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The definition

Let A be an abelian category (e.g., mod-R, right
R-modules, R an ass. ring with unity, and Coh(X )).

Define C(A) to be the (abelian) category of complexes of
objects in A. In particular:

Objects:

M• := {· · · −→ Mp−1 dp−1
−−−→ Mp dp

−→ Mp+1 −→ · · · }
Morphisms: sets of arrows f • := {f i}i∈Z making
commutative the following diagram

· · ·
d i−2

M• // M i−1

f i−1

��

d i−1
M• // M i

f i

��

d i
M• // M i+1

f i+1

��

d i+1
M• // · · ·

· · ·
d i−2

L• // Li−1
d i−1

L• // Li
d i

L• // Li+1
d i+1

L• // · · ·
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The definition

For a complex M• ∈ C(A), its i-th cohomology is

H i(M•) :=
ker (d i)

im(d i−1)
∈ A.

A morphism of complexes is a quasi-isomorphism (qis) if it
induces isomorphisms on cohomology.

Definition 1
The derived category D(A) of the abelian category A is
such that:

Objects: Ob(C(A)) = Ob(D(A));
Morphisms: (very) roughly speaking, obtained ‘by
inverting qis in C(A)’.
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Remarks

Important!
The category D(A) is triangulated. In particular, it has a shift
functor [i], for any i ∈ Z, and a set of distinguished or exact
triangles.

If we just consider bounded complexes, we get the bounded
derived category Db(A). Other possibilities are D−(A)
(bounded above complexes) and D+(A) (bounded below
complexes).

Exercise 2
Describe the bounded derived category of a closed point.
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Geometry

If X is a smooth projective variety over a field k (always
assume k = k !), set Db(X ) := Db(Coh(X )).

Exercise 3

Let C be a smooth complex curve. Show that any E ∈ Db(C)
is isomorphic to the direct sum of shifts of sheaves.

Proposition 4
If X is a smooth projective variety over k , then⊕

i Hom Db(X)(E ,F [i]) is finite dimensional, for any
E ,F ∈ Db(X ).

In this case, we say that Db(X ) is of finite type over k .
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Geometry

Define the Grothendieck group K (X ) of Db(X ) as the free
abelian group generated by the isomorphism classes of
objects of Db(X ) modulo the relation [E ] = [F ] + [G] for a
distinguished triangle F → E → G.

Exercise 5
Show K (X ) = K (Coh(X )) (more generally, for any abelian
category A...)

Using this, define the Euler-Poincaré pairing

χ : K (X )× K (X ) → Z

by χ([E ], [F ]) :=
∑

i(−1)i dim Hom Db(X)(E ,F [i]).
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χ : K (X )× K (X ) → Z

by χ([E ], [F ]) :=
∑

i(−1)i dim Hom Db(X)(E ,F [i]).



Derived
categories

and stability
structures

Paolo Stellari

Categories
Derived categories

t-structures

Stability
structures
Bridgeland’s
definition

Example 1: curves

Example 2: K3’s

KS definition

Geometry

Define the Grothendieck group K (X ) of Db(X ) as the free
abelian group generated by the isomorphism classes of
objects of Db(X ) modulo the relation [E ] = [F ] + [G] for a
distinguished triangle F → E → G.

Exercise 5
Show K (X ) = K (Coh(X )) (more generally, for any abelian
category A...)

Using this, define the Euler-Poincaré pairing
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Derived functors

Given a functor F : A → B between abelian categories, it is
not straightforward to ‘extend’ it to Db(A) → Db(B).

This is not automatic already for left or right exact functors.

Nevertheless, in the geometric setting, all the ‘basic
functors’ can be derived, i.e. defined on the level of the
bounded derived categories. For example, for X , Y smooth
finite-dimensional noetherian schemes:

Tensor product: −
L
⊗ − : Db(X )× Db(X ) → Db(X );

For a proper morphism f : X → Y ,
Rf∗ : Db(X ) → Db(Y );

For f as above, Lf ∗ : Db(Y ) → Db(X ).
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Derived functors

For X ,Y smooth projective varieties, special exact functors
Db(X ) → Db(Y ) are those of Fourier–Mukai type. That is,
those which are isomorphic to the functor

ΦE(−) := Rp∗

(
E

L
⊗ q∗(−)

)
,

for E ∈ Db(X × Y ) and p,q the natural projections.

