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The geometric setting

Let X be a smooth projective
variety defined over an
algebraically closed field K.

Example

Consider, for example, the zero
locus of

xd
0 + . . .+ xd

n

in the projective space Pn
K, for

an integer d ≥ 1.

(Vague) Question

How do we categorize X?

Find a category,
associated to X ,
which encodes
important bits

of its geometry!
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The geometric setting

In a more precise form,
consider the (abelian!)
category Coh(X ) of coherent
sheaves on X :

They have locally a finite
presentation;

The abelian structure on
Coh(X ) provides the
relevant notion of short
exact sequence:

0 → E1 → E2 → E3 → 0.

Example

The local description
mentioned before can be
thought as follows.

Let R be a noetherian ring. An
R-module M is coherent if
there exists an exact sequence

R⊕k1 → R⊕k2 → M → 0,

for some non-negative integers
k1, k2.
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Coherent sheaves are too much

We then have the following (simplified version of a) classical
result:

Theorem (Gabriel)

Let X1 and X2 be smooth projective schemes over K. Then
X1 ∼= X2 if and only if there is an equivalence of abelian
categories Coh(X1) ∼= Coh(X2).

It has been generalized in
various contexts by Antieau,
Canonaco-S., Perego, . . ..

Coh(X ) encodes too much
of the geometry of X !
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Looking for alternatives

Aim

We would like to associate to X a category with a nice
structure which weakly encodes the geometry of X (not just
up to isomorphism).

For example, the categories associated to X1 and to X2 must be
close if

X1 and X2 are nicely related by birational transformations;

One of them is a moduli space on the other one (i.e. it
parametrizes objects defined on the second one).



8

Looking for alternatives

Let us enlarge the category and look for the bounded derived
category of coherent sheaves

Db(X ) := Db(Coh(X ))

on X .

Objects: bounded complexes of coherent sheaves

. . . → 0 → E−i → E−i+1 → . . . → Ek−1 → Ek → 0 → . . .

Morphisms: slightly more complicated then morphisms of
complexes (...but we do not care here...).
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Basic operations

Given a complex E ∈ Db(X ), we can shift it to the left
(E ⇝ E [1]) or to the right (E ⇝ E [−1]).

We can take direct sums E1 ⊕ E2 and direct summands of
E ∈ Db(X ).

Db(X ) is not abelian but it is triangulated: short exact
sequences are replaced by (non functorial!) distinguished
triangles

E1 → E2 → E3 → E1[1].

We say that E2 is an extension of E1 and E3.

Important construction

For A ⊆ Db(X ), we take the category 〈A〉 generated by A (i.e.
the smallest full triang. subcat. of Db(X ) containing A and
closed under shifts, extensions, direct sums and summands).
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Summary

Coh(X )
is too much!

A new hope: Db(X )

How do we
describe
objects of

Db(X )?

How do we
understand

the structure
of Db(X )?

Stability

Applications
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How do we describe objects of Db(X )?

Let us go back to a special instance of the first example:

Example (n = 2, d ≥ 1, K = C)

Consider the planar curve C which is the zero locus of

xd
0 + xd

1 + xd
2

in the projective space P2.

Take E ∈ Db(C) of the form

. . . → E i−1 d i−1
−→ E i d i

−→ E i+1 → . . .

and define

Hi(E) :=
ker (d i)

Im(d i−1)
∈ Coh(C).
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How do we describe objects of Db(X )?

In our example, we then have an isomorphism in Db(C)

E ∼=


i

Hi(E)[−i].

On the other hand, each F ∈ Coh(C) splits as
F ∼= Ftf ⊕ Ftor, where Ftf is locally free and Ftor is supported
on points.

In conclusion: each E ∈ Db(C) is a direct sum of shifted
locally free or torsion sheaves.

Warning 1

For higher dimensional varieties, this is false!
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How do we understand the structure of Db(X )?

We say that Db(X ) has a semiorthogonal decompisition

Db(X ) = 〈A1, . . . ,Ak 〉

if

Db(X ) is generated by extensions, shifts, direct sums and
summands by the objects in A1, . . . ,Ak ;

There are no Homs from right to left between the k
subcategories:

A1



A2







· · ·






Ak






15

How do we understand the structure of Db(X )?

Consider again the case of the planar curve C

xd
0 + xd

1 + xd
2 = 0.

d = 1, 2
Genus g = 0

We have

Db(C) = 〈OC ,OC(1)〉

where

〈OC(i)〉 ∼= Db(pt)

for i = 0, 1.

d = 3
Genus g = 1

Db(C) is indec.

