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Abstract. We prove that the derived category of a Grothendieck abelian category has a unique

dg enhancement. Under some additional assumptions, we show that the same result holds true

for its subcategory of compact objects. As a consequence, we deduce that the unbounded derived

category of quasi-coherent sheaves on an algebraic stack and the category of perfect complexes

on a noetherian concentrated algebraic stack with quasi-finite affine diagonal and enough perfect

coherent sheaves have a unique dg enhancement. In particular, the category of perfect complexes on

a noetherian semi-separated scheme with enough locally free sheaves has a unique dg enhancement.
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Introduction

The relation between triangulated categories and higher categorical structures is highly non-

trivial, very rich in nature and with various appearances in the recent developments of derived

algebraic geometry. The easiest thing we can do is to produce a triangulated category T out of

a pretriangulated dg category D by taking the homotopy category of D. Roughly speaking, a

pretriangulated dg category D whose homotopy category is equivalent to a triangulated category

T is called a dg enhancement (or enhancement, for short) of T.

Now, there exist triangulated categories with no enhancements at all. For example, this happens

to some triangulated categories naturally arising in topology (see [36] or [17, Section 3.6] for a
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discussion about this). Triangulated categories admitting an enhancement are called algebraic (as

it is explained, for example, in [36, Section 3], algebraic triangulated categories are often defined in

other equivalent ways). In practice, all triangulated categories one usually encounters in algebra or

algebraic geometry are algebraic. For instance, the derived category of a Grothendieck category, as

well as its full subcategory of compact objects are algebraic. Recall that a Grothendieck category

is an abelian category C which is closed under small coproducts, has a set of generators S and the

direct limits of short exact sequences are exact. The objects in S are generators in the sense that,

for any C in C, there exists an epimorphism S � C in C, where S is a coproduct of objects in S.

In particular, if X is a scheme or, more generally, an algebraic stack it is not difficult to con-

struct explicit enhancements of the derived category D(Qcoh(X)) of quasi-coherent sheaves on X

and, under mild assumptions, of the bounded derived categories of coherent sheaves Db(X) and

the category of perfect complexes Perf (X) on X. For example, this can be achieved by taking

complexes of injective sheaves, Čech resolutions, chain complexes of sheaves in the corresponding

categories or perfect complexes (see [3] and [25]).

Even when we know that an enhancement exists, one may wonder whether it is unique. Roughly,

we say that a triangulated category T has a unique enhancement D if any other enhancement is

related to D by a sequence of quasi-equivalences. These are the analogue, at the dg level, of the

exact equivalences in the triangulated setting. Actually, at this level of generality, we may not

expect a positive answer to the above question. Indeed, the result of Dugger and Shipley [11] easily

yields an example of two Z-linear pretriangulated dg categories which are not quasi-equivalent but

whose homotopy categories are equivalent. The search of a similar example over a field rather than

over a commutative ring is still a challenge.

Again, if we move to the geometric setting, then for a long while it was expected that any of

the three triangulated categories D(Qcoh(X)), Db(X) and Perf (X) should have unique enhance-

ments, when X is a (quasi-)projective scheme. This was formally stated as a conjecture (even in

a stronger form) by Bondal, Larsen and Lunts [3].

As we will explain later, this conjecture was positively solved by Lunts and Orlov in their seminal

paper [24]. It should be noted that the quest for uniqueness of enhancements has a foundational

relevance that cannot be overestimated by the ‘working algebraic geometer’. Let us just mention

an instance where the fact of having a unique enhancement has interesting consequences. The

homological version of the so called Mirror Symmetry Conjecture by Kontsevich [18] predicts the

existence of an A∞-equivalence between a dg enhancement of Db(X), for X a smooth projective

scheme, and the Fukaya category of the mirror Y of X, which is actually an A∞-category. The

fact that the dg enhancements are unique allows us to conclude that finding an A∞-equivalence (or

rather a sequence of them) is the same as finding an exact equivalence between the corresponding

homotopy categories. More generally, several geometric problems can be lifted to the dg level and

treated there in a universal way (e.g. moduli problems or the characterization of exact functors).

Having bridges between the different dg incarnations of the same triangulated or geometric problem

is then crucial.

Let us now explain the contributions of this paper to the problem of showing the uniqueness

of dg enhancements in geometric settings. The first point to make, which should be clear from
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now on, is that the analysis of these questions about D(Qcoh(X)) or Perf (X) (or Db(X)) follows

slightly different paths. In particular, they can be deduced from two different general criteria

whose statements are similar but whose proofs are rather different in nature.

We first consider the case of D(Qcoh(X)) and, setting the problem at a more abstract level, we

first prove the following general result.

Theorem A. If C is a Grothendieck category, then D(C) has a unique enhancement.

We will explain later some key features in the proof. For the moment, we just recall that the

main geometric applications are the following:

• If X is an algebraic stack, D(Qcoh(X)) has a unique enhancement (see Corollary 5.4);

• If X is a quasi-compact, quasi-separated scheme and α is an element in the Brauer group

Br(X) of X, then the twisted derived category D(Qcoh(X,α)) has a unique enhancement

(see Corollary 5.6).

Now, if we want to study the enhancements of Perf (X) (and, consequently, of Db(X)), we

should keep in mind that if X is a quasi-compact and semi-separated scheme, then Perf (X) is

the triangulated subcategory of D(Qcoh(X)) consisting of compact objects. Our general result in

this direction is then the following.

Theorem B. Let C be a Grothendieck category with a set A of generators such that

(1) A is closed under finite direct sums;

(2) Every object of A is a noetherian object in C;

(3) If f : A′ � A is an epimorphism of C with A,A′ ∈ A, then ker f ∈ A;

(4) For every A ∈ A there exists N(A) > 0 such that D(C) (A,A′[N(A)]) = 0 for every A′ ∈ A.

Then D(C)c has a unique enhancement.

Here D(C)c denotes the subcategory of compact objects in D(C). One may wonder why the

result above is conditional while Theorem A does not include any specific assumption on C. We

will try to explain later that this is, in a sense, unavoidable but to reassure the reader about the

mildness of (1)–(4), let us now discuss some geometric cases where Theorem B applies:

• If X is a noetherian concentrated algebraic stack with quasi-finite affine diagonal and with

enough perfect coherent sheaves, then Perf (X) has a unique enhancement (see Proposi-

tion 6.10);

• As a special (but maybe easier to understand) instance of the above case, we have that if

X is a noetherian semi-separated scheme with enough locally free sheaves, then Perf (X)

has a unique enhancement (see Corollary 6.11);

• Under the same assumptions on the scheme X, the category Db(X) has a unique enhance-

ment (see Corollary 7.2).

The (more or less) standard terminology involved in the above statements will be briefly recalled

in Section 6.3.

It is very likely that Theorem A and Theorem B may be used in other geometric contexts. One

direct application of the circle of ideas appearing in the proofs of these two results concerns the
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existence of exact equivalences. In particular, if X1 and X2 are noetherian, semi-separated schemes

with enough locally free sheaves then the set of equivalences between Perf (X1) and Perf (X2) is

not empty if and only if the same is true for the set of equivalences between D(Qcoh(X1)) and

D(Qcoh(X2)). This is Proposition 7.4.

The strategy of the proof. Before entering into some details of the proof it is worth pointing out

the general approach to Theorem A and Theorem B. Even if these results have a dg flavour, the idea

is to reduce them to questions about Verdier quotients of triangulated categories. Unfortunately,

some of these latter questions are highly non-trivial and involve deep problems concerning the

description of the subcategory of compact objects of a quotient. This is the reason why our proofs,

which are conceptually quite simple, become technically rather involved.

Let us try to make this more precise and consider first Theorem A. The key observation is that

the derived category D(C) of a Grothendieck category C is well generated in the sense of Neeman

[30]. Thus one can choose a set A of generators for C such that D(C) is naturally equivalent to

the quotient D(A)/L, where D(A) is the derived category of A, seen as a dg category, and L is

an appropriate localizing subcategory of D(A). This is carried out in Section 5.1.

In Section 5.1 we explain that, after this, Theorem A follows easily once we prove the following

general criterion.

Theorem C. Let A be a small category and let L be a localizing subcategory of D(A) such that:

(a) The quotient D(A)/L is a well generated triangulated category;

(b) D(A)/L
(
Q(YA(A1)),Q(YA(A2))[i]

) ∼= 0, for all A1, A2 ∈ A and all integers i < 0.

Then D(A)/L has a unique enhancement.

Here YA : A → D(A) denotes the Yoneda functor while Q : D(A) → D(A)/L is the natural

quotient functor. We will give the precise definition of well generated triangulated category in

Section 1.1. For the moment, it is enough to keep in mind that it is a natural generalization of

the usual notion of compactly generated triangulated category. The idea of the proof, which is

carried out all along Section 4, is very much inspired by the proof of [24, Theorem 2.7] but it differs

at several important technical steps. We will try to clarify them in a while when comparing our

results to those in [24]. The geometric applications mentioned above and discussed in Section 5.2,

can be deduced easily from the fact that, in all these cases, the category of quasi-coherent sheaves

is a Grothendieck category, under our assumptions on X.

Once we have the equivalence D(C) ∼= D(A)/L as above, it is clear that to prove Theorem B

we have to show that the triangulated subcategory (D(A)/L)c of compact objects in D(A)/L has

a unique enhancement, for a smart choice of A (see Section 6.1). For this, one may hope to use

Theorem 6.2 which was proved by Lunts and Orlov in [24]. Indeed, this criterion for uniqueness

asserts that if we change (a) in Theorem C to

(a’) Lc = L ∩ D(A)c and L is generated by Lc,

and we keep (b), then we can deduce that (D(A)/L)c has a unique enhancement as well. In this

case, the proof is not too difficult, as we can use the fact that (D(A)/L)c and D(A)c/Lc are nicely

related, as explained in [28] (see Theorem 1.3).
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The issue here is that (a’) is not easily verified. Indeed, if L satisfies (a’), then the inclusion

functor L ↪→ T has a right adjoint which preserves coproducts. In general, given a compactly

generated triangulated category T closed under small coproducts, a localizing subcategory L of T

such that the inclusion L ↪→ T has the above property is called smashing subcategory.

For a while, it was conjectured that all smashing subcategories L of a triangulated category T

as above should verify (a’). This goes under the name of Telescope Conjecture (see [33, 1.33] and

[5, 3.4]). Unfortunately, the Telescope Conjecture is known to be false in this generality [15] and

to be true in very few examples (see, for example, [29]). This shows that we cannot expect that

(a’) holds true in general or easily.

In view of this discussion, the main task which is carried out in Section 6.2 is to identify the

correct choice for A such that (a’) holds for the corresponding localizing subcategory L. To get

this, one has to impose some additional assumptions on C and A. This is the reason why the

hypotheses (1)–(4) appear in Theorem B. Assuming this, the proof of Theorem B is contained in

Section 6.2 and the core of the argument is then Theorem 6.6.

The applications concerning the uniqueness of enhancements for Perf (X) (see Proposition 6.10

and Corollary 6.11) and Db(X) (see Corollary 7.2) are rather easy consequences once Theorem B

and, respectively, Theorem 6.6 are established.

Related work. As we recalled before, in [3], Bondal, Larsen and Lunts first conjectured that

all enhancements of Db(X), for X a smooth projective scheme, should be unique. In the same

paper, they show that all ‘standard’ enhancements are related by quasi-equivalences, giving the

first evidence to their conjecture.

After that, the main reference is [24] which is certainly the principal source of inspiration for this

paper as well. Let us briefly summarize the results contained in that paper and compare them to

ours. For A a small category as in Theorem C, Lunts and Orlov show that D(A)/L has a unique

enhancement if (b) holds and (a) is replaced by:

(a.1) Q sends D(A)c to (D(A)/L)c, where (−)c denotes the full subcategory of compact objects;

(a.2) Q has a right adjoint.

