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Main problem

Describe the group Aut (DP(X)) of exact autoequivalences
of the triangulated category

Motivations

D°(X) := DR,y (Ox-Mod).

Remark (Orlov)

Such a description is available when X is an abelian surface
(actually an abelian variety).
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Hodge isometry

9 : H3(X,Z) — H3(Y,Z)

which maps the class of an ample line bundle on X into the
ample cone of Y.
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e Let X and Y be K3 surfaces. Suppose that there exists a
Hodge isometry

g: H*(X,Z) — H3(Y,Z)

which maps the class of an ample line bundle on X into the
ample cone of Y. Then there exists a unique isomorphism
f:X = Ysuchthatf, = g.

Lattice theory + Hodge structures + ample cone

The automorphism is uniquely determined. \
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Theorem (Borcea, Donaldson)
Consider the natural map

p : Diff(X) — O(H?(X, Z)).

Then im (p) = O, (H?(X, Z)), where O (H?(X,Z)) is the
group of orientation preserving isometries.
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Theorem (Borcea, Donaldson)
Consider the natural map

p : Diff(X) — O(H?(X, Z)).

Then im (p) = O, (H?(X, Z)), where O (H?(X,Z)) is the
group of orientation preserving isometries.

The kernel of p is not known! \
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e Let X and Y be smooth projective K3 surfaces. Then the
following are equivalent:

© There exists an equivalence ¢ : D*(X) = D°(Y).
© There exists a Hodge isometry ﬁ(X, Z) = Fl( Y,Z).

The equivalence ¢ induces an action on cohomology

[

DP(X) DP(Y)
V()=ch()-\/td(X)l J{V():Ch()-« /wd(Y)
H(X,Z) —~ F(Y,7)
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Kahler class. Then (Re(),Im(0), 1 — w?/2,w) is a positive
four-space in H(X,R) with a natural orientation.
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Can we understand better the action induced on
cohomology by an equivalence?

Orientation: Let o be a generator of H?9(X) and w a
Kahler class. Then (Re(),Im(0), 1 — w?/2,w) is a positive
four-space in H(X,R) with a natural orientation.

Problem

The isometry j := (id)og s @ (—id)e is not orientation
preserving. Is it induced by an autoequivalence?
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Paolo Stellari P ~
Given a Hodge isometry g : H(X,Z) — H(Y,Z), then there

exists and equivalence ¢ : D°(X) — D®(Y) such that

g = ¢4 if and only if g is orientation preserving.

Szendroi’s Conjecture is true: In terms of
autoequivalences, this yields a surjective morphism

Aut (D°(X)) - O, (H(X, Z)),

where O (H(X,Z)) is the group of orientation preserving
Hodge isometries.
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@ A result of Hosono-Lian—Oguiso—Yau (heavily relaying
on Mukai/Orlov’s Derived Torelli Theorem) shows that,
up to composing with the isometry j, every isometry
can be lifted to an equivalence.

@ Since we know that j is not orientation preserving we
conclude using the following:

Remark (Huybrechts-S.)

All known equivalences (and autoequivalences) are
orientation preserving.
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isometry
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@ Since one implication is already true, to prove the main
theorem, it is enough to show that j is not induced by a
Fourier—Mukai equivalence.
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@ Consider the non-orientation preserving Hodge
isometry

J= (id)og s & (—id) .

@ Since one implication is already true, to prove the main
theorem, it is enough to show that j is not induced by a
Fourier—Mukai equivalence.

@ We proceed by contradiction assuming that there exists
£ € D*(X x X) such that (®¢)y = J.
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For some particular K3 surfaces we know that j is not
induced by any Fourier—-Mukai equivalence: K3
surfaces with trivial Picard group.

@ Deform the K3 surface (along a line) in the moduli
space such that generically we recover the behaviour of
a generic K3 surface.

@ Deform the kernel of the equivalence accordingly.

