

=
t−1∑
k=s

(−1)deg(c
t) deg(c(t,k))c(t,k)⊗

(
r
(
m1

A(ct)⊗ck
)
+d
(
r(ct⊗ck)

)
+(−1)deg(c

t)r
(
ct⊗d(ck)

))
⊗c(k,1].

Since

µ1
(
r(ct⊗ck)

)
=

mk+1∑
i=1

(−1)deg
′
(
r(ct⊗ck)>i,∅

)
µ1i,0
(
r(ct⊗ck)

)
+

nk∑
j=1

(−1)deg
′
(
r(ct⊗ck)∗,>j

)
µ10,j

(
r(ct⊗ck)

)
=

mk∑
i=1

(−1)deg(c
t)+deg(ck

>i,∅)r
(
ct⊗µ1i,0(ck)

)
−r
(
m1

A(ct)⊗ck
)
+

nk∑
j=1

(−1)deg(c
t)+deg(ck∗,>j)r

(
ct⊗µ10,j(ck)

)
= −r

(
m1

A(ct)⊗ ck
)
− (−1)deg(c

t)r
(
ct ⊗

(mk∑
i=1

(−1)deg
′(ck

>i,∅)µ1i,0(c
k) +

nk∑
j=1

(−1)deg
′(ck∗,>j)µ10,j(c

k)
))

= −r
(
m1

A(ct)⊗ ck
)
− (−1)deg(c

t)r
(
ct ⊗ µ1(ck)

)
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and

∆
(
r(ct ⊗ ck)

)
=

∑
(i,j)∈Imk+1,nk

(−1)deg
(
r(ct⊗ck)≤i,∅

)
deg′
(
r(ct⊗ck)∅,>j

)
+deg

(
r(ct⊗ck)>i,∅

)
r(ct ⊗ ck)>i,>j ⊗ r(ct ⊗ ck)≤i,≤j

=
∑

(i,j)∈Imk,nk

(−1)
deg(ck≤i,∅) deg

′(ck∅,>j
)+deg(ck

>i,∅)+deg′(ct)
r(ct ⊗ ck>i,>j)⊗ ck≤i,≤j + ct ⊗ ck

− (−1)deg(c
t) deg(ck)(ck ⊗ ct)δmk,0 +

nk−1∑
j=δmk,0

(−1)

(
deg(ck∗,∅)+deg′(ct)

)
deg′(ck∅,>j

)+1ck∅,>j ⊗ r(ct ⊗ ck∗,≤j)

= ct ⊗ ck − (−1)deg(c
t) deg(ck)(ck ⊗ ct)δmk,0

− (−1)deg(c
t)r
(
ct ⊗

∑
(i,j)∈Imk,nk

(−1)
deg(ck≤i,∅) deg

′(ck∅,>j
)+deg(ck

>i,∅)ck>i,>j ⊗ ck≤i,≤j

)
= ct ⊗ ck − (−1)deg(c

t) deg(ck)(ck ⊗ ct)δmk,0 − (−1)deg(c
t)r
(
ct ⊗∆(ck)

)
,

we see that

r
(
m1

A(ct)⊗ ck
)
+ d
(
r(ct ⊗ ck)

)
+ (−1)deg(c

t)r
(
ct ⊗ d(ck)

)
= ct ⊗ ck − (−1)deg(c

t) deg(ck)(ck ⊗ ct)δmk,0 .

Substituting the last equality in (2.19) and remembering that mk = 0 for s < k < t, while ms = 0

if and only if m = 1 (in which case s = 1), we get

(d ◦ r + r ◦ d)(c[t,1]) =

c[t,1] if m > 1

c[t,1] − (−1)deg(c
t) deg(c(t,1])c(t,1] ⊗ ct if m = 1,

from which we conclude that (2.17) is satisfied also in this case. □

We can finally prove the main result of this section. Note that, when B is the 0 dg algebra,

(2.16) boils down to (2.2). Hence the first part of the following result shows, in particular, that

(2.2) is a homotopy equivalence, as wanted.

Proposition 2.5. For every A,A′ ∈ A and B,B′ ∈ B the map (2.16) is a homotopy equivalence.

Moreover, a morphism of complexes

Ω(C)
(
(A,B), (A′, B′)

)
→ A+ ⊗B+

(
(A,B), (A′, B′)

)
is a homotopy equivalence if and only if its restriction to

⊕
0≤m,n≤1 Lm,n

(
(A,B), (A′, B′)

)
is a

homotopy equivalence.

Proof. By construction (2.16) is the composition of a map

(2.20) A+ ⊗B+
(
(A,B), (A′, B′)

)
→

⊕
0≤m,n≤1

Lm,n

(
(A,B), (A′, B′)

)
with the inclusion

(2.21)
⊕

0≤m,n≤1

Lm,n

(
(A,B), (A′, B′)

)
↪→ Ω(C)

(
(A,B), (A′, B′)

)
.
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Now, part (1) of Lemma 2.4 immediately implies that (2.20) is a homotopy equivalence. Therefore

it is enough to prove that (2.21) is a homotopy equivalence, as well. Clearly this is true if (and

only if) each of the three inclusions

L1,0

(
(A,B), (A′, B′)

)
↪→ L∗,0

(
(A,B), (A′, B′)

)
L0,1

(
(A,B), (A′, B′)

)
↪→ L0,∗

(
(A,B), (A′, B′)

)
L1,1

(
(A,B), (A′, B′)

)
↪→ L>0

(
(A,B), (A′, B′)

)
is a homotopy equivalence. To this aim we apply Lemma 2.2 to the complexes on the right-hand-

sides of the above inclusions, endowed with the filtrations

FnL∗,0
(
(A,B), (A′, B′)

)
:=

⊕
0≤m≤n

Lm,0

(
(A,B), (A′, B′)

)
FnL0,∗

(
(A,B), (A′, B′)

)
:=

⊕
0≤m≤n

L0,m

(
(A,B), (A′, B′)

)
FnL>0

(
(A,B), (A′, B′)

)
:=

⊕
m,m′>0,m+m′≤n+1

Lm,m′
(
(A,B), (A′, B′)

)
Note that the assumptions of Lemma 2.2 are satisfied because

grnL∗,0
(
(A,B), (A′, B′)

)
= Ln,0

(
(A,B), (A′, B′)

)
grnL0,∗

(
(A,B), (A′, B′)

)
= L0,n

(
(A,B), (A′, B′)

)
grnL>0

(
(A,B), (A′, B′)

)
=

⊕
0<m≤n

Lm,n+1−m

(
(A,B), (A′, B′)

)
are null-homotopic for n > 1 by part (2) of Lemma 2.4. □

Let us now single out the following direct consequence.