This is [24, Theorem 2.7]. It should be noted that (a.1) and (a.2) together imply that D(A)/L is

compactly generated. This is a special instance of our assumption (a) in Theorem C. Moreover,

by [27], there are examples of Grothendieck categories whose derived category is not compactly

generated but it is well generated. Hence Theorem C is certainly a generalization of [24, Theorem

2.7]. The geometric consequences of [24, Theorem 2.7], which are discussed in the same paper, are

then:

• For a Grothendieck category C, the derived category D(C) has a unique enhancement, if

C has a small set of generators which are compact in D(C) (see [24, Theorem 2.9]);

• This implies that if X is a quasi-compact and separated scheme that has enough locally

free sheaves, then D(Qcoh(X)) has a unique enhancement (see [24, Theorem 2.10]).

As a second step, Lunts and Orlov deduce from [24, Theorem 2.8] that if X is a quasi-projective

scheme, then both Perf (X) and Db(X) have unique enhancements. A strong version of uniqueness

is then discussed. Namely, they prove that these two categories have strongly unique enhancements
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when X is projective and another technical assumption is satisfied. This is out of the scope of

this paper but we believe that the techniques discussed here might have applications to show the

strongly uniqueness of dg enhancements in new cases. Indeed, Theorem 6.6 has already been

applied to prove the strongly uniqueness of the category of perfect supported complexes (see [8,

Theorem 1.2]).

New interesting enhancements of geometric nature have been recently introduced by Lunts and

Schnürer in [25]. Roughly speaking, they were used to show that the dg notion of Fourier–Mukai

functor and the triangulated one agree, under some assumptions on the schemes. This important

result was previously stated in [38] but without a rigorous proof.

Plan of the paper. This paper starts with a quick recollection of results about localizations

of triangulated categories and of some properties of well generated triangulated categories (see

Section 1.1). After this, we explore further in Section 1.2 the relation between localizations and

well generation. This is a crucial step in the proof of Theorem A.

Section 2 and Section 3 have a rather abstract nature. They cover some basic material about dg

categories and dg enhancements with an emphasis on the case of enhancements of well generated

triangulated categories. Section 3 provides some properties of special functors which are used in

the proof of Theorem C.

In Section 4 we prove Theorem C while Theorem A, together with its geometric applications,

is proved in Section 5. The proof of Theorem B, of Proposition 6.10 and of Corollary 6.11 are the

contents of Section 6.

Section 7 contain two further applications. The first one, concerning the uniqueness of en-

hancements for Db(X), is proved in Section 7.1. The second one, about Fourier–Mukai functors is

explained in Section 7.2.

Notation. All categories and functors are assumed to be k-linear, for a fixed commutative ring

k. By a k-linear category we mean a category whose Hom-spaces are k-modules and such that the

compositions are k-bilinear, not assuming that finite direct sums exist.

Throughout the paper, we assume that a universe containing an infinite set is fixed. Several

definitions concerning dg categories need special care because they may, in principle, require a

change of universe. All possible subtle logical issues in this sense can be overcome in view of [24,

Appendix A]. The careful reader should have a look at it. After these warnings and to simplify the

notation, we will not mention explicitly the universe where we are working any longer in the paper,

as it should be clear from the context. The members of this universe will be called small sets. For

example, when we speak about small coproducts in a category, we mean coproducts indexed by a

set in this universe. If not stated otherwise, we always assume that the Hom-spaces in a category

form a small set. A category is called small if the isomorphism classes of its objects form a small

set.

If T is a triangulated category and S a full triangulated subcategory of T, we denote by T/S

the Verdier quotient of T by S. In general, T/S is not a category according to our convention

(namely, the Hom-spaces in T/S need not be small sets), but it is in many common situations, for

instance when T is small.
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Given a category C and two objects C1 and C2 in C, we denote by C(C1, C2) the Hom-space

between C1 and C2. If F : C→ D is a functor and C1 and C2 are objects of C, then we denote by

FC1,C2 the induced morphism C(C1, C2)→ D(F(C1),F(C2)).

If I is a set, |I| denotes the cardinality of I.

1. Well generated triangulated categories and localizations

This section discusses the notion of well generated triangulated categories and, in particular, its

behaviour under taking Verdier quotients.

1.1. Well generated triangulated categories. In this section we use Krause’s equivalent treat-

ment (see [20]) of Neeman’s notion of well generated triangulated category (see [30]). For a very

clear survey about this subject, the reader can have a look at [21].

From now on, we assume T to be a triangulated category with small coproducts. Given a

cardinal α, an object S of T is α-small if every map S →
∐
i∈I Xi in T factors through

∐
i∈J Xi,

for some J ⊆ I with |J | < α. Recall that a cardinal α is called regular if it is not the sum of fewer

than α cardinals, all of them smaller than α.

Definition 1.1. The category T is well generated if there exists a set S of objects in T satisfying

the following properties:

(G1) An object X ∈ T is isomorphic to 0, if and only if T(S,X[j]) = 0, for all S ∈ S and all

j ∈ Z;

(G2) For every set of maps {Xi → Yi}i∈I in T, the induced map T(S,
∐
iXi) → T(S,

∐
i Yi) is

surjective for all S ∈ S, if T(S,Xi)→ T(S, Yi) is surjective, for all i ∈ I and all S ∈ S;

(G3) Every object of S is α-small, for some regular cardinal α.

When the category T is well generated and we want to put emphasis on the cardinal α in (G3),

we say that T is α-compactly generated by the set of α-compact generators S.

If T is α-compactly generated by S, following [20], we denote by Tα the smallest α-localizing

subcategory of T containing S. Recall that a full triangulated subcategory L of T is α-localizing if it

is closed under α-coproducts and under direct summands (the latter condition is actually redundant

if α > ℵ0). By definition, an α-coproduct is a coproduct of strictly less than α summands. On the

other hand, L is localizing if it is closed under small coproducts in T.

Remark 1.2. (i) As alluded by the notation and explained in [20, 30], the subcategory Tα does

not depend on the choice of the set S of α-compact generators.

(ii) When α = ℵ0, then Tα = Tc, the full triangulated subcategory of compact objects in T.

Recall that, in this case, T is ℵ0-compactly generated by S ⊆ Tc if (G1) holds (notice that (G3)

holds by definition of compact object, whereas (G2) is automatically satisfied). Following the usual

convention, we simply say that T is compactly generated by S.

Later we will need the following result.

Theorem 1.3 ([28], Theorem 2.1). Let T be a compactly generated triangulated category and let

L be a localizing subcategory which is generated by a set of compact objects. Then

(i) T/L has small Hom-sets and it is compactly generated;



8 ALBERTO CANONACO AND PAOLO STELLARI

(ii) Lc = L ∩Tc;

(iii) The quotient functor Q : T→ T/L sends Tc to (T/L)c;

(iv) The induced functor Tc/Lc → (T/L)c if fully faithful and identifies (T/L)c with the idem-

potent completion of Tc/Lc.

Recall that the the fact that (T/L)c is the idempotent completion of Tc/Lc simply means that

any object in (T/L)c is isomorphic to a summand of an object in Tc/Lc. A similar result holds

for well generated triangulated categories (see, for example, [21, Theorem 7.2.1]).

Example 1.4. Let C be a Grothendieck category. Then the derived category D(C) is α-compactly

generated, for some regular cardinal α (see [27, Theorem 0.2] and [21, Example 7.7]).

1.2. Well generation under Verdier localizations. Assume now that T is α-compactly gen-

erated by a set S of α-compact generators. Let L be a localizing subcategory of T such that the

quotient T/L is α-compactly generated and the quotient functor

Q : T −→ T/L

maps Tα to (T/L)α.

Remark 1.5. As we assume that T/L is well generated, in particular, it has small Hom-sets.

Moreover, T/L has small coproducts and the quotient functor Q commutes with them by [30,

Corollary 3.2.11]. Then it follows from Theorem 5.1.1 and Proposition 2.3.1 in [21] that the

functor Q has a fully faithful right adjoint QR (hence Q ◦ QR ∼= id).

The following will be used later.

Proposition 1.6. For T, S and L as above, the set S′ := {Q(S) : S ∈ S} is a set of α-compact

generators for T/L.

Proof. Let QR be the fully faithful right adjoint of Q, which exists by Remark 1.5. Thus we have

T/L(Q(S), X[j]) ∼= T(S,QR(X)[j]),

for all S ∈ S, all X ∈ T/L and all j ∈ Z. Hence S′ satisfies (G1) as S does.

To verify that S′ satisfies (G2), consider the closure S and S
′

of S and S′ respectively under α-

coproducts. We consider them as full subcategories of T and T/L respectively. By [21, Appendix

B], we have the functors

H1 : T→ Addα (S
◦
,Ab) X 7→ T(−, X)|S

and

H2 : T/L→ Addα ((S
′
)◦,Ab) X 7→ T/L(−, X)|

S
′ .

Given an additive category D closed under α-coproducts, we denote by Add (D◦,Ab) the cat-

egory whose objects are all the additive functors F : D◦ → Ab and by Addα (D◦,Ab) the full

subcategory of Add (D◦,Ab) consisting of those functors preserving α-products.
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If we set Q1 := Q|S, then we can apply again [21, Appendix B], getting a commutative diagram

T

H1
��

Q // T/L

H2
��

Addα (S
◦
,Ab)

Q∗1 // Addα ((S
′
)◦,Ab).

Given this, we can observe now that Q commutes with coproducts and H1 does the same in view

of [20, Theorem C].

Now, the key point is that Q∗1 has a right adjoint. To prove this one uses the same argument as

in the proof of the first part of [21, Lemma B.8], where it is shown that the functor f∗ has a left

adjoint f∗. Indeed, a careful check shows that the same proof works without assuming that the

categories C and D there are triangulated1.

The important consequence of the existence of the right adjoint to Q∗1 is that Q∗1 preserves

coproducts. Putting all together, the functor H2 must preserve coproducts. But then [20, Theorem

C] implies that S′ satisfies (G2).

As for (G3), observe that since Q maps Tα to (T/L)α, the set S′ is contained in (T/L)α. Then

the objects in S′ satisfy (G3) by [20, Lemma 5]. �

Example 1.7. Let us reconsider the situation in Example 1.4 concerning the triangulated category

D(C), for C a Grothendieck category. By the construction in [27, Theorem 0.2] and [21, Example

7.7], there is an exact equivalence D(C) ∼= D(R)/L, where R is the endomorphism ring of a

generator G of C, as a Grothendieck category, and L is a localizing subcategory of D(R). Moreover,

the ring R is mapped to the generator G under the composition D(R)→ D(R)/L ∼= D(C) and it is

a compact generator of D(R) (see, for example, [24, Example 1.9]). Hence, as an easy application

of Proposition 1.6, any generator G of C, as a Grothendieck category, yields a set of α-compact

generators for D(C).

We will study a similar situation with a more general approach in Section 5.1. See also [19] for

general results about the well generation of the derived categories of Grothendieck categories.

The following easy result will be used later on.

Lemma 1.8. Let T be a well generated triangulated category and let S be a set of α-compact

generators for T. Assume that {Xi}i∈I is a family of objects in T with the property that T (S,Xi) =

0, for all S ∈ S and all i ∈ I. Then T (S,
∐
iXi) = 0, for all S ∈ S.

Proof. It is obvious that the family of maps {0→ Xi}i∈I is such that the induced maps

T (S, 0) −→ T (S,Xi) ∼= 0

are surjective, for all S ∈ S. Since the set S satisfies (G2), the induced map

T (S, 0) −→ T

(
S,
∐
i

Xi

)
is surjective for all S ∈ S and so T (S,

∐
iXi) = 0, for all S ∈ S. �

1We thank Henning Krause for several explanations about his results in Appendix B of [21].
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2. Dg categories and dg enhancements

In this section, we recall some general facts about dg categories and stick to the description of

dg enhancements for well generated triangulated categories.

2.1. A quick tour about dg categories. An excellent survey about dg categories is [17]. Nev-

ertheless, we briefly summarize here what we need in the rest of the paper.

