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Derived Torelli Theorem
The generic case

The general projective case

Motivations
The statement
Idea of the proof
The main result: Szendroi’s conjecture is true

The problem

Let X be a K3 surface (i.e. a smooth complex compact simply
connected surface with trivial canonical bundle).

Main problem

Describe the group Aut (Db(X )) of exact autoequivalences of
the triangulated category

Db(X ) := Db
Coh(OX -Mod).

Remark (Orlov)
Such a description is available when X is an abelian surface
(actually an abelian variety).
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Derived Torelli Theorem
The generic case

The general projective case

Motivations
The statement
Idea of the proof
The main result: Szendroi’s conjecture is true

Geometric case

Torelli Theorem
Let X and Y be K3 surfaces. Suppose that there exists a
Hodge isometry

g : H2(X , Z) → H2(Y , Z)

which maps the a Kähler class of X into the Kähler cone of Y .
Then there exists a unique isomorphism

f : X ∼= Y

such that f∗ = g.

Lattice theory + Hodge structures + ample cone
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The generic case

The general projective case

Motivations
The statement
Idea of the proof
The main result: Szendroi’s conjecture is true

The derived case

Derived Torelli Theorem (Mukai, Orlov)
Let X and Y be smooth projective K3 surfaces.

1 If Φ : Db(X ) ∼= Db(Y ) is an equivalence, then there exists a
naturally defined Hodge isometry

Φ∗ : H̃(X , Z) ∼= H̃(Y , Z).

2 Suppose there exists a Hodge isometry
g : H̃(X , Z) ∼= H̃(Y , Z) that preserves the natural
orientation of the four positive directions. Then there exists
an equivalence Φ : Db(X ) ∼= Db(Y ) such that Φ∗ = g.

It is not symmetric!
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Additional structures

Lattice structure: The Mukai pairing (Euler–Poincaré form up
to sign). The lattice is denoted H̃(X , Z).

Orientation: Let σ be a generator of H2,0(X ) and ω a Kähler
class. Then

P(X , σ, ω) := 〈Re(σ), Im(σ), 1− ω2/2, ω〉,

is a positive four-space in H̃(X , R) with a natural orientation.

Hodge structure: The weight-2 Hodge structure on H∗(X , Z) is

H̃2,0(X ) := H2,0(X ),

H̃0,2(X ) := H0,2(X ),

H̃1,1(X ) := H0(X , C)⊕ H1,1(X )⊕ H4(X , C).
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Derived Torelli Theorem
The generic case

The general projective case

Motivations
The statement
Idea of the proof
The main result: Szendroi’s conjecture is true

Orientation

1 Due to the choice of a basis, the space P(X , σ, ω) comes
with a natural orientation.

2 The orientation is independent of the choice of σX and ω.

3 It is easy to see that the isometry

j := (id)H0⊕H4 ⊕ (− id)H2

is not orientation preserving.

Problem
According to the Derived Torelli Theorem, is the isometry j
induced by an autoequivalence?
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The general projective case

Motivations
The statement
Idea of the proof
The main result: Szendroi’s conjecture is true

Idea of the proof

Definition

F : Db(X ) → Db(Y ) is of Fourier–Mukai type if there exists
E ∈ Db(X × Y ) and an isomorphism of functors

F ∼= ΦE := Rp∗(E
L
⊗ q∗(−)),

where p : X × Y → Y and q : X × Y → X are the natural
projections.

The complex E is the kernel of F .
Orlov: Every equivalence is of Fourier–Mukai type.
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The statement
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The main result: Szendroi’s conjecture is true

Ideas form the proof

Using the Chern character one gets the commutative diagram:

Db(X )

[−]

��

Φ
// Db(Y )

[−]

��
K (X )

ch (−)·
√

td(X)

��

// K (Y )

ch (−)·
√

td(Y )

��

H̃(X , Z)
Φ∗ // H̃(Y , Z)
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Derived Torelli Theorem
The generic case

The general projective case

Motivations
The statement
Idea of the proof
The main result: Szendroi’s conjecture is true

The statement

Main Theorem (Huybrechts-Macrı̀-S.)
Let X and Y be smooth projective K3 surfaces. Any
equivalence Φ : Db(X ) ∼= Db(Y ) induces naturally a Hodge
isometry Φ∗ : H̃(X , Z) → H̃(Y , Z) preserving the natural
orientation of the four positive directions.

