Fourier-Mukai functors: existence

Paolo Stellari

UNIVERSITÀ
DEGLI STUDI
DI MILANO

Bologna, September 2011

Outline

1 The smooth case

- Definitions

■ Results

Outline

1 The smooth case

- Definitions

■ Results

2 The supported case
■ The setting
■ The result

Outline

1 The smooth case

- Definitions
- Results

2 The supported case

- The setting
- The result

Derived categories (...roughly...)

Derived categories (...roughly...)

Let \mathbf{A} be an abelian category (e.g., mod- R, right R-modules, R an ass. ring with unity, and $\operatorname{Coh}(X)$).

Derived categories (...roughly...)

Let \mathbf{A} be an abelian category (e.g., mod- R, right R-modules, R an ass. ring with unity, and $\operatorname{Coh}(X)$).

Definition

The bounded derived category $\mathrm{D}^{b}(\mathbf{A})$ of the abelian category A is such that:

Derived categories (...roughly...)

Let \mathbf{A} be an abelian category (e.g., mod- R, right R-modules, R an ass. ring with unity, and $\operatorname{Coh}(X)$).

Definition

The bounded derived category $\mathrm{D}^{b}(\mathbf{A})$ of the abelian category A is such that:

■ Objects: complexes of objects in A;

Derived categories (...roughly...)

Let \mathbf{A} be an abelian category (e.g., mod- R, right R-modules, R an ass. ring with unity, and $\operatorname{Coh}(X)$).

Definition

The bounded derived category $\mathrm{D}^{b}(\mathbf{A})$ of the abelian category A is such that:

- Objects: complexes of objects in A;

■ Morphisms (roughly speaking): morphisms of complexes + morphisms which are iso on cohomology are iso in $\mathrm{D}^{\mathrm{b}}(\mathbf{A})$.

Derived categories (...roughly...)

Let \mathbf{A} be an abelian category (e.g., mod- R, right R-modules, R an ass. ring with unity, and $\operatorname{Coh}(X)$).

Definition

The bounded derived category $\mathrm{D}^{b}(\mathbf{A})$ of the abelian category A is such that:

■ Objects: complexes of objects in A;
■ Morphisms (roughly speaking): morphisms of complexes + morphisms which are iso on cohomology are iso in $\mathrm{D}^{\mathrm{b}}(\mathbf{A})$.

It is a triangulated category.

Triangulated categories (...roughly...)

Triangulated categories (...roughly...)

Definition

A category \mathbf{T} is triangulated if it is has an automorphism (called shift) [1] : $\mathbf{T} \rightarrow \mathbf{T}$, and a family of distinguished triangles $A \rightarrow B \rightarrow C \rightarrow A[1]$ satisfying certain axioms.

Triangulated categories (...roughly...)

Definition

A category \mathbf{T} is triangulated if it is has an automorphism (called shift) [1] : $\mathbf{T} \rightarrow \mathbf{T}$, and a family of distinguished triangles $A \rightarrow B \rightarrow C \rightarrow A[1]$ satisfying certain axioms.

Definition

A functor $\mathrm{F}: \mathbf{T} \rightarrow \mathbf{T}^{\prime}$ between triangulated categories is exact if it preserves shifts and distinguished triangles, up to isomorphism.

Triangulated categories (...roughly...)

Definition

A category \mathbf{T} is triangulated if it is has an automorphism (called shift) [1] : $\mathbf{T} \rightarrow \mathbf{T}$, and a family of distinguished triangles $A \rightarrow B \rightarrow C \rightarrow A[1]$ satisfying certain axioms.

Definition

A functor $\mathrm{F}: \mathbf{T} \rightarrow \mathbf{T}^{\prime}$ between triangulated categories is exact if it preserves shifts and distinguished triangles, up to isomorphism.

Given X, Y smooth projective varieties, a morphism $f: X \rightarrow Y$ and $\mathcal{E} \in \mathrm{D}^{\mathrm{b}}(X)$ one has the exact (derived!) functors:

Triangulated categories (...roughly...)