@ Derive a contradiction using the generic case.
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Formal deformations

el Take R := CJ[{]] to be the ring of power series in t with field
Pkl of fractions K := C((t)).
Paolo Stellari

Define R, := C[[t]]/(t"*"). Then Spec (R,) C Spec (Rpi1)-
For X a smooth projective variety, a formal deformation is a
proper formal R-scheme

7 X — Spf(R)

given by an inductive system of schemes X, — Spec (R»)
(smooth and proper over R,) and such that

~

Xni1 XR,,, Spec (Rp) = X)p.
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Coh(X) < Coh(X) — Coh((X)k)

where Cohy (X xg X’) and Cohy(X) are the abelian
categories of sheaves supported on X x X and X
respectively.
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B Cohy(X xg &') — Coh(X xg &) — Coh((X xg X')k)

Cohy(X) — Coh(X) — Coh((X)k)
where Cohy (X xg X’) and Cohy(X) are the abelian

categories of sheaves supported on X x X and X
respectively.

In this setting we also have the sequences
DY (X xg X') — Dgop(Oxxpzr-Mod) — DP((X x g X')k)

D (X) — D2y, (Ox-Mod) — DP(Xk)
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Definition

A Kahler class w € H"1(X,R) is called very general if there
is no non-trivial integral class 0 # o € H'(X, Z) orthogonal
tow,i.e. wtNH"(X,Z) = 0.

Take the twistor space X(w) of X determined by the choice
of a very general K&hler class w € Kx N Pic (X) @ R:

7 X(w) — P(w).
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X(w) parametrizes the complex structures ‘compatible’ with
w.
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Choosing a local parameter t around 0 € P(w) we get a
formal deformation X — Spf(R).

More precisely:
Xy := X(w) x Spec (Rp),

form an inductive system and give rise to a formal
R-scheme
m: X — Spf(R),

which is the formal neighbourhood of X in X(w).
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If X is a K3 surface and X is as before, then
DY(Xk) = D°(Coh(Xx)). Moreover, D*(Xk) is a generic
K-linear K3 category.
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A K-linear category is a K3 category if it contains at least a
spherical object and the shift by 2 is the Serre functor.
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A K-linear category is a K3 category if it contains at least a
spherical object and the shift by 2 is the Serre functor.

A K3 category is generic if, up to shift, it contains only one
spherical object.



The generic category

Equivalences
[ &}
Surfaces and
Orientation Il

Proposition

If X is a K8 surface and X’ is as before, then
DY(Xk) = D°(Coh(Xx)). Moreover, D*(Xk) is a generic
K-linear K3 category.
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A K-linear category is a K3 category if it contains at least a
spherical object and the shift by 2 is the Serre functor.

A K3 category is generic if, up to shift, it contains only one
spherical object.

In this setting, the unique spherical object is (Ox)k, the
image of Oy.
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Let £ € D°(X x g X’) be such that £ = *£. Then € and &k
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el As before, given F € D‘éoh(OXXRX/—Mod), we denote by Fx
the natural image in the category D°((X xg &X')k).

Proposition

Let £ € D°(X x g X’) be such that £ = *£. Then € and &k
are kernels of Fourier—Mukai equivalences.

Here we denoted by i : X x X — X xg X’ the natural
inclusion.
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el The equivalence ¢¢ induces a morphim

oM HHZ(X) — HHZ(X).

Proposition

Let vy € H'(X, Tx) be the Kodaira—Spencer class of first
order deformation given by a twistor space X(w) as above.

Then
vl = oM (vy) e H'(X, Ty).
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Using results of Toda one gets the following conclusion

Proposition (Toda)

For vy and v as before, there exists &; € DP( X, xXp, X1)
such that
I1*51 = 50 = 3.

Here iy : Xy xc Xy — &7 xp, &7 is the natural inclusion.
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Using results of Toda one gets the following conclusion

Proposition (Toda)

For vy and v as before, there exists &; € DP( X, xXp, X1)
such that
I1*51 = 50 = 3.

Here iy : Xy xc Xy — &7 xp, &7 is the natural inclusion.

Hence there is a first order deformation of £.
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More generally

Bl We construct, at any order n, an analytic deformation X,
such that there exists &, € DP(X,, x g, X?), with

I;;gn = (‘:n_‘] .

Main difficulties

@ Write the obstruction to deforming complexes in terms
of Atiyah—Kodaira classes.