First of all, recall that a dg category is a k-linear category C such that, for all A,B in C, the

morphism spaces C (A,B) are Z-graded k-modules with a differential d : C (A,B) → C (A,B) of

degree 1 and the composition maps are morphisms of complexes. By definition, the identity of

each object is a closed morphism of degree 0.

Example 2.1. (i) Any k-linear category has a (trivial) structure of dg category, with morphism

spaces concentrated in degree 0.

(ii) For a dg category C, one defines the opposite dg category C◦ with the same objects as C

while C◦(A,B) := C (B,A).

(iii) Following [10], given a dg category C and a full dg subcategory D of C, one can take the

quotient C/D which is again a dg category.

Given a dg category C we denote by H0(C) its homotopy category. To be precise, the objects

of H0(C) are the same as those of C while the morphisms from A to B are obtained by taking the

0-th cohomology H0(C (A,B)) of the complex C (A,B).

A dg functor F : C1 → C2 between two dg categories is the datum of a map Ob(C1)→ Ob(C2)

and of morphisms of complexes of k-modules C1 (A,B)→ C2 (F(A),F(B)), for A,B ∈ C1, which

are compatible with the compositions and the units. Clearly, a dg functor F : C1 → C2 induces a

functor H0(F) : H0(C1)→ H0(C2).

A dg functor F : C1 → C2 is a quasi-equivalence, if the maps C1 (A,B) → C2 (F(A),F(B)) are

quasi-isomorphisms, for every A,B ∈ C1, and H0(F) is an equivalence. If only the first condition

holds true, we say that F is quasi-fully faithful.

One can consider the localization Hqe of the category of (small) dg categories with respect to

quasi-equivalences. Given a dg functor F, we will denote with the same symbol its image in Hqe.

In particular, if F is a quasi-equivalence, we denote by F−1 the morphism in Hqe which is the

inverse of F. A morphism in Hqe is called a quasi-functor. By the general theory of localizations

and model categories (see, for example, [17, 38]), a quasi-functor between two dg categories C1

and C2 can be represented by a roof

C
I

~~

F

!!
C1 C2,

where C is a (cofibrant) dg category, I is a quasi-equivalence and F is a dg functor. A quasi-functor

f in Hqe between the dg categories C1 and C2 induces a functor H0(f) : H0(C1)→ H0(C2), well

defined up to isomorphism.
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Given a small dg category C, one can consider the dg category dgMod(C) of right dg C-modules.

A right dg C-module is a dg functor M : C◦ → dgMod(k), where dgMod(k) is the dg category of

dg k-modules. It is known that H0(dgMod(C)) is a triangulated category (see, for example, [17]).

The full dg subcategory of acyclic right dg modules is denoted by Ac(C), and H0(Ac(C)) is a

full triangulated subcategory of the homotopy category H0(dgMod(C)). The objects of Ac(C) are

the dg C-modules M such that the complex M(C) of k-modules is acyclic, for all C in C. A right

dg C-module is representable if it is contained in the image of the Yoneda dg functor

YC : C→ dgMod(C) A 7→ C (−, A) .

Notice that in the rest of the paper, we will always use the same symbol to denote the Yoneda

functor at the dg category level and the induced one on the corresponding homotopy categories.

The derived category of the dg category C is the Verdier quotient

D(C) := H0(dgMod(C))/H0(Ac(C)).

Following [10], one could first take the quotient dgMod(C)/Ac(C) of the corresponding dg cate-

gories. Again by [10], there is a natural exact equivalence

(2.1) H0(dgMod(C))/H0(Ac(C)) ∼= H0(dgMod(C)/Ac(C)).

Let us construct some interesting full subcategories of dgMod(C). A right dg C-module is free

if it is isomorphic to a direct sum of dg modules of the form YC(A)[m], where A ∈ C and m ∈ Z.

A right dg C-module M is semi-free if it has a filtration

(2.2) 0 = M0 ⊆ M1 ⊆ . . . = M

such that, Mi is a dg C-module and Mi/Mi−1 is free, for all i, M is the colimit of all Mi’s. We

denote by SF(C) the full dg subcategory of semi-free dg modules. Similarly SFfg(C) ⊆ SF(C) is

the full dg subcategory of finitely generated semi-free dg modules. This means that, there is n such

that Mn = M and each Mi/Mi−1 is a finite direct sum of dg modules of the form YC(A)[m]. The

dg modules which are homotopy equivalent to direct summands of finitely generated semi-free dg

modules are called perfect. The full dg subcategory consisting of perfect dg modules is denoted by

Perf dg(C).

Remark 2.2. (i) It is well known that, for a dg category C, the homotopy category H0(SF(C))

is triangulated. The dg category C is called pretriangulated if the essential image of the Yoneda

functor YC : H0(C)→ H0(SF(C)) is a triangulated subcategory.

(ii) Given a dg functor F : C1 → C2 between two pretriangulated dg categories, the induced

functor H0(F) : H0(C1)→ H0(C2) is an exact functor between triangulated categories.

(iii) By [16], there is a natural equivalence of triangulated categories H0(SF(C)) ∼= D(C). We

can actually be more precise about it. Indeed, the composition of natural dg functors

H : SF(C) ↪→ dgMod(C)→ dgMod(C)/Ac(C)

is a quasi-equivalence. So, up to composing with (2.1), H0(H) provides the exact equivalence

H0(SF(C)) ∼= D(C) mentioned above.

We should keep the following example in mind for the rest of the paper.
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Example 2.3. Let A be a small category which we consider as a dg category according to Exam-

ple 2.1. As explained in [24, Section 3], an object A in SF(C) is a complex

. . .→ Ai−1 → Ai → Ai+1 → . . .

such that Ai =
∐

YC(Aj) is a free dg module with a filtration as in (2.2). In this situation, it makes

sense to define the full subcategory SF-(C) of SF(C) consisting of bounded above complexes.

If we are given a dg functor F : C1 → C2, there exist dg functors

Ind(F) : dgMod(C1)→ dgMod(C2) Res(F) : dgMod(C2)→ dgMod(C1).

While Res(F) is simply defined by M 7→ M ◦ F◦, the reader can have a look at [10, Sect. 14] for the

explicit definition and properties of Ind(F). Let us just observe that Ind(F) preserves semi-free dg

modules and Ind(F) : SF(C1) → SF(C2) is a quasi-equivalence if F : C1 → C2 is such. Moreover,

Ind(F) commutes with the Yoneda embeddings, up to dg isomorphism.

Example 2.4. Let C be a dg category and S a full dg subcategory of C. Denoting by I : S ↪→ C

the inclusion dg functor, the composition of dg functors

C
YC

−−→ dgMod(C)
Res(I)−−−→ dgMod(S)→ dgMod(S)/Ac(S)

yields, in view of Remark 2.2 (iii), a natural quasi-functor C→ SF(S).

Let us give now the key definition for this paper.

Definition 2.5. A dg enhancement (or simply an enhancement) of a triangulated category T is a

pair (C,F), where C is a pretriangulated dg category and F : H0(C)→ T is an exact equivalence.

A priori, one may have ‘different’ enhancements for the same triangulated category. To make

this precise, we need the following.

Definition 2.6. A triangulated category T has a unique enhancement if, given two enhancements

(C,F) and (C′,F′) of T, there exists a quasi-functor G : C → C′ such that H0(G) is an exact

equivalence.

A concise way to say that a triangulated category T has a unique enhancements is saying that,

for any two enhancements (C,F) and (C′,F′) of T, the dg categories C and C′ are isomorphic in

Hqe. It is clear that the notion of uniqueness of dg enhancements forgets about part of the data in

the definition of enhancement. In particular, the equivalence F does not play a role. Nevertheless,

there are stronger versions of the notion of uniqueness of dg enhancements. Indeed, we say that

T has a strongly unique (respectively, semi-strongly unique) enhancement if moreover G can be

chosen so that there is an isomorphism of exact functors F ∼= F′ ◦ H0(G) (respectively, there is an

isomorphism F(C) ∼= F′(H0(G)(C)) in T, for every C ∈ C).

Example 2.7. (i) If C is a dg category, SF(C) and Perf dg(C) are enhancements, respectively, of

D(C) and D(C)c.

(ii) Let C be a pretriangulated dg category and let D be a full pretriangulated dg subcategory of

C. We mentioned already that, by the main result of [10], we have a natural exact equivalence be-

tween the Verdier quotient H0(C)/H0(D) and H0(C/D). Hence C/D, with the above equivalence,

is an enhancement of H0(C)/H0(D).
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2.2. Dg enhancements for well generated triangulated categories. If C is a small dg

category such that H0(C) has α-coproducts, we denote by Dα(C) the α-continuous derived category

of C, which is defined as the full subcategory of D(C) with objects those M ∈ dgMod(C) such

that the natural map

(H∗(M))(
∐
i∈I

Ci) −→
∏
i∈I

(H∗(M))(Ci)

(where the coproduct is intended in H0(C)) is an isomorphism, for all objects Ci ∈ C, with |I| < α.

It is useful to know that Dα(C) is also equivalent to a quotient of D(C). More precisely, there is

a localizing subcategory N of D(C) such that the quotient functor Q : D(C)→ D(C)/N restricts

to an exact equivalence Dα(C)→ D(C)/N (see [32, Sect. 6] for details).

Remark 2.8. The triangulated category Dα(C) has an obvious enhancement SFα(C) given as the

full dg subcategory of SF(C) whose objects correspond to those in Dα(C), under the equivalence

H0(SF(C)) ∼= D(C) (see Remark 2.2 (iii)). On the other hand, in a similar way, there is a an

enahncement N′ of N and, by Example 2.7 (ii), the composition of dg functors

SFα(C) ↪→ SF(C)→ SF(C)/N′

is a quasi-equivalence inducing the exact equivalence Dα(C)→ D(C)/N.

The following result generalizes [32, Theorem 6.4] (since C is not assumed to be pretriangulated).

Proposition 2.9. If C is a small dg category such that H0(C) has α-coproducts, then Dα(C) is

α-compactly generated by G = {YA(A) |A ∈ C}.

Proof. By Proposition 1.6 (whose hypotheses are satisfied due to [32, Theorem 4.9]), D(C)/N is α-

compactly generated by Q(G). Hence it is enough to show that Q|G : G→ Q(G) is an equivalence,

and for this one can use the same argument as in the proof of [32, Theorem 6.4]. �

The essential step in the proof of [32, Theorem 7.2] can be reformulated and generalized (again,

because S is not assumed to be triangulated) as follows.

Proposition 2.10. Let C be a pretriangulated dg category such that H0(C) is well generated by

a set S of α-compact generators. If H0(S) is closed under α-coproducts, then the natural quasi-

functor C→ SF(S) (see Example 2.4) induces an exact equivalence Y′ : H0(C)→ Dα(S) (here we

regard S also as a full dg subcategory of C).

Proof. Looking carefully at the proof of [32, Theorem 7.2], one sees that the same argument used

there to prove that F : T → Dα(A) is an equivalence works also for Y′. For this we use the

implication (2) =⇒ (3) of Proposition 3.6, which will be proved in the next section, instead of [32,

Theorem 5.3] and Proposition 2.9 instead of [32, Theorem 6.4]. �

3. Some abstract results about exact functors

In this section, we go back to the triangulated setting and prove some abstract results about

exact functors which will be crucial in the rest of the paper. They generalize and extend some well

known results (see, for example, [24, Section 3] and [32]) using the powerful tool of well generation

for triangulated categories.
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This should be thought of as a rather technical but essential interlude towards the proofs of the

main results mentioned in the introduction.

3.1. Truncations and compatibility of functors. Let A be a small category which we see here

as a dg category sitting all in degree 0 (see Example 2.1 (i)). Let D(A) be the dg derived category

of A, which naturally identifies with the homotopy category H0(SF(A)) (see Example 2.3 for a

discussion about this specific example).