Remark 6
Many classes of functors have been proved to be of
Fourier-Mukai type at different levels of generalities. Among
the authors who contributed to this, we mention: Orlov
(+Bondal-Van den Bergh), Kawamata, Canonaco-S. and
Ballard.
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Serre functor

Definition 7

For A an abelian category, a Serre functor of Db(A) is an
exact equivalence S : Db(A) → Db(A) such that, for any
E ,F ∈ Db(A), there is an isomorphism

ηE,F : Hom Db(A)(E ,F) → Hom Db(A)(F ,S(E))∨

of k -vector spaces which is functorial in E and F .

Some basic properties of Serre functors are the following:

They commute with equivalences (i.e., for
F : Db(A) → Db(B) an equivalence, SB ◦ F ∼= F ◦ SA);

For Db(A) of finite type, a Serre functor, if it exists, is
unique up to isomorphism.
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Serre functor

In the geometric setting, we can be more precise:

Proposition 8
If X is a smooth projective variety defined over k , then the
autoequivalence SX : Db(X ) → Db(X ) such that

SX (−) := (−)⊗ ωX [dim (X )],

where ωX is the dualizing line bundle, is a Serre functor.

Exercise 9
Use the Serre functor to show that, if X has trivial canonical
bundle, then χ is symmetric if dim (X ) is even and is
skewsymmetric otherwise.
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The definition

Question: Given the triangulated category Db(A), can we
produce abelian subcategories B ⊆ Db(A), possibly such
that A 6= B?

Definition 10

A t-structure on Db(A) is a pair (D≤0,D≥0) of full
subcategories such that, if we put D≤n := D≤0[−n] and
D≥n := D≥0[−n], we have

Hom Db(A)(D≤0,D≥1) = 0;

D≤0 ⊆ D≤1 and D≥1 ⊆ D≥0;

For any E ∈ Db(A) there exist F ∈ D≤0, G ∈ D≥1 and an
exact triangle

F → E → G.
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The definition

Definition 11

A t-structure (D≤0,D≥0) on Db(A) is bounded if

Db(A) = ∪i,j∈Z(D≤0[i] ∩ D≥0[j]).

Definition 12

The heart of a t-structure (D≤0,D≥0) on Db(A) is the full
subcategory B := D≤0 ∩ D≥0.

Proposition 13
The heart B is an abelian category.
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The standard t-structure

For Db(A) we can define the two full subcategories

D≤0 := {E ∈ Db(A) : H i(E) = 0 for i > 0}
D≥0 := {E ∈ Db(A) : H i(E) = 0 for i < 0}.

The pair (D≤0,D≥0) defines a bounded t-structure whose
heart is again A.

This is usually called the standard t-structure on Db(A).
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Tiltings (after Happel-Reiten-Smalo)

Definition 14
A torsion pair in an abelian category A is a pair of full
subcategories (T,F) of A which satisfy Hom A(T ,F) = 0, for
T ∈ T and F ∈ F, and such that, for every E ∈ A, there are
T ∈ T and F ∈ F and a short exact sequence

0 → T → E → F → 0.

Proposition 15

If (T,F) is a torsion pair in Db(A), then the full subcategory

B :=

{
E ∈ Db(A) :

• H i(E) = 0 for i 6∈ {−1,0},
• H−1(E) ∈ F and H0(E) ∈ T

}
is the heart of a bounded t-structure.
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The definition

Warning: For simplicity, we restrict ourselves to the case of
stability conditions on derived categories!

A stability condition on Db(A) is a pair σ = (Z ,P) where

Z : K (Db(A)) → C is a linear map (the central charge)

P(φ) ⊂ Db(A) are full additive subcategories for each
φ ∈ R

satisfying the following conditions:
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The definition

(B1) If 0 6= E ∈ P(φ), then Z (E) = m(E) exp(iπφ) for some
m(E) ∈ R>0.

(B2) P(φ+ 1) = P(φ)[1] for all φ.