Definition

A category \mathbf{T} is triangulated if it is has an automorphism (called shift) [1] : $\mathbf{T} \rightarrow \mathbf{T}$, and a family of distinguished triangles $A \rightarrow B \rightarrow C \rightarrow A[1]$ satisfying certain axioms.

Definition

A functor $\mathrm{F}: \mathbf{T} \rightarrow \mathbf{T}^{\prime}$ between triangulated categories is exact if it preserves shifts and distinguished triangles, up to isomorphism.

Given X, Y smooth projective varieties, a morphism $f: X \rightarrow Y$ and $\mathcal{E} \in \mathrm{D}^{\mathrm{b}}(X)$ one has the exact (derived!) functors:
$\square f_{*}: \mathrm{D}^{\mathrm{b}}(X) \rightarrow \mathrm{D}^{\mathrm{b}}(Y)$ and $f^{*}: \mathrm{D}^{\mathrm{b}}(Y) \rightarrow \mathrm{D}^{\mathrm{b}}(X) ;$

Triangulated categories (...roughly...)

Definition

A category \mathbf{T} is triangulated if it is has an automorphism (called shift) [1] : $\mathbf{T} \rightarrow \mathbf{T}$, and a family of distinguished triangles $A \rightarrow B \rightarrow C \rightarrow A[1]$ satisfying certain axioms.

Definition

A functor $\mathrm{F}: \mathbf{T} \rightarrow \mathbf{T}^{\prime}$ between triangulated categories is exact if it preserves shifts and distinguished triangles, up to isomorphism.

Given X, Y smooth projective varieties, a morphism $f: X \rightarrow Y$ and $\mathcal{E} \in \mathrm{D}^{\mathrm{b}}(X)$ one has the exact (derived!) functors:
$\square f_{*}: \mathrm{D}^{\mathrm{b}}(X) \rightarrow \mathrm{D}^{\mathrm{b}}(Y)$ and $f^{*}: \mathrm{D}^{\mathrm{b}}(Y) \rightarrow \mathrm{D}^{\mathrm{b}}(X)$;
$\square \mathcal{E} \otimes(-): \mathrm{D}^{\mathrm{b}}(X) \rightarrow \mathrm{D}^{\mathrm{b}}(X)$.

Mukai's example (1981)

Mukai's example (1981)

Mukai studied a duality between $\mathrm{D}^{\mathrm{b}}(A)$ and $\mathrm{D}^{\mathrm{b}}(\hat{A})$ (here A is an abelian variety).

Mukai's example (1981)

Mukai studied a duality between $\mathrm{D}^{\mathrm{b}}(A)$ and $\mathrm{D}^{\mathrm{b}}(\hat{A})$ (here A is an abelian variety).

This is an equivalence

$$
\mathrm{F}: \mathrm{D}^{\mathrm{b}}(A) \longrightarrow \mathrm{D}^{\mathrm{b}}(\hat{A})
$$

such that $\mathrm{F}(-):=p_{*}\left(\mathcal{P} \otimes q^{*}(-)\right)$ where $\mathcal{P} \in \operatorname{Coh}(A \times \hat{A})$ is the universal Picard sheaf.

Mukai's example (1981)

Mukai studied a duality between $\mathrm{D}^{\mathrm{b}}(A)$ and $\mathrm{D}^{\mathrm{b}}(\hat{A})$ (here A is an abelian variety).

This is an equivalence

$$
\mathrm{F}: \mathrm{D}^{\mathrm{b}}(A) \longrightarrow \mathrm{D}^{\mathrm{b}}(\hat{A})
$$

such that $\mathrm{F}(-):=p_{*}\left(\mathcal{P} \otimes q^{*}(-)\right)$ where $\mathcal{P} \in \operatorname{Coh}(A \times \hat{A})$ is the universal Picard sheaf.

The inverse of F sends a skyscraper sheaf \mathcal{O}_{p} (here p is a closed point of \hat{A}) on \hat{A} to the degree 0 line bundle $L_{\mathrm{p}} \in \operatorname{Pic}^{0}(A)$ parametrized by p.