Corollary 2.6. Assume that A and B are non-unital dg categories. Then there is a natural

non-unital dg functor Ñ : Ω(C) → A+ ⊗B+, which is a homotopy isomorphism.

Proof. The definition of Ñ can be found in [5, Section 3.1], where it is also proved that it is a quasi-

isomorphism (hence a homotopy isomorphism) when k is a field. Over an arbitrary commutative

ring we can apply the second part of Proposition 2.5. Indeed, it can be readily checked that, for

every A,A′ ∈ A and B,B′ ∈ B, the restriction of

Ñ : Ω(C)
(
(A,B), (A′, B′)

)
→ A+ ⊗B+

(
(A,B), (A′, B′)

)
to
⊕

0≤m,n≤1 Lm,n

(
(A,B), (A′, B′)

)
is given by the natural maps (2.11), (2.12) and (2.15). Such

restriction is then a homotopy equivalence by part (1) of Lemma 2.4. □

3. The strictly unital case

In this section we prove the equivalence between Ho(dgCat) and Ho(A∞Cat). We deal with

this in Theorem 3.6, after proving the existence of a natural adjunction in Proposition 3.1. In

Section 3.2 we finally prove Theorem B.
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3.1. The adjunction. In analogy with Proposition 2.1, we have the following result in the strictly

unital setting. Its proof is the content of this subsection and at the end of it we will deduce

Theorem 3.6.

Proposition 3.1. There is an adjunction

U : A∞Cat ⇄ dgCat : I,

where I is the inclusion functor. Moreover, the unit ρ : idA∞Cat → I ◦ U and the counit σ : U ◦ I →
iddgCat are such that ρA (for every A ∈ A∞Cat) and σB (for every B ∈ dgCat) are quasi-

isomorphisms. Finally, ρA is even a homotopy isomorphism if A satisfies the following condition:

(3.1) k ∼= kidA and the inclusion kidA ↪→ A(A,A)0 of k-modules splits, for every A ∈ A.

This result is proved in [5, Proposition 2.1] assuming that k is a field. Actually the first part of

the proof works without changes over an arbitrary commutative ring. Only the argument showing

that ρA : A → U(A) is a quasi-isomorphism for every A ∈ A∞Cat (respectively, a homotopy

isomorphism when A satisfies (3.1)) needs to be modified. We now give a different proof, valid

over every commutative ring.

To this aim, we fix a strictly unital A∞ category A. As it is explained at the beginning of the

proof of [5, Proposition 2.1], ρA = πA ◦ γA, where the non-unital A∞ functor γA : A → Un(A) is a

homotopy isomorphism by Proposition 2.1, and the non-unital dg functor πA is defined to be the

composition

πA : Un(A) ↪→ Un(A)+ ↠ Un(A)+/J = U(A),

with J = JA the smallest dg ideal of Un(A)+ such that ρA is a strictly unital A∞ functor.

First we recall from Section 2.2 (whose notation we adapt and simplify in an obvious way to the

setting where B is the 0 dg algebra) that, for every A,A′ ∈ A,

Un(A)(A,A′) =
⊕
n≥0

Ln(A,A
′)

as a graded k-module, where

Ln(A,A
′) :=

⊕
n1+···+nl=n

C(n1,...,nl)(A,A
′),

with

C(n1,...,,nl)(A,A
′) :=

⊕
A=A0,A1,...,Al−1,Al=A′∈A

Cnl
(Al−1Al)[−1]⊗ · · · ⊗ Cn1(A0, A1)[−1]

and, for every i ≥ 0,

Ci(A,A
′) :=

⊕
A=A0,A1,...,Ai−1,Ai=A′∈A

A(Ai−1, Ai)[1]⊗ · · · ⊗A(A0, A1)[1].

The differential d on Un(A)(A,A′) extends µ+∆, where µ and ∆ are determined, respectively, by

the differential and the comultiplication on the dg cocategory B∞(A). Explicitly, given

(3.2) c = (fn[1]⊗ · · · ⊗ f1[1])[−1] ∈ C(n)(A,A
′)
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with the fi homogeneous, we have

∆(c) =
n−1∑
i=1

(−1)deg(c>i)c>i ⊗ c≤i.

The components µk of µ induced from mk = mk
A are given by

(3.3) µk(c) =
n+1−k∑
i=1

±µki (c),

(with 1 ≤ k ≤ n), where

µki (c) :=
(
fn[1]⊗ · · · ⊗ fi+k[1]⊗mk

A(fi+k−1 ⊗ · · · ⊗ fi)[1]⊗ fi−1[1]⊗ · · · ⊗ f1[1]
)
[−1].

As for the signs in (3.3), we just need to know that they are (−1)deg
′(c>i) for k = 2.

Now we can give the following more explicit description of J.

Lemma 3.2. The dg ideal J coincides with the (a priori not necessarily dg) ideal J ′ of Un(A)+

generated by all the elements of one of the following two forms:

(1) 1A − idA, where A ∈ A;

(2) c as in (3.2) with n > 1 and such that fj = idÃ for some j ∈ {1, . . . , n} and some Ã ∈ A.

Proof. If c is as in (3.2), we have

ρnA(fn ⊗ · · · ⊗ f1) = πA
(
γnA(fn ⊗ · · · ⊗ f1)

)
= ±πA(c).

