
INTERNAL HOMS VIA EXTENSIONS OF DG FUNCTORS

ALBERTO CANONACO AND PAOLO STELLARI

Abstract. We provide a simple proof of the existence of internal Homs in the localization of the

category of dg categories with respect to all quasi-equivalences and of some of their main properties

such as the so-called derived Morita theory. This was originally proved in a seminal paper by Toën.

1. Introduction

The problem of characterizing exact functors between triangulated categories is certainly one

of the major open questions in the theory of triangulated categories. As soon as we deal with

triangulated categories which are the bounded derived categories of coherent sheaves on smooth

projective varieties, this challenge in the vague form above gets neater. More precisely, if X1

and X2 are smooth projective schemes and we denote by Db(Xi) the bounded derived category

of coherent sheaves on Xi, then one would expect that all exact functors F : Db(X1) −→ Db(X2)

are of Fourier–Mukai type (see [2, 15]). This means that there should exist E ∈ Db(X1 ×X2) and

an isomorphism of exact functors F ∼= ΦE , where, denoting by pi : X1 × X2 → Xi the natural

projections, ΦE : Db(X1) → Db(X2) is the exact functor defined by ΦE := R(p2)∗(E ⊗L p∗1(−)).

Unfortunately, only partial results confirm the expectation above (see [5] for a survey about this).

If one changes perspective slightly and moves to higher categorical structures, the situation

becomes amazingly beautiful. More precisely, one looks at the localization Hqe of the category

dgCat of (small) dg categories over a commutative ring k with respect to all quasi-equivalences.

Then one can take dg enhancements D1 and D2 of Db(X1) and Db(X2) respectively. It turns out

(see [2]) that all Fourier–Mukai functors at the triangulated level lift to morphisms between D1

and D2 in Hqe. More surprisingly, all morphisms in Hqe between these dg categories are of this

type. This was observed in the seminal paper [18] and comes as a corollary of a very general and

elegant result about the existence of internal Homs in Hqe. The statement can be formulated as

follows.

Theorem 1.1. (Toën, [18]) Let A, B and C be three dg categories over a commutative ring k.

Then there exists a natural bijection

(1.1) [A,C] oo
1:1 // Iso(H0(h-proj(A◦ ⊗L C)rqr)).
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Moreover, the dg category RHom(B,C) := h-proj(B◦ ⊗L C)rqr yields a natural bijection

(1.2) [A⊗L B,C] oo
1:1 // [A,RHom(B,C)]

proving that the symmetric monoidal category Hqe is closed.

Here [−,−] denotes the set of morphisms in Hqe, while h-proj(−)rqr denotes right quasi-

representable h-projective dg modules, which will be precisely described in Section 3.1. In the orig-

inal version [18] h-proj(−)rqr is replaced by the dg category of right quasi-representable cofibrant

dg modules, which is actually quasi-equivalent to h-proj(−)rqr. Recall that the monoidal structure

provided by the derived tensor product − ⊗L − is said to be closed if, for every B,C ∈ Hqe,

there exists RHom(B,C) ∈ Hqe, such that the functor A 7→ [A ⊗L B,C] is isomorphic to

A 7→ [A,RHom(B,C)].

Roughly speaking, Theorem 1.1 asserts that all dg (quasi-)functors are of Fourier–Mukai type.

The reason is that, if one looks carefully at the proof of the bijection (1.1), one sees that all

morphisms in Hqe are essentially provided by the tensorization by dg bimodules, mimicking the

definition of Fourier–Mukai functors given above in the triangulated setting. It is worth pointing

out that the first part of Theorem 1.1 comes in [18] as a corollary of a much more general result

involving substantially the simplicial structure on dgCat, seen as a model category (see [18, Thm.

4.2]).

The purpose of this paper is to provide a simple proof of Theorem 1.1 essentially based on the

circle of ideas emerging from [6] and [7].

Comparing Toën’s approach and ours. Following [18], one uses the model category structure

on dgCat (see [16]) in such a way that any morphism in Hqe can be represented by a ‘canonical’

roof by means of the cofibrant replacements. At this point, the description of the morphisms

between two dg categories in Hqe can be essentially carried out assuming that we are working

with actual dg functors. In this way, Toën proves that, for two dg categories A and B, there is

a bijection between [A,B] and the isomorphism classes of the homotopy category of right quasi-

representable (fibrant and) cofibrant A◦ ⊗ B-dg modules (see Corollary 4.10 of [18]). This is

essentially the first part of Theorem 1.1.

The existence of internal Homs follows from a characterization of the model category of dg

functors between dg categories and a comparison between this and the presentation above ([18,

Thm. 6.1]). As an application of the existence of internal Homs, Toën deduces in [18, Thm. 7.2]

a restriction theorem asserting in particular that, given two dg categories A and B, the Yoneda

embedding of A into the dg category Int(A) of cofibrant A-dg modules yields a quasi-equivalence

between the continuous internal Hom RHomc(Int(A), Int(B)) and RHom(A, Int(B)) (see Sections

2.1 and 4 for the precise definitions), which goes under the name of derived Morita theory. This is

a very interesting result in itself with various geometric applications as explained in [18, Sect. 8].

One should keep in mind that, for a dg category A, the dg category Int(A) is contained in the dg

category h-proj(A) of h-projective A-dg modules and the inclusion is a quasi-equivalence (see, for

example, [11, Lemma 2.6] and the discussion in Section 3.2 of [8] for this standard fact).

In a sense, our argument starts from this sort of ending point in [18]. Indeed, we prove directly

a weaker form of this restriction result (see Proposition 3.10) which provides a nice description of
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some morphisms in Hqe in terms of isomorphism classes of special dg bimodules. The existence of

internal Homs and the proof of Theorem 1.1 follow then from a simple and purely formal argument

explained in Section 4. All of this is achieved using the notion of extension of dg functors which

is already contained in [7]. This is carried out in Sections 3.1 and further developed to deal with

morphisms in Hqe in Section 3.2. As we will see, this is a conceptually very simple application of

the notion of tensor product of dg modules (see [6] and [7]). In particular, it should be noted that

the core and the really non-trivial part of this paper is the content of Section 3.

This slight change of perspective makes our proof easier also because we can forget about the

model category structure and content ourselves with the fact that the category of dg categories is

a category of fibrant objects. This has certainly been known for a long time and is summarized in

Section 2.2 (after a short introduction to dg categories in Section 2.1).

Once Theorem 1.1 is settled, some important properties of internal Homs which are proved in

[18] can be deduced in a straightforward way. This is the case of Corollaries 4.1 and 4.2. The last

one covers the dg Morita theory mentioned above.

It is probably worth pointing out here that Toën’s result gave an input to further generalizations

at the level of ∞-categories (see, for example, [1]). But for this one really needs the model and

simplicial structures on dgCat. This is out of the scope of our paper.

The reader should be also aware that a different approach to the existence of internal Homs

was proposed by Tabuada in [17]. In particular, he constructs a new model category structure

for the homotopy category of dg categories, where the localization takes place with respect to the

so-called Morita equivalences and not just the quasi-equivalences. Clearly, this means that [17] is

not in the same generality as [18]. Moreover, [17] goes in a transversal direction with respect to

the present work. Nevertheless, one can observe that in Tabuada’s approach the internal Homs

can be naturally interpreted as derived functors.

We conclude this summary going back to the triangulated setting presented at the beginning.

It is important to observe that there is no hope that the beauty of Theorem 1.1 can appear in the

triangulated context as well. Indeed, it has been shown in [4] that the object E ∈ Db(X1 × X2)

realizing a Fourier–Mukai functor is by no means unique (up to isomorphism).

Notation and general assumptions. We denote by k a commutative ring. By a k-linear

category we mean a category whose Hom spaces are k-modules and such that the compositions

are k-bilinear, not assuming that finite direct sums exist. For a category A, we denote by Iso(A)

the set of isomorphism classes of objects in A.

Throughout the paper, we assume that a universe U containing an infinite set is fixed. Antici-

pating some definitions that will be explained in Section 2, let us spend some words to clarify the

context. We will consider U-small dg categories, meaning dg categories D such that HomD(D1, D2)

is a complex of k-modules which are isomorphic to objects of U and such that the collection of

objects of D is isomorphic to an object of U as well. Analogously one can speak about U-small

sets. We will then define the dg categories of D-dg modules and of h-projective D-dg modules.