Let C be a full pretriangulated dg subcategory of SF(A) which contains the image of the

Yoneda functor and such that H0(C) is closed under taking stupid truncations σ≥n and σ≤n, for

all n. Recall that, in general, for a complex

A := {· · · → Aj
dj−→ Aj+1 dj+1

−−−→ · · · d
i−1

−−−→ Ai
di−→ Ai+1 → · · · }

in dgMod(A), we define the stupid truncations σ≤iA, σ≥iA as

σ≤iA := {· · · → Aj
dj−→ Aj+1 dj+1

−−−→ · · · d
i−1

−−−→ Ai → 0→ · · · }

σ≥iA := {· · · → 0→ Ai → Ai+1 di+1

−−−→ · · · → Aj
dj−→ · · · }.

Example 3.1. The simplest dg subcategories of SF(A) with the properties above are the categories

SFfg(A), SF-(A) and Perf dg(A).

Let T be any triangulated category and take F : H0(C)→ T an exact functor such that

(F1) F preserves coproducts;

(F2) T is α-compactly generated by the set S := {F(YA(A)) : A ∈ A} of α-compact generators;

(F3) T(S1, S2[j]) = 0, for all S1, S2 ∈ S and all j < 0.

In this setting, we can prove the following results which should be compared to Lemma 3.2,

Corollary 3.3 and Proposition 3.4 in [24].

Proposition 3.2. Let F be an exact functor satisfying (F1), (F2) and (F3), where C is either

SF(A) or SFfg(A) or SF-(A). Take A ∈ A and C ∈ H0(C). Then

T(F(YA(A)),F(σ≥n(C))[i]) ∼= 0

for all integers i < n, if C = SFfg(A),SF-(A), and for all integers i < n− 1, if C = SF(A).

Proof. For an object C ∈ SF(A) with filtration given by {Mj}, the corresponding truncation

σ≥n(C) has induced filtration {M′j} with the property that the quotient M′j+1/M
′
j is isomorphic to

a coproduct of objects of the form YA(A)[s], for A ∈ A and s ≤ −n.

Using this and (F1), we get an isomorphism

T(F(YA(A)),F(M′j+1/M
′
j)[i])

∼= T

(
F(YA(A)),

∐
k

F(YA(Ak))[i+ sk]

)
,

for Ak ∈ A and sk ≤ −n. By (F3), we have T(F(YA(A)),F(YA(Ak))[i+sk]) ∼= 0, for i < n. Hence,

in view of (F2), we can apply Lemma 1.8 and conclude

T

(
F(YA(A)),

∐
k

F(YA(Ak))[i+ sk]

)
∼= 0.
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In particular, using induction, we get that T(F(YA(A)),F(M′j)[i])
∼= 0, for all j and all i < n.

If C ∈ SFfg(A), then we are done, since σ≥n(C) = M′j , for some j. Obviously, if C ∈ SF-(A) we

can take Mi = σ≥−i(C). Hence the vanishing of the Hom-spaces in the statement is clear.

If C ∈ SF(A) is general, then we have to argue a bit more, using that σ≥n(C) ∼= hocolim (M′j).

Recall that, if we denote by si : M
′
i → M′i+1 the inclusion morphism coming from the filtration

{M′j} of σ≥n(C), then hocolim (M′j) is, by definition, the cone of the morphism∑
i≥0

(idM′i
− si) :

⊕
i≥0

M′i −→
⊕
i≥0

M′i.

Thus by (F1) we have an isomorphism

F(σ≥n(C)) ∼= F(hocolim (M′j))
∼= hocolimF(M′j)

and, for all i < n− 1, a disinguished triangle∐
F(M′j)[i] −→ hocolimF(M′j)[i] −→

∐
F(M′j)[i+ 1].

By applying the functor T(F(YA(A)),−) to it and using the calculation above, we get that

T(F(YA(A)),F(σ≥n(C))[i]) ∼= 0,

for all integers i < n− 1. �

Corollary 3.3. Let F be an exact functor statisfying (F1), (F2) and (F3), where C is either

SF(A) or SFfg(A) or SF-(A). Then there is an injection

T(F(YA(A)),F(C)) ↪→ T(F(YA(A)),F(σ≤m(C)))

for every A ∈ A, every C ∈ H0(C) and every integer m ≥ 0 (respectively m ≥ 1) if C =

SFfg(A),SF-(A) (respectively C = SF(A)). Moreover, the inclusion is an isomorphism for m > 0

(respectively m > 1).

Proof. For any integer m and any C ∈ H0(C) we have the distinguished triangle

σ≥m+1(C) −→ C −→ σ≤m(C).

By applying the functor T(F(YA(A)),F(−)) and by Proposition 3.2 we conclude that

T(F(YA(A)),F(σ≥m+1(C))) ∼= 0,

for m ≥ 0 (respectively m ≥ 1). This provides the desired inclusion.

If we assume further that m > 0 (respectively m > 1), then Proposition 3.2 implies that

T(F(YA(A)),F(σ≥m+1(C))[1]) ∼= 0,

as well. Hence the inclusion is actually an isomorphism. �

Now, let C be either SF-(A) or Perf dg(A), or SFfg(A) and let F1,F2 : H0(C)→ T be two exact

functors satisfying (F1), (F2) and (F3). Assume that there is an isomorphism of exact functors

θ : F1 ◦ YA → F2 ◦ YA.
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Proposition 3.4. In the situation above, for every C ∈ C, there exists an isomorphism θC :

F1(C) → F2(C) such that, for every A ∈ A and every f ∈ H0(C)(YA(A)[k], C) with k ∈ Z, the

diagram

F1(YA(A)[k])
F1(f)

//

θA[k]
��

F1(C)

θC
��

F2(YA(A)[k])
F2(f)

// F2(C)

commutes in T.

Proof. The proof proceeds verbatim as the proof of [24, Proposition 3.4]. The key point to make

this argument work in our situation is that, for C ∈ SF-(A), then the statements of Proposition 3.2

and Corollary 3.3 are the same as those of [24, Lemma 3.2] and [24, Corollary 3.3], respectively. �

3.2. A criterion for equivalences. If A is an additive category with small coproducts and B is

a full subcategory of A, we denote by Add B the smallest full subcategory of A containing B and

closed under coproducts and direct factors. Notice that every object of Add B is a direct factor

of a coproduct of objects of B.

Lemma 3.5. Let F : T → T′ be an exact functor between triangulated categories with small

coproducts. Let moreover X and Yi (i ∈ I) be objects of T such that the natural morphism

f :
∐
i∈I F(Yi) → F(

∐
i∈I Yi) is an isomorphism. If FYi,X is an isomorphism for every i ∈ I, then

F∐
i∈I Yi,X

is an isomorphism, too.

Proof. It is enough to observe that in the commutative diagram

T(
∐
i∈I Yi, X)

g

��

F∐
i∈I Yi,X // T′(F(

∐
i∈I Yi),F(X))

T′(f,F(X))

��∏
i∈I T(Yi, X)

∏
i∈I FYi,X //

∏
i∈I T′(F(Yi),F(X)) T′(

∐
i∈I F(Yi),F(X))

g′
oo

the natural morphisms g and g′ are isomorphisms by the universal property of coproduct, whereas

T′(f,F(X)) and
∏
i∈I FYi,X are isomorphisms thanks to the hypotheses. �

The following result is a reformulation and generalization (since G and G′ are not assumed to

be triangulated subcategories) of [32, Theorems 3.5 and 5.3].

Proposition 3.6. Let T and T′ be triangulated categories with small coproducts and let α be an

infinite regular cardinal. Let moreover G ⊂ T and G′ ⊂ T′ be full subcategories closed under

α-coproducts such that T (respectively T′) is α-compactly generated by G (respectively G′). If

F : T→ T′ is an exact functor whose restriction induces an essentially surjective functor G→ G′,

then the following conditions are equivalent.

(1) F preserves coproducts and FG,H[n] is an isomorphism for every G,H ∈ G and every n ∈ Z.

(2) FG,X is an isomorphism for every G ∈ G and every X ∈ T.

(3) F is an equivalence.
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Proof. Obviously (3) implies both (1) and (2), and we start by proving that (1) and (2) together

imply (3). To see this, denote by S the full subcategory of T with objects those Y ∈ T such that

FY,X is an isomorphism for every X ∈ T. It is easy to see that S is a triangulated subcategory

of T, and Lemma 3.5 implies that it is also localizing (since F preserves coproducts by (1)). As S

contains G by (2) and G generates T, it follows that S = T, namely F is fully faithful. Then F is

also essentially surjective because its essential image is a localizing subcategory of T′ containing

G′ and G′ generates T′.

So it remains to prove that (1) and (2) are equivalent. As a first step, we are going to show

that, assuming (1) or (2), the restriction of F induces an equivalence F0 : Add G → Add G′. To

this purpose, we start by observing that in any case the restriction of F induces an equivalence

G→ G′. Then, given objects G and Gi (i ∈ I) of G, there are natural isomorphisms

T(G,
∐
i∈I

Gi) ∼= colim
J⊂I,|J |<α

T(G,
∐
i∈J

Gi) ∼= colim
J⊂I,|J |<α

T′(F(G),
∐
i∈J

F(Gi)) ∼= T′(F(G),
∐
i∈I

F(Gi)).

Here the first (respectively last) isomorphism is due to the fact that G (respectively F(G)) is

α-small, whereas the middle one uses that G and G′ are closed under α-coproducts and that F

induces an equivalence G→ G′. Denoting by f :
∐
i∈I F(Gi)→ F(

∐
i∈I Gi) the natural morphism,

it is straightforward to check that the above isomorphism makes the diagram

T(G,
∐
i∈I Gi)

∼= //

FG,
∐
i∈I Gi **

T′(F(G),
∐
i∈I F(Gi))

T′(F(G),f)ss
T′(F(G),F(

∐
i∈I Gi))

commute. Now, assuming (1), f is an isomorphism, hence FG,
∐
i∈I Gi

is an isomorphism. This

immediately implies that FG,X is an isomorphism for every G ∈ G and every X ∈ Add G. On

the other hand, if (2) holds, FG,
∐
i∈I Gi

is an isomorphism, hence T′(F(G), f) is an isomorphism.

As G′ generates T′ and every object of G′ is isomorphic to F(G) for some G ∈ G, this actually

implies that f is an isomorphism (namely, F preserves coproducts of objects of G). It is then

clear that the restriction of F induces a functor F0 : Add G → Add G′. Moreover, F∐
i∈I Gi,X

is

an isomorphism for every Gi ∈ G and every X ∈ Add G by Lemma 3.5. From this it is again

very easy to deduce that FY,X is an isomorphism for every X,Y ∈ Add G, which means that F0

is fully faithful. In order to see that F0 is also essentially surjective, consider X ′ ∈ Add G′. There

exists Y ′ ∈ Add G′ such that Z ′ := X ′
∐
Y ′ is a coproduct of objects of G′, hence Z ′ ∼= F0(Z)

with Z a coproduct of objects of G. Let e′ : Z ′ → Z ′ be the (idempotent) morphism defined as the

composition of the projection Z ′ � X ′ and of the inclusion X ′ ↪→ Z ′. As F0 is fully faithful, there

exists a unique morphism e : Z → Z such that e′ = F(e), and e is idempotent, as well. Since T

is Karoubian (having countable coproducts), e determines a decomposition Z ∼= X
∐
Y such that

X ′ ∼= F(X) and Y ′ ∼= F(Y ). This concludes the proof that F0 is an equivalence.

The proof that (2) implies (1) now works as in the 3rd step of the proof of [32, Theorem 3.5].