Since ρA is strictly unital, it follows that πA(c) = 0 if c is a generator of J ′ of the form (2). On the

other hand, πA(idA) = idA coincides with the image of 1A through the projection Un(A)+ ↠ U(A),

for every A ∈ A. Therefore J contains also the generators of J ′ of the form (1), hence J ′ ⊆ J. To

prove the other inclusion it is clearly enough to show that d(c) ∈ J ′ for every generator c of J ′. As

this is obviously true when c is of the form (1), we can assume that c is of the form (2). Then it

is clear from the definition that µk(c) ∈ J ′ if k ̸= 2, and so it remains to prove that J ′ contains

µ2(c)+∆(c) =

n−1∑
i=1

(−1)deg
′(c>i)µ2i (c)+

n−1∑
i=1

(−1)deg(c>i)c>i⊗c≤i =

n−1∑
i=1

(−1)deg
′(c>i)

(
µ2i (c)−c>i⊗c≤i

)
.

Now, it is immediate to see that (for 0 < i < n) µ2i (c) ∈ J ′ if i ̸= j, j − 1 and c>i ⊗ c≤i ∈ J ′ if

1 < i < n− 1 or i = 1 ̸= j or i = n− 1 ̸= j − 1. Moreover, if j = 1 then

µ21(c)− c>1 ⊗ c≤1 = c>1 ⊗ (1Ã − idÃ) ∈ J ′.

Similarly, if j = n then

µ2n−1(c)− c≥n ⊗ c<n = (1Ã − idÃ)⊗ c<n ∈ J ′.

Finally, if 1 < j < n then

µ2j−1(c) = µ2j (c) = (fn[1]⊗ · · · fj+1[1]⊗ fj−1[1]⊗ · · · ⊗ f1[1])[−1],

whence (−1)deg
′(c≥j)µ2j−1(c) + (−1)deg

′(c>j)µ2j (c) = 0. □

From Lemma 3.2 we immediately deduce the following result.
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Corollary 3.3. The non-unital dg functor πA : Un(A) → U(A) is full and its kernel I = IA is a dg

ideal of Un(A) such that I(A,A′) (for every A,A′ ∈ A) is the k-subspace of Un(A)(A,A′) generated

by all the elements of one of the following two forms, where clnl
⊗ · · · ⊗ c1n1

∈ C(n1,...,nl)(A,A
′):

(1) clnl
⊗· · ·⊗c1n1

−clnl
⊗· · ·⊗ci+1

ni+1
⊗idÃ⊗c

i
ni
⊗· · ·⊗c1n1

(for suitable Ã ∈ A), with n1+· · ·+nl > 0

and i ∈ {0, . . . , l};
(2) clnl

⊗ · · · ⊗ c1n1
, with cini

of the form (2) in Lemma 3.2 for some i ∈ {1, . . . , l}.

For every A,A′ ∈ A the filtration L≤n(A,A
′) :=

⊕
m≤n Lm(A,A′) on Un(A)(A,A′) (where

n ≥ 0) induces a filtration I≤n(A,A
′) := L≤n(A,A

′) ∩ I(A,A′) on I(A,A′) and a filtration

FnU(A)(A,A′) :=
(
L≤n(A,A

′) + I(A,A′)
)
/I(A,A′) ∼= L≤n(A,A

′)/I≤n(A,A
′)

on U(A)(A,A′) ∼= Un(A)(A,A′)/I(A,A′).

Since γ1A : A(A,A′) → L≤1(A,A
′) is an isomorphism of complexes and I≤1(A,A

′) = 0, we

see that ρ1A : A(A,A′) → F1U(A)(A,A′) is an isomorphism, as well. Therefore we just need

to show that the inclusion F1U(A)(A,A′) ↪→ U(A)(A,A′) is a quasi-isomorphism, and even a

homotopy equivalence if A satisfies (3.1). By Lemma 2.2 and Remark 2.3 it is enough to prove

that for every n > 1 the complex grnU(A)(A,A′) is null-homotopic, and also that the inclusion

Fn−1U(A)(A,A′) ↪→ FnU(A)(A,A′) splits as a morphism of graded k-modules if A satisfies (3.1).

Now, recall from Lemma 2.4 and its proof that, for n > 1, the complex Ln(A,A
′) (endowed

with the differential d extending µ1 +∆) is null-homotopic, and a map r : Ln(A,A
′) → Ln(A,A

′)

of degree −1 satisfying d ◦ r+ r ◦ d = id can be defined (also for n = 1) as follows. By linearity an

element of Ln(A,A
′) can be assumed to be of the form

(3.4) c = cl ⊗ · · · ⊗ c1 ∈ C(n1,...,nl)(A,A
′),

where n1 + · · · + nl = n and ck ∈ C(nk)(Ak−1, Ak) homogeneous (for k = 1, . . . , l), with A0 = A

and Al = A′. Then

r(c) :=

0 if nl > 1 or n = 1

r(cl ⊗ cl−1)⊗ cl−2 ⊗ · · · ⊗ c1 if nl = 1 < n,

where, if nl = 1 < n, ct = f ∈ A(Al−1, Al) and c
l−1 = (fnl−1

[1]⊗ · · · ⊗ f1[1])[−1], then

r(cl ⊗ cl−1) := (−1)deg(f)(f [1]⊗ fnl−1
[1]⊗ · · · ⊗ f1[1])[−1].

Since

grnU(A)(A,A′) ∼=
(
L≤n(A,A

′) + I(A,A′)
)
/
(
L<n(A,A

′) + I(A,A′)
) ∼= Ln(A,A

′)/In(A,A
′),

where

In(A,A
′) := Ln(A,A

′) ∩
(
L<n(A,A

′) + I≤n(A,A
′)
)
,

from Lemma 3.4 we deduce that grnU(A)(A,A′) is null-homotopic for n > 1.

Lemma 3.4. The map r : Ln(A,A
′) → Ln(A,A

′) preserves the subcomplex In(A,A
′) for every

n > 1 and every A,A′ ∈ A.
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Proof. As r preserves both Ln(A,A
′) and L<n(A,A

′), it is enough to prove that, if c ∈ I≤n(A,A
′),

then r(c) ∈ L<n(A,A
′) + I≤n(A,A

′). We can clearly assume that c is as in part (1) or (2) of

Corollary 3.3. In the latter case it is obvious from the definition that r(c) is either 0 or a generator

of the same form in I≤n(A,A
′). So we can assume c to be of the form (1) with n1+ · · ·+nl = n−1,

and it is enough to show that r(c′) ∈ L<n(A,A
′) + I≤n(A,A

′), where

c′ := clnl
⊗ · · · ⊗ ci+1

ni+1
⊗ idÃ ⊗ cini

⊗ · · · ⊗ c1n1
.