Fourier-Mukai functors

Fourier-Mukai functors

For X_{1} and X_{2} smooth projective varieties, we define the exact functor $\Phi_{\mathcal{E}}: \mathrm{D}^{\mathrm{b}}\left(X_{1}\right) \rightarrow \mathrm{D}^{\mathrm{b}}\left(X_{2}\right)$ as

$$
\Phi_{\mathcal{E}}(-):=\left(p_{2}\right)_{*}\left(\mathcal{E} \otimes p_{1}^{*}(-)\right),
$$

where $p_{i}: X_{1} \times X_{2} \rightarrow X_{i}$ is the natural projection and $\mathcal{E} \in \mathrm{D}^{\mathrm{b}}\left(X_{1} \times X_{2}\right)$.

Fourier-Mukai functors

For X_{1} and X_{2} smooth projective varieties, we define the exact functor $\Phi_{\mathcal{E}}: \mathrm{D}^{\mathrm{b}}\left(X_{1}\right) \rightarrow \mathrm{D}^{\mathrm{b}}\left(X_{2}\right)$ as

$$
\Phi_{\mathcal{E}}(-):=\left(p_{2}\right)_{*}\left(\mathcal{E} \otimes p_{1}^{*}(-)\right),
$$

where $p_{i}: X_{1} \times X_{2} \rightarrow X_{i}$ is the natural projection and $\mathcal{E} \in \mathrm{D}^{\mathrm{b}}\left(X_{1} \times X_{2}\right)$.

Definition

An exact functor $\mathrm{F}: \mathrm{D}^{\mathrm{b}}\left(X_{1}\right) \rightarrow \mathrm{D}^{\mathrm{b}}\left(X_{2}\right)$ is a Fourier-Mukai functor (or of Fourier-Mukai type) if there exist $\mathcal{E} \in \mathrm{D}^{\mathrm{b}}\left(X_{1} \times X_{2}\right)$ and an isomorphism of functors $\mathrm{F} \cong \Phi_{\mathcal{E}}$. The complex \mathcal{E} is called a kernel of F .

Motivations

Motivations

Assume that the base field is \mathbb{C}.

Motivations

Assume that the base field is \mathbb{C}.

1 Fourier-Mukai functors (and equivalences) act on singular cohomology and preserve several additional structures (special Hodge decompositions and a special pairing).

Motivations

Assume that the base field is \mathbb{C}.

1 Fourier-Mukai functors (and equivalences) act on singular cohomology and preserve several additional structures (special Hodge decompositions and a special pairing).

2 They also act on Hochschild homology and cohomology. Hence one may control (first order) deformations of the varieties and of the Fourier-Mukai kernel at the same time.

Motivations

Assume that the base field is \mathbb{C}.
1 Fourier-Mukai functors (and equivalences) act on singular cohomology and preserve several additional structures (special Hodge decompositions and a special pairing).

2 They also act on Hochschild homology and cohomology. Hence one may control (first order) deformations of the varieties and of the Fourier-Mukai kernel at the same time.

Example

(1) and (2) allowed to give a partial description of the group of autoequivalences for K3 surfaces as conjectured by Szendroi (Huybrechts-Macrì-S.).

Two basic questions

Two basic questions

1 Are all exact functors between the bounded derived categories of coherent sheaves on smooth projective varieties of Fourier-Mukai type?

Two basic questions

1 Are all exact functors between the bounded derived categories of coherent sheaves on smooth projective varieties of Fourier-Mukai type?

2 Is the kernel of a Fourier-Mukai functor unique (up to isomorphism)?

Two basic questions

1 Are all exact functors between the bounded derived categories of coherent sheaves on smooth projective varieties of Fourier-Mukai type?

2 Is the kernel of a Fourier-Mukai functor unique (up to isomorphism)?

Remark

A positive answer to the first one was conjectured by Bondal-Larsen-Lunts (and Orlov).

Outline

1 The smooth case

- Definitions

■ Results

2 The supported case

- The setting
- The result

Orlov's result

Orlov's result

The following partly answers the above questions.