As for the proof that (1) implies (2), let S be the full subcategory of T with objects those X ∈ T

such that FG,X[n] is an isomorphism for every G ∈ G and every n ∈ Z. It is easy to see that S is

a triangulated subcategory of T and G ⊆ S by hypothesis. Since G generates T, it is enough to

show that S is localizing in order to conclude that S = T. Thus, given Xi ∈ S (i ∈ I), we have



18 ALBERTO CANONACO AND PAOLO STELLARI

to prove that FG,(
∐
i∈I Xi)[n] is an isomorphism for every G ∈ G and every n ∈ Z. We can clearly

assume that n = 0, and then the proof works as in the 2nd step of the proof of [32, Proposition

5.2]. �

4. Uniqueness of enhancements: the first criterion

This section is completely devoted to the proof of Theorem C. Hence, let A be a small category

which we see here as a dg category sitting all in degree 0 and let L be a localizing subcategory of

D(A). We will always assume that

(a) The quotient D(A)/L is a well generated triangulated category;

(b) D(A)/L(Q(YA(A1)),Q(YA(A2))[i]) ∼= 0, for all A1, A2 ∈ A and all integers i < 0;

as in the hypotheses of Theorem C.

4.1. The quasi-functor. Assume that there exists an equivalence F : D(A)/L→ H0(C), for some

pretriangulated dg category C. Consider the composition of functors

G : A
YA
// D(A)

Q // D(A)/L
F // H0(C).

Consider the subcategories S = {Q(YA(A)) : A ∈ A} of D(A)/L and S′ = {G(A) : A ∈ A} of

H0(C).

Lemma 4.1. (i) There exists a regular cardinal α such that S and S′ are α-compact generators of

the triangulated categories D(A)/L and H0(C), respectively.

(ii) For α as in (i) and I, J sets such that |I|, |J | < α, we have

H0(C)

∐
i∈I

Si,
∐
j∈J

Sj [kj ]

 ∼= 0,

for Si, Sj ∈ S′ and kj < 0.

Proof. Since the images under YA of the objects of A form a set of compact generators of D(A)

(see [24, Example 1.9]), by (a) there exists a regular cardinal α such that S is all contained

in (D(A)/L)α. But then D(A)α is mapped to (D(A)/L)α by Q. This is because Q preserves

coproducts and D(A)α is the smallest α-localizing subcategory of D(A) containing the objects of

A (see [20, Lemma 5]).

Hence we can apply Proposition 1.6 and conclude that S is a set of α-compact generators for

D(A)/L. The statement about S′ is now obvious because F is an equivalence. This concludes the

proof of (i).

As for (ii), observe that, by (b) and the fact that F is an equivalence, we have

H0(C) (Si, Sj [kj ]) ∼= 0,

for all i ∈ I, j ∈ J and all Si, Sj ∈ S′. By (i) S′ is a set of α-compact generators and we can apply

Lemma 1.8, getting

H0(C)

Si,∐
j∈J

Sj [kj ]

 ∼= 0,
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for all i ∈ I. Using that

H0(C)

∐
i∈I

Si,
∐
j∈J

Sj [kj ]

 ∼= ∏
i∈I

H0(C)

Si,∐
j∈J

Sj [kj ]

 ,

we get (ii). �

Consider the closures S and S
′

in D(A)/L and H0(C) of S and S′, respectively, under α-

coproducts.

Remark 4.2. By [20, Theorem C], the closure under α-coproducts of a set of α-compact generators

for an α-compactly generated triangulated category T is again a set of α-compact generators for

T. Thus S and S
′

above are sets of α-compact generators for D(A)/L and H0(C) respectively.

Thinking of S
′

as a full dg subcategory of C, we have then that G factors through

G′ : A −→ H0(S
′
).

Given Lemma 4.1 (ii), we have a quasi-equivalence τ≤0(S
′
)→ H0(S

′
) and the inclusion dg functor

τ≤0(S
′
)→ S

′
. Recall that the dg category τ≤0(S

′
) has the same objects as S

′
while, for S1 and S2

in S
′
, we have

τ≤0(S
′
) (S1, S2) := τ≤0

(
S
′
(S1, S2)

)
.

For a complex of k-modules

A := {· · · → Aj
dj−→ Aj+1 dj+1

−−−→ · · · d
i−1

−−−→ Ai
di−→ Ai+1 → · · · },

we have

τ≤iA := {· · · → Aj
dj−→ Aj+1 dj+1

−−−→ · · · d
i−1

−−−→ ker di → 0→ · · · }.

Putting all together we get a quasi-functor

G′′ : A −→ S
′

which, in turn, provides a quasi-functors

Ind(G′′) : SF(A) −→ SF(S
′
).

Thus, we can compose Ind(G′′) with the quotient dg functor SF(S
′
)→ SF(S

′
)/N′, where N′ was

defined in Section 2.2. In view of Remark 2.8, we finally get the quasi-functor

K : SF(A) −→ SFα(S
′
).

and, by passing to the homotopy categories, the exact functor K̃ := H0(K) : D(A) −→ Dα(S
′
).

On the other hand, we can proceed differently and take the exact functor

L̃ : D(A)
Q // D(A)/L

F // H0(C)
Y′ // Dα(S

′
),

where Y′ is the equivalence from Proposition 2.10, in view of Remark 4.2.

The following result will be used later.

Lemma 4.3. (i) There exists an isomorphism of exact functors K̃ ◦ YA ∼−→ L̃ ◦ YA.

(ii) The functors K̃ and L̃ satisfy (F1)–(F3) for C = SF(A).
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Proof. Part (i) is obvious from the definitions of K̃ and L̃. It is clear that (F1)–(F3) hold for L̃

while (F1) and (F3) certainly hold for K̃. Thus the only non-trivial part of (ii) consists in showing

that K̃ satisfies (F2). But for this, we just apply (i). �

4.2. The proof of Theorem C. Let C and F : D(A)/L → H0(C) be as in Section 4.1. Denote

by L′ the full dg subcategory of SF(A) such that H0(L′) ∼= L under the equivalence H0(SF(A)) ∼=
D(A).

Lemma 4.4. The quasi-functor K factors through the quotient dg functor SF(A)→ SF(A)/L′.

Proof. The proof is very similar to the one of [24, Lemma 5.2] with the required adjustments due

to the more general setting we are working in. More precisely, in view of the main result of [10],

it is enough to show that K̃ factors through the quotient D(A)/L and thus that K̃(L) ∼= 0, for all

L in L.

By Lemma 4.1 (i) and Lemma 4.3 (ii), {K̃(YA(A)) : A ∈ A} forms a set of α-compact generators

for Dα(S
′
). Thus we have just to show that

Dα(S
′
)(K̃(YA(A)), K̃(L)[k]) ∼= 0,

for all A ∈ A, L ∈ L and k ∈ Z.

By Corollary 3.3, for m > k, we have an isomorphism

Dα(S
′
)(K̃(YA(A)), K̃(L)[k]) ∼= Dα(S

′
)(K̃(YA(A)), K̃(σ≤m+1(L))[k]).

By applying Proposition 3.4 to σ≤m+1(L) we get an isomorphism K̃(σ≤m+1(L)) ∼= L̃(σ≤m+1(L)).

This, together with Corollary 3.3 applied to L̃ as above, yields a sequence of isomorphisms

Dα(S
′
)(K̃(YA(A)), K̃(L)[k]) ∼= Dα(S

′
)(K̃(YA(A)), L̃(σ≤m+1(L))[k])

∼= Dα(S
′
)(L̃(YA(A)), L̃(L)[k]).

The latter Hom-space is obviously trivial, because it is naturally isomorphic to the Hom-space

D(A)/L(Q(YA(A)),Q(L)[k]). �

Hence, we get a quasi-functor K′ : SF(A)/L′ → SFα(S
′
). If we show that it defines an isomor-

phism in Hqe, Theorem C would follow immediately, taking into account Proposition 2.10. This

is the content of the next proposition.

Proposition 4.5. In the above situation, K′ : SF(A)/L′ → SFα(S
′
) defines an isomorphism in

Hqe.

Proof. Setting K̃′ := H0(K′) : D(A)/L → Dα(S
′
), by Lemma 4.1 and the implication (1) =⇒ (3)

of Proposition 3.6, we just need to show that K̃′∐
i∈I Si,

∐
j∈J Sj [k] is an isomorphism, for all sets I

and J with |I|, |J | < α, all Si, Sj ∈ S and all k ∈ Z. Under our assumptions, the quotient functor

Q : D(A) → D(A)/L has a right adjoint QR (see Remark 1.5). Thus, setting B := QR(
∐
j∈J Sj),

we can just check that K̃∐
i∈I Y

A(Ai),B[k] is an isomorphism, for all Ai ∈ A and all k ∈ Z. By

Lemma 3.5 it is actually enough to show that K̃YA(A),B[k] is an isomorphism for all A in A and all

k ∈ Z.
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Now the proof proceeds as in [24, Lemma 5.3]. Let us outline the argument here for the

convenience of the reader. The functors Q, K̃ and L̃ satisfy (F1)–(F3). In particular, Corollary 3.3

applies and gives an isomorphism

D(A)/L
(
Q(YA(A)),Q(B)[k]

) ∼= D(A)/L
(
Q(YA(A)),Q(σ≤m+1(B))[k]

)
,

for m > k. Moreover, this is compatible with the natural isomorphism

D(A)(YA(A), B[k]) ∼= D(A)(YA(A), σ≤m+1(B)[k]).

As QYA(A),B[k] is an isomorphism (by definition of B and because Q ◦ QR ∼= id), it follows that

QYA(A),σ≤m+1(B)[k] is an isomorphism, too.

The same argument applies to the functor K̃ and then it is enough to check that K̃YA(A),σ≤m+1(B)[k]

is an isomorphism, for all A in A and all k ∈ Z. To this purpose, consider the commutative diagram

D(A)(YA(A), σ≤m+1(B)[k])
K̃
YA(A),σ≤m+1(B)[k]

//

L̃
YA(A),σ≤m+1(B)[k] ,,

Dα(S
′
)
(
K̃(YA(A)), K̃(σ≤m+1(B))[k]

)
γ

��

Dα(S
′
)
(
L̃(YA(A)), L̃(σ≤m+1(B))[k]

)
,

where the existence of an isomorphism γ is ensured by Proposition 3.4. Since L̃ = Y′ ◦ F ◦ Q,

the fact (which we observed above) that QYA(A),σ≤m+1(B)[k] is an isomorphism implies that also

L̃YA(A),σ≤m+1(B)[k] is an isomorphism, taking into account that Y′◦F is an equivalence. In conclusion,

K̃YA(A),σ≤m+1(B)[k] is an isomorphism as well. �

5. Uniqueness of enhancements: the derived category of a Grothendieck

category

In this section, we prove Theorem A and discuss some geometric applications of this abstract

criterion for Grothendieck categories.

5.1. The abstract result. Let C be a Grothendieck category and let A be a full subcategory of

C whose objects form a set of generators of C. Set

M := Mod(A),

where Mod(A) is the abelian category of additive functors A◦ → Mod(k) and Mod(k) is the

abelian category of k-modules. We will denote by S : C→M the natural functor defined by

S(C)(A) := C(A,C),

for C ∈ C and A ∈ A.

We can first prove the following result which should be compared to [24, Theorem 7.4].

Proposition 5.1. The functor S : C → M admits a left adjoint T : M → C. Moreover, T is

exact, T ◦S ∼= idC, N := kerT is a localizing Serre subcategory of M and T induces an equivalence

T′ : M/N→ C such that T ∼= T′ ◦Π, where Π: M→M/N is the projection functor.
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Proof. In [9, Theorem 2.2] the analogous statement is proved for the functor S′ : C → MOD-R,

which we are going to define. Consider the object U :=
∐
A∈AA of C and denote, for every A ∈ A,

by ιA : A ↪→ U and ρA : U � A the natural inclusion and projection morphisms, respectively. Let

S be the ring (with unit) C(U,U) and R the subring of S consisting of those s ∈ S such that

s ◦ ιA 6= 0 only for a finite number of A ∈ A. Notice that R is a ring with unit if and only

if A has a finite number of objects, in which case obviously R = S. Let moreover MOD-R be

the full subcategory of Mod(R) having as objects those P ∈ Mod(R) such that PR = P (clearly

MOD-R = Mod(R) = Mod(S) if A has a finite number of objects). Then S′ is simply given as

the composition of C(U,−) : C → Mod(S) with the natural functor Mod(S) → MOD-R defined

on objects by P 7→ PR. To deduce our statement from [9, Theorem 2.2] it is therefore enough to

show that there is an equivalence of categories E : M→ MOD-R such that S′ ∼= E ◦ S.