(B3) Hom (E1, E2) = 0 for all Ei ∈ P(φi) with φ1 > φ2.

(B4) Any 0 6= E ∈ Db(A) admits a Harder–Narasimhan
filtration given by a collection of distinguished triangles

Ei−1 → Ei → Ai

with E0 = 0 and En = E such that Ai ∈ P(φi) with
φ1 > . . . > φn.



Derived
categories

and stability
structures

Paolo Stellari

Categories
Derived categories

t-structures

Stability
structures
Bridgeland’s
definition

Example 1: curves

Example 2: K3’s

KS definition

The definition

(B1) If 0 6= E ∈ P(φ), then Z (E) = m(E) exp(iπφ) for some
m(E) ∈ R>0.

(B2) P(φ+ 1) = P(φ)[1] for all φ.

(B3) Hom (E1, E2) = 0 for all Ei ∈ P(φi) with φ1 > φ2.

(B4) Any 0 6= E ∈ Db(A) admits a Harder–Narasimhan
filtration given by a collection of distinguished triangles

Ei−1 → Ei → Ai

with E0 = 0 and En = E such that Ai ∈ P(φi) with
φ1 > . . . > φn.



Derived
categories

and stability
structures

Paolo Stellari

Categories
Derived categories

t-structures

Stability
structures
Bridgeland’s
definition

Example 1: curves

Example 2: K3’s

KS definition

The definition

(B1) If 0 6= E ∈ P(φ), then Z (E) = m(E) exp(iπφ) for some
m(E) ∈ R>0.

(B2) P(φ+ 1) = P(φ)[1] for all φ.

(B3) Hom (E1, E2) = 0 for all Ei ∈ P(φi) with φ1 > φ2.

(B4) Any 0 6= E ∈ Db(A) admits a Harder–Narasimhan
filtration given by a collection of distinguished triangles

Ei−1 → Ei → Ai

with E0 = 0 and En = E such that Ai ∈ P(φi) with
φ1 > . . . > φn.



Derived
categories

and stability
structures

Paolo Stellari

Categories
Derived categories

t-structures

Stability
structures
Bridgeland’s
definition

Example 1: curves

Example 2: K3’s

KS definition

The definition

(B1) If 0 6= E ∈ P(φ), then Z (E) = m(E) exp(iπφ) for some
m(E) ∈ R>0.

(B2) P(φ+ 1) = P(φ)[1] for all φ.

(B3) Hom (E1, E2) = 0 for all Ei ∈ P(φi) with φ1 > φ2.

(B4) Any 0 6= E ∈ Db(A) admits a Harder–Narasimhan
filtration given by a collection of distinguished triangles

Ei−1 → Ei → Ai

with E0 = 0 and En = E such that Ai ∈ P(φi) with
φ1 > . . . > φn.
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Further definitions

The non-zero objects in the abelian category P(φ) are
the semistable objects of phase φ . The objects Ai in
(B4) are the semistable factors of E .

The minimal objects of P(φ) (i.e. those with no proper
subobjects) are called stable of phase φ.

The category P((0,1]), generated by the semistable
objects of phase in (0,1], is called the heart of σ.
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Basic properties

One could alternative start with an abelian category A and a
slope function Z : K (A) → C such that, for 0 6= E ∈ A,

Z ([E ]) ∈ {z ∈ C \ {0} : z = |z|exp(iπφ), 0 < φ ≤ 1}.

Define
φ(E) :=

1
π

arg(Z (E)) ∈ (0,1].

An object E ∈ A is semistable if

φ(F) ≤ φ(E)

for any proper subobject F ⊆ E .

A slope function has the Harder–Narasimhan property if it
has HN-filtrations with semistable factors.
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Basic properties

Proposition 16

To exhibit a stability condition on Db(A), it is enough to give
a bounded t-structure on Db(A) with heart B;
a group homomorphism Z : K (B) → C such that
Z (E) ∈ H, for all 0 6= E ∈ B, and with the
Harder–Narasimhan property.
(Here H := {z ∈ C \ {0} : z = |z|exp(iπφ), 0 < φ ≤ 1}.)