Now, if i ≥ l − 1, then r(c′) is either 0 or a generator of the form (2) in I≤n(A,A
′). On the other

hand, if i < l− 1, then r(c′) ∈ L<n(A,A
′)+ I≤n(A,A

′) because r(clnl
⊗· · ·⊗ c1n1

) ∈ L<n(A,A
′) and

r(clnl
⊗ · · · ⊗ c1n1

)− r(c′) is either 0 or a generator of the form (1) in I≤n(A,A
′). □

Finally, Lemma 3.5 easily implies that the inclusion Fn−1U(A)(A,A′) ↪→ FnU(A)(A,A′) splits

as a morphism of graded k-modules if A satisfies (3.1) and n > 1.

Lemma 3.5. If A satisfies (3.1), then for every n > 1 and every A,A′ ∈ A there exists a morphism

of graded k-modules u : Ln(A,A
′) → L<n(A,A

′) such that the map

ũ :=
(
id u

)
: L<n(A,A

′)⊕ Ln(A,A
′) = L≤n(A,A

′) → L<n(A,A
′)

sends I≤n(A,A
′) to I<n(A,A

′).

Proof. By hypothesis for every Ã ∈ A there exists a morphism of graded k-modules p : A(Ã, Ã) → k
such that p(idÃ) = 1. First, by linearity, every c ∈ Ln(A,A

′) can be assumed to be as in (3.4).

Setting

S(c) := {i = 1, . . . , l | ni = 1 and Ai−1 = Ai},

we denote, for every subset S of S(c), by uS(c) the expression obtained from c by deleting the

terms ci with i ∈ S. In case S = S(c) = {1, . . . , l} (which implies A = A′), we mean uS(c) = idA.

Now we can define

u(c) :=
∑

∅≠S⊆S(c)

(−1)|S|−1
∏
i∈S

p(ci)uS(c).

It is immediate from the definition that ũ sends a generator of the form (2) in Corollary 3.3 to a

linear combination of generators of the same form. Hence, given c as above with the additional

assumption that there exists j ∈ {1, . . . , l} such that cj = idAj (in particular, j ∈ S(c)), we just

need to show that ũ(c̃) ∈ I(A,A′), where c̃ := u{j}(c) − c ∈ I≤n(A,A
′) is a generator of the form

(1). Equivalently, we must prove that −c̃+ ũ(c̃) ∈ I(A,A′). In fact we have

− c̃+ ũ(c̃) = −u{j}(c) + c+ u{j}(c)− u(c) = c−
∑

∅≠S⊆S(c)

(−1)|S|−1
∏
i∈S

p(ci)uS(c)

=
∑

S⊆S(c)

(−1)|S|
∏
i∈S

p(ci)uS(c) =
∑

S⊆S(c)\{j}

(−1)|S|
∏
i∈S

p(ci)(uS∪{j}(c)− uS(c)),

and each uS∪{j}(c)− uS(c) is a generator of the form (1) (or 0 if S ∪ {j} = S(c) = {1, . . . , l}). □

This concludes the proof of Proposition 3.1. Now, from this result, with the same proof of [5,

Theorem 2.2], we get the following.



26 A. CANONACO, M. ORNAGHI, AND P. STELLARI

Theorem 3.6. The functors I and U induce the functors

Ho(I) : Ho(dgCat) → Ho(A∞Cat) and Ho(U) : Ho(A∞Cat) → Ho(dgCat)

which are quasi-inverse equivalences of categories.

Remark 3.7. As in [5, Remark 2.3], it can also be proved that there is an equivalence of categories

between Ho(dgCat) and Ho(A∞Catdg). Hence Ho(A∞Cat) and Ho(A∞Catdg) are equivalent,

as well.

3.2. Proof of Theorem B. We refer to [22] for the (few) basic notions about ∞-categories which

are needed in this section. We denote by Ho(dgCat)∞ (resp. Ho(A∞Cat)∞) the ∞-category

obtained by localizing the nerve of the category dgCat (resp. A∞Cat) by the image under the

nerve functor of the class Wdg of quasi-equivalences in dgCat (resp. the class WA∞ of quasi-

equivalences in A∞Cat).

Now, as it was pointed out in [22], from Proposition 3.1 one can also formally deduce Theorem B

which is a stronger ∞-categorical version of Theorem 3.6 in the form of [22, Corollary 5.2]. This

is due to the fact that the adjunction of Proposition 3.1 is a Dwyer-Kan adjunction, meaning that

the following five conditions hold (see [22, Definition 2.1, Theorem 2.2]):

(1) U is left adjoint to I;

(2) I(Wdg) ⊆ WA∞ ;

(3) U(WA∞) ⊆ Wdg;

(4) the component of the unit ρA ∈ WA∞ for every A ∈ A∞Cat;

(5) the component of the counit σB ∈ Wdg for every B ∈ dgCat.

Observe that, replacing [5, Proposition 2.1] with Proposition 3.1 everything works when k is an

arbitrary commutative ring (and not just a field as in [22]).

Remark 3.8. As it is pointed out in [22], one can consider different models for ∞-categories and

for all of them there is an analogue of [22, Corollary 5.2]. Namely, one gets [22, Corollaries 2.5,

3.2, 4.3, 4.5, 5.1]. All their proofs rely on Proposition 3.1 and thus remain valid over an arbitrary

commutative ring. As a consequence, Theorem B could be restated and proved by indifferently

using each of these models.