In order to define E, consider first an object M of M, namely a k-linear functor M : A◦ →
Mod(k). As a k-module E(M) is just

∐
A∈AM(A), whereas the R-module structure is defined as

follows. Given r ∈ R and m ∈ E(M) with components mA ∈ M(A) for every A ∈ A, the element

mr ∈ E(M) has components (mr)A =
∑

B∈AM(ρB ◦ r ◦ ιA)(mB). It is easy to prove that this

actually defines an object E(M) of MOD-R. As for morphisms, given M,M ′ ∈ Mod(A) and a

natural transormation γ : M →M ′, the morphism of R-modules E(γ) : E(M)→ E(M ′) sends m to

m′, where m′A := γ(A)(mA) for every A ∈ A. It is not difficult to check that this really defines a

functor E : M→ MOD-R and that S′ ∼= E ◦ S.

It remains to prove that E is an equivalence. It is clear by definition that E is faithful. As for

fullness, given M,M ′ ∈ Mod(A) and a morphism φ : E(M) → E(M ′) in MOD-R, it is easy to see

that φ = E(γ), where γ : M → M ′ is the natural transformation defined as follows. For every

A ∈ A and for every a ∈ M(A), denoting by m the element of E(M) such that mA = a and

mB = 0 for A 6= B ∈ A, we set γ(A)(a) := φ(m)A. Finally, E is essentially surjective because it

is not difficult to prove that for every P ∈ MOD-R we have P ∼= E(M) with M ∈ M defined in

the following way. Setting rf := ιB ◦ f ◦ ρA ∈ R for every morphism f : A → B of A, we define

M(A) := PridA for every A ∈ A, whereas M(f) : M(B) = PridB → M(A) = PridA for every

morphism f : A→ B of A is given by pridB 7→ prf = (prf )ridA for every p ∈ P . �

Remark 5.2. It should be noted that while, by Proposition 5.1, the functor T is exact, S is only

left-exact in general. On the other hand, the fact that T ◦ S ∼= idC implies that S is fully faithful.

Passing from C to its derived category D(C), we observe that the functors T, T′ and Π being

exact, we can denote by the same letters the corresponding derived functors.

Denote by DN(M) the full triangulated subcategory of D(M) consisting of complexes with

cohomology in N. Let moreover π : D(M)→ D(M)/DN(M) be the projection functor and denote

by YA : A ↪→M the Yoneda embedding.

Corollary 5.3. The functor Π induces an equivalence Π′ : D(M)/DN(M) → D(M/N) such that

Π ∼= Π′ ◦ π. Moreover, denoting by ϕ : D(C)→ D(M)/DN(M) a quasi-inverse of T′ ◦Π′, we have

ϕ|A ∼= π|M ◦ YA.
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Proof. By Proposition 5.1, Π: M→M/N admits a right adjoint, so the first part of the statement

follows from [19, Lemma 5.9]. Hence the diagram

D(M)
π

uu
Π
��

T

((
D(M)/DN(M)

Π′
// D(M/N)

T′
// D(C)

commutes up to isomorphism. By the above commutativity, the second part of the statement

reduces to proving that the inclusion A ↪→ C is isomorphic to T ◦ YA, which is clear, since

YA ∼= S|A by definition and T ◦ S ∼= idC. �

We are now ready to prove our first result.

Proof of Theorem A. Given a Grothendieck category C, by Proposition 5.1 and Corollary 5.3 we

know that D(C) ∼= D(M)/DN(M), for M and N defined as above.

Consider A, defined as above and consisting of a set of generators of C, as a small dg category

all sitting in degree 0. It is clear that there is a natural equivalence D(M) ∼= D(A). By setting

L to be the full localizing subcategory of D(A) which is the image of DN(M) under the above

equivalence, we have that D(C) ∼= D(A)/L.

Let us observe the following:

(a) The quotient D(A)/L is a well generated triangulated category. This is because D(C),

which is naturally equivalent to D(A)/L, is well generated by Example 1.4 and well gen-

eration is obviously preserved under equivalences.

(b) Consider the objects Q(YA(A)), for A in A. By Corollary 5.3, they are mapped to

objects in the abelian category C, by the composition of the equivalences D(A)/L ∼=
D(M)/DN(M) ∼= D(C) described above. This means that

D(A)/L(Q(YA(A1)),Q(YA(A2))[i]) ∼= 0,

for all A1, A2 ∈ A and all integers i < 0.

In particular, the assumptions of Theorem C are satisfied and we can apply this result concluding

that the triangulated category D(A)/L (and hence D(C)) has a unique enhancement. �

5.2. The geometric examples. We discuss now some geometric incarnations of Theorem A.

There are certainly many interesting geometric triangulated categories which are equivalent to the

derived category of a Grothendieck category and which are not considered here. So we do not claim

that our list of applications is complete. Notice that, beyond the geometric situations studied in

[24] and described in the introduction, the uniqueness of enhancements has been investigated in

other cases, e.g. for the derived categories of supported quasi-coherent sheaves in special situations

(see [8, Lemma 4.6]).

Algebraic stacks. Let X be an algebraic stack. For general facts about these geometric objects,

we refer to [22] and [37].

We can consider the abelian categories Mod(OX) of OX -modules on X and Qcoh(X) of quasi-

coherent OX -modules on X. The fact that Qcoh(X) is a Grothendieck category is proved in

[37, Tag 06WU]. Passing to the derived categories, we can consider D(Qcoh(X)) and the full
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triangulated subcategory Dqc(X) of D(Mod(OX)) consisting of complexes with quasi-coherent

cohomology. The relation between these two triangulated categories is delicate, as pointed out in

[13, Theorem 1.2].

We then have the following.

Corollary 5.4. If X is an algebraic stack, then D(Qcoh(X)) has a unique enhancement. If X is

also quasi-compact and with quasi-finite affine diagonal, then Dqc(X) has a unique enhancement.

Proof. The first part of the statement is an obvious consequence of Theorem A. For the second part,

observe that, by [14, Theorem A], the category Dqc(X) is compactly generated by a single object.

Hence, by [13, Theorem 1.1], the natural functor D(Qcoh(X))→ Dqc(X) is an equivalence. �

Remark 5.5. The above result specializes to the case of schemes. In particular, D(Qcoh(X))

has a unique enhancement for any scheme X. If X is quasi-compact and semi-separated (i.e. the

diagonal is affine), then D(Qcoh(X)) ∼= Dqc(X) (see [2, Corollary 5.5]) and the same uniqueness

result holds for Dqc(X). This extends vastly the results in [24], where the uniqueness results for

both categories are proved only for quasi-compact, semi-separated schemes with enough locally

free sheaves. This means that for any finitely presented sheaf F there is an epimorphism E � F

in Qcoh(X), where E is locally free of finite type.

As observed in [24, Remark 7.7], we should recall here that we can simply assume that X is a

semi-separated scheme rather that separated, because the proof of [2, Corollary 5.5] works for a

semi-separated scheme as well.

Twisted sheaves. Let X be a scheme and pick α ∈ H2
ét(X,O∗X), i.e. element in the Brauer

group Br(X) of X. We may represent α by a Čech 2-cocycle {αijk ∈ Γ(Ui ∩ Uj ∩ Uk,O∗X)} with

X =
⋃
i∈I Ui an appropriate open cover in the étale topology. An α-twisted quasi-coherent sheaf

E consists of pairs ({Ei}i∈I , {ϕij}i,j∈I) such that the Ei are quasi-coherent sheaves on Ui and

ϕij : Ej |Ui∩Uj → Ei|Ui∩Uj are isomorphisms satisfying the following conditions:

• ϕii = id;

• ϕji = ϕ−1
ij ;

• ϕij ◦ ϕjk ◦ ϕki = αijk · id.

We denote by Qcoh(X,α) the abelian category of such α-twisted quasi-coherent sheaves on X.

It is proved in [23, Proposition 2.1.3.3] that this definition coincides with the alternative one in

terms of quasi-coherent sheaves on the gerbe X → X on X associated to α. In particular, by [1,

Proposition 3.2], if X is a quasi-compact and quasi-separated scheme, then the abelian category

Qcoh(X,α) is a Grothendieck abelian category. It is then clear from Theorem A that we can

deduce the following.

Corollary 5.6. If X is a quasi-compact and quasi-separated scheme and α ∈ Br(X), then the

triangulated category D(Qcoh(X,α)) has a unique enhancement.

6. Uniqueness of enhancements: the category of compact objects

In this section we prove Theorem B. This needs some preparation. In particular, using the

arguments in Section 5.1, we construct an equivalence D(A)/L ∼= D(C), for some localizing sub-

category L of D(A) and reduce to the criterion for uniqueness due to Lunts and Orlov (see [24,
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Theorem 2]). Verifying that the assumptions of Lunts–Orlov’s result are satisfied is the main and

most delicate task of this section.

6.1. The first reduction. If C is a Grothendieck category and A is a set of generators of C

which we think of as a full subcategory of C, we know from Section 5.1 that there is a pair of

adjoint functors

T : M→ C S : C→M

where M := Mod(A).

In the following we need to know how T is precisely defined. In order to explain this, first we fix

some notation. For M ∈M, let (YA ↓ M) be the comma category whose objects are pairs (A, a)

with A ∈ A and a ∈M(YA(A),M), and whose morphisms are given by

(YA ↓M)((A′, a′), (A, a)) := {f ∈ A(A′, A) | a′ = a ◦ YA(f)}.

Observe that, by Yoneda’s lemma, M(YA(A),M) can be identified with M(A) and that, in this

way, the above equality a′ = a ◦ YA(f) becomes a′ = M(f)(a); in what follows we will freely use

these identifications. Denoting by FM : (YA ↓M)→ A the forgetful functor, it is well known that

M ∼= lim
−→

((YA ↓M)
FM−−→ A

YA

−−→M).

Since T (being a left adjoint) preserves colimits, we obtain

T(M) ∼= lim
−→

((YA ↓M)
FM−−→ A ⊆ C).

More explicitly, by (the dual version of) [26, Theorem 2, p. 109], this colimit can be described as

follows. Consider the objects of C

YM :=
∐

(A,a)∈(YA↓M)

A, XM :=
∐

(f : (A′,a′)→(A,a))∈Mor(YA↓M)

A′,

and denote by ι(A,a) : A ↪→ YM (for every object (A, a) of (YA ↓M)) and ιf : A′ ↪→ XM (for every

morphism f : (A′, a′)→ (A, a) of (YA ↓M)) the natural morphisms. In conclusion, we have:

Lemma 6.1. There is a natural isomorphism

T(M) ∼= coker(αM : XM → YM ),

where, for every morphism f : (A′, a′)→ (A, a) of (YA ↓M),

(6.1) αM ◦ ιf := ι(A′,a′) − ι(A,a) ◦ f.

Setting N := kerT, by Corollary 5.3 there is an equivalence ϕ : D(C) −→ D(M)/DN(M) such

that ϕ|A ∼= π|M ◦ YA. As we pointed out in Section 5.1, the quotient D(M)/DN(M) is naturally

equivalent to D(A)/L. For this, we think of A as a dg category sitting in degree 0 and we

take L to be the localizing subcategory corresponding to DN(M) under the natural equivalence

D(M) ∼= D(A). In particular, ϕ can be thought of as an equivalence

D(C) −→ D(A)/L,
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such that A in A, seen as a subcategory of C, is mapped to Q(YA(A)), where Q : D(A)→ D(A)/L

is the quotient functor. As a consequence,

D(A)/L(Q(YA(A1)),Q(YA(A2))[i]) ∼= 0,

for all A1, A2 ∈ A and all integers i < 0.

Consider now the following result.

