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Derived categories (...roughly...)

Let A be an abelian category (e.g., mod-R, right R-modules, R
an ass. ring with unity, and Coh(X )).

Definition

The bounded derived category Db(A) of the abelian category
A is such that:

Objects: complexes of objects in A;
Morphisms (roughly speaking): morphisms of complexes +
morphisms which are iso on cohomology are iso in Db(A).

It is a triangulated category.
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Triangulated categories (...roughly...)

Definition

A category T is triangulated if it is has an automorphism
(called shift) [1] : T → T, and a family of distinguished triangles
A → B → C → A[1] satisfying certain axioms.

Definition

A functor F : T → T′ between triangulated categories is exact if
it preserves shifts and distinguished triangles, up to
isomorphism.

Given X , Y smooth projective varieties, a morphism f : X → Y
and E ∈ Db(X ) one has the exact (derived!) functors:

f∗ : Db(X ) → Db(Y ) and f ∗ : Db(Y ) → Db(X );
E ⊗ (−) : Db(X ) → Db(X ).
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Mukai’s example (1981)

Mukai studied a duality between Db(A) and Db(Â) (here A is an
abelian variety).

This is an equivalence

F : Db(A) −→ Db(Â)

such that F(−) := p∗(P ⊗ q∗(−)) where P ∈ Coh(A× Â) is the
universal Picard sheaf.

The inverse of F sends a skyscraper sheaf Op (here p is a
closed point of Â) on Â to the degree 0 line bundle Lp ∈ Pic0(A)
parametrized by p.
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such that F(−) := p∗(P ⊗ q∗(−)) where P ∈ Coh(A× Â) is the
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Fourier–Mukai functors

For X1 and X2 smooth projective varieties, we define the exact
functor ΦE : Db(X1) → Db(X2) as

ΦE(−) := (p2)∗(E ⊗ p∗
1(−)),

where pi : X1 × X2 → Xi is the natural projection and
E ∈ Db(X1 × X2).

Definition

An exact functor F : Db(X1) → Db(X2) is a Fourier–Mukai
functor (or of Fourier–Mukai type) if there exist
E ∈ Db(X1 × X2) and an isomorphism of functors F ∼= ΦE . The
complex E is called a kernel of F.
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Motivations

Assume that the base field is C.

1 Fourier–Mukai functors (and equivalences) act on singular
cohomology and preserve several additional structures
(special Hodge decompositions and a special pairing).

2 They also act on Hochschild homology and cohomology.
Hence one may control (first order) deformations of the
varieties and of the Fourier–Mukai kernel at the same time.

Example

(1) and (2) allowed to give a partial description of the group of
autoequivalences for K3 surfaces as conjectured by Szendroi
(Huybrechts–Macrı̀–S.).
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Two basic questions

1 Are all exact functors between the bounded derived
categories of coherent sheaves on smooth projective
varieties of Fourier–Mukai type?

2 Is the kernel of a Fourier–Mukai functor unique (up to
isomorphism)?

Remark

A positive answer to the first one was conjectured by
Bondal–Larsen–Lunts (and Orlov).
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Orlov’s result

The following partly answers the above questions.

Theorem (Olov, 1997)

Let X1 and X2 be smooth projective varieties and let
F : Db(X1) → Db(X2) be an exact fully faithful functor admitting a
left adjoint. Then there exists a unique (up to isomorphim)
E ∈ Db(X1 × X2) such that F ∼= ΦE .

Bondal–van den Bergh: the adjoints always exist in this
special setting (i.e. Xi smooth projective)!
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Full implies faithful (in this case)

Aim: weaken the hypotheses of the theorem to get more
general answers to (1)–(2).

Theorem (Canonaco–Orlov–S.)

Let X be a noetherian connected scheme, let T be a
triangulated category and let F : Db(X ) −→ T be a full exact
functor not isomorphic to the zero functor. Then F is also
faithful.

Remark

The result holds in much greater generality.
The faithfulness assumption is redundant.
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The improvement in the smooth case

Theorem (Canonaco–S., 2006)

Let X1 and X2 be smooth projective varieties and let
F : Db(X1) → Db(X2) be an exact functor such that, for any
F ,G ∈ Coh(X1),

(∗) Hom Db(X2)
(F(F), F(G)[j]) = 0 if j < 0.

Then there exist E ∈ Db(X1 × X2) and an isomorphism of
functors F ∼= ΦE . Moreover, E is uniquely determined up to
isomorphism.

All exact functors Db(X1) → Db(X2) obtained by deriving an
exact functor Coh(X1) → Coh(X2) satisfy the assumption.
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Categories

Let X be a separated scheme of finite type over k and let Z be
a subscheme of X which is proper over k.

DZ (Qcoh(X )) is the derived category of unbounded
complexes of quasi-coherent sheaves on X with
cohomologies supported on Z .

Perf(X ) is the full subcategory of D(Qcoh(X )) consisting
of complexes locally quasi-isomorphic to complexes of
locally free sheaves of finite type over X .

We set
PerfZ (X ) := DZ (Qcoh(X )) ∩ Perf(X ).
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Assumptions

Let X1 be a quasi-projective scheme containing a projective
subscheme Z1 such that OiZ1 ∈ Perf(X1), for all i > 0 (e.g.
either Z1 = X1 or X1 is smooth), and let X2 be a separated
scheme of finite type over a field k with a proper subscheme Z2.

F : PerfZ1(X1) → PerfZ2(X2) is an exact functor such that

1 For any A,B ∈ CohZ1(X1) ∩ PerfZ1(X1) and any integer
k < 0, Hom (F(A), F(B)[k ]) = 0;

2 For all A ∈ PerfZ1(X1) with trivial cohomologies in (strictly)
positive degrees, there is N ∈ Z such that

Hom (F(A), F(O|i|Z1(jH1))) = 0,

for any i < N and any j << i , where H1 is an ample divisor
on X1.
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The statement

Theorem (Canonaco–S.)

If X1, X2, Z1, Z2 and F are as above, then there exist
E ∈ Db

Z1×Z2
(Qcoh(X1 × X2)) and an isomorphism of functors

F ∼= Φs
E .

Moreover, if Xi is smooth quasi-projective, for i = 1, 2, and k is
perfect, then E is unique up to isomorphism.

Remark

Φs
E is the natural generalization of the notion of Fourier–Mukai

functor.
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Remarks

If Zi = Xi and Xi is smooth, then the assumption (2) on the
functor F is redundant. In particular we recover the previous
generalization of Orlov’s result involving only (∗).

If we just assume Xi = Zi (and no smoothness required!), we
get a generalization of a very nice (and important) recent result
by Lunts–Orlov.

Remark

As in Lunts–Orlov’s case, we also get results about the (strong)
uniqueness of dg-enhancements.
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