Orlov's result

The following partly answers the above questions.

Theorem (Olov, 1997)

Let X_{1} and X_{2} be smooth projective varieties and let
$\mathrm{F}: \mathrm{D}^{\mathrm{b}}\left(X_{1}\right) \rightarrow \mathrm{D}^{\mathrm{b}}\left(X_{2}\right)$ be an exact fully faithful functor admitting a left adjoint. Then there exists a unique (up to isomorphim) $\mathcal{E} \in \mathrm{D}^{\mathrm{b}}\left(X_{1} \times X_{2}\right)$ such that $\mathrm{F} \cong \Phi_{\mathcal{E}}$.

Orlov's result

The following partly answers the above questions.

Theorem (Olov, 1997)

Let X_{1} and X_{2} be smooth projective varieties and let
$\mathrm{F}: \mathrm{D}^{\mathrm{b}}\left(X_{1}\right) \rightarrow \mathrm{D}^{\mathrm{b}}\left(X_{2}\right)$ be an exact fully faithful functor admitting a left adjoint. Then there exists a unique (up to isomorphim) $\mathcal{E} \in \mathrm{D}^{\mathrm{b}}\left(X_{1} \times X_{2}\right)$ such that $\mathrm{F} \cong \Phi_{\mathcal{E}}$.

Bondal-van den Bergh: the adjoints always exist in this special setting (i.e. X_{i} smooth projective)!

Full implies faithful (in this case)

Full implies faithful (in this case)

Aim: weaken the hypotheses of the theorem to get more general answers to (1)-(2).

Full implies faithful (in this case)

Aim: weaken the hypotheses of the theorem to get more general answers to (1)-(2).

Theorem (Canonaco-Orlov-S.)

Let X be a noetherian connected scheme, let \mathbf{T} be a triangulated category and let $\mathrm{F}: \mathrm{D}^{\mathrm{b}}(X) \longrightarrow \mathbf{T}$ be a full exact functor not isomorphic to the zero functor. Then F is also faithful.

Full implies faithful (in this case)

Aim: weaken the hypotheses of the theorem to get more general answers to (1)-(2).

Theorem (Canonaco-Orlov-S.)

Let X be a noetherian connected scheme, let \mathbf{T} be a triangulated category and let $\mathrm{F}: \mathrm{D}^{\mathrm{b}}(X) \longrightarrow \mathbf{T}$ be a full exact functor not isomorphic to the zero functor. Then F is also faithful.

Remark

- The result holds in much greater generality.

■ The faithfulness assumption is redundant.

The improvement in the smooth case

The improvement in the smooth case

Theorem (Canonaco-S., 2006)

Let X_{1} and X_{2} be smooth projective varieties and let
$\mathrm{F}: \mathrm{D}^{\mathrm{b}}\left(X_{1}\right) \rightarrow \mathrm{D}^{\mathrm{b}}\left(X_{2}\right)$ be an exact functor such that, for any
$\mathcal{F}, \mathcal{G} \in \operatorname{Coh}\left(X_{1}\right)$,
$(*) \quad \operatorname{Hom}_{\mathrm{D}^{\mathrm{b}}\left(X_{2}\right)}(\mathrm{F}(\mathcal{F}), \mathrm{F}(\mathcal{G})[j])=0$ if $j<0$.
Then there exist $\mathcal{E} \in \mathrm{D}^{\mathrm{b}}\left(X_{1} \times X_{2}\right)$ and an isomorphism of functors $\mathrm{F} \cong \Phi_{\mathcal{E}}$. Moreover, \mathcal{E} is uniquely determined up to isomorphism.