All stability conditions are assumed to be locally finite.
Hence every object in P(φ) has a finite Jordan–Hölder
filtration.

Stab(Db(A)) is the set of locally finite stability conditions.
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filtration.

Stab(Db(A)) is the set of locally finite stability conditions.



Derived
categories

and stability
structures

Paolo Stellari

Categories
Derived categories

t-structures

Stability
structures
Bridgeland’s
definition

Example 1: curves

Example 2: K3’s

KS definition

Basic properties

Proposition 16

To exhibit a stability condition on Db(A), it is enough to give
a bounded t-structure on Db(A) with heart B;
a group homomorphism Z : K (B) → C such that
Z (E) ∈ H, for all 0 6= E ∈ B, and with the
Harder–Narasimhan property.
(Here H := {z ∈ C \ {0} : z = |z|exp(iπφ), 0 < φ ≤ 1}.)

All stability conditions are assumed to be locally finite.
Hence every object in P(φ) has a finite Jordan–Hölder
filtration.

Stab(Db(A)) is the set of locally finite stability conditions.



Derived
categories

and stability
structures

Paolo Stellari

Categories
Derived categories

t-structures

Stability
structures
Bridgeland’s
definition

Example 1: curves

Example 2: K3’s

KS definition

Basic properties

Stab(Db(A)) carries a natural topology with the following
important property:

Theorem 17 (Bridgeland)

For each connected component Σ ⊆ Stab(Db(A)), there is a
linear subspace V (Σ) ⊆ Hom (K (Db(A)),C) with a well
defined topology and a local homeomorphism
Z : Σ → V (Σ) which maps a stability condition (Z ,P) to its
central charge Z .

As explained later in the examples, for A = Coh(X ), (up to
some modifications...) Stab(Db(X )) is a finite dimensional
complex manifold.



Derived
categories

and stability
structures

Paolo Stellari

Categories
Derived categories

t-structures

Stability
structures
Bridgeland’s
definition

Example 1: curves

Example 2: K3’s

KS definition

Basic properties

Stab(Db(A)) carries a natural topology with the following
important property:

Theorem 17 (Bridgeland)

For each connected component Σ ⊆ Stab(Db(A)), there is a
linear subspace V (Σ) ⊆ Hom (K (Db(A)),C) with a well
defined topology and a local homeomorphism
Z : Σ → V (Σ) which maps a stability condition (Z ,P) to its
central charge Z .

As explained later in the examples, for A = Coh(X ), (up to
some modifications...) Stab(Db(X )) is a finite dimensional
complex manifold.



Derived
categories

and stability
structures

Paolo Stellari

Categories
Derived categories

t-structures

Stability
structures
Bridgeland’s
definition

Example 1: curves

Example 2: K3’s

KS definition

Basic properties

Stab(Db(A)) carries a natural topology with the following
important property:

Theorem 17 (Bridgeland)

For each connected component Σ ⊆ Stab(Db(A)), there is a
linear subspace V (Σ) ⊆ Hom (K (Db(A)),C) with a well
defined topology and a local homeomorphism
Z : Σ → V (Σ) which maps a stability condition (Z ,P) to its
central charge Z .

As explained later in the examples, for A = Coh(X ), (up to
some modifications...) Stab(Db(X )) is a finite dimensional
complex manifold.



Derived
categories

and stability
structures

Paolo Stellari

Categories
Derived categories

t-structures

Stability
structures
Bridgeland’s
definition

Example 1: curves

Example 2: K3’s

KS definition

Basic properties

Stab(Db(A)) carries a natural topology with the following
important property:

Theorem 17 (Bridgeland)

For each connected component Σ ⊆ Stab(Db(A)), there is a
linear subspace V (Σ) ⊆ Hom (K (Db(A)),C) with a well
defined topology and a local homeomorphism
Z : Σ → V (Σ) which maps a stability condition (Z ,P) to its
central charge Z .

As explained later in the examples, for A = Coh(X ), (up to
some modifications...) Stab(Db(X )) is a finite dimensional
complex manifold.