Again, with this we tacitly mean the dg categories of U-small D-dg modules and h-projective D-dg

modules. This simply refers to the dg modules that take values in the dg category of complexes of

U-small k-modules. These are no longer U-small dg categories. Nevertheless, due to the results in
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[10, Appendix A], they are dg equivalent to V-small dg categories, for some universe U ∈ V. By

its definition and main properties (see Section 4), the dg category h-proj(−)rqr mentioned above

is essentially U-small. This means that the isomorphism classes of its objects form a U-small set.

After these warnings and to simplify the notation, we will not mention explicitly the universe

where we are working any longer in the paper, as it should be clear from the context. We refer to

[10, Appendix A] for all possible subtle logical issues.

2. Basic properties of dg categories

This section collects some very well-known facts concerning dg categories. The emphasis is on the

properties of morphisms in the localization of the category of dg categories by quasi-equivalences.

2.1. Dg categories and tensor product of dg modules. A dg category is a k-linear category

A such that, for all A,B ∈ Ob(A), the morphism spaces A(A,B) are Z-graded k-modules with

a differential d : A(A,B) → A(A,B) of degree 1 and the composition maps are morphisms of

complexes. A dg functor F : A → B between two dg categories is the datum of a map Ob(A) →
Ob(B) and of morphisms of complexes of k-modules A(A,B) → B(F(A),F(B)), for all A,B ∈
Ob(A), which are compatible with the compositions and the units (i.e. the identity maps which

are, automatically, closed morphisms in degree 0). The category with objects dg categories and

morphisms dg functors will be denoted by dgCat. Recalled that a dg functor F : A → B is

full if the morphisms of complexes of k-modules A(A,B) → B(F(A),F(B)) are surjective, for all

A,B ∈ Ob(A). If such maps are injective, then F is faithful.

Example 2.1. (i) Every k-linear category can be regarded as a dg category in which the morphism

spaces are concentrated in degree 0.

(ii) Every dg algebra A over k defines a dg category with one object and A as its space of

endomorphisms. Notice that an ordinary k-algebra (in particular, k itself) can be regarded as a

dg algebra in degree 0, hence as a dg category with one object.

(iii) We denote by Cdg(k) the dg category whose objects are complexes of k-modules. We refer

to [8, Sect. 2.2] for the precise definition.

(iv) Given two dg categories A and B, one can construct the dg categories Hom(A,B) and

A ⊗ B (see [8, Sect. 2.3] for the precise definitions). The objects of Hom(A,B) are dg functors

from A to B and morphisms are given by (dg) natural transformations. On the other hand, the

objects of A⊗B are pairs (A,B) with A ∈ A and B ∈ B, while the morphisms are defined by

A⊗B((A1, B1), (A2, B2)) = A(A1, A2)⊗k B(B1, B2),

for all (Ai, Bi) ∈ A⊗B and i = 1, 2. Notice that the tensor product defines a symmetric monoidal

structure on dgCat. Namely, up to isomorphism, the tensor product is associative, commutative

and k acts as the identity. It is also easy to see that two dg functors F : A → B and G : C → D

naturally induce a dg functor F⊗ G : A⊗C→ B⊗D.

(v) If A is a dg category, A◦ denotes the opposite dg category. The objects of A◦ are the same

as those of A, while A◦(A,B) := A(B,A) and the compositions in A◦ are defined as in A, up to

a sign (see [8, Sect. 2.2] for details).
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If A is a dg category, we denote by Z0(A) (respectively H0(A)) the (k-linear) category with

the same objects as A and whose morphisms from A to B are given by Z0(A(A,B)) (respectively

H0(A(A,B))). The category H0(A) is called the homotopy category of A, and it has a natural

structure of triangulated category if A is pretriangulated (see [8, Sect. 4.5] for the precise defi-

nition). A morphism of Z0(A) is a dg isomorphism (respectively a homotopy equivalence) if it is

an isomorphism (respectively if its image in H0(A) is an isomorphism). Accordingly, two objects

A and B of A are dg isomorphic (respectively homotopy equivalent) if A ∼= B in Z0(A) (respec-

tively in H0(A)). If B is another dg category, two dg functors from A to B will be said to be dg

isomorphic (respectively homotopy equivalent) if they are dg isomorphic (respectively homotopy

equivalent) in Hom(A,B).

For all dg categories A, B and C, there is a natural isomorphism in dgCat

(2.1) Hom(A⊗B,C) ∼= Hom(A, Hom(B,C)).

In particular, there is a natural bijection between the objects of the two dg categories above, which

shows that the functor −⊗B : dgCat→ dgCat is left adjoint to Hom(B,−) : dgCat→ dgCat.

Hence the symmetric monoidal structure on dgCat discussed in Example 2.1 (iv) is closed.

For a dg category A, we set dgMod(A) := Hom(A◦,Cdg(k)). The objects in dgMod(A) are

called A-dg modules. Denote by h-proj(A) the full dg subcategory of dgMod(A) with objects the h-

projective A-dg modules. Recall that M ∈ dgMod(A) is h-projective if H0(dgMod(A))(M,N) = 0,

for all N ∈ dgMod(A) which are acyclic (meaning that N(A) is an acyclic complex, for all A ∈ A).

Remark 2.2. For every dg category A, both dgMod(A) and h-proj(A) are pretriangulated dg

categories, and their homotopy categories are closed under arbitrary direct sums (see [7, Sect. 2.2]).

At the same time we denote by Perf(A) the full dg subcategory of h-proj(A) consisting of perfect

A-dg modules, i.e. the compact objects in the triangulated category H0(h-proj(A)). Recall that

an object C in a triangulated category D is compact if, given {Di}i∈I ⊂ D such that I is a set and⊕
iDi exists in D, the canonical map

⊕
i D(C,Di) −→ D(C,⊕iDi) is an isomorphism. Moreover,

a set of compact objects {Cj}j∈J ⊂ D is a set of compact generators for D if, given D ∈ D with

D(Cj , D[i]) = 0 for all j ∈ J and all i ∈ Z, then D ∼= 0.

The Yoneda embedding of A is the fully faithful (and injective on objects) dg functor YA : A→
dgMod(A) defined on objects by YA(A) := A(−, A). The image of YA is always contained in

h-proj(A). We denote by A ⊆ h-proj(A) the full dg subcategory of dgMod(A) with objects the

dg modules which are homotopy equivalent to objects in the image of YA. Notice that YA factors

through the dg category Perf(A) which, in turn, contains A (see, for example, [8, Sect. 3.5]).

Recall that a natural transformation θ between two A-dg modules M and N is a quasi-

isomorphism if it is closed of degree 0 and θ(A) : M(A) → N(A) is a quasi-isomorphism, for

every A ∈ A. It can be proved that for every M ∈ dgMod(A) there exists an h-projective reso-

lution of M , namely a quasi-isomorphism N → M with N ∈ h-proj(A) (see [7, Sect. 3.1] and [6,

Sect. 14.8]). Moreover, a quasi-isomorphism between two h-projective dg modules is a homotopy

equivalence (see, for example, [9, Thm. 3.4]).

A dg functor F : A → B induces a functor H0(F) : H0(A) → H0(B), which is exact (between

triangulated categories) if A and B are pretriangulated. A dg functor F : A → B is a quasi-

equivalence, if the maps A(A,B) → B(F(A),F(B)) are quasi-isomorphisms, for every A,B ∈ A,
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and H0(F) is an equivalence of categories. One can consider the localization Hqe of dgCat with

respect to quasi-equivalences (which is denoted by Ho(dgCat) in [18]).

For a dg functor F, we write [F] for its image in Hqe and, given two dg categories A and B, we

denote by [A,B] the morphisms in Hqe between A and B. Notice that any f ∈ [A,B] induces a

(k-linear) functor H0(f) : H0(A)→ H0(B), well defined up to isomorphism. We say that H0(f) is

continuous if it commutes with arbitrary direct sums in H0(A). For simplicity, we sometimes say

that f is continuous if H0(f) is. We denote by [A,B]c the set of continuous morphisms in [A,B].