The improvement in the smooth case

Theorem (Canonaco-S., 2006)

Let X_{1} and X_{2} be smooth projective varieties and let
$\mathrm{F}: \mathrm{D}^{\mathrm{b}}\left(X_{1}\right) \rightarrow \mathrm{D}^{\mathrm{b}}\left(X_{2}\right)$ be an exact functor such that, for any
$\mathcal{F}, \mathcal{G} \in \operatorname{Coh}\left(X_{1}\right)$,
$(*) \quad \operatorname{Hom}_{\mathrm{D}^{\mathrm{b}}\left(X_{2}\right)}(\mathrm{F}(\mathcal{F}), \mathrm{F}(\mathcal{G})[j])=0$ if $j<0$.
Then there exist $\mathcal{E} \in \mathrm{D}^{\mathrm{b}}\left(X_{1} \times X_{2}\right)$ and an isomorphism of functors $\mathrm{F} \cong \Phi_{\mathcal{E}}$. Moreover, \mathcal{E} is uniquely determined up to isomorphism.

All exact functors $\mathrm{D}^{\mathrm{b}}\left(X_{1}\right) \rightarrow \mathrm{D}^{\mathrm{b}}\left(X_{2}\right)$ obtained by deriving an exact functor $\operatorname{Coh}\left(X_{1}\right) \rightarrow \boldsymbol{\operatorname { C o h }}\left(X_{2}\right)$ satisfy the assumption.

Outline

1 The smooth case

- Definitions
- Results

2 The supported case

- The setting
- The result

Categories

Categories

Let X be a separated scheme of finite type over \mathbb{k} and let Z be a subscheme of X which is proper over \mathbb{k}.

Categories

Let X be a separated scheme of finite type over \mathbb{k} and let Z be a subscheme of X which is proper over \mathbb{k}.

Categories

Let X be a separated scheme of finite type over \mathbb{k} and let Z be a subscheme of X which is proper over \mathbb{k}.

■ $\mathrm{D}_{Z}(\mathbf{Q} \operatorname{coh}(X))$ is the derived category of unbounded complexes of quasi-coherent sheaves on X with cohomologies supported on Z.

Categories

Let X be a separated scheme of finite type over \mathbb{k} and let Z be a subscheme of X which is proper over \mathbb{k}.

■ $\mathrm{D}_{Z}(\mathbf{Q} \operatorname{coh}(X))$ is the derived category of unbounded complexes of quasi-coherent sheaves on X with cohomologies supported on Z.

■ $\operatorname{Perf}(X)$ is the full subcategory of $\mathrm{D}(\operatorname{Qcoh}(X))$ consisting of complexes locally quasi-isomorphic to complexes of locally free sheaves of finite type over X.

Categories

Let X be a separated scheme of finite type over \mathbb{k} and let Z be a subscheme of X which is proper over \mathbb{k}.

■ $\mathrm{D}_{Z}(\mathbf{Q} \operatorname{coh}(X))$ is the derived category of unbounded complexes of quasi-coherent sheaves on X with cohomologies supported on Z.

■ $\operatorname{Perf}(X)$ is the full subcategory of $\mathrm{D}(\mathrm{Qcoh}(X))$ consisting of complexes locally quasi-isomorphic to complexes of locally free sheaves of finite type over X.

We set

$$
\operatorname{Perf}_{Z}(X):=\mathrm{D}_{Z}(\operatorname{Qcoh}(X)) \cap \operatorname{Perf}(X)
$$

Assumptions

Assumptions

Let X_{1} be a quasi-projective scheme containing a projective subscheme Z_{1} such that $\mathcal{O}_{i Z_{1}} \in \operatorname{Perf}\left(X_{1}\right)$, for all $i>0$ (e.g. either $Z_{1}=X_{1}$ or X_{1} is smooth), and let X_{2} be a separated scheme of finite type over a field \mathbb{k} with a proper subscheme Z_{2}.

Assumptions

Let X_{1} be a quasi-projective scheme containing a projective subscheme Z_{1} such that $\mathcal{O}_{i Z_{1}} \in \operatorname{Perf}\left(X_{1}\right)$, for all $i>0$ (e.g. either $Z_{1}=X_{1}$ or X_{1} is smooth), and let X_{2} be a separated scheme of finite type over a field \mathbb{k} with a proper subscheme Z_{2}.