But interesting
autoequivalece
group.

d ≥ 4
Genus g ≥ 2

Db(C) is indec.

But uninteresting
autoequivalece
group.
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How do we understand the structure of Db(X )?

Conclusion

In general, when X is a Fano variety (in our standing example,
we want d − n − 1 < 0) we look for interesting decompositions,
hoping that:

The components are simpler and of ‘smaller dimension’;

Get a dimension reduction: a component encodes much of
the geometry of X .

Warning 2

Semiorthogonal decompositions are in general non-canonical!
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Summary

Warning 1
Difficult to describe

objects

Warning 2
Difficult to describe

the structure of Db(X )

We need
more structure

on Db(X )!

Stability
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Back to sheaves

Take n = 2 in our example (but this can make it work for any
smooth projective variety!).

The idea is that we want to filter any coherent sheaf in a
canonical way!

More precisely:

We have an abelian category Coh(C).

We define a function

µslope(−) :=
deg(−)

rk (−)

(or +∞ when the denominator is 0), defined on Coh(C).



20

Back to sheaves

Definition

A sheaf E ∈ Coh(C) is (semi)stable if, for all non-trivial
subsheaves F ↩→ E such that rk(F ) < rk(E), we have

µslope(F ) < (≤)µslope(E)

Harder–Narasimhan filtration

Any sheaf E has a filtration

0 = E0 ↩→ E1 ↩→ . . . ↩→ En−1 ↩→ En = E

such that
The quotient Ei+1/Ei is semistable, for all i ;
µslope(E1/E0) > . . . > µslope(En/En−1).
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From sheaves to complexes

Question

Can we have something similar for objects in Db(X )?

Mathematical Physics
Homological Mirror Symmetry

(Kontsevich)

Birational geometry
Homological MMP

(Bondal, Orlov, Kawamata,...)

Bridgeland
stability
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Stability conditions

Let us start discussing the general setting: we do not even
need to work with the specific triangulated category Db(X )!

Let T be a triangulated category;

Let Γ be a free abelian group of
finite rank with a surjective map
v : K (T) → Γ.

Example

T = Db(C), for C a
smooth projective curve.

Γ = N(C) = H0 ⊕ H2

with

v = (rk, deg)

A Bridgeland stability condition on T is a pair σ = (A,Z ):
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Stability conditions

A is the heart of a
bounded t-structure on T;

Z : Γ → C is a group
homomorphism

Example

A = Coh(C)

Z (v(−)) = −deg +
√
−1rk.

such that, for any 0 ∕= E ∈ A,

1 Z (v(E)) ∈ R>0e(0,1]π
√
−1;

2 E has a Harder-Narasimhan filtration with respect to
µσ(−) = −Re(Z )(−)

Im(Z )(−) (or +∞);

3 Support property (Kontsevich-Soibelman): wall and
chamber structure with locally finitely many walls.
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Stability conditions

Warning 3

The example is somehow misleading: it only works in
dimension 1!

The following is a remarkable result:

Theorem (Bridgeland)

If non-empty, the space Stab(T) parametrizing stability
conditions on T is a complex manifold of dimension rk(Γ).
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Stability conditions

Warning 4

It is a very difficult problem to construct stability conditions!

It is solved mainly in these cases:

Curves (Bridgeland, Macrı̀);

Surfaces over C (Bridgeland, Arcara Bertram), surface in
positive characteristic (only partially solved);

Fano threefolds (Bernardara-Macrı̀-Schmidt-Zhao, Li);

Threefolds with trivial canonical bundle: abelian 3-folds
(Maciocia-Piyaratne, Bayer-Macrı̀-S.), Calabi-Yau
(Bayer-Macrı̀-S., Li);

Fourfolds: in general is a big mistery!
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Main idea

We want to combine all the ideas we discussed so far:

Semiorthogonal decompositions

Stability conditions

Geometry of
cubic 4-folds
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The setting

Let X be a cubic fourfold (i.e. a smooth hypersurface of
degree 3 in P5). Let H be a hyperplane section.

Most of the time defined over C but, for some results, defined
over a field K = K with char(K) ∕= 2.