Remark
This result was previously conjectured by Szendroi as a
mirror-symmetric analogue of a result of Borcea and Donaldson
about the group of diffeomorphisms of a K3 surface.

Paolo Stellari Equivalences of K3 Surfaces and Orientation



Derived Torelli Theorem
The generic case

The general projective case

Motivations
The statement
Idea of the proof
The main result: Szendroi’s conjecture is true

The statement

Main Theorem (Huybrechts-Macrı̀-S.)
Let X and Y be smooth projective K3 surfaces.

Any
equivalence Φ : Db(X ) ∼= Db(Y ) induces naturally a Hodge
isometry Φ∗ : H̃(X , Z) → H̃(Y , Z) preserving the natural
orientation of the four positive directions.

Remark
This result was previously conjectured by Szendroi as a
mirror-symmetric analogue of a result of Borcea and Donaldson
about the group of diffeomorphisms of a K3 surface.

Paolo Stellari Equivalences of K3 Surfaces and Orientation



Derived Torelli Theorem
The generic case

The general projective case

Motivations
The statement
Idea of the proof
The main result: Szendroi’s conjecture is true

The statement

Main Theorem (Huybrechts-Macrı̀-S.)
Let X and Y be smooth projective K3 surfaces. Any
equivalence Φ : Db(X ) ∼= Db(Y ) induces naturally a Hodge
isometry Φ∗ : H̃(X , Z) → H̃(Y , Z) preserving the natural
orientation of the four positive directions.

Remark
This result was previously conjectured by Szendroi as a
mirror-symmetric analogue of a result of Borcea and Donaldson
about the group of diffeomorphisms of a K3 surface.

Paolo Stellari Equivalences of K3 Surfaces and Orientation



Derived Torelli Theorem
The generic case

The general projective case

Motivations
The statement
Idea of the proof
The main result: Szendroi’s conjecture is true

The statement

Main Theorem (Huybrechts-Macrı̀-S.)
Let X and Y be smooth projective K3 surfaces. Any
equivalence Φ : Db(X ) ∼= Db(Y ) induces naturally a Hodge
isometry Φ∗ : H̃(X , Z) → H̃(Y , Z) preserving the natural
orientation of the four positive directions.

Remark
This result was previously conjectured by Szendroi as a
mirror-symmetric analogue of a result of Borcea and Donaldson
about the group of diffeomorphisms of a K3 surface.

Paolo Stellari Equivalences of K3 Surfaces and Orientation



Derived Torelli Theorem
The generic case

The general projective case

Motivations
The statement
Idea of the proof
The main result: Szendroi’s conjecture is true

Equivalent statements

Let O+ := O+(H̃(X , Z)) be the group of orientation preserving
Hodge isometries of H̃(X , Z).

Using the previous result, we would get

1 →? → Aut (Db(X ))
Π→ O+ → 1.

There is a conjectural description by Bridgeland of the kernel in
terms of the geometry of the complex manifold parametrizing
stability conditions on Db(X ).
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The statement

Theorem (Huybrechts-Macrı̀-S.)
Let X and Y be generic analytic K3 surfaces (i.e.
Pic (X ) = Pic (Y ) = 0). If

ΦE : Db(X )
∼−→ Db(Y )

is an equivalence of Fourier-Mukai type, then up to shift

ΦE ∼= T n
OY

◦ f∗

for some n ∈ Z and an isomorphism

f : X ∼−→ Y .
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The functors

Definition

An object E ∈ Db(X ) is spherical if

Hom (E , E [i]) ∼=
{

C if i ∈ {0, 2}
0 otherwise.

In particular, OX is spherical.

The spherical twist TOX : Db(X ) → Db(X ) that sends F ∈ Db(X )
to the cone of ⊕

i

(Hom (OX ,F [i])⊗OX [−i]) → F

is an orientation preserving equivalence.
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Stability conditions (Bridgeland)

For simplicity, we restrict ourselves to the case of stability
conditions on derived categories!

Any triangulated category would fit.

A stability condition on Db(X ) is a pair σ = (Z ,P) where

Z : N (X )⊗C → C is a linear map (the central charge; here
N (X ) is the sublattice of H̃(X , Z) orthogonal to H2,0(X ).)

P(φ) ⊂ Db(X ) are full additive subcategories for each
φ ∈ R

satisfying the following conditions:
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The definition

(a) If 0 6= E ∈ P(φ), then Z (E) = m(E) exp(iπφ) for some
m(E) ∈ R>0.