Definition 2.3. Let G1,G2 : A→ B be two dg functors. A natural transformation θ : G1 → G2 is a

termwise homotopy equivalence if it is closed of degree 0 and θ(A) : G1(A)→ G2(A) is a homotopy

equivalence, for all A ∈ A.

Remark 2.4. First of all, one observes that the natural transformation in Definition 2.3 induces a

natural transformation θ′ between H0(G1) and H0(G2) and θ is a termwise homotopy equivalence

if and only if θ′ is an isomorphism. If A and B are pretriangulated dg categories, the functors

H0(G1) and H0(G2) are exact and the check that θ is a termwise homotopy equivalence is just a

question involving standard techniques in the theory of triangulated categories.

More precisely, there is indeed a general principle that will be applied later on. Namely, assume

that α is a natural transformation between two exact continuous functors F1,F2 : D→ D′, where

D and D′ are triangulated categories with arbitrary direct sums. Let D1 be a full triangulated

subcategory of D consisting of compact generators of D. Suppose further that, for all D ∈ D1, we

have that α(D) is an isomorphism. Then one observes that the full subcategory D2 of D consisting

of all objects D such that α(D) is an isomorphism is obviously triangulated and contains D1. On

the other hand, it is easy to see that α is automatically compatible with arbitrary direct sums,

since F1 and F2 are continuous. Hence D2 is closed under arbitrary direct sums and so D2 = D

(see [14]), which proves that α is an isomorphism.

Tensor product of dg modules. Following [6], if A is a dg category, the tensor product of

M ∈ dgMod(A) and N ∈ dgMod(A◦) is defined as

(2.2) M ⊗A N := coker

Ξ:
⊕

A,B∈A
M(B)⊗k A(A,B)⊗k N(A) −→

⊕
C∈A

M(C)⊗k N(C)

 ,

where, given v1 ∈ M(B) homogeneous of degree m, f : A → B, homogeneous of degree n, and

v2 ∈ N(A), we have

(2.3) Ξ((v1, f, v2)) := M(f)(v1)⊗ v2− (−1)mnv1⊗N(f)(v2) ∈M(A)⊗kN(A)⊕M(B)⊗kN(B).

In this version, M ⊗A N is a complex of k-modules, hence an object of Cdg(k) ∼= dgMod(k).

Clearly, one can repeat the same definition taking M ∈ dgMod(A⊗B) and N ∈ dgMod(B◦⊗C).

In this case, M ⊗B N is an object in dgMod(A⊗C).

Remark 2.5. (i) The definition in (2.2) is dg functorial. More precisely, assume we have M1,M2 ∈
dgMod(A⊗B), N ∈ dgMod(B◦ ⊗C) and a natural transformation f : M1 → M2 of dg functors.

Then it is straightforward that this induces a natural transformation M1⊗BN →M2⊗BN of dg

functors.
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(ii) Given M ∈ dgMod(A) and N ∈ dgMod(B), we can think of them as objects in dgMod(A⊗k)

and N ∈ dgMod(k◦ ⊗ B). Now take the object M ⊗k N ∈ dgMod(A ⊗ B). We claim that, for

all (A,B) ∈ A ⊗ B, we get (M ⊗k N)((A,B)) = M(A) ⊗k N(B), where the tensor product on

the right-hand side is the usual tensor product of complexes of k-modules. Indeed, as k consists

of only one object and every morphism is a scalar multiple of the identity, the map Ξ in (2.3) is

trivial in this case, and thus we get the result from (2.2). In the rest of the paper, we write M ⊗N
for M ⊗k N .

Remark 2.6. The tensor product of dg modules over a dg category looks very much like the

ordinary tensor product of modules over a (not necessarily commutative) ring (see, for example, [12,

Sect. VI.7] for the latter case). In particular, they share many properties, such as the associativity.

Of course they can be proved directly using the definition. The easy computations are left to the

reader, who, on the other hand, can have a look at [13, Sect. 6] for the proof of associativity in the

case of tensor product of modules over a Z-linear category.

For a dg category A, an A-dg module M is h-flat if, for any N ∈ dgMod(A◦) which is acyclic,

the tensor product M ⊗A N is acyclic. One can check that any h-projective dg module is h-flat

and that a dg module which is homotopy equivalent to an h-flat dg module is h-flat itself (see [9,

Sect. 3.5], for some more details).

Derived tensor product of dg categories. We say that a dg category A is h-projective if

A(A,B) is in h-proj(k), for all A,B ∈ A. It is clear that if A if h-projective, then A◦ is h-

projective as well and all dg categories are h-projective if k is a field. It is also easy to see that

if A and B are h-projective, then A ⊗ B is h-projective, too. We denote by hp-dgCat the full

subcategory of dgCat consisting of h-projective dg categories.

Remark 2.7. Using [6, Sect. 13.5] (or the fact that dgCat is a model category [16]), for any dg

category A, one can construct an explicit h-projective dg category Ahp with a quasi-equivalence

QA : Ahp → A, which will be fixed once and for all. In particular, if A is h-projective we assume

that QA = idA. If not, following [6], Ahp can be constructed as a semi-free resolution of A, namely

a semi-free dg category B with a quasi-equivalence B→ A. Although it is not needed in the rest

of the paper, let us briefly recall that, following [6, Sect. 13.4], a dg category A is semi-free if it can

be represented as the union of an increasing sequence of dg subcategories Ai, where i ∈ N, such

that A0 is a discrete dg category and, for i > 0, each Ai is freely generated over Ai−1, as a graded

category, by a family of homogeneous morphisms fj whose differentials d(fj) are morphisms in

Ai−1. It is then a simple calculation to see that Ahp(A,B) is h-projective for all A,B ∈ Ahp (one

can also combine [6, Lemma 13.6], [18, Prop. 2.3 (3)] and the fact that a cofibrant complex of

k-modules is h-projective).

Denoting by hp-Hqe the localization of hp-dgCat by all quasi-equivalences, it is then easy to

verify that the natural functor hp-Hqe → Hqe is an equivalence (one can use [6, Lemma 13.5]

for the faithfulness).

Hence, given two dg categories A and B, we define the derived tensor product as

A⊗L B := Ahp ⊗B.
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Remark 2.8. Given an h-projective dg category A and a quasi-equivalence F : B → B′, the

induced dg functor G := idA ⊗ F : A ⊗ B → A ⊗ B′ is again a quasi-equivalence. Indeed, the

complex A(A1, A2) is h-flat (being h-projective), for all A1, A2 ∈ A, and thus the maps

A⊗B((A1, B1), (A2, B2))→ A⊗B′(G((A1, B1)),G((A2, B2)))

are quasi-isomorphisms, for all A1, A2 ∈ A and all B1, B2 ∈ B, since the maps B(B1, B2) →
B′(F(B1),F(B2)) are quasi-isomorphisms. Hence it remains to show that H0(idA ⊗ F) is essen-

tially surjective. This is clear from the definition of tensor product of dg categories, being H0(F)

essentially surjective.

It follows from the universal property of the localization of dgCat by quasi-equivalences that

the functor A⊗− : dgCat→ dgCat naturally induces a functor A⊗− : Hqe→ Hqe.

Similarly, given a dg category B and a quasi-equivalence G : A→ A′, with A and A′ h-projective,

the induced dg functor G⊗ idB : A⊗B→ A′ ⊗B is again a quasi-equivalence. Hence the functor

−⊗B : hp-dgCat→ dgCat naturally induces a functor −⊗B : hp-Hqe→ Hqe.

Putting Remarks 2.7 and 2.8 together, we get a well-defined functor −⊗L − : Hqe×Hqe −→
Hqe which endows Hqe with a symmetric monoidal structure.

2.2. Some properties of morphisms in Hqe. The content of this section is probably well

known to experts. Moreover, most of the properties of dgCat and Hqe mentioned here have

trivial proofs when we regard dgCat as a model category (see [16]). Nonetheless, to achieve a

proof of Theorem 1.1 much less is needed and we sketch in this section the minimal amount of

information which is required. Trying to keep the paper as much self-contained as possible, we

outline the proofs of the results of this section.