Theorem 6.2 ([24], Theorem 2). Let A be a small category and let L be a localizing subcategory

of D(A) such that:

(a) Lc = L ∩ D(A)c and L is generated by Lc;

(b) D(A)/L(Q(YA(A1)),Q(YA(A2))[i]) ∼= 0, for all A1, A2 ∈ A and all integers i < 0.

Then (D(A)/L)c has a unique enhancement.

By the above discussion, (b) is verified. If we could prove that DN(M)c = DN(M) ∩ D(M)c,

then this theorem would immediately imply that D(C) has a unique enhancement and the proof

of Theorem B would be complete. This delicate check will be the content of the next section.

6.2. Verifying the main assumption. We do not expect item (a) of Theorem 6.2 to hold true

in general. This is the reason we need the further assumptions (1)–(4) in Theorem B. For the

convenience of the reader, we list them again here.

(1) A is closed under finite direct sums.

(2) Every object of A is noetherian in C.

(3) If f : A′ � A is an epimorphism of C with A,A′ ∈ A, then ker f ∈ A.

(4) For every A ∈ A there exists N(A) > 0 such that D(C)(A,A′[N(A)]) = 0 for every A′ ∈ A.

Remark 6.3. If f :
∐
i∈I Ci → C is a morphism in C and B is a noetherian subobject of C such

that B ⊆ im f , then there exists a finite subset I ′ of I such that B ⊆ f(
∐
i∈I′ Ci) (for otherwise we

could find elements i1, i2, . . . in I such that f(
∐n
j=1Cij ) ∩ B for n > 0 form a strictly increasing

sequence of subobjects of B).

Lemma 6.4. Assume that conditions (1) and (2) are satisfied. If f : C � A is an epimorphism

of C with A ∈ A, then there exists a morphism g : A′ → C with A′ ∈ A such that f ◦ g : A′ � A

is again an epimorphism of C.

Proof. Given f as in the statement, there exists an epimorphism g′ :
∐
i∈I Ai � C (so that f ◦ g′

is also an epimorphism) with Ai ∈ A for every i ∈ I (because the objects of A form a set of

generators of C). As A is noetherian in C by condition (2), Remark 6.3 implies that there exists a

finite subset I ′ of I such that, setting A′ :=
∐
i∈I′ Ai (which is an object of A thanks to condition

(1)) and g := g′|A′ , the composition f ◦ g : A′ � A is an epimorphism of C. �

Proposition 6.5. If conditions (1) and (2) are satisfied, then N coincides with the full subcategory

N′ of M having as objects those M ∈M satisfying the following property: for every object (A, a)

of (YA ↓M) there exists an epimorphism f : A′ � A of C with A′ ∈ A such that a ◦ YA(f) = 0.

Proof. Given M ∈ N′, we have to prove that T(M) ∼= 0. By Lemma 6.1, this is true if and only if

αM is an epimorphism. So, given a morphism g : YM → C in C such that g ◦ αM = 0, we need to
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show that g = 0. Now, if g is given by morphisms g(A,a) : A→ C for every (A, a) ∈ (YA ↓M), then

g ◦αM = 0 is equivalent, by (6.1), to g(A′,a′) = g(A,a) ◦ f for every morphism f : (A′, a′)→ (A, a) of

(YA ↓M). Since M ∈ N′, for every (A, a) ∈ (YA ↓M) there exists an epimorphism f : A′ � A of

C with A′ ∈ A such that a ◦ YA(f) = 0. Then f, 0: (A′, 0)→ (A, a) are morphisms of (YA ↓M),

whence

g(A,a) ◦ f = g(A′,0) = g(A,a) ◦ 0 = 0.

As f is an epimorphism, we conclude that g(A,a) = 0, thus proving that g = 0.

Conversely, assume that N ∈ N, and fix an object (A, a) of (YA ↓ N). Since αN is an epimor-

phism (again by Lemma 6.1) and A is a noetherian object of C, by Remark 6.3 we can find a finite

number of distinct morphisms of (YA ↓ N), say fi : (A′i, a
′
i) → (Ai, ai) for i = 1, . . . , n, such that,

setting

A′0 :=
n∐
i=1

A′i ⊂ XN ,

we have ι(A,a)(A) ⊆ αN (A′0). Moreover,

αN (A′0) ⊆ A0 :=
∐

(A′,a′)∈I

A′ ⊂ YN ,

where I is the (finite) subset of the objects of (YA ↓ N) consisting of those (A′, a′) which are

equal to (A′i, a
′
i) or (Ai, ai) for some i = 1, . . . , n. Note that A0, A

′
0 ∈ A by condition (1). In the

cartesian diagram

B
f ′

//

g′

��

A

ι(A,a)

��
A′0

αN |A′0

// A0

in C the morphism f ′ is an epimorphism because ι(A,a)(A) ⊆ αN (A′0). So, by Lemma 6.4, there

exists a morphism k : A′ → B with A′ ∈ A such that f := f ′ ◦ k : A′ � A is an epimorphism of C.

Setting also g := g′ ◦ k : A′ → A′0 and denoting by

a0 : YA(A0) ∼=
∐

(A′,a′)∈I

YA(A′)→ N

the morphism of M whose components are given by a′ for every (A′, a′) ∈ I, the diagram

YA(A′)
YA(f)

//

YA(g)
��

YA(A)

YA(ι(A,a))

��

a // N

YA(A′0)
YA(αN |A′0

)

// YA(A0)

a0

77

commutes in M. As YA(A′0) ∼=
∐n
i=1 Y

A(A′i) and

a0 ◦ YA(αN ◦ ιfi) = a′i − ai ◦ YA(fi) = 0

for every i = 1, . . . , n (by (6.1) and by definition of morphism in (YA ↓ N)), we obtain that

a0 ◦ YA(αN |A′0) = 0. This clearly implies that a ◦ YA(f) = 0, which proves that N ∈ N′. �
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Theorem 6.6. Assume that conditions (1), (2), (3) and (4) are satisfied. Then DN(M) is gen-

erated by DN(M) ∩D(M)c.

Proof. In the triangulated category DN(M), consider an object

M = (· · · →M0 m0

−−→M1 → · · · )

such that M � 0, we must find a morphism 0 6= x : P → M with P in DN(M) ∩ D(M)c. Setting

N i := H i(M), by definition N i ∈ N for every i ∈ Z and N i 6= 0 for at least one i. Without loss of

generality we can assume that N0 6= 0, hence there exists (A0, ā0) ∈ (YA ↓ N0) with ā0 6= 0.

We claim that we can find a complex

A = (0→ A−n
d−n−−→ · · · d

−1

−−→ A0 → 0)

of A ⊆ C with n = N(A0) such that H i(A) = 0 for every i 6= −n. Here N(A0) is the integer whose

existence is prescribed by (4) applied to A0. Furthermore, we will show that there is a morphism

a : YA(A) → M of complexes of M (with components ai : YA(Ai) → M i) such that, denoting by

pi : kermi � N i the natural projection morphism for every i ∈ Z, p0 ◦ a0 = ā0. Notice that, since

m0 ◦ a0 = 0, we can regard a0 as a morphism YA(A0)→ kerm0. Moreover, observe that for such

a complex A the objects Ki := ker di of C are actually in A. Indeed, this is clear for i ≥ 0 or

i < −n, whereas for −n ≤ i < 0 there is a short exact sequence

0 // Ki
ji
// Ai // Ki+1 // 0

in C (because H i+1(A) = 0), hence one can prove that Ki ∈ A by descending induction on i using

condition (3).

In order to prove the claim, we define the morphisms ai and di again by descending induction

on i. For i = 0, we can find a0 : YA(A0) → kerm0 ⊆ M0 such that p0 ◦ a0 = ā0 because p0 is an

epimorphism in M. As for the inductive step, assume that −n ≤ i < 0 and that suitable ai
′

and

di
′

have already been defined for i′ > i. There exists (unique) ki+1 : YA(Ki+1) → kermi+1 such

that the diagram

YA(Ki+1)

ki+1

��

YA(ji+1)
// YA(Ai+1)

ai+1

��

YA(di+1)
// YA(Ai+2)

ai+2

��
kermi+1 � � // M i+1

mi+1

// M i+2

commutes (because di+1 ◦ ji+1 = 0 and the square on the right commutes by induction). Consider

the object (Ki+1, pi+1 ◦ ki+1) of (YA ↓ N i+1). Since N i+1 ∈ N, by Proposition 6.5 there exists an

epimorphism qi : Ai � Ki+1 such that pi+1 ◦ ki+1 ◦ YA(qi) = 0. So

ki+1 ◦ YA(qi) : YA(Ai)→ kermi+1
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factors through immi ↪→ kermi+1, and there exists a morphism ai such that the diagram

YA(Ai)

ai

�� ((

YA(qi)
// YA(Ki+1)

ki+1

��

YA(ji+1)
// YA(Ai+1)

ai+1

��
M i

mi

44
// // immi � � // kermi+1 � � // M i+1

commutes. Then, setting di := ji+1 ◦ qi, we clearly have

H i+1(A) = 0 and ai+1 ◦ YA(di) = mi ◦ ai,

thus completing the proof of the inductive step.

As A ∼= K−n[n] in D(C) and K−n ∈ A, the natural morphism of complexes l : A0 → A defined

by l0 = idA0 is 0 in D(C)(A0, A) ∼= D(C)(A0,K−n[n]) by condition (4). Thus we can find a complex

C of C and a quasi-isomorphism r : C → A0 such that l ◦ r ∼ 0, where ∼ denotes homotopy of

morphisms of complexes. As H i(C) is isomorphic to an object of A for every i ∈ Z and is 0 for

i > 0, there exists a quasi-isomorphism s : B → C with Bi ∈ A for every i ∈ Z and Bi = 0 for

i > 0: this follows for instance from [39, Lemma 1.9.5] (applied with F the inclusion of A in C and

C the full subcategory of the category of complexes in C having as objects the complexes whose

cohomologies are bounded above and isomorphic to objects of A), whose key condition 1.9.5.1 is

satisfied due to Lemma 6.4. Then t := r ◦ s : B → A0 is also a quasi-isomorphism and l ◦ t ∼ 0. It

is straightforward to check that t factors through a quasi-isomorphism t̃ : B̃ := τ≥−nB → A0 and

that l ◦ t̃ ∼ 0, too. Hence, denoting by Ã the mapping cone of t̃ and by u : A0 → Ã the natural

inclusion, there exists a morphism of complexes f : Ã→ A such that f ◦ u ∼ l.
Now we can take P := YA(Ã) and x := a ◦ YA(f) : P → M (or, better, its image in D(M)).

Indeed, x ◦ YA(u) ∼ a ◦ YA(l) = a0, which implies

H0(x ◦ YA(u)) = H0(a0) = ā0 6= 0.

Therefore x ◦ YA(u) 6= 0, whence x 6= 0 in D(M). Moreover, P ∈ D(M)c because D(M)c is a

triangulated subcategory of D(M) containing the image of YA, and Ã is a bounded complex of

objects of A. Finally, as P ∼= S(Ã) (see Corollary 5.3), we have T(P ) ∼= Ã. Remembering that T is

exact and observing that Ã is an acyclic complex (being the mapping cone of the quasi-isomorphism

t̃), we conclude that

T(H i(P )) ∼= H i(T(P )) ∼= H i(Ã) = 0

for every i ∈ Z, which means that P ∈ DN(M). �

An easy application of the above result is the following.

Corollary 6.7. Assume that conditions (1), (2), (3) and (4) are satisfied. Then

(i) DN(M)c = DN(M) ∩D(M)c;

(ii) The quotient functor D(M)→ D(M)/DN(M) sends D(M)c to (D(M)/DN(M))c;

(iii) The induced functor D(M)c/DN(M)c → (D(M)/DN(M))c is fully faithful and identifies

(D(M)/DN(M))c with the idempotent completion of D(M)c/DN(M)c.
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Proof. One just combines Theorem 6.6 and Theorem 1.3. �

Theorem 6.6 and part (i) of Corollary 6.7 imply that (a) of Theorem 6.2 is satisfied, in our

specific situation. Hence the proof of Theorem B is complete.