F: $\operatorname{Perf}_{Z_{1}}\left(X_{1}\right) \rightarrow \operatorname{Perf}_{Z_{2}}\left(X_{2}\right)$ is an exact functor such that
1 For any $\mathcal{A}, \mathcal{B} \in \operatorname{Coh}_{Z_{1}}\left(X_{1}\right) \cap \operatorname{Perf}_{Z_{1}}\left(X_{1}\right)$ and any integer $k<0, \operatorname{Hom}(F(\mathcal{A}), F(\mathcal{B})[k])=0 ;$

2 For all $\mathcal{A} \in \operatorname{Perf}_{Z_{1}}\left(X_{1}\right)$ with trivial cohomologies in (strictly) positive degrees, there is $N \in \mathbb{Z}$ such that

$$
\operatorname{Hom}\left(F(\mathcal{A}), F\left(\mathcal{O}_{|i| Z_{1}}\left(j H_{1}\right)\right)\right)=0
$$

for any $i<N$ and any $j \ll i$, where H_{1} is an ample divisor on X_{1}.

Outline

1 The smooth case
■ Definitions

- Results

2 The supported case

- The setting
- The result

The statement

The statement

Theorem (Canonaco-S.)

If $X_{1}, X_{2}, Z_{1}, Z_{2}$ and F are as above, then there exist $\mathcal{E} \in \mathrm{D}_{Z_{1} \times Z_{2}}^{\mathrm{b}}\left(\operatorname{Qcoh}\left(X_{1} \times X_{2}\right)\right)$ and an isomorphism of functors

$$
\mathrm{F} \cong \Phi_{\mathcal{E}}^{S}
$$

Moreover, if X_{i} is smooth quasi-projective, for $i=1,2$, and \mathbb{k} is perfect, then \mathcal{E} is unique up to isomorphism.

The statement

Theorem (Canonaco-S.)

If $X_{1}, X_{2}, Z_{1}, Z_{2}$ and F are as above, then there exist $\mathcal{E} \in \mathrm{D}_{Z_{1} \times Z_{2}}^{\mathrm{b}}\left(\operatorname{Qcoh}\left(X_{1} \times X_{2}\right)\right)$ and an isomorphism of functors

$$
F \cong \Phi_{\mathcal{E}}^{S}
$$

Moreover, if X_{i} is smooth quasi-projective, for $i=1,2$, and \mathbb{k} is perfect, then \mathcal{E} is unique up to isomorphism.

Remark

$\Phi_{\mathcal{E}}^{S}$ is the natural generalization of the notion of Fourier-Mukai functor.

Remarks

Remarks

If $Z_{i}=X_{i}$ and X_{i} is smooth, then the assumption (2) on the functor F is redundant. In particular we recover the previous generalization of Orlov's result involving only (*).

Remarks

If $Z_{i}=X_{i}$ and X_{i} is smooth, then the assumption (2) on the functor F is redundant. In particular we recover the previous generalization of Orlov's result involving only (*).

If we just assume $X_{i}=Z_{i}$ (and no smoothness required!), we get a generalization of a very nice (and important) recent result by Lunts-Orlov.

Remarks

If $Z_{i}=X_{i}$ and X_{i} is smooth, then the assumption (2) on the functor F is redundant. In particular we recover the previous generalization of Orlov's result involving only (*).

If we just assume $X_{i}=Z_{i}$ (and no smoothness required!), we get a generalization of a very nice (and important) recent result by Lunts-Orlov.

Remark

As in Lunts-Orlov's case, we also get results about the (strong) uniqueness of dg-enhancements.

Applications

Applications

Using the theorem above, one proves that all autoequivalences of the following categories are of Fourier-Mukai type:

Applications

Using the theorem above, one proves that all autoequivalences of the following categories are of Fourier-Mukai type:

■ Fu-Yang and Keller-Yang: the category generated by a 1-spherical object.

■ Ishii-Ueda-Uehara: the category of A_{n}-singularities (already known; here we get a neat proof).

- Bayer-Macrì: local \mathbb{P}^{2} (relevant for Mirror Symmetry: it is a 3-Calabi-Yau category).