Recall from [3, Sect. 1] the notion of category of fibrant objects. Let C be a category with finite

products and assume that C has two distinguished classes of morphisms, called weak equivalences

and fibrations. A morphism which is both a weak equivalence and a fibration will be called a

trivial fibration. A path object for C ∈ C is an object CI of C together with a weak equivalence

C → CI and a fibration CI → C × C whose composition is the diagonal C → C × C. We say

that C, together with its weak equivalences and fibrations, is a category of fibrant objects if the

following axioms are satisfied.

(A) Let f and g be morphisms of C such that g ◦f is defined. If two of the morphisms f , g and

g ◦ f are weak equivalences, then so is the third. Any isomorphism is a weak equivalence.

(B) The composition of two fibrations is a fibration. Any isomorphism is a fibration.

(C) Fibrations and trivial fibrations are preserved by base extension.

(D) For every C ∈ C there exists at least one path object CI .

(E) For every C ∈ C the morphism from C to a terminal object is a fibration.

Notice that if C is a model category, then the full subcategory of C consisting of all fibrant objects

is a category of fibrant objects.

As in [3, Sect. 2], we say that two morphisms f0, f1 : C → D in a category of fibrant objects are

homotopic if there exist a path object D → DI (p0,p1)−−−−→ D×D and a morphism h : C → DI (called

homotopy) such that fi = pi ◦ h, for i = 0, 1.
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Remark 2.9. If g : B → C is a weak equivalence and f0, f1 : C → D are morphisms such that

f0 ◦ g and f1 ◦ g are homotopic, it follows from [3, Prop. 1] that for any path object DI for D there

exists a weak equivalence g′ : B′ → C such that f0 ◦ g′ and f1 ◦ g′ are homotopic by a homotopy

B′ → DI .

Now we want to prove that dgCat is a category of fibrant objects, if one takes as weak equiva-

lences the quasi-equivalences and as fibrations the full dg functors whose H0 is an isofibration (a

functor F : C → D is an isofibration if for every C ∈ C and every isomorphism f : F(C)
∼−→ D in

D there exists an isomorphism g : C
∼−→ C ′ in C such that F(g) = f). To this purpose, we need to

fix some notation.

As in [6, Sect. 2.9], for every dg category A we denote by Mor(A) the dg category whose objects

are triples (A,B, f) with f ∈ Z0(A(A,B)), and whose morphisms are given by

Mor(A)((A,B, f), (A′, B′, f ′))n := A(A,A′)n ⊕A(B,B′)n ⊕A(A,B′)n−1

for every n ∈ Z. If (a, b, h) ∈ Mor(A)((A,B, f), (A′, B′, f ′))n, the differential is defined by

d(a, b, h) := (d(a), d(b), d(h) + (−1)n(f ′ ◦ a− b ◦ f))

and the composition by (a′, b′, h′)◦ (a, b, h) := (a′ ◦a, b′ ◦ b, b′ ◦h+ (−1)nh′ ◦a). Actually we will be

interested in the full dg subcategory P (A) of Mor(A) with objects the triples (A,B, f) such that

f is a homotopy equivalence (see [17, Sect. 3]).

Notice that there is a natural dg functor IA : A→ P (A), defined on objects by A 7→ (A,A, idA)

and on morphisms by f 7→ (f, f, 0). Similarly, there are obvious dg functors SA,TA : P (A) → A

(“source” and “target”) defined both on objects and morphisms as the projection respectively on

the first and on the second component.

Lemma 2.10. With the above defined weak equivalences and fibrations, dgCat is a category of

fibrant objects.

Proof. The result depends on some elementary (but tedious) checks which are left to the reader.

We simply outline the main ingredients in the proof.

First of all observe that finite products exist in dgCat, and they are given by the corresponding

products both on objects and on morphisms (with differentials and compositions defined compo-

nentwise). In particular, a terminal object is the dg category with one object and 0 as the space

of morphisms.

Axioms (A), (B) and (E) are straightforward to check from the definitions. As for axiom (C),

note that for every dg functors F : A → C and G : B → C the fibre product D := A ×C B along

F and G exists in dgCat, and it is given by the full subcategory of A × B with objects those

(A,B) ∈ A × B such that F(A) = G(B) and morphisms those morphisms (f, g) of A × B such

that F(f) = G(g). It is easy to show that, if G is a fibration (resp. a trivial fibration), then the

projection dg functor D→ A is a fibration (resp. a trivial fibration), too.

Passing to axiom (D), one shows that the dg functors A
IA−→ P (A)

(SA,TA)−−−−−→ A × A define a

path object for any dg category A. More precisely, as the composition is clearly the diagonal

A→ A×A, one just shows that IA is a quasi-equivalence and (SA,TA) is a fibration. �
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Two dg functors F,G : A → B will be called standard homotopic if there exists a dg functor

H : A → P (B) such that F = SB ◦ H and G = TB ◦ H. From the results proved in [3, Sect. 2] for

the localization of an arbitrary category of fibrant objects with respect to weak equivalences, we

obtain the following properties of morphisms in Hqe.

Proposition 2.11. (1) Given two dg functors F,G : A → B, we have [F] = [G] if and only if

there exists a quasi-equivalence I : A′ → A such that F◦I and G◦I are (standard) homotopic.

(2) Given two dg functors F : A→ C and G : B→ C with G a quasi-equivalence, there exist dg

functors F′ : D→ B and G′ : D→ A with G′ a quasi-equivalence such that F ◦G′ and G ◦F′

are homotopic (hence [F ◦ G′] = [G ◦ F′] by part (1)). If moreover F is a quasi-equivalence,

then F′ is a quasi-equivalence, too.

(3) Given morphisms fi : A → B in Hqe, for i = 1, . . . , n, there exist dg functors I : A′ → A

and Fi : A′ → B with I a quasi-equivalence such that fi = [Fi] ◦ [I]−1, for i = 1, . . . , n.

Proof. Taking into account Remark 2.9, (1) follows from part (ii) of [3, Thm. 1]. The first part of

(2) follows from [3, Prop. 2]. The last statement in (2) is then an easy consequence of axiom (A),

using the fact that a morphism homotopic to a weak equivalence is also a weak equivalence (to see

this, one uses again axiom (A)). For n = 1, (3) follows from part (i) of [3, Thm. 1]. In general, one

can easily reduce by induction to n = 2. Then, by the case n = 1, for i = 1, 2 there exist dg functors

Ii : Ai → A and Gi : Ai → B, with Ii a quasi-equivalence such that fi = [Gi] ◦ [Ii]
−1. On the other

hand, by part (2), there exist two quasi-equivalences Ji : A′ → Ai such that [I1] ◦ [J1] = [I2] ◦ [J2].

Set Fi := Gi ◦ Ji and I := I1 ◦ J1. It is then clear that fi = [Fi] ◦ [I]−1, for i = 1, 2. �

Corollary 2.12. Let F,G : A→ B be dg functors and assume that there exists a termwise homo-

topy equivalence α : F → G (in particular, this is the case if F and G are homotopy equivalent).

Then [F] = [G] ∈ Hqe(A,B).

Proof. The assumption on α implies that there is a dg functor H : A→ P (B) defined on objects by

A 7→ (F(A),G(A), α(A)) and on morphisms by a 7→ (F(a),G(a), 0). As H clearly gives a standard

homotopy between F and G, we conclude that [F] = [G] by part (1) of Proposition 2.11. �

3. Extensions of morphisms in Hqe and bimodules

In this section we develop the key ingredients in our proof of Theorem 1.1. As it turns out, they

rely on some natural properties of extension of dg functors. Finally, we provide an interpretation

of the morphisms in Hqe in terms of dg modules over tensor dg categories.

3.1. Extensions of dg functors. Given two dg categories A and B, by (2.1) there is an iso-

morphism of dg categories dgMod(A◦ ⊗ B) ∼= Hom(A,dgMod(B)), so in particular an object

E ∈ dgMod(A◦ ⊗B) corresponds to a dg functor ΦE : A → dgMod(B). Conversely, for every dg

functor F : A → dgMod(B) there exists a unique E ∈ dgMod(A◦ ⊗ B) such that ΦE = F. An

object E ∈ h-proj(A◦ ⊗B) is called right quasi-representable if ΦE(A) ⊂ B. The full dg subcat-

egory of h-proj(A◦ ⊗B) consisting of all right quasi-representable dg modules will be denoted by

h-proj(A◦ ⊗ B)rqr. Notice that h-proj(A◦ ⊗ B)rqr is always closed under homotopy equivalences

and, if A is the dg category k, then it is isomorphic to B.
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Let F : A → dgMod(B) be a dg functor corresponding to E ∈ dgMod(A◦ ⊗ B). Following [7,

Sect. 6.1], we define the extension of F to be the dg functor

F̂ : dgMod(A) −→ dgMod(B) F̂(−) := −⊗A E.