Remark 6.8. It should be noted that, under the same assumptions (1)–(4) in Theorem B, one

can actually prove that the triangulated category D(C)c has a semi-strongly unique enhancement.

This result follows again from Theorem 6.6 and part (i) of Corollary 6.7 using [24, Theorem 6.4],

rather than Theorem 6.2.

6.3. The geometric examples. In this section we describe an easy geometric application of

Theorem B in the case of perfect complexes on some algebraic stacks. For this we need to recall

some definitions.

Let R be a commutative ring. A complex P ∈ D(Mod(R)) is perfect if it is quasi-isomorphic

to a bounded complex of projective R-modules of finite presentation. Following [14], if X is an

algebraic stack, a complex P ∈ Dqc(X) is perfect if for any smooth morphism Spec(R)→ X, where

R is a commutative ring, the complex of R-modules RΓ(Spec(R), P |Spec(R)) is perfect. We denote

by Perf (X) the full subcategory of Dqc(X) consisting of perfect complexes.

A quasi-compact and quasi-separated algebraic stack X is concentrated if Perf (X) ⊆ Dqc(X)c.

On the other hand, if X has also quasi-finite affine diagonal, then the other inclusion Dqc(X)c ⊆
Perf (X) holds as well, as a direct consequence of [14, Theorem A]. Moreover, we already observed

in the proof of Corollary 5.4 that, under the same assumptions, the natural functor D(Qcoh(X))→
Dqc(X) is an equivalence.

Summing up, if X is a concentrated algebraic stack with quasi-finite affine diagonal, then there

is a natural equivalence

(6.2) Perf (X) ∼= D(Qcoh(X))c.

When a stack X has the property that Qcoh(X) is generated, as a Grothendieck category, by a

set of objects contained in Coh(X)∩Perf (X), we say that X has enough perfect coherent sheaves.

Example 6.9. Suppose that a schemeX has enough locally free sheaves, according to the definition

given in Remark 5.5. This yields a set of generators of Qcoh(X) contained in Coh(X)∩Perf (X).

Indeed, we can take a set of representatives for the isomorphism classes of locally free sheaves,

as every sheaf in Qcoh(X) is a filtered colimit of finitely presented OX -modules (see [12, 9.4.9]).

Hence a scheme with enough locally free sheaves has enough perfect coherent sheaves as well.

As an application of Theorem B, we get the following.

Proposition 6.10. Let X be a noetherian concentrated algebraic stack with quasi-finite affine

diagonal and enough perfect coherent sheaves. Then Perf (X) has a unique enhancement.

Proof. Consider the isomorphism classes of objects in Coh(X) ∩ Perf (X). It is clear that they

form a set. Indeed, since X is quasi-compact, the isomorphism classes of objects in Perf (X) form

a set. Define then A to be the full subcategory of Qcoh(X) whose set of objects is obtained by

taking a representative in each isomorphism class of objects in Coh(X) ∩ Perf (X). Since, by

assumption, a subset of Coh(X) ∩Perf (X) generates Qcoh(X), A does the same.
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Let us now observe that A satisfies (1)–(4) in Theorem B. Indeed, (1) is obvious and (2) holds

true because X is noetherian. To prove (3), observe that the kernel is defined in Coh(X) up to

isomorphism and moreover, the kernel of an epimorphism A � A′ in A is isomorphic to the shift

of the cone of f in Perf (X). Hence it is (up to isomorphism) an object in A. Finally, since X is

concentrated, (4) is verified as well, in view of [14, Remark 4.12].

At this point, the result follows directly from Theorem B and (6.2). �

As a direct consequence, we get the following.

Corollary 6.11. If X is a noetherian semi-separated scheme with enough locally free sheaves, then

Perf (X) has a unique enhancement.

Proof. A scheme that is noetherian is concentrated (see [4, Theorem 3.1.1]). By Example 6.9 and

Proposition 6.10, the result is then clear. �

7. Applications

In this section we discuss two easy applications of the circle of ideas concerning the uniqueness of

enhancements for the category of perfect complexes. The first one is about a uniqueness result for

the enhancements of the bounded derived category of coherent sheaves. The second one concerns

some basic questions related to exact functors between the categories of perfect complexes or the

complexes of quasi-coherent sheaves.

7.1. The bounded derived category of coherent sheaves. Assume again that X is a noe-

therian semi-separated scheme with enough locally free sheaves. Let A be a full subcategory of

Qcoh(X) whose objects are obtained by picking a representative in each isomorphism class of ob-

jects in Coh(X)∩Perf (X). As we observed in the proof of Corollary 6.11, A is a set of generators

of Qcoh(X). Hence, we can apply the discussion in Section 5.1, getting a natural equivalence

(7.1) D(Qcoh(X)) ∼= D(A)/L,

where L is an explicit localizing subcategory of D(A). Remember that, under this equivalence,

every object A ∈ A is mapped to Q(YA(A)), where, as usual, Q : D(A) → D(A)/L denotes the

quotient functor (see the discussion in Section 6.1 about this point). Since A ⊆ D(Qcoh(X))c, in

view of (6.2), it follows from [24, Remark 1.20] that S := {Q(YA(A)) : A ∈ A} is a set of compact

generators of D(A)/L.

Following [24, Section 8], we say that an object B in D(A)/L is compactly approximated by the

objects in S if

(1) There is m ∈ Z such that, for any S ∈ S, we have D(A)/L(S,B[i]) ∼= 0 when i < m;

(2) For any k ∈ Z, there are Pk in (D(A)/L)c and a morphism fk : Pk → B such that, for

every S ∈ S, the canonical map

D(A)/L (S, Pk[i]) −→ D(A)/L (S,B[i])

is an isomorphism when i ≥ k.
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We denote by (D(A)/L)ca the full subcategory of D(A)/L consisting of the objects which are

compactly approximated by S.

Denote by Db(X) the bounded derived category of the abelian category Coh(X) of coherent

sheaves on X. The same argument as in the proof of [24, Proposition 8.9] applies in our setting

and we have that the equivalence (7.1) induces an equivalence

(7.2) Db(X) ∼= (D(A)/L)ca.

Consider now the following result.

Theorem 7.1 ([24], Theorem 8.8). Let A be a small category and let L be a localizing subcategory

of D(A) such that:

(a) Lc = L ∩ D(A)c and L is generated by Lc.

(b) D(A)/L(Q(YA(A1)),Q(YA(A2))[i]) ∼= 0, for all A1, A2 ∈ A and all integers i < 0;

Then (D(A)/L)ca has a unique enhancement.

This has the following easy consequence.

Corollary 7.2. If X is a noetherian semi-separated scheme with enough locally free sheaves, then

Db(X) has a unique enhancement.

Proof. The proofs of Proposition 6.10 and Corollary 6.11 actually show that, with these assump-

tions on X and our choice of A, hypotheses (a) and (b) of Theorem 6.2 are satisfied. As they

coincide with (a) and (b) in Theorem 7.1, we conclude by (7.2). �

7.2. Fourier–Mukai functors. Assume that X1 and X2 are noetherian schemes. Given E ∈
D(Qcoh(X1 ×X2)), we define the exact functor ΦE : D(Qcoh(X1))→ D(Qcoh(X2)) as

ΦE(−) := R(p2)∗(E
L
⊗ p∗1(−)),

where pi : X1 ×X2 → Xi is the natural projection.

Definition 7.3. An exact functor F : D(Qcoh(X1))→ D(Qcoh(X2)) (G : Perf (X1)→ Perf (X2),

respectively) is a Fourier–Mukai functor (or of Fourier–Mukai type) if there exists an object E ∈
D(Qcoh(X1 ×X2)) and an isomorphism of exact functors F ∼= ΦE (G ∼= ΦE , respectively).

These functors are ubiquitous in algebraic geometry (see [7] for a survey on the subject) and for

a long while it was believed that all exact functors between Db(X1) and Db(X2), with Xi a smooth

projective scheme, had to be of Fourier–Mukai type. A beautiful counterexample by Rizzardo and

Van den Bergh [34] showed this expectation to be false. Moreover, if X1 and X2 are not projective

it is not even clear if the celebrated result of Orlov [31] asserting that all equivalences between

Db(X1) and Db(X2) are of Fourier–Mukai type holds true.

A much weaker question can be now formulated as follows. For two triangulated categories D1

and D2, we denote by Eq(D1,D2) the set of isomorphism classes of exact equivalences between

D1 and D2. When Di is either D(Qcoh(Xi)) or Perf (Xi), for Xi a noetherian scheme, we can

further define the subset EqFM(D1,D2) consisting of equivalences of Fourier–Mukai type.

As an application of the results in the previous section, we get the following.
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Proposition 7.4. Let X1 and X2 be noetherian semi-separated schemes with enough locally free

sheaves. Then Eq(Perf (X1),Perf (X2)) 6= ∅ if and only if Eq(D(Qcoh(X1)),D(Qcoh(X2))) 6= ∅.
Moreover, each of the two equivalent conditions implies Eq(Db(X1),Db(X2)) 6= ∅.

Proof. In view of (6.2), an exact equivalence D(Qcoh(X1)) → D(Qcoh(X2)) restricts to an

exact equivalence Perf (X1) → Perf (X2), since clearly compact objects are preserved. Hence,

Eq(D(Qcoh(X1)),D(Qcoh(X2))) 6= ∅ implies that the same is true for the categories of perfect

complexes.

On the other hand, assume that Eq(Perf (X1),Perf (X2)) 6= ∅. Denoting by Perf dg(Xi) a

dg enhancement of Perf (Xi), for i = 1, 2, by Corollary 6.11 Perf dg(X1) ∼= Perf dg(X2) in Hqe.

This clearly implies that there is an exact equivalence between D(Perf dg(X1)) and D(Perf dg(X2)).

By [24, Proposition 1.16] (see also the proof of [24, Corollary 9.13]), there is an exact equivalence

between D(Perf dg(Xi)) and D(Qcoh(Xi)), for i = 1, 2. Thus Eq(D(Qcoh(X1)),D(Qcoh(X2))) 6=
∅.

As for the last statement, assume (without loss of generality by the previous part) that there is F

in Eq(D(Qcoh(X1)),D(Qcoh(X2))). By [35, Proposition 6.9], the functor F sends the subcategory

Db(Qcoh(X1)) of cohomologically bounded complexes to Db(Qcoh(X2)). By using the same

argument as above, we see that F induces an exact equivalence

Db(Qcoh(X1))c −→ Db(Qcoh(X2))c.

Then we conclude that Eq(Db(X1),Db(X2)) 6= ∅, since Db(Qcoh(Xi))
c ∼= Db(Xi), for i = 1, 2, by

[35, Corollary 6.16]. �

Notice that, if we assume further that X1×X2 is noetherian and that any complex in Perf (Xi)

is isomorphic to a bounded complex of vector bundles, then [38, Corollary 8.12] and [25, Theorem

1.1] imply that

Eq(Perf (X1),Perf (X2)) 6= ∅ iff EqFM(Perf (X1),Perf (X2)) 6= ∅

and

Eq(D(Qcoh(X1)),D(Qcoh(X2))) 6= ∅ iff EqFM(D(Qcoh(X1)),D(Qcoh(X2))) 6= ∅.

Hence Proposition 7.4 can be reformulated in terms of the sets of Fourier–Mukai equivalences.

Remark 7.5. By using the observation in Remark 6.8 and the strategy in the proof of [24,

Corollary 9.12], we can make the above remarks more precise, when dealing with perfect complexes.

Indeed, pick F ∈ Eq(Perf (X1),Perf (X2)), for Xi noetherian semi-separated with enough locally

free sheaves and such that X1×X2 is noetherian and any complex in Perf (Xi) is isomorphic to a

bounded complex of vector bundles. Then there exists G ∈ EqFM(Perf (X1),Perf (X2)) such that

F(C) ∼= G(C), for any C in Perf (X1).
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