Derived
categories

and stability
structures

Paolo Stellari

Categories
Derived categories

t-structures

Stability
structures
Bridgeland’s
definition

Example 1: curves

Example 2: K3’s

KS definition

Group actions

There are two groups acting naturally on Stab (Db(A)) (and
whose actions commute):

The left action of the group Aut(Db(A)) of exact
autoequivalences of Db(A). Indeed, Φ ∈ Aut(Db(A))
sends (Z ,P) to (Z ′,P ′), where

Z ′([E ]) = Z ([Φ−1(E)]) P ′(φ) = Φ(P(φ)).

The right action of the universal cover G̃l
+

2 (R) of
Gl+2 (R). G̃l

+

2 (R) is the set of pairs (T , f ) where
f : R → R is an increasing map with
f (φ+ 1) = f (φ) + 1, and T : R2 → R2 is an
orientation-preserving linear isomorphism, such that
the induced maps on S1 = R/2Z = (R2 \ 0)/R > 0 are
the same. So Z ′ = T−1 ◦ Z and P ′(φ) = P(f (φ)).
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Preliminaries

For X a smooth projective variety (defined over C), define
the numerical Grothendieck group to be the quotient

N (X ) := K (X )/K (X )⊥,

where ⊥ is with respect to the pairing χ.

A stability condition is numerical if Z factors through
v(−) := ch (−) ·

√
td(x) : K (X ) → N (X ). StabN (Db(X )) is

the finite dimensional complex manifold parametrizing
numerical stability conditions and
dim C StabN (Db(X )) = dim C(N (X )⊗ C).

Example 18
If X is a smooth curve than N (X ) ∼= Z⊕ Z and so
StabN (Db(X )) has dimension 2.
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Examples of stability conditions
(Bridgeland)

Let C be a smooth curve of genus g > 0 defined over C.
The abelian category Coh(C) is the heart of a bounded
t-structure.

As N (C) = H0(C,Z)⊕ H2(C,Z), define Z : N (C) → C as

E 7→ −deg(E) + i rk (E).

Exercise 19
Show that Z as above is a slope function.

The HN-property follows easily from the existence of
HN-filtrations for the slope stability (recall that µ(E) = deg(E)

rk (E) ).
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The space of stability conditions

Theorem 20 (Bridgeland, Macrı̀)
If C is a curve of genus g > 0 defined over C, then the
action of G̃l

+

2 (R) on StabN (Db(X )) is free and transitive. In
particular, StabN (Db(X )) ∼= G̃l

+

2 (R).

Note: The case of P1 was treated independently by Okada
and Macrı̀.
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Sketch of the proof

Gorodentsev–Kuleshov–Rudakov: If E ∈ Coh(C) sits
in a triangle

F → E → G,

with F ,G ∈ Db(C) and Hom≤0(F ,G) = 0, then
E ,G ∈ Coh(C) as well.

From this one deduces that the skyscraper sheaves Ox
are all stable in any stability condition. Indeed, one
proves that Ox is semistable and all its stable factors
are isomorphic. By the above results they are in
Coh(C) and so isomorphic to Ox .

By the same argument it follows that all line bundles
are stable in all stability conditions.
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Sketch of the proof

Take σ = (Z ,P) and a line bundle L. Let φ and ψ be the
phases of the stable objects L and Ox .

The existence of the maps L → Ox and Ox → L[1]
gives the inequalities ψ − 1 ≤ φ ≤ ψ. This implies that
Z (seen as a map N (C)⊗ R → R2 ∼= C) is an
orientation preserving isomorphism.

Hence by acting by G̃l
+

2 (R), we can assume that
Z = −deg(E) + i rk (E) and that all skyscraper sheaves
are stable of phase 1. This implies that P((0,1]), the
heart of the stability condition, is Coh(C).
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Geometry

Definition 21
A K3 surface is a smooth Kähler (complex) surface X such
that:

X is simply connected.
The canonical bundle ωX is trivial.

Some examples are
Quartics in P3 and double covers of P2 ramified along a
sextic.
Kummer surfaces (i.e. crepant resolutions of the
quotient of an abelian surface by the involution
a 7→ −a).

Note: We restrict ourselves to projective ones!
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Geometry

For X a K3, N (X ) ∼= Z⊕ρ, with 3 ≤ ρ ≤ 22. All values are
realized!