Notice that the definition of F̂ is a reformulation of the usual notion of Kan extension in the context

of dg functors. There is also a natural dg functor

F̃ : dgMod(B)→ dgMod(A) F̃(M) := dgMod(B)(F(−),M),

for every M ∈ dgMod(B).

Remark 3.1. Notice that, in [7], the dg functors F̂ and F̃ above are denoted by TE and HE

respectively.

If G : A → B is a dg functor, ŶB ◦ G is usually denoted by IndG : dgMod(A) → dgMod(B),

whereas (due to the dg version of Yoneda’s lemma) ỸB ◦ G is dg isomorphic to the dg functor

ResG : dgMod(B)→ dgMod(A) defined by ResG(M) := M(G(−)).

Proposition 3.2. Let F : A→ dgMod(B) and G : A→ B be dg functors.

(1) F̂ is left adjoint to F̃ (hence IndG is left adjoint to ResG).

(2) F̂ ◦ YA is dg isomorphic to F and H0(F̂) is continuous (hence IndG ◦ YA is dg isomorphic

to YB ◦ G and H0(IndG) is continuous).

(3) F̂(h-proj(A)) ⊆ h-proj(B) if and only if F(A) ⊆ h-proj(B) (hence IndG(h-proj(A)) ⊆
h-proj(B)).

(4) ResG(h-proj(B)) ⊆ h-proj(A) if and only if ResG(B) ⊆ h-proj(A); moreover, H0(ResG) is

always continuous.

(5) IndG : h-proj(A)→ h-proj(B) is a quasi-equivalence if G is a quasi-equivalence.

Proof. All the statements above are probably well known (see [7]). Thus we simply sketch the

main ingredients in the proofs. The proof of (1) uses exactly the same argument as in [6, Sect.

14.9] for the adjunction between IndG and ResG. The first part of (2) follows from Eq. (14.2) in

[6], and H0(F̂) is continuous because it is left adjoint to H0(F̃) by (1).

The non-trivial implication in (3) is a consequence of (2) and of F(A) ⊆ h-proj(B). Indeed, we

use here that the objects of A form a set of compact generators for h-proj(A) (see [7, Sect. 4.2])

and that H0(F) is continuous by (2), arguing exactly as at the end of Remark 2.4.

A similar argument applies to the first part of (4). For the fact that H0(ResG) is continuous,

we use that ResG has a right adjoint (see, for example, [10, Sect. 1]). Finally, (5) is observed in [6,

Remark 4.3]. �

Let dgModhp(A◦ ⊗B) be the full dg subcategory of dgMod(A◦ ⊗B) with objects E such that

ΦE(A) ⊆ h-proj(B). Denoting by ∆A ∈ dgMod(A◦ ⊗A) the object such that Φ∆A
= YA : A →

dgMod(A), obviously ∆A ∈ dgModhp(A◦ ⊗A).

Remark 3.3. If α : E → E′ is a quasi-isomorphism in dgModhp(A◦⊗B), then clearly Φα : ΦE →
ΦE′ is such that Φα(A) is a quasi-isomorphism in h-proj(B), and hence a homotopy equivalence,

for every A ∈ A. In other words, Φα is a termwise homotopy equivalence.
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Lemma 3.4. The inclusion h-proj(A◦ ⊗L B) ⊆ dgModhp(A◦ ⊗L B) holds.

Proof. First, we can assume, without loss of generality, that A is h-projective and work with A◦⊗B.

Then, for an object A of A, consider the inclusion IA : B → A◦ ⊗ B defined as IA(B) := (A,B),

for all B in B. Now, given E ∈ dgMod(A◦ ⊗B) and A in A, we have ΦE(A) = ResIA(E). Thus,

it is enough to observe that ResIA(h-proj(A◦ ⊗B)) ⊆ h-proj(B). For this, one applies part (4) of

Proposition 3.2, since ResIA(YA◦⊗B(A′, B)) ∼= A(A′, A) ⊗ YB(B) ∈ h-proj(B) (thanks to the fact

that A(A′, A) ∈ h-proj(k), A being h-projective), for all (A′, B) in A◦ ⊗B. �

Lemma 3.5. The map E 7→ Φ̂E extends to a dg functor

dgMod(A◦ ⊗B) −→ Hom(dgMod(A),dgMod(B)),

which restricts to a dg functor dgModhp(A◦ ⊗B)→ Hom(h-proj(A),h-proj(B)).

Proof. The first part of the statement is a simple consequence of the fact that, by definition, the

tensor product of dg modules is functorial (see Remark 2.5 (i)). For the second part, observe that,

by definition, ΦE(A) ⊆ h-proj(B), when E ∈ dgModhp(A◦ ⊗ B). Hence we apply part (3) of

Proposition 3.2. �

Lemma 3.5 implies that, given a dg functor F : A → h-proj(B), we can think of the extension

of F as a dg functor F̂ : h-proj(A)→ h-proj(B).

Lemma 3.6. Given two dg functors F : A → dgMod(B) and G : B → dgMod(C), there is a dg

isomorphism of dg functors

̂̂
G ◦ F ∼= Ĝ ◦ F̂ : dgMod(A)→ dgMod(C).

Moreover, if F′ : A→ B and G′ : B→ C are two other dg functors, then there are also dg isomor-

phisms Ĝ ◦ F′ ∼= Ĝ ◦ IndF′ and ̂IndG′ ◦ F ∼= IndG′ ◦ F̂.

Proof. Let F ∈ dgMod(A◦ ⊗ B) and G ∈ dgMod(B◦ ⊗ C) be such that F = ΦF and G = ΦG.

Then Ĝ ◦ F̂ ∼= Ĥ, where H := ΦF⊗BG, by the associativity of the tensor product. Using part (2) of

Proposition 3.2, it follows that

H ∼= Ĥ ◦ YA
∼= Ĝ ◦ F̂ ◦ YA

∼= Ĝ ◦ F,

which proves the first part. The last statement then follows taking F = YB ◦F′ or G = YC ◦G′ and

using again part (2) of Proposition 3.2. �

Lemma 3.7. Given dg categories Ai, Bi and objects Ei ∈ dgMod(A◦i ⊗ Bi) for i = 1, 2, the

diagram

A1 ⊗A2

ΦE1
⊗ΦE2 //

ΦE1⊗E2 ++

dgMod(B1)⊗ dgMod(B2)

−⊗−
��

dgMod(B1 ⊗B2)

(where E1 ⊗E2 ∈ dgMod(A◦1 ⊗B1 ⊗A◦2 ⊗B2) ∼= dgMod((A1 ⊗A2)◦ ⊗ (B1 ⊗B2))) commutes in

dgCat up to dg isomorphism. Moreover, Φ̂E1⊗E2(−) ∼= E1 ⊗A◦1
−⊗A2 E2.



INTERNAL HOMS VIA EXTENSIONS OF DG FUNCTORS 13

Proof. The commutativity of the diagram follows directly from the fact that ΦEi(A) = Ei((A,−))

and Remark 2.5 (ii). The second part amounts to showing that, for all M ∈ dgMod(A1⊗A2), we

have the isomorphism M ⊗A1⊗A2 (E1 ⊗ E2) ∼= E1 ⊗A◦1
M ⊗A2 E2. This is an easy exercise using

the definition (2.2). �

Proposition 3.8. Let F : A→ A′ and G : B→ B′ be dg functors with A and A′ h-projective.

(1) The dg functor F induces a natural map Iso(H0(h-proj(A′◦⊗B)rqr))→ Iso(H0(h-proj(A◦⊗
B)rqr)); if moreover F is a quasi-equivalence, then this map is bijective and IndF◦⊗idB

restricts to a quasi-equivalence h-proj(A◦ ⊗B)rqr → h-proj(A′◦ ⊗B)rqr.