(b) P(φ + 1) = P(φ)[1] for all φ.

(c) Hom (E1, E2) = 0 for all Ei ∈ P(φi) with φ1 > φ2.

(d) Any 0 6= E ∈ Db(X ) admits a Harder–Narasimhan filtration
given by a collection of distinguished triangles

Ei−1 → Ei → Ai

with E0 = 0 and En = E such that Ai ∈ P(φi) with
φ1 > . . . > φn.
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Stability conditions (Bridgeland)

The non-zero objects in the category P(φ) are the
semistable objects of phase φ . The objects Ai in (d) are
the semistable factors of E .

The minimal objects of P(φ) are called stable of phase φ.

The category P((0, 1]) is called the heart of σ.
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Stability conditions (Bridgeland)

To exhibit a stability condition on Db(X ), it is enough to give
a bounded t-structure on Db(X ) with heart A;
a group homomorphism Z : K (A) → C such that Z (E) ∈ H,
for all 0 6= E ∈ A, and with the Harder–Narasimhan
property (H := {z ∈ C : z = |z|exp(iπφ), 0 < φ ≤ 1}).

All stability conditions are assumed to be locally-finite. Hence
every object in P(φ) has a finite Jordan–Hölder filtration.
Stab (Db(X )) is the manifold parametrizing locally finite stability
conditions.

The group Aut (Db(X )) of exact autoequivalences of Db(X ) acts
on Stab (Db(X )).
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Stability conditions: the generic case

Consider the open subset

R := C \ R≥−1 = R+ ∪ R− ∪ R0,

where the sets are defined in the natural way:
R+ := R ∩ (H \ R<0),
R− := R ∩ (−H \ R<0),
R0 := R ∩ R.

Proposition
For any z ∈ R, there exist an abelian category A(z) and a
linear function Z yielding a stability condition σz ∈ Stab (Db(X )).
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Stability conditions: the generic case

Proposition

For any σ ∈ Stab (Db(X )), there is n ∈ Z such that T n
OX

(Op) is
stable in σ, for any closed point p ∈ X .

Definition

An object E ∈ Db(X ) is semi-rigid if Hom Db(X)(E , E [1]) ∼= C⊕2.

Lemma
If z ∈ R<0, then the only semi-rigid stable objects in A(z) are
the skyscraper sheaves.
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Consider an equivalence of Fourier–Mukai type
Φ : Db(X ) → Db(Y ).

(a) Take the distinguished stability condition

σ = σz=(u,v=0)

constructed before. Let

σ̃ := ΦE(σ).

(b) We have seen that, there exists an integer n such that all
skyscraper sheaves Op are stable of the same phase in
the stability condition T n

OY
(σ̃).
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The proof

(c) The composition Ψ := T n
OY

◦ ΦE has the properties:
1 It sends the stability condition σ to a stability condition σ′ for

which all skyscraper sheaves are stable of the same phase.

2 Up to shifting the kernel F of Ψ sufficiently, we can assume
that φσ′(Oy ) ∈ (0, 1] for all closed points y ∈ Y .

Thus, the heart P ′((0, 1]) of the t-structure associated to σ′

(identified with A(z)) contains as stable objects the images
Ψ(Op) of all closed points p ∈ X and all skyscraper
sheaves Oy .

Paolo Stellari Equivalences of K3 Surfaces and Orientation



Derived Torelli Theorem
The generic case

The general projective case

The result
Sketch of the proof

The proof

(c) The composition Ψ := T n
OY

◦ ΦE has the properties:

1 It sends the stability condition σ to a stability condition σ′ for
which all skyscraper sheaves are stable of the same phase.

2 Up to shifting the kernel F of Ψ sufficiently, we can assume
that φσ′(Oy ) ∈ (0, 1] for all closed points y ∈ Y .

Thus, the heart P ′((0, 1]) of the t-structure associated to σ′

(identified with A(z)) contains as stable objects the images
Ψ(Op) of all closed points p ∈ X and all skyscraper
sheaves Oy .

Paolo Stellari Equivalences of K3 Surfaces and Orientation



Derived Torelli Theorem
The generic case

The general projective case

The result
Sketch of the proof

The proof

(c) The composition Ψ := T n
OY

◦ ΦE has the properties:
1 It sends the stability condition σ to a stability condition σ′ for

which all skyscraper sheaves are stable of the same phase.