N (X ) is actually the algebraic part of the total cohomology.

H∗(X ,Z) is endowed with a natural symmetric bilinear form,
called Mukai pairing:

〈α, β〉 := α2 ∪ β2 − α0 ∪ β4 − α4 ∪ β0,

for α = (α0, α2, α4) and β := (β0, β2, β4) in H0 ⊕ H2 ⊕ H4.
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Stability - Bad news

The main difference with the curve case is:

Proposition 22
If X is a smooth complex projective variety of dimension
d ≥ 2, then there are no numerical stability conditions on
Db(X ) with heart Coh(X ).

Reason: After reducing to the case d = 2, one observes
that it is already impossible to have a slope function on
Coh(X ).
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Stability - Examples

Let X be a K3 surface and let β, ω ∈ Pic (X )⊗Q. Assume
moreover ω to be ample.

Define Zβ,ω : K (X ) → C as

Z (E) := 〈exp(β + iω), v(E)〉.

Let T,F ⊆ Coh(X ) be full additive subcategories:

The non-trivial objects in T are the sheaves such that
their torsion-free part have µω-semistable
Harder–Narasimhan factors of slope µω > β · ω.
A non-trivial sheaf E is an object in F if E is torsion-free
and every µω-semistable Harder–Narasimhan factor of
E has slope µω ≤ β · ω.

One shows that (T,F) defines a torsion pair.
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Stability - Examples

Define the heart of the induced t-structure as the abelian
category

Aβ,ω :=

E ∈ Db(X ) :
• H i(E) = 0 for i 6∈ {−1,0},
• H−1(E) ∈ F,
• H0(E) ∈ T

 .

Lemma 23
Assume β, ω ∈ Pic (X )⊗Q and ω ample such that ω · ω > 2.
The map Zβ,ω is a stability function on Aβ,ω with the HN
property. Moreover, it defines a numerical locally finite
stability condition σβ,ω.

Note: one could impose a weaker condition on Zβ,ω.
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The main result

Define:

P(X ) ⊆ N (X )⊗ C consisting of those vectors whose
real and imaginary parts span positive definite
two-planes in N (X )⊗ R;

P+(X ) ⊂ P(X ) denote the connected component
containing vectors of the form exp(β + iω), where
ω ∈ Pic (X )⊗Q is ample;

∆(X ) = {δ ∈ N (X ) : 〈δ, δ〉 = −2};

P+
0 (X ) = P+(X ) \

⋃
δ∈∆(X) δ

⊥ ⊆ N (X )⊗ C.

Any autoequivalence of Db(X ) induces an Hodge
isometry on cohomology. Denote by Aut 0(Db(X )) the
subgroup acting trivially.
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The main result

Theorem 24 (Bridgeland)

There is a connected component Stab †(Db(X )) of
StabN (Db(X )) mapped by Z onto P+

0 (X ). Moreover, the
induced map Z : Stab †(Db(X )) → P+

0 (X ) is a covering map,
and the subgroup of Aut 0(Db(X )) which preserves the
connected component Stab †(Db(X )) acts freely on
Stab †(Db(X )) and is the group of deck transformations of Z.

Conjecture 25 (Bridgeland)

The action of Aut (Db(X )) on StabN (Db(X )) preserves the
connected component Stab †(Db(X )). Moreover
Stab †(Db(X )) is simply-connected.
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Remarks

Huybrechts-Macrı̀-S.: The conjecture has been verified for

Generic non-algebraic K3 surfaces (i.e. such that
Pic (X ) = 0);

Generic projective twisted K3 surfaces (the twist is
given by an element of the Brauer group of the surface).

Bridgeland: As a consequence of the conjecture we get
the following short exact sequence

1 → π1(P+
0 (X )) → Aut (Db(X )) → O+(H̃(X ,Z)) → 1,

where O+(H̃(X ,Z)) is the group of orientation preserving
Hodge isometries of the total cohomology of X .
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Remarks

The morphism Π : Aut (Db(X )) → O(H̃(X ,Z)) sends an
autoequivalence to the induced Hodge isometry.