(2) The dg functor IndidA◦⊗G restricts to a dg functor h-proj(A◦⊗B)rqr → h-proj(A◦⊗B′)rqr,

which is a quasi-equivalence if G is such.

Proof. As for (1), notice that, setting F1 := F◦ ⊗ idB, the dg functor IndF1 : h-proj(A◦ ⊗ B) →
h-proj(A′◦ ⊗B) clearly induces a natural map Iso(H0(h-proj(A◦ ⊗B))) → Iso(H0(h-proj(A′◦ ⊗
B))). On the other hand, one can also define a natural map Iso(H0(h-proj(A′◦ ⊗ B))) →
Iso(H0(h-proj(A◦ ⊗ B))) by [E′]iso 7→ [E]iso, where E is an h-projective resolution of ResF1(E′).

It is not difficult to show that, if F (hence IndF1 , by Remark 2.8 and part (5) of Proposition

3.2) is a quasi-equivalence, then these two maps are bijective and inverse to each other (see, for

example, [6, Sect. 14.12]). Therefore it is enough to prove that E′ ∈ h-proj(A′◦ ⊗ B)rqr implies

E ∈ h-proj(A◦ ⊗B)rqr, and that the converse is true if F is a quasi-equivalence. To see this, ob-

serve that the quasi-isomorphism E → ResF1(E′) induces, for every A ∈ A, a quasi-isomorphism

ΦE(A) → ΦResF1 (E′)(A) = ΦE′(F(A)), which is in fact a homotopy equivalence (due to the fact

that both the source and the target are in h-proj(B) by Lemma 3.4). It follows that ΦE(A) ∈ B

if and only if ΦE′(F(A)) ∈ B, which is enough to conclude. Indeed, by the definition of ΦE , we

have that E ∈ h-proj(A◦ ⊗ B)rqr if and only if ΦE(A) ∈ B, for all A ∈ A. On the other hand,

it is clear that ΦE(A) ∈ B because E′ ∈ h-proj(A′◦ ⊗ B)rqr and thus ΦE′(F(A)) ∈ B, for all

A ∈ A. Clearly, if F is a quasi-equivalence, the same argument shows that E′ ∈ h-proj(A′◦⊗B)rqr

if E ∈ h-proj(A◦ ⊗B)rqr.

As for (2), we just need to show that, setting G1 := idA◦⊗G, the dg functor IndG1 : h-proj(A◦⊗
B) → h-proj(A◦ ⊗ B′) sends h-proj(A◦ ⊗ B)rqr to h-proj(A◦ ⊗ B′)rqr (because then the second

part of the statement can be proved with an argument which is completely similar to the one used

in (1)). Given E ∈ h-proj(A◦ ⊗ B) and setting E′ := IndG1(E) ∈ h-proj(A◦ ⊗ B′), we claim

that ΦE′
∼= IndG ◦ ΦE . Notice that this is enough to conclude that E′ ∈ h-proj(A◦ ⊗ B′)rqr if

E ∈ h-proj(A◦ ⊗ B)rqr, as clearly IndG(B) ⊆ B′. Now, denoting by G1 ∈ dgMod((A◦ ⊗ B)◦ ⊗
(A◦⊗B′)) ∼= dgMod(A⊗A◦⊗B◦⊗B′) the dg module such that ΦG1 = YA◦⊗B′ ◦G1, it is easy to

see that G1
∼= ∆A◦⊗G, where G ∈ dgMod(B◦⊗B′) denotes the dg module such that ΦG = YB′ ◦G.

As IndG1 = Φ̂G1 , by Lemma 3.7 we get

E′ = Φ̂G1(E) ∼= ̂Φ∆A◦⊗G(E) ∼= ∆A◦ ⊗A E ⊗B G ∼= E ⊗B G,

where the last isomorphism is due to [6, Sect. 14.6]. It follows from the associativity of the tensor

product that Φ̂E′
∼= Φ̂G ◦ Φ̂E = IndG ◦ Φ̂E , which implies that ΦE′

∼= IndG ◦ ΦE by part (2) of

Proposition 3.2. �
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3.2. Extending morphisms in Hqe. Let A and B be dg categories.

Lemma 3.9. If F1,F2 : A → h-proj(B) are dg functors such that [F1] = [F2], then [F̂1] = [F̂2] in

[h-proj(A), h-proj(B)].

Proof. As [F1] = [F2], by part (1) of Proposition 2.11 there exists a quasi-equivalence I : C → A

such that Gi := Fi ◦ I for i = 1, 2 sit in the commutative diagram

C

H
��

G1

uu

G2

))
h-proj(B) P (h-proj(B))

Sh-proj(B)

oo
Th-proj(B)

// h-proj(B)

for some dg functor H : C→ P (h-proj(B)). Thus, by Lemma 3.6, we have

(3.1) Ĝ1 = ̂Sh-proj(B) ◦ H ∼= ̂Sh-proj(B) ◦ IndH Ĝ2 = ̂Th-proj(B) ◦ H ∼= ̂Th-proj(B) ◦ IndH.

Now observe that, by definition, Sh-proj(A) ◦ Ih-proj(A) = idh-proj(A) = Th-proj(A) ◦ Ih-proj(A). Hence

̂Sh-proj(A) ◦ Ih-proj(A)
∼= ̂Sh-proj(A) ◦ IndIh-proj(A)

∼= ̂Th-proj(A) ◦ Ih-proj(A)
∼= ̂Th-proj(A) ◦ IndIh-proj(A)

where the first and the last isomorphisms are again due to Lemma 3.6. Then [ ̂Sh-proj(A)] ◦
[IndIh-proj(A)

] = [ ̂Th-proj(A)] ◦ [IndIh-proj(A)
]. Since Ih-proj(A) (and thus, by part (5) of Proposition

3.2, IndIh-proj(A)
) is a quasi-equivalence, we get [ ̂Sh-proj(A)] = [ ̂Th-proj(A)].

Using this and (3.1), we obtain

[Ĝ1] = [ ̂Sh-proj(B)] ◦ [IndH] = [ ̂Th-proj(B)] ◦ [IndH] = [Ĝ2].

Again by Lemma 3.6, we have [Ĝi] = [F̂i ◦ I] = [F̂i ◦ IndI] = [F̂i] ◦ [IndI], for i = 1, 2. As IndI is a

quasi-equivalence by part (5) of Proposition 3.2, the identity [Ĝ1] = [Ĝ2] implies [F̂1] = [F̂2]. �

Proposition 3.10. If A and B are dg categories, the natural map of sets

[h-proj(A), h-proj(B)]c −→ [A, h-proj(B)] f 7→ f ◦ [YA]

(where YA denotes the Yoneda embedding A→ h-proj(A)) is a bijection.

Proof. Given f ∈ [A,h-proj(B)], by part (3) of Proposition 2.11 there exist a quasi-equivalence

I : C → A and a dg functor F : C → h-proj(B) such that f = [F] ◦ [I]−1. As IndI is a quasi-

equivalence by part (5) of Proposition 3.2, we can define f ′ := [F̂]◦[IndI]
−1 ∈ [h-proj(A), h-proj(B)].

By part (2) of Proposition 3.2 we see that f ′ ∈ [h-proj(A),h-proj(B)]c and f ′ ◦ [YA] = f , thereby

proving that the map is surjective.

We now want to show that the map is injective. To this end, let f1, f2 ∈ [h-proj(A), h-proj(B)]c

be such that f1 ◦ [YA] = f2 ◦ [YA]. By part (3) of Proposition 2.11, there exist a quasi-equivalence

I : C→ h-proj(A) and two dg functors F1,F2 : C→ h-proj(B) such that fi = [Fi]◦[I]−1, for i = 1, 2.