2 Up to shifting the kernel F of Ψ sufficiently, we can assume
that φσ′(Oy ) ∈ (0, 1] for all closed points y ∈ Y .

Thus, the heart P ′((0, 1]) of the t-structure associated to σ′

(identified with A(z)) contains as stable objects the images
Ψ(Op) of all closed points p ∈ X and all skyscraper
sheaves Oy .

Paolo Stellari Equivalences of K3 Surfaces and Orientation



Derived Torelli Theorem
The generic case

The general projective case

The result
Sketch of the proof

The proof

(c) The composition Ψ := T n
OY

◦ ΦE has the properties:
1 It sends the stability condition σ to a stability condition σ′ for

which all skyscraper sheaves are stable of the same phase.

2 Up to shifting the kernel F of Ψ sufficiently, we can assume
that φσ′(Oy ) ∈ (0, 1] for all closed points y ∈ Y .

Thus, the heart P ′((0, 1]) of the t-structure associated to σ′

(identified with A(z)) contains as stable objects the images
Ψ(Op) of all closed points p ∈ X and all skyscraper
sheaves Oy .

Paolo Stellari Equivalences of K3 Surfaces and Orientation



Derived Torelli Theorem
The generic case

The general projective case

The result
Sketch of the proof

The proof

(c) The composition Ψ := T n
OY

◦ ΦE has the properties:
1 It sends the stability condition σ to a stability condition σ′ for

which all skyscraper sheaves are stable of the same phase.

2 Up to shifting the kernel F of Ψ sufficiently, we can assume
that φσ′(Oy ) ∈ (0, 1] for all closed points y ∈ Y .

Thus, the heart P ′((0, 1]) of the t-structure associated to σ′

(identified with A(z)) contains as stable objects the images
Ψ(Op) of all closed points p ∈ X and all skyscraper
sheaves Oy .

Paolo Stellari Equivalences of K3 Surfaces and Orientation



Derived Torelli Theorem
The generic case

The general projective case

The result
Sketch of the proof

The proof

(d) We observed that the only semi-rigid stable objects in A(z)
are the skyscraper sheaves. Hence, for all p ∈ X there
exists a point y ∈ Y such that Ψ(Op) ∼= Oy . Therefore Ψ is
a composition of f∗, for some isomorphism

f : X ∼−→ Y ,

and the tensorization by a line bundle.

(e) But there are no non-trivial line bundles on Y .
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Concluding remarks

There are some important features in the proof:

Proposition
Up to shifts, OX is the only spherical object in the category
Db(X ).

Theorem (Huybrechts-Macrı̀-S.)
The manifold parametrizing numerical stability conditions on
Db(X ) is connected and simply-connected.

This proves a conjecture by Bridgeland in the generic analytic
case.
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The non-orienatation Hodge isometry

Take any projective K3 surface X .

We have already remarked that the isometry

j := (id)H0⊕H4 ⊕ (− id)H2

is not orientation preserving.

Since any orientation preserving Hodge isometry lifts to an
equivalence Φ : Db(X ) → Db(X ) (due to HLOY and
Huybrechts-S.), to prove the main theorem, it is enough to
prove that j is not induced by a Fourier–Mukai equivalence.

We proceed by contradiction assuming that there exists
E ∈ Db(X × X ) such that (ΦE)∗ = j .

Paolo Stellari Equivalences of K3 Surfaces and Orientation



Derived Torelli Theorem
The generic case

The general projective case

The strategy
Deforming kernels
Concluding the argument

The non-orienatation Hodge isometry

Take any projective K3 surface X .

We have already remarked that the isometry

j := (id)H0⊕H4 ⊕ (− id)H2

is not orientation preserving.

Since any orientation preserving Hodge isometry lifts to an
equivalence Φ : Db(X ) → Db(X ) (due to HLOY and
Huybrechts-S.), to prove the main theorem, it is enough to
prove that j is not induced by a Fourier–Mukai equivalence.

We proceed by contradiction assuming that there exists
E ∈ Db(X × X ) such that (ΦE)∗ = j .

Paolo Stellari Equivalences of K3 Surfaces and Orientation



Derived Torelli Theorem
The generic case

The general projective case

The strategy
Deforming kernels
Concluding the argument

The non-orienatation Hodge isometry

Take any projective K3 surface X .

We have already remarked that the isometry

j := (id)H0⊕H4 ⊕ (− id)H2

is not orientation preserving.