The fact that Π should factor through a surjective morphism
onto O+(H̃(X ,Z)) was previously conjectured by Szendoi
based on some results by Orlov, Mukai,...

Huybrechts-Macrı̀-S.: Szendroi’s conjecture holds true.

Warning: To prove this, we need anyhow a (tiny) part of
Bridgeland’s theory of stability conditions!
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The definition (after Kontsevich-Soibelman)

Denote by C an ind-constructible weakly unital triangulated
A∞-category over a field k .

A data stability structure is given by the data:
An ind-constructible homomorphism cl : K (C) → Γ,
where Γ ∼= Zn is a free abelian group of finite rank
endowed with a bilinear form 〈−,−〉 : Γ× Γ → Z such
that for any two objects E ,F ∈ Ob(C),

〈cl(E), cl(F)〉 = χ(E ,F);

An additive map Z : Γ → C, called the central charge;
A collection Css of (isomorphism classes of) non-zero
objects in C called semistable, such that Z (E) 6= 0 for
any E ∈ Css;
A choice of a phase for Z (E), where E ∈ Css.



Derived
categories

and stability
structures

Paolo Stellari

Categories
Derived categories

t-structures

Stability
structures
Bridgeland’s
definition

Example 1: curves

Example 2: K3’s

KS definition

The definition (after Kontsevich-Soibelman)

Denote by C an ind-constructible weakly unital triangulated
A∞-category over a field k .

A data stability structure is given by the data:
An ind-constructible homomorphism cl : K (C) → Γ,
where Γ ∼= Zn is a free abelian group of finite rank
endowed with a bilinear form 〈−,−〉 : Γ× Γ → Z such
that for any two objects E ,F ∈ Ob(C),

〈cl(E), cl(F)〉 = χ(E ,F);

An additive map Z : Γ → C, called the central charge;
A collection Css of (isomorphism classes of) non-zero
objects in C called semistable, such that Z (E) 6= 0 for
any E ∈ Css;
A choice of a phase for Z (E), where E ∈ Css.



Derived
categories

and stability
structures

Paolo Stellari

Categories
Derived categories

t-structures

Stability
structures
Bridgeland’s
definition

Example 1: curves

Example 2: K3’s

KS definition

The definition (after Kontsevich-Soibelman)

Denote by C an ind-constructible weakly unital triangulated
A∞-category over a field k .

A data stability structure is given by the data:

An ind-constructible homomorphism cl : K (C) → Γ,
where Γ ∼= Zn is a free abelian group of finite rank
endowed with a bilinear form 〈−,−〉 : Γ× Γ → Z such
that for any two objects E ,F ∈ Ob(C),

〈cl(E), cl(F)〉 = χ(E ,F);

An additive map Z : Γ → C, called the central charge;
A collection Css of (isomorphism classes of) non-zero
objects in C called semistable, such that Z (E) 6= 0 for
any E ∈ Css;
A choice of a phase for Z (E), where E ∈ Css.



Derived
categories

and stability
structures

Paolo Stellari

Categories
Derived categories

t-structures

Stability
structures
Bridgeland’s
definition

Example 1: curves

Example 2: K3’s

KS definition

The definition (after Kontsevich-Soibelman)

Denote by C an ind-constructible weakly unital triangulated
A∞-category over a field k .

A data stability structure is given by the data:
An ind-constructible homomorphism cl : K (C) → Γ,
where Γ ∼= Zn is a free abelian group of finite rank
endowed with a bilinear form 〈−,−〉 : Γ× Γ → Z such
that for any two objects E ,F ∈ Ob(C),

〈cl(E), cl(F)〉 = χ(E ,F);

An additive map Z : Γ → C, called the central charge;
A collection Css of (isomorphism classes of) non-zero
objects in C called semistable, such that Z (E) 6= 0 for
any E ∈ Css;
A choice of a phase for Z (E), where E ∈ Css.



Derived
categories

and stability
structures

Paolo Stellari

Categories
Derived categories

t-structures

Stability
structures
Bridgeland’s
definition

Example 1: curves

Example 2: K3’s

KS definition

The definition (after Kontsevich-Soibelman)

Denote by C an ind-constructible weakly unital triangulated
A∞-category over a field k .