Actually we can say that

U : (A∞Cat,WA∞) ⇄ (dgCat,Wdg) : I

is a Dwyer-Kan adjunction even if WA∞ and Wdg are the classes of pretriangulated (or Morita)

equivalences in A∞Cat and in dgCat, respectively (see [24, §1.4 and Definition 1.36] or [20,

Definition 1.4.7.]). Indeed, every quasi-equivalence is a pretriangulated (and Morita) equivalence

so (4) and (5) are satisfied. To prove (2) it suffices to notice that pretrA∞(A) = pretrdg(A) if

A ∈ dgCat (see [20, Remark 1.7]). As for (3), suppose that F : A → B in A∞Cat induces a
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quasi-equivalence pretrA∞(F) : pretrA∞(A) → pretrA∞(B). Then

pretrA∞(A)
pretrA∞ (F)

//

pretrA∞ (ρA)

��

pretrA∞(B)

pretrA∞ (ρB)

��
pretrA∞(U(A))

pretrA∞ (U(F))
// pretrA∞(U(B))

is a commutative diagram in A∞Cat in which the upper and the vertical arrows are quasi-

equivalences. Hence pretrA∞(U(F)) = pretrdg(U(F)) is a quasi-equivalence, as well.

4. The unital case

In this section we prove the following result, where A∞Catuhp denotes the full subcategory of

A∞Catu with objects the h-projective unital A∞ categories (as in the case of dg categories, we

say that A ∈ A∞Catn is h-projective if A(A,B) is a h-projective complex of k-modules for every

A,B ∈ A).

Theorem 4.1. The inclusion functor J : dgCat → A∞Catu induces an equivalence of categories

Ho(J) : Ho(dgCat) → Ho(A∞Catu). Furthermore, the categories Ho(dgCat) and A∞Catuhp/ ≈
are equivalent (hence Ho(dgCat) and A∞Catu/ ≈ are equivalent if k is a field).

The proof is contained in Section 4.2 and it is based on some preliminary results which are

discussed in Section 4.1.

4.1. Preliminary results. We begin with the following result about A∞ functors which corrects

a similar statement in [16].

Lemma 4.2. Let F : A → B be a unital A∞ functor between two strictly unital A∞ categories. If

A satisfies (3.1), then F is homotopic to a strictly unital A∞ functor.

Proof. Since F is unital, for every A ∈ A there exists hA ∈ B(F0(A),F0(A))−1 such that F1(idA) =

idF0(A) − m1
B(hA). Then we define a prenatural transformation θ : F → F of degree 0 as follows:

for every f ∈ A(A,A′) we set

θ1(f) :=

p(f)hA if A = A′

0 if A ̸= A′

(where p : A(A,A) → k is as in the proof of Lemma 3.5) and θi := 0 for i ̸= 1. By Remark 1.20

we can find F̃ ∈ A∞Catn(A,B) such that F ∼ F̃ and F̃i = Fi +m1(θ)i for i > 0. By definition for

every A ∈ A we have

F̃1(idA) = F1(idA) + m1(θ)1(idA) = idF0(A) −m1
B(hA) + θ1

(
m1

A(idA)
)
+m1

B

(
θ1(idA)

)
= idF0(A).

To conclude, using Remark 1.19 and an easy recursive argument, it should be clear that it is

enough to prove the following statement. Assume that F1(idA) = idF0(A) for every A ∈ A and that

there exist n > 1 and 1 ≤ m ≤ n such that Fi(fi ⊗ · · · ⊗ f1) = 0 if there exists j ∈ {1, . . . , i} such

that fj = idA (for some A ∈ A) and either 1 < i < n or i = n and j < m. Then we can find

G ∈ A∞Catn(A,B) such that F ∼ G through a homotopy θ with θi = 0 for i < n− 1, Gi = Fi for
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i < n and Gn(fn ⊗ · · · ⊗ f1) = 0 if there exists j ∈ {1, . . . , n} such that fj = idA (for some A ∈ A)

and j ≤ m.

To this aim, a direct but tedious check shows that we can define θ by

θn−1(fn−1 ⊗ · · · ⊗ f1) := (−1)mFn(fn−1 ⊗ · · · ⊗ fm ⊗ idA ⊗ fm−1 ⊗ · · · ⊗ f1)

θn(fn ⊗ · · · ⊗ f1) := (−1)mFn+1(fn ⊗ · · · ⊗ fm ⊗ idA ⊗ fm−1 ⊗ · · · ⊗ f1)

and θi := 0 for i ̸= n− 1, n. See also [20, Lemma 3.7] (where the assumption (3.1) is erroneously

missing) for more details of the computation. □

In a similar fashion we have the following result about natural transformations.

Lemma 4.3. Let F,G ∈ A∞Cat(A,B) and let θ : F → G be a natural transformation of degree p.

Then there exists a prenatural transformation θ̃ : F → G of degree p−1 such that θ−m1(θ̃) : F → G

is a strictly unital natural transformation.

Proof. The argument is similar (and a bit simpler) to the one of Lemma 4.2. In this case the

only key step consists in the proof of the following statement. Assume that there exist n > 0

and 1 ≤ m ≤ n such that θi(fi ⊗ · · · ⊗ f1) = 0 if there exists j ∈ {1, . . . , i} such that fj = idA

(for some A ∈ A) and either 0 < i < n or i = n and j < m. Then we can find a prenatural

transformation θ : F → G of degree p− 1 such that θ
i
= 0 for i < n− 1, m1(θ)i = 0 for i < n and

m1(θ)n(fn⊗· · ·⊗ f1) = θn(fn⊗· · ·⊗ f1) if there exists j ∈ {1, . . . , n} such that fj = idA (for some

A ∈ A) and j ≤ m. Here we can define θ by

θ
n−1

(fn−1 ⊗ · · · ⊗ f1) := (−1)mθn(fn−1 ⊗ · · · ⊗ fm ⊗ idA ⊗ fm−1 ⊗ · · · ⊗ f1)

θ
n
(fn ⊗ · · · ⊗ f1) := (−1)mθn+1(fn ⊗ · · · ⊗ fm ⊗ idA ⊗ fm−1 ⊗ · · · ⊗ f1)

and θ
i
:= 0 for i ̸= n− 1, n. See also [20, Lemma 3.8] for more details. □

We can then prove the following.

Lemma 4.4. If F,F′ ∈ A∞Catdg(A,B) are such that F ≈ F′, then F and F′ have the same image

in Ho(A∞Catdg).