© Show that the obstruction is zero.

Our approach imitates the first order case (using relative
Hochschild homology).
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The generic fiber
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orientation Il Il Use the generic analytic case

Bl There exist integers n and m such that the Fourier-Mukai
equivalence

T(,ZOX)K o &g [m]

has kernel G € Coh(X xg 7).

This shows that the autoequivalences of the derived
category DP(Xk) behaves like the derived category of a
complex K3 surface with trivial Picard group.
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Definition

A K-rational point of = : X — Spf(R) is an integral formal
subscheme Z C X which is flat of relative dimension zero
and such that 7|z : Z — Spf(R) is an isomorphism.
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Definition

A K-rational point of = : X — Spf(R) is an integral formal
subscheme Z C X which is flat of relative dimension zero
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K-rational point.
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Definition

A K-rational point of = : X — Spf(R) is an integral formal
subscheme Z C X which is flat of relative dimension zero
and such that 7|z : Z — Spf(R) is an isomorphism.

Paolo Stellari

@ One constructs a locally finite stability condition o on
D®(X) such that, if 7 € D(Xx) is o-stable and
semi-rigid with End x, (F) = K, then up to shift 7 is a
K-rational point.

An object F € D°(Xx) is semi-rigid if Ext } (F, F) = K®2.



Equivalences
[ &}
Surfaces and
Orientation Il

Concluding the
argument

Ideas from the proof




Ideas from the proof

Equivalences
[ &}
Surfaces and

:ar::t::;" @ Using this stability condition, one proves that there are
integers n and m such that the Fourier—Mukai
equivalence

T(%X)K ° g, [m]

send K-rational points to K-rational points.



Ideas from the proof

Equivalences
[ &}
Surfaces and
Orientation Il

@ Using this stability condition, one proves that there are
integers n and m such that the Fourier—Mukai
equivalence

Paolo Stellari

T(rbx);( o d>SK[rn]
send K-rational points to K-rational points.
@ One shows that if a Fourier—Mukai equivalence sends

K-rational points to K-rational points, then its kernel G
is a sheaf, i.e.

G € Coh(X xg X').
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Key ingredients

Equivalences
of K3
peissedsil  In the previous proof we use that (Ox )k is the unique, up to

Orientation Il

DRSS shift, spherical object in D°(Xk).

In particular, we use that given a locally finite stability
condition o on DP(Xk), there exists an integer n such that in
the stability condition T(’ZQX)K(O') all K-rational points are
stable with the same phase.

Notice that for our proof we use stability conditions in a very
mild form. We just use a specific stability condition in which
we can classify all semi-rigid stable objects.
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The conclusion

Properties of G

Q Gy := i*G is a sheaf in Coh(X x X).
© The natural morphism

(Pgy)H - H (X, Q) — H*(X,Q)

is such that (®g,)H = (Pe)n = J.
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paolo stellzri [l Properties of G
Q Gy := i*G is a sheaf in Coh(X x X).
© The natural morphism

(Pgy)H - H (X, Q) — H*(X,Q)

is such that (®g,)H = (Pe)n = J.

For the second part, we show that Gy and £ induce the
same action on the Grothendieck groups and have the
same Mukai vector!
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The contradiction is now obtained using the following
lemma:

Paolo Stellari

If G € Coh(X x X), then (®g)y # J.

We have not proved that € is a (shift of a) sheaf! We have
just proved that the action in cohomology is the same as the
one of a sheafl!
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Motivation

Equivalences

of K3 There exists an explicit description of the first order

Surfaces and

Ml deformations of the abelian category of coherent sheaves
Bl on a smooth projective variety (Toda).

The existence of equivalences between the derived
categories of smooth projective K3 surfaces is detected by
the existence of special isometries of the total
cohomologies.

el Can we get the same result for derived categories of first
Torell order deformations of K3 surfaces using special isometries
Theorem between ‘deformations’ of the Hodge and lattice structures

on the total cohomologies?
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yields the isomorphisms

B - HH(X) — HQ,(X) = @HQ,-(X)

and
<R HH*(X) — HT*(X) := @ HT'(X).
i
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Hochschild—Kostant—Rosenberg

The Hochschild—Kostant—Rosenberg isomorphism

LAY O, = @Qﬂ([i]
i

yields the isomorphisms

B - HH(X) — HQ,(X) = @HQ,-(X)

and

<R HH*(X) — HT*(X) := @ HT'(X).