A data stability structure is given by the data:
An ind-constructible homomorphism cl : K (C) → Γ,
where Γ ∼= Zn is a free abelian group of finite rank
endowed with a bilinear form 〈−,−〉 : Γ× Γ → Z such
that for any two objects E ,F ∈ Ob(C),

〈cl(E), cl(F)〉 = χ(E ,F);

An additive map Z : Γ → C, called the central charge;

A collection Css of (isomorphism classes of) non-zero
objects in C called semistable, such that Z (E) 6= 0 for
any E ∈ Css;
A choice of a phase for Z (E), where E ∈ Css.



Derived
categories

and stability
structures

Paolo Stellari

Categories
Derived categories

t-structures

Stability
structures
Bridgeland’s
definition

Example 1: curves

Example 2: K3’s

KS definition

The definition (after Kontsevich-Soibelman)

Denote by C an ind-constructible weakly unital triangulated
A∞-category over a field k .

A data stability structure is given by the data:
An ind-constructible homomorphism cl : K (C) → Γ,
where Γ ∼= Zn is a free abelian group of finite rank
endowed with a bilinear form 〈−,−〉 : Γ× Γ → Z such
that for any two objects E ,F ∈ Ob(C),

〈cl(E), cl(F)〉 = χ(E ,F);

An additive map Z : Γ → C, called the central charge;
A collection Css of (isomorphism classes of) non-zero
objects in C called semistable, such that Z (E) 6= 0 for
any E ∈ Css;

A choice of a phase for Z (E), where E ∈ Css.



Derived
categories

and stability
structures

Paolo Stellari

Categories
Derived categories

t-structures

Stability
structures
Bridgeland’s
definition

Example 1: curves

Example 2: K3’s

KS definition

The definition (after Kontsevich-Soibelman)

Denote by C an ind-constructible weakly unital triangulated
A∞-category over a field k .

A data stability structure is given by the data:
An ind-constructible homomorphism cl : K (C) → Γ,
where Γ ∼= Zn is a free abelian group of finite rank
endowed with a bilinear form 〈−,−〉 : Γ× Γ → Z such
that for any two objects E ,F ∈ Ob(C),

〈cl(E), cl(F)〉 = χ(E ,F);

An additive map Z : Γ → C, called the central charge;
A collection Css of (isomorphism classes of) non-zero
objects in C called semistable, such that Z (E) 6= 0 for
any E ∈ Css;
A choice of a phase for Z (E), where E ∈ Css.



Derived
categories

and stability
structures

Paolo Stellari

Categories
Derived categories

t-structures

Stability
structures
Bridgeland’s
definition

Example 1: curves

Example 2: K3’s

KS definition

The definition (after Kontsevich-Soibelman)

The data must satisfy the following axioms:

(KS1) For all E ∈ Css and for all n ∈ Z, E [n] ∈ Css and
φ(Z (E [n])) = φ(Z (E)) + n;

(KS2) For all E1, E2 ∈ Css with φ(E1) > φ(E2) we have
Hom (E1, E2) = 0;

(KS3) For any E ∈ Ob(C), there exist n ≥ 0 and a chain of
morphisms 0 = E0 → E1 → · · · → En = E (HN filtration)
such that Fi := Cone(Ei−1 → Ei), for i = 1, . . . ,n are
semistable and φ(F1) > φ(F2) > · · · > φ(Fn);
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The definition (after Kontsevich-Soibelman)

(KS4) For each γ ∈ Γ \ {0}, the set of isomorphism classes of
a Css

γ ⊂ Ob(C)γ consisting of semistable objects E
defined over k and such that cl(E) = γ and φ(E) is
fixed, is a constructible set;

(KS5) (Support Property) For a norm ‖ − ‖ on Γ⊗ R, there
exists C > 0 such that for all E ∈ Css one has
‖ cl(E) ‖≤ C|Z (E)|.
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Remarks

The forgetting map Stab (C) → Hom (Γ,C) sending a
stability structure to Z is a local homeomorphism.

Hence, Stab (C) is a complex manifold, not necessarily
connected.

Due to the support property, all stability structures are
locally finite.
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