Since any orientation preserving Hodge isometry lifts to an
equivalence Φ : Db(X ) → Db(X ) (due to HLOY and
Huybrechts-S.), to prove the main theorem, it is enough to
prove that j is not induced by a Fourier–Mukai equivalence.

We proceed by contradiction assuming that there exists
E ∈ Db(X × X ) such that (ΦE)∗ = j .

Paolo Stellari Equivalences of K3 Surfaces and Orientation



Derived Torelli Theorem
The generic case

The general projective case

The strategy
Deforming kernels
Concluding the argument

The non-orienatation Hodge isometry

Take any projective K3 surface X .

We have already remarked that the isometry

j := (id)H0⊕H4 ⊕ (− id)H2

is not orientation preserving.

Since any orientation preserving Hodge isometry lifts to an
equivalence Φ : Db(X ) → Db(X ) (due to HLOY and
Huybrechts-S.), to prove the main theorem, it is enough to
prove that j is not induced by a Fourier–Mukai equivalence.

We proceed by contradiction assuming that there exists
E ∈ Db(X × X ) such that (ΦE)∗ = j .

Paolo Stellari Equivalences of K3 Surfaces and Orientation



Derived Torelli Theorem
The generic case

The general projective case

The strategy
Deforming kernels
Concluding the argument

The non-orienatation Hodge isometry

Take any projective K3 surface X .

We have already remarked that the isometry

j := (id)H0⊕H4 ⊕ (− id)H2

is not orientation preserving.

Since any orientation preserving Hodge isometry lifts to an
equivalence Φ : Db(X ) → Db(X ) (due to HLOY and
Huybrechts-S.), to prove the main theorem, it is enough to
prove that j is not induced by a Fourier–Mukai equivalence.

We proceed by contradiction assuming that there exists
E ∈ Db(X × X ) such that (ΦE)∗ = j .

Paolo Stellari Equivalences of K3 Surfaces and Orientation



Derived Torelli Theorem
The generic case

The general projective case

The strategy
Deforming kernels
Concluding the argument

The twistor space

Definition

A Kähler class ω ∈ H1,1(X , R) is called very general if there is
no non-trivial integral class 0 6= α ∈ H1,1(X , Z) orthogonal to ω,
i.e. ω⊥ ∩ H1,1(X , Z) = 0.

Take the twistor space X(ω) of X determined by the choice of a
very general Kähler class ω ∈ KX ∩ Pic (X )⊗ R. Hence we get
a complex deformation

π : X(ω) → P(ω).

Take R := C[[t ]] to be the ring of power series in t with residue
field K := C((t)).
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The twistor space

If Rn := k [[t ]]/(tn+1), then the infinitesimal neighbourhoods

Xn := X(ω)× Spec (Rn),

form an inductive system and give rise to a formal R-scheme

π : X → Spf(R),

which is the formal neighbourhood of X in X(ω).
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The first order deformation

The equivalence ΦE induces a morphim

ΦHH
E : HH2(X ) → HH2(X ).

Proposition

Let v1 ∈ H1(X , TX ) be the Kodaira–Spencer class of first order
deformation given by a twistor space X(ω) as above. Then

v ′1 := ΦHH
E (v1) ∈ H1(X , TX ).
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The first order deformation

Let X ′
1 be the first order deformation corresponding to v ′1.

Using results of Toda one gets the following conclusion

Proposition (Toda)

For v1 and v ′1 as before, there exists E1 ∈ Db(X1 ×R1 X ′
1) such

that
i∗1E1 = E0 := E .

Here i1 : X0 ×C X0 ↪→ X ′
1 ×R1 X ′

1 is the natural inclusion.

Hence there is a first order deformation of E .

Paolo Stellari Equivalences of K3 Surfaces and Orientation



Derived Torelli Theorem
The generic case

The general projective case

The strategy
Deforming kernels
Concluding the argument

The first order deformation

Let X ′
1 be the first order deformation corresponding to v ′1.

Using results of Toda one gets the following conclusion

Proposition (Toda)

For v1 and v ′1 as before, there exists E1 ∈ Db(X1 ×R1 X ′
1) such

that
i∗1E1 = E0 := E .

Here i1 : X0 ×C X0 ↪→ X ′
1 ×R1 X ′

1 is the natural inclusion.

Hence there is a first order deformation of E .

Paolo Stellari Equivalences of K3 Surfaces and Orientation



Derived Torelli Theorem