Let D be the full dg subcategory of C such that I′ := I|D : D → A is a quasi-equivalence and let
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J : D→ C be the inclusion. If we set Gi := Fi ◦ J, for i = 1, 2, then the diagram

h-proj(A) C
Ioo Fi // h-proj(A)

A
?�

OO

D
I′

oo
?�

J

OO

Gi

66

commutes in dgCat, and it is easy to see that fi ◦ [YA] = [Gi] ◦ [I′]−1 ◦ [YA], for i = 1, 2, where on

the right-hand side we regard YA as the quasi-equivalence A → A. As f1 ◦ [YA] = f2 ◦ [YA], we

deduce [G1] ◦ [I′]−1 = [G2] ◦ [I′]−1. Thus [G1] = [G2] and, by Lemma 3.9, we get [Ĝ1] = [Ĝ2].

Take now the dg functor K := ResJ ◦ YC : C→ dgMod(D). Observe that J is fully faithful and

H0(J(D)) is a set of compact generators for the triangulated category with arbitrary direct sums

H0(C) (use that C is quasi-equivalent to h-proj(A) under a quasi-equivalence inducing a quasi-

equivalence between D and A). Observe that H0(K) is continuous and the image of K is contained

in h-proj(D). Indeed, the fact that H0(K) is continuous follows along the same lines as in the

proof of [10, Prop. 1.17]. This, together with the simple fact that K(J(D)) ∼= YD(D) ⊆ h-proj(D),

gives that the image of K is contained in h-proj(D).

Now observe that, for i = 1, 2, we have [Fi] = [Ĝi] ◦ [K]. Indeed, by part (1) of Proposition 3.2,

Ĝi has a right adjoint G̃i. Notice that, for all C ∈ C, we have G̃i◦Fi(C) = h-proj(B)(Gi(−),Fi(C)).

Thus the composition with Fi yields a natural map

K(C) = C(J(−), C) −→ h-proj(B)(Gi(−),Fi(C)) = G̃i ◦ Fi(C)

and hence, by adjunction, a natural transformation θ : Ĝi◦K→ Fi with the property thatH0(θ)|J(D)

is an isomorphism. Since H0(Ĝi ◦ K) and H0(Fi) are continuous, Remark 2.4 yields that θ is a

termwise homotopy equivalence. By Corollary 2.12, we have [Fi] = [Ĝi] ◦ [K], for i = 1, 2. As

[Ĝ1] = [Ĝ2], we obtain [F1] = [F2], which obviously implies f1 = f2. �

On the other hand, given three dg categories A, B and C with a fully faithful dg functor

J : B→ C, we have another natural map of sets

ΣA,J : [A,B]→ [A,C] f 7→ [J] ◦ f.

Proposition 3.11. The natural map of sets ΣA,J is injective.

Proof. Set C′ to be the full dg subcategory of C consisting of all objects in the essential image

of H0(J) and denote by J1 : B → C′ the natural quasi-equivalence. Let J2 : C′ → C be the

natural inclusion inducing a natural dg functor J3 : P (C′) → P (C) such that J3((C1, C2, f)) =

(J2(C1), J2(C2), J2(f)) for every (C1, C2, f) ∈ P (C′). It is easy to verify that J3 is fully faithful

since J2 is.

Given f1, f2 ∈ [A,B] such that ΣA,J(f1) = ΣA,J(f2), by part (3) of Proposition 2.11 there exist

a quasi-equivalence I : D → A and dg functors Fi : D → B such that fi = [Fi] ◦ [I]−1, for i = 1, 2.

As [J◦F1] = [J◦F2], by part (1) of Proposition 2.11 there exist a quasi-equivalence I′ : D′ → D and

a dg functor H : D′ → P (C) such that, setting Gi := J◦Fi◦ I′ : D′ → C for i = 1, 2, G1 = SC◦H and

G2 = TC ◦H. Observe that, by definition, H(D) = (G1(D),G2(D), f), where f : G1(D)→ G2(D) is

a homotopy equivalence, for all D ∈ D. It is easy to see that H factors through J3. This means
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that there exists a dg functor H′ : D′ → P (C′) such that H = J3 ◦H′. Thus, if we set G′i = J1 ◦Fi ◦ I′,
we get G′1 = SC′ ◦ H′ and G′2 = TC′ ◦ H′, so that [G′1] = [G′2].

Therefore [J1] ◦ [F1] ◦ [I′] = [G′1] = [G′2] = [J1] ◦ [F2] ◦ [I′] and, using that J1 and I′ are quasi-

equivalences, we conclude that [F1] = [F2], whence f1 = f2. �

3.3. Morphisms in Hqe as dg modules. If E,E′ ∈ dgModhp(A◦ ⊗L B) are quasi-isomorphic,

then it follows from Remark 3.3 and Corollary 2.12 that [ΦE ] = [ΦE′ ] : Ahp → h-proj(B). In

particular, denoting by [E]iso ∈ Iso(H0(h-proj(A◦ ⊗L B))) the homotopy equivalence class of

E ∈ h-proj(A◦ ⊗L B) and composing with the natural bijection between [A,B] and [Ahp,B]

induced by the quasi-equivalence QA : Ahp → A, we get a well-defined map

ΛA,B : Iso(H0(h-proj(A◦ ⊗L B))) −→ [A, h-proj(B)] [E]iso 7→ [ΦE ] ◦ [QA]−1

Proposition 3.12. For all dg categories A and B, the map ΛA,B is bijective.

Proof. First of all, we can assume, without loss of generality, that A is h-projective. Given f : A→
h-proj(B) in Hqe, by part (3) of Proposition 2.11 there exist dg functors I : A′ → A and F : A′ →
h-proj(B) with I a quasi-equivalence such that f = [F] ◦ [I]−1. Notice that f corresponds to

f̂ = [F̂] ◦ [IndI]
−1 : h-proj(A) → h-proj(B) under the bijection given by Proposition 3.10. We

denote by I ∈ dgModhp(A′◦ ⊗A) and F ∈ dgModhp(A′◦ ⊗B) the objects such that ΦI = YA ◦ I
and ΦF = F. Since IndidA◦⊗I : h-proj(A◦⊗A′)→ h-proj(A◦⊗A) is a quasi-equivalence (by Remark

2.8 and part (5) of Proposition 3.2), there exists D′ ∈ h-proj(A◦⊗A′) such that D := IndidA◦⊗I(D
′)

is an h-projective resolution of ∆A. It is easy to see, using Lemma 3.7, that IndidA◦⊗I
∼= Φ̂∆A◦⊗I

and we obtain

D ∼= Φ̂∆A◦⊗I(D
′) ∼= ∆A◦ ⊗A D′ ⊗A′ I ∼= D′ ⊗A′ I,

whence Φ̂D
∼= Φ̂I ◦ Φ̂D′ by the associativity of tensor product. Notice that the last isomorphism

above is proved in [6, Sect. 14.6]. Taking into account that [Φ̂D] = [idh-proj(A)], it follows that

[Φ̂D′ ] = [Φ̂I ]
−1 = [IndI]

−1. Setting E′ := D′ ⊗A′ F ∈ dgModhp(A◦ ⊗B), we have Φ̂E′
∼= Φ̂F ◦ Φ̂D′ .

Therefore [Φ̂E′ ] = [Φ̂F ] ◦ [Φ̂D′ ] = [F̂] ◦ [IndI]
−1 = f̂ . Taking E ∈ h-proj(A◦ ⊗ B) an h-projective

resolution of E′, this proves that [ΦE ] = [ΦE′ ] = f , whence ΛA,B is surjective.

As for injectivity, let E,E′ ∈ h-proj(A◦ ⊗B) be such that [ΦE ] = [ΦE′ ]. Then [idA◦ ⊗ ΦE ] =

[idA◦ ⊗ ΦE′ ] by Remark 2.8. Hence also [Φ∆A◦ ⊗ ΦE ] = [Φ∆A◦ ⊗ ΦE′ ] : A◦ ⊗A → h-proj(A◦) ⊗
h-proj(B). From Lemma 3.7 we deduce that [Φ∆A◦⊗E ] = [Φ∆A◦⊗E′ ], and so (by Lemma 3.9)

(3.2) [ ̂Φ∆A◦⊗E ] = [ ̂Φ∆A◦⊗E′ ] : h-proj(A◦ ⊗A)→ h-proj(A◦ ⊗B).

Denoting as before by D an h-projective resolution of ∆A, again by Lemma 3.7 we have

̂Φ∆A◦⊗E(D) ∼= ∆A◦ ⊗A D ⊗A E ∼= D ⊗A E.