Proof. This is [5, Lemma 2.10]. The only point of the proof that must be modified is the existence

of a suitable strictly unital natural tranformation F → F′, for which we invoke Lemma 4.3. □

In the following we will need to use the fact that dgCat admits a model structure, where the

weak equivalences are the quasi-equivalences and the fibrations are the full dg functors whose H0

is an isofibration (see [24]). Recall that, in general, if C is a model category, X ∈ C is cofibrant

and Y ∈ C is fibrant, then the natural map C(X,Y ) → Ho(C)(X,Y ) induces a bijection

(4.1) C(X,Y )/ ≍ oo 1:1 // Ho(C)(X,Y )

(see [13, Theorem 1.2.10]), where the equivalence relation ≍ on C(X,Y ) can be defined as follows.1

First a cylinder object for X is given by morphisms i0, i1 : X → X ′ and a weak equivalence

s : X ′ → X such that s ◦ i0 = s ◦ i1 = idX and (i0, i1) : X
∐
X → X ′ is a cofibration. Then, given

1Usually this equivalence relation is called homotopy and is denoted by ∼, but we will not do that, in order to

avoid confusion with the already defined notion of homotopy for A∞ functors.
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f0, f1 ∈ C(X,Y ), we have f0 ≍ f1 if and only if there exist a cylinder object (X ′, i0, i1, s) for X

and h ∈ C(X ′, Y ) such that fk = h◦ ik, for k = 0, 1 (see [13, Definition 1.2.4 and Corollary 1.2.6]).

Moreover, if f ∈ C(X,Y ) is a weak equivalence between two fibrant and cofibrant objects, then

(always by [13, Theorem 1.2.10]) there exists g ∈ C(Y,X) such that g ◦ f ≍ idX and f ◦ g ≍ idY .

Remark 4.5. One can easily see that, by construction, the bijection in (4.1) is indeed natural

with respect to pre and post composition, if one restricts to fibrant and cofibrant objects of C.

Remark 4.6. If (X ′, i0, i1, s) is a cylinder object for a cofibrant object X, then X ′ is cofibrant,

as well: this follows immediately from the fact that cofibrations are stable under composition and

pushouts (see [13, Corollary 1.1.11]).

Remark 4.7. It is clear from the definition that every dg category is fibrant. On the other hand,

if A ∈ dgCat is cofibrant, then A is also h-projective. Indeed, for every A,B ∈ A the complex of

k-modules A(A,B) is cofibrant by [25, Proposition 2.3], hence h-projective by [13, Lemma 2.3.8].

It follows that every dg category admits a h-projective resolution, namely a quasi-equivalence from

a h-projective dg category.

Remark 4.8. If A and B are h-projective dg-categories, then so is A⊗B.

Lemma 4.9. If F0,F1 ∈ dgCat(A,B) are such that A is cofibrant and F0 ≍ F1, then F0 ≈ F1.

Proof. By definition there exist a cylinder object (A′, I0, I1, S) for A and H ∈ dgCat(A′,B) such

that Fk = H ◦ Ik, for k = 0, 1. Note that both A′ (by Remark 4.6) and A are cofibrant, hence

h-projective by Remark 4.7. So the quasi-equivalence S is actually a homotopy equivalence. Since

S◦ I0 = S◦ I1, part (2) of Corollary 1.23 implies I0 ≈ I1. It follows that F0 = H◦ I0 ≈ H◦ I1 = F1. □

Lemma 4.10. Given F ∈ A∞Catdg(A,B) with A cofibrant and satisfying (3.1), there exists

F′ ∈ dgCat(A,B) such that F ≈ F′.

Proof. By Proposition 3.1 the diagram in A∞Cat

A

F

��

ρA // U(A)

U(F)
��

σA // A

F

��
B

ρB
// U(B)

σB

// B

is such that the square on the left commutes. Instead the square on the right commutes when F is

a dg functor, but not in general. Taking into account that σA ◦ ρA = idA and σB ◦ ρB = idB, in

any case we have

F ◦ σA ◦ ρA = F = σB ◦ ρB ◦ F = σB ◦ U(F) ◦ ρA.

Since ρA is a homotopy equivalence, from part (3) of Corollary 1.23 we obtain

(4.2) F ◦ σA ≈ σB ◦ U(F).

Now, let S : C → U(A) be a quasi-equivalence in dgCat with C cofibrant (given, for instance, by a

cofibrant replacement of U(A)). Then σA◦S : C → A is a quasi-equivalence in dgCat between two
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fibrant and cofibrant objects. Therefore there exists G ∈ dgCat(A,C) such that σA ◦S ◦G ≍ idA.

By Lemma 4.9 this implies

(4.3) σA ◦ S ◦ G ≈ idA.

Using (4.3) and (4.2) we obtain

F = F ◦ idA ≈ F ◦ σA ◦ S ◦ G ≈ σB ◦ U(F) ◦ S ◦ G.

To conclude, just observe that σB, U(F), S and G are all dg functors, hence the same is true for

their composition. □

The following is the crucial technical result of this section. It will also play an important role

in the description of the internal Homs which is the content of the next section.

Proposition 4.11. For every A,B ∈ dgCat with A h-projective there is a natural bijection

A∞Catu/ ≈ (A,B) oo
1:1 // Ho(dgCat)(A,B).

Proof. First we claim that we can assume that A is semi-free (hence cofibrant by [8, Lemma B.6]).

Indeed, there exists a quasi-equivalence Ã → A in dgCat with Ã semi-free (see [8, Lemma B.5]).

Then A ∼= Ã in Ho(dgCat), whence there is a natural bijection

Ho(dgCat)(A,B) oo
1:1 // Ho(dgCat)(Ã,B).

Taking into account that Ã (by Remark 4.7) and A are h-projective, Lemma 1.22 implies A ∼= Ã

in A∞Catu/ ≈. Thus there is a natural bijection

A∞Catu/ ≈ (A,B) oo
1:1 // A∞Catu/ ≈ (Ã,B).

It follows that the existence of the required bijection is equivalent to the existence of a natural

bijection

A∞Catu/ ≈ (Ã,B) oo
1:1 // Ho(dgCat)(Ã,B).