Example (d = 3 and n = 5)

Consider, for example the zero locus of

x3
0 + . . .+ x3

5 = 0

in the projective space P5.
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Homological algebra

Let us now look at the bounded derived category of coherent
sheaves on X :

Db(X )

=

〈 Ku(X ) , OX ,OX (H),OX (2H) 〉

Ku(X )

=
E ∈ Db(X ) :

Hom (OX (iH),E [p]) = 0
i = 0, 1, 2 ∀p ∈ Z



Kuznetsov component of X

Exceptional objects:

〈OX (iH)〉 ∼= Db(pt)
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The idea

X (and Db(X )) are
complicated objects

Semiorthogonal decomposition:
reduce to a ’surface’ Ku(X )

Stability
conditions

New appli-
cations to

hyperkähler
geometry
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Noncommutative K3s

Remark

For every cubic 4-folds X , Ku(X ) behaves like Db(S), for S a
K3 surface (i.e. a simply connected smooth projective variety
of dimension 2 with trivial canonical bundle).

But almost never, Ku(X ) ∼= Db(S), for S a K3 surface.

This is related to the following:

Conjecture (Kuznetsov)

A cubic 4-fold X is rational (i.e. birational to P4 ’=’ a big open
subset of X is isomorphic to an open subset of P4) if and only if
Ku(X ) ∼= Db(S), for some K3 surface S.
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The results: existence of stability conditions

We have seen that if S is a K3 surface, then Db(S) carries
stability conditions.

Question (Addington-Thomas, Huybrechts,...)

If X is a cubic 4-fold, does Ku(X ) carry stability conditions?

Theorem 1 (Bayer-Lahoz-Macrı̀-S, BLMS+Nuer-Perry)

For any cubic fourfold X , we have Stab(Ku(X )) ∕= ∅. Moreover,
we can explicitly describe a connected component
Stab†(Ku(X )) of Stab(Ku(X )).
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The results: moduli spaces

Whenever we have a good notion of stability, we would like to
parametrize all objects which are (semi)stable with respect to it.

We fix some topological invariants of the objects in Ku(X ) that
we want to parametrize. These invariants are encoded by a
vector v in cohomology that we usually call Mukai vector.

Fix a stability condition σ ∈ Stab†(Ku(X )) which is nice with
respect to v (always possible!).

Denote by
Mσ(Ku(X ), v)

the space parametrizing σ-stable objects in Ku(X ) with Mukai
vector v . Call it moduli space.
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The results: moduli spaces

Question

What is the geometry of Mσ(Ku(X ), v)?

This is a non-trivial question as moduli spaces of Bridgeland
stable objects are, in general, ‘strange’ objects.

Theorem 2 (BLMNPS)

Mσ(Ku(X ), v) is non-empty if and only if v2 + 2 ≥ 0. Moreover,
in this case, it is a smooth projective hyperkähler manifold of
dimension v2 + 2, deformation equivalent to a Hilbert scheme
of points on a K3 surface.



35

The results: moduli spaces

Definition

A hyperkähler manifold is a simply connected compact kähler
manifold X such that H0(X ,Ω2

X ) is generated by an everywhere
non-degenerate holomorphic 2-form.

There are very few examples (up to deformation):

1 K3 surfaces;

2 Hilbert schemes of points on K3 surface (denoted by
Hilbn(K3);

3 Generalized Kummer varieties (from abelian surfaces);

4 Two sporadic examples by O’Grady.
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Hyperkähler geometry and cubic 4-folds

The fact that any cubic 4-fold X has a very interesting
hyperkähler geometry is classical. This is related to rational
curves in X :

Beauville-Donagi: the variety parametrizing lines in X is a
HK 4-fold;

Lehn-Lehn-Sorger-van Strated: if X does not contain a
plane, the moduli space of (generalized) twisted cubics in
X is, after a fibration and the contraction of a divisor, a HK
8-fold.

Question

Can we recover these classical HK manifolds in our new
framework?
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Hyperkähler geometry and cubic 4-folds

Theorem(s) (Li-Pertusi-Zhao, Lahoz-Lehn-Macrı̀-S.)

The variety of lines and the one of twisted cubics are
isomorphic to moduli spaces of stable objects in the Kuznetsov
component.

New! (BLMNPS)

In these two cases, we can explicitely describe the birational
models via variation of stability!



38

Hyperkähler geometry and cubic 4-folds

But the most striking application is the following:

Corollary (BLMNPS)

For any pair (a, b) of coprime integers, there is a unirational
locally complete 20-dimensional family, over an open subset of
the moduli space of cubic fourfolds, of polarized smooth
projective HKs of dimension 2n + 2, where n = a2 − ab + b2.

This follows from a new theory of Bridgeland stability in families
+ Theorem 2 in families + deformations of cubics in their
20-dim. family.
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