One then defines the graded isomorphisms

Ik = (W(X)2 A (=) o Rixe

I = (Wd(X) /2 (=) o KR,



The categorical setting (Toda)

Equivalences
[ &}
Surfaces and
Orientation Il




The categorical setting (Toda)

Equivalences
[ &}
Surfaces and

peietelll  Given a smooth projective variety X and for any v € HHZ(X )s
el Toda constructed explicitety the abelian category

Coh(X,v)

which is the first order deformation of Coh(X) in the
direction v.



The categorical setting (Toda)

Equivalences
[ &}
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peietelll  Given a smooth projective variety X and for any v € HHZ(X )s
el Toda constructed explicitety the abelian category

Coh(X,v)

which is the first order deformation of Coh(X) in the
direction v.

One also have an isomorphism J : HH?(X;) — HH2(X;)
such that

(R o o (FR) ) (@, B,7) = (a, =B,7)-
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BRI et X7 and X> be smooth complex projective K3 surfaces
and let v; € HH?(X;), with i = 1,2. Then the following are

equivalent: _ _ _
@ There exists a Fourier—Mukai equivalence

&z : D°(Xy, vg) = D°(Xp, 1)
with g E Dperf(X1 x Xo, —J(V1) H Vg).

© There exists an orientation preserving effective Hodge
isometry

g: ﬁI(X‘lv V1aZ) — ﬁ(X27 V27Z)'
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of K3 For X a K3, v € HH2(X) and oy is a generator for HHx(X),
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w = I¥(ox) + el¥(ox o v) € H(X,Z) ® Z[e]/(¢?).

The free Z[e]/(2)-module of finite rank H(X,Z) ® Z[e]/(?)
is endowed with:
© The Z[¢]/(?)-linear extension of the generalized Mukai
pairing (—, —) u-
@ A weight-2 decomposition on H(X,Z) @ C[e]/(¢?)

H?O(X,v) :=Cle/(2)-w  HO2(X,v):= H20(X, V)

and H'1(X, v) := (H2O(X, v) & HO2(X, v))~.
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The isometry
g: H(X1, v, Z) = H(Xp, vo, Z)

which can be decomposed as g = go + €go, where gp is an
Hodge isometry of the Mukai lattices is called effective.
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BN This gives the infinitesimal Mukai lattice of X with respect to
v, which is denoted by H(X, v, Z).

The isometry
g: H(X1, v, Z) = H(Xp, vo, Z)

which can be decomposed as g = go + €go, where gp is an
Hodge isometry of the Mukai lattices is called effective.

An effective isometry is orientation preserving if go
preserves the orientation of the four-space.
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Equivalences
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Orientation Il following:
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Theorem (Macri-S.)

Let X; and X5 be smooth complex projective varieties and
let £ € D°(X; x Xz). Then the following diagram

(Pe)m

HH* (X1 ) HH* (XZ)
Iy J{

IK
~ (0] ~
H(X;,C) _ G2l H(X,,C)

commutes.

Sketch of the proof
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(for a Fourier—Mukai equivalence ®¢):
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Equivalences
of K3

posesicll  Using that for K3 surfaces HO%2 is 1-dimensional and the
previous result, one get the following commutative diagram
(for a Fourier—Mukai equivalence ®¢):

Paolo Stellari

HH* (X)) (g™ HH* (X»)
(=)o, l (—)o(®e)m(ox,)
HH, (X1) — M, (%)
I J/ J{/jﬁz
H(X:,C) —2 - Fix, ©),

where oy, is a generator of HHz(X7).

Sketch of the proof
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Using the previous commutativities, we could also clarify the
proof of our Main Theorem.

In particular, one could simplify the hypothesis about the
choice of the Kéhler class giving rise to the twistor space.

Sketch of the proof
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