This proves the claim, and so for the rest of the proof we assume that A is semi-free. Note that,

by construction, under this assumption A also satisfies (3.1).

By Lemma 4.9 the inclusion dgCat(A,B) ↪→ A∞Catu(A,B) induces a map

(4.4) φ : dgCat(A,B)/ ≍ → A∞Catu/ ≈ (A,B).

By (4.1) it is enough to prove that φ is bijective. Indeed, given F,F′ ∈ dgCat(A,B) such that

F ≈ F′, by Lemma 4.4 F and F′ have the same image in Ho(A∞Catdg), hence also in Ho(dgCat)

(see Remark 3.7). Therefore F ≍ F′, again by (4.1), and this proves that φ is injective. Finally,

since A is semi-free, Lemma 4.2 implies that the natural injective map

A∞Cat/ ≈ (A,B) → A∞Catu/ ≈ (A,B)

is also surjective. We conclude that φ is surjective by Lemma 4.10. □
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4.2. The equivalences. We are now ready to prove Theorem 4.1. The argument is split in a

couple of steps.

Proposition 4.12. The inclusion functor J : dgCat → A∞Catu induces an equivalence of cate-

gories Ho(J) : Ho(dgCat) → Ho(A∞Catu).

Proof. Obviously J preserves quasi-equivalences, hence it induces the functor Ho(J). Now we

want to define a functor K : A∞Catu → Ho(dgCat). To this aim, recalling Lemma 1.16 and

Lemma 1.22, first we choose, for every A ∈ A∞Catu, homotopy equivalences YA : A → RA

and ZA : RA → A, with RA ∈ dgCat, such that ZA ◦ YA ≈ idA and YA ◦ ZA ≈ idRA
. We

also choose, for every A ∈ A∞Catu, a quasi-equivalence SA : K(A) → RA in dgCat with K(A)

h-projective. This defines K on objects. As for morphisms, given F : A → B in A∞Catu, we

define K(F) ∈ Ho(dgCat)(K(A),K(B)) as follows. The image in A∞Catu/ ≈ (K(A),RB) of the

composition in A∞Catu

K(A)
SA−−→ RA

ZA−−→ A
F−→ B

YB−−→ RB

corresponds (by Proposition 4.11) to a unique f ∈ Ho(dgCat)(K(A),RB). Then we can define

K(F) := [SB]
−1 ◦ f , where [SB] ∈ Ho(dgCat)(K(B),RB) denotes the image of SB. It is immediate

to see that K is really a functor and that it takes quasi-equivalences in A∞Catu to isomorphisms

in Ho(dgCat). Thus K induces a functor K′ : Ho(A∞Catu) → Ho(dgCat). In order to conclude

that Ho(J) is an equivalence with quasi-inverse K′, it remains to show that there exist natural

isomorphisms

ϕ : K′ ◦Ho(J) → idHo(dgCat), ψ : Ho(J) ◦ K′ → idHo(A∞Catu).

It is easy to check that, for every A ∈ Ho(dgCat), we can define ϕA ∈ Ho(dgCat)(K(A),A)

as the unique morphism corresponding (again by Proposition 4.11) to the image of ZA ◦ SA in

A∞Catu/ ≈ (K(A),A). On the other hand, for every A ∈ Ho(A∞Catu), we can directly define

ψA ∈ Ho(A∞Catu)(K(A),A) as the image of ZA ◦ SA. □

Proposition 4.13. The categories Ho(dgCat) and A∞Catuhp/ ≈ are equivalent.

Proof. Let C be the full subcategory of Ho(dgCat) whose objects are h-projective, and let C′

be the full subcategory of A∞Catuhp/ ≈ whose objects are (strictly unital) dg categories. The

inclusion C ↪→ Ho(dgCat) is clearly an equivalence, and we claim that the same is true for the

inclusion C′ ↪→ A∞Catuhp/ ≈. Indeed, using the notation of the proof of Proposition 4.12, for

every A ∈ A∞Catuhp there exists a quasi-equivalence ZA ◦ SA : K(A) → A with K(A) ∈ C′. Since

both A and K(A) are h-projective, ZA ◦ SA is actually a homotopy equivalence, hence its image

in A∞Catuhp/ ≈ is an isomorphism by Lemma 1.22. The conclusion follows from the fact that, as

an easy consequence of Proposition 4.11, C and C′ are isomorphic categories. □

Remark 4.14. One could hope to prove in a similar way that the categories Ho(dgCat) and

A∞Cathp/ ≈ are equivalent (where A∞Cathp denotes the full subcategory of A∞Cat with

objects the h-projective strictly unital A∞ categories). Unfortunately the above proof cannot be

adapted to work in this setting (even when k is a field, in which case A∞Cathp/ ≈ coincides

with A∞Cat/ ≈). Indeed, one would need a variant of Proposition 4.11, with A∞Cat in place
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of A∞Catu. But such a statement is clearly false (just take A and B two dg algebras with

A = H(B) = 0 and B ̸= 0).

5. Internal Homs via A∞ functors

In this section we prove Kontsevich–Keller’s claim about internal Homs with no restrictions on

the base ring. Namely, we provide a completely new proof of Theorem C in Section 5.2 which is

preceded by some preliminary results about multifunctors in Section 5.1.

5.1. A∞ multifunctors. Let us briefly recall some constructions which are carefully described in

Sections 1.2 and 1.4 in [5] and which were originally introduced in [2]. For this reason we will be

concise in the presentation and we will refer to these original sources for more details.

More specifically, given A1, . . . ,An,A ∈ A∞Catu, an A∞ multifunctor from A1, . . . ,An to A

is a morphism of graded quivers

F : B∞(A1)+ ⊗ · · · ⊗ B∞(An)+ → A[1]

such that the natural extension

B∞(A1)+ ⊗ · · · ⊗ B∞(An)+ → B∞(A)

of F as graded cofunctor commutes with the differentials. Furthermore, an A∞ multifunctor is

unital if all its restrictions are unital. The set of all unital A∞ multifunctors from A1, . . . ,An to

A will be denoted by A∞Catu(A1, . . . ,An,A). It is also important to know that, by[2, Propo-

sition 8.15], there is a unital A∞ category FunA∞Catu(A1, . . . ,An,A) whose set of objects is

A∞Catu(A1, . . . ,An,A) (morphisms are suitably defined prenatural trasformations). Note that,

if A is a dg category, then FunA∞Catu(A1, . . . ,An,A) is a dg category as well.