As D → ∆A is a quasi-isomorphism between dg modules which are h-flat over A, also the induced

map D⊗A E → ∆A⊗A E ∼= E is a quasi-isomorphism, hence a homotopy equivalence, since both

the source and the target are in h-proj(A◦ ⊗ B). This proves that [ ̂Φ∆A◦⊗E(D)]iso = [E]iso, and

similarly [ ̂Φ∆A◦⊗E′(D)]iso = [E′]iso. As [ ̂Φ∆A◦⊗E(D)]iso = [ ̂Φ∆A◦⊗E′(D)]iso by (3.2), we conclude

that [E]iso = [E′]iso. �
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4. The new proof of Theorem 1.1

Let A, B and C be dg categories. In view of the basic properties of the derived tensor product,

of Remark 2.8 and of Proposition 3.8, we can assume in the proof of Theorem 1.1, without loss

of generality, that these three dg-categories are h-projective. In this way the tensor product does

not need to be derived. Putting the results in the previous section together, we get the following

maps:

[A⊗B,C] oo
Ψ

1:1
// [A⊗B,C] �

� Σ // [A⊗B,h-proj(C)] oo
Λ

1:1
// Iso(H0(h-proj((A⊗B)◦ ⊗C)))

where Ψ is induced by the quasi-equivalence C ↪→ C while Σ := ΣA⊗B,C↪→h-proj(C) and Λ :=

ΛA⊗B,C are the maps with the properties discussed in Propositions 3.11 and 3.12. Obviously, by

definition, Im(Σ) consists of all f ∈ [A ⊗ B, h-proj(C)] such that Im(H0(f)) ⊆ H0(C). Using

Λ, we get a bijection between Im(Σ) and the set of isomorphism classes of the objects E ∈
H0(h-proj((A ⊗ B)◦ ⊗ C)) such that H0(ΦE) : H0(A ⊗ B) → H0(h-proj(C)) factors through

H0(C). Thus, by definition, we have a natural bijection between the sets

(4.1) [A⊗B,C] oo
1:1 // Iso(H0(h-proj((A◦ ⊗B◦)⊗C)rqr)).

On the other hand, we have the following sequence of natural maps of sets:

[A, h-proj(B◦ ⊗C)rqr] �
� Σ // [A,h-proj(B◦ ⊗C)] oo

Λ

1:1
// Iso(H0(h-proj(A◦ ⊗ (B◦ ⊗C)))),

where Σ := ΣA,h-proj(B◦⊗C)rqr↪→h-proj(B◦⊗C) and Λ := ΛA,B◦⊗C have the properties discussed

in Propositions 3.11 and 3.12. In analogy with the previous case, Im(Σ) consists of all f ∈
[A,h-proj(B◦⊗C)] such that Im(H0(f)) ⊆ H0(h-proj(B◦⊗C)rqr) (here we use that h-proj(B◦⊗
C)rqr is by definition closed under homotopy equivalences in h-proj(B◦ ⊗ C)). The map Λ

yields a natural bijection between Im(Σ) and the set of isomorphism classes of objects F ∈
H0(h-proj(A◦ ⊗ B◦ ⊗ C)) such that H0(ΦF ) : H0(A) → H0(h-proj(B◦ ⊗ C)) factors through

H0(h-proj(B◦ ⊗C)rqr). Again by definition, this provides a natural bijection of sets

(4.2) [A, h-proj(B◦ ⊗C)rqr] oo
1:1 // Iso(H0(h-proj((A◦ ⊗B◦)⊗C)rqr)).

If B is the (h-projective) dg category k, then we observed that h-proj(B◦ ⊗L C)rqr ∼= C. Thus,

we get the natural bijection between the sets [A,C] and Iso(H0(h-proj(A◦⊗C)rqr)), which is (1.1).

As in the statement of Theorem 1.1, set RHom(B,C) := h-proj(B◦ ⊗L C)rqr, for two dg cate-

gories B and C. If B is an h-projective dg category, we have RHom(B,C) = h-proj(B◦ ⊗C)rqr

because we do not need to derive the tensor product (see Remark 2.7). Due to Proposition 3.8

and the naturality of the bijections in (4.1) and (4.2), we get a natural bijection between the sets

[A⊗B,C] and [A,RHom(B,C)], which is (1.2). So Hqe is a closed symmetric monoidal category,

and this concludes the proof of Theorem 1.1.

Corollary 4.1. Given three dg categories A, B and C, the dg categories RHom(A⊗L B,C) and

RHom(A,RHom(B,C)) are isomorphic in Hqe.
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Proof. For any dg category D and using (1.2) and the associativity of the derived tensor product,

we get the following natural bijections:

[D⊗L (A⊗L B),C]
OO

1:1
��

oo 1:1 // [D⊗L A,RHom(B,C)]
OO

1:1

��
[D,RHom(A⊗L B,C)] [D,RHom(A,RHom(B,C))],

for every dg category D. By Yoneda’s lemma, we conclude. �

For two dg categories A and B, we denote by RHomc(h-proj(A), h-proj(B)) the full dg sub-

category of RHom(h-proj(A),h-proj(B)) consisting of all F ∈ RHom(h-proj(A),h-proj(B)) such

that [F ]iso ∈ [h-proj(A),h-proj(B)]c under (1.1). We can prove the following, which is Theorem

7.2 in [18] and is usually referred to as derived Morita theory.

Corollary 4.2. Given two dg categories A and B, RHom(A, h-proj(B)) and h-proj(A◦ ⊗L B)

are isomorphic in Hqe. Moreover, there exist quasi-equivalences RHomc(h-proj(A), h-proj(B))→
RHom(A, h-proj(B)) and RHom(Perf(A),Perf(B))→ RHom(A,Perf(B)) induced by the Yoneda

embedding YA : A→ Perf(A) ⊂ h-proj(A).

Proof. As for the first part of the statement, observe that, in view of Proposition 3.12, we have

natural bijections

(4.3)

[C, h-proj(A◦ ⊗L B)] oo
1:1 // Iso(H0(h-proj((C◦ ⊗L A◦)⊗L B))) oo

1:1 // [C⊗L A, h-proj(B)],

for every dg category C. Using (1.2), we get the result by Yoneda’s lemma.

For the second part, we argue as at the beginning of the proof of Theorem 7.2 of [18]. So

we have to show that, for any dg category C, the Yoneda embedding YA induces a bijection

[h-proj(A)⊗L C,h-proj(B)]′c −→ [A⊗L C,h-proj(B)], where [h-proj(A)⊗L C, h-proj(B)]′c is the

subset of [h-proj(A) ⊗L C,h-proj(B)] containing all morphisms f such that H0(f)((−, C)) is

continuous for all C ∈ C. Indeed, by (4.3), we get the natural bijection [A ⊗L C,h-proj(B)] →
[A, h-proj(C◦⊗L B)]. Similarly, one deduces the natural bijection [h-proj(A)⊗L C, h-proj(B)]′c →
[h-proj(A),h-proj(C◦ ⊗L B)]c. Now we simply apply Proposition 3.10.

As for perfect dg modules, given a dg category C, we consider the dg functor F := idC◦ ⊗Y◦A ⊗
idB : D1 → D2, where D1 := C◦⊗LA◦⊗LB and D2 := C◦⊗LPerf(A)◦⊗LB. By [10, Prop. 1.15],

we have that IndF : h-proj(D1) → h-proj(D2) is a quasi-equivalence. Thus, by Proposition 3.12

and the same computations as in the proof of Theorem 1.1 above, we get a commutative diagram

[C⊗L A,Perf(B)] �
� // [C⊗L A, h-proj(B)] oo

Λ

1:1
// Iso(H0(h-proj(D1)))

OO

1:1
��

[C⊗L Perf(A),Perf(B)]

Y
C⊗LA

◦−
OO

� � // [C⊗L Perf(A),h-proj(B)] oo
Λ

1:1
// Iso(H0(h-proj(D2))),

where the right vertical bijection is induced by the quasi-equivalence IndF. Thus the Yoneda

embedding induces a natural bijection between [C ⊗L Perf(A),Perf(B)] and [C ⊗L A,Perf(B)],

for all dg categories C. By (1.2), we conclude using Yoneda’s lemma. �
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