Proposition 5.1. For every A1,A2,A3 ∈ A∞Catu there is an isomorphism in A∞Catu

FunA∞Catu(A1,A2,A3) ∼= FunA∞Catu(A1,FunA∞Catu(A2,A3)).

Proof. It follows from [2, Proposition 9.18] together with [2, Proposition 4.12]. □

In complete analogy with the case of A∞ functors (see Section 1.4), if F1 and F2 are in

A∞Catu(A1, . . . ,An,A), we say that F1 and F2 are weakly equivalent (denoted by F1 ≈ F2)

if they are isomorphic in the category H0(FunA∞Catu(A1, . . . ,An,A)). The relation ≈ is clearly

compatible with compositions and then we can define a quotient (multi)category A∞Catu/ ≈
with the same objects and whose morphisms are given by

A∞Catu/ ≈ (A1, . . . ,An,A) := A∞CatuA1, . . . ,An,A)/ ≈ .

Proposition 5.2. For every A1,A2,A3 ∈ dgCat there is a natural bijection

A∞Catu/ ≈ (A1 ⊗A2,A3) oo
1:1 // A∞Catu/ ≈ (A1,A2,A3).

Proof. We just sketch the proof, which is essentially the same as that of [5, Proposition 3.8],

with a few adjustments at some points. Keeping the same notation of [5, Section 3], Ñ ∈
dgCatn(Ω(C),A+

1 ⊗A+
2 ) (where C := B(A1)+ ⊗ B(A2)+) is actually a homotopy isomorphism

by Corollary 2.6. Then, as A+
1 ⊗A+

2 ∈ dgCat when A1,A2 ∈ dgCat (see the proof of [5,
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Lemma 3.7]), by Lemma 1.22 Ñ is unital and there exists H ∈ A∞Catu(A+
1 ⊗A+

2 ,Ω(C)) such

that H ◦ Ñ ≈ idΩ(C). No further change is needed in the rest of the proof, except that in the end

we use Lemma 1.21 instead of [23, Lemma 1.6]. □

5.2. Proof of Theorem C. Given A1,A2,A3 ∈ dgCat, it is enough to prove that there are the

following natural bijections (where Ahp
i denotes a h-projective resolution of Ai, for i = 1, 2)

(5.1) Ho(dgCat)(A1 ⊗L A2,A3)OO

1:1(A)
��

Ho(dgCat)(Ahp
1 ⊗Ahp

2 ,A3)OO

1:1(B)

��

Ho(dgCat)(A1,FunA∞Catu(A
hp
2 ,A3))OO

1:1 (F)

��

A∞Catu/ ≈ (Ahp
1 ⊗Ahp

2 ,A3)OO

1:1(C)
��

Ho(dgCat)(Ahp
1 ,FunA∞Catu(A

hp
2 ,A3))OO

1:1 (E)
��

A∞Catu/ ≈ (Ahp
1 ,Ahp

2 ,A3) oo
1:1

(D)
// A∞Catu/ ≈ (Ahp

1 ,FunA∞Catu(A
hp
2 ,A3)),

since this would imply the wanted natural bijection

Ho(dgCat)(A1 ⊗L A2,A3) oo
1:1 // Ho(dgCat)(A1,FunA∞Catu(A

hp
2 ,A3)).

Now, the existence of (A), and (F) follows from the isomorphisms A1 ⊗L A2
∼= Ahp

1 ⊗ Ahp
2 and

Ahp
1

∼= A1 in Ho(dgCat). Taking into account that Ahp
1 ⊗Ahp

2 is h-projective by Remark 4.8, (B)

and (E) are due to Proposition 4.11. Finally, Proposition 5.2 implies (C), whereas (D) is a direct

consequence of Proposition 5.1.

This clearly implies that Ho(dgCat) is symmetric monoidal category whose internal Hom

RHom(A,B), for two dg categories A and B is, up to isomorphism in Ho(dgCat), the dg category

FunA∞Catu(A
hp,B).

Remark 5.3. It is worth pointing out that the above conclusion is enough to prove Kontsevich–

Keller’s Claim in the introduction. Indeed, if A is a h-projective dg category with the additional

property that the unit map k → A(A,A) admits a retraction as a morphism of complexes, for all

A ∈ A, then the fully faithful embedding FunA∞Cat(A,B) ↪→ FunA∞Catu(A,B) is indeed a quasi-

equivalence. The argument is the same as in [5, Corollary 2.6], where we replace (the erroneous)

[5, Proposition 2.5] with Lemma 4.2 (note that (3.1) is clearly satisfied in our assumptions).

On the other hand, as B and its cofibrant replacements B̃ are isomorphic in Ho(dgCat), the

universal property of the internal Hom yields the isomorphism

FunA∞Catu(A
hp,B) ∼= FunA∞Catu(A

hp, B̃)

in Ho(dgCat). Finally, as we explained in the proof of Proposition 4.11, Ahp and the cofibrant

replacement Ã are isomorphic in A∞Catu/ ≈, thus we can simply set

RHom(A,B) := FunA∞Catu(Ã, B̃)
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yielding a bijection

(5.2) Ho(dgCat)(A,B) oo
1:1 // Isom(H0(RHom(A,B))) = A∞Catu/ ≈ (Ã, B̃),

where the latter equality is by definition.

As in the proof Proposition 4.11, the bijection (5.2) boils down to the composition of bijections

Ho(dgCat)(A,B) oo
1:1 // Ho(dgCat)(Ã, B̃) oo

1:1 // dgCat(Ã, B̃)/ ≍ oo 1:1 // A∞Catu/ ≈ (Ã, B̃).

Now, the first and the last bijections are compatible with pre and post compositions by definition,

while the second one is such in view of Remark 4.5. This concludes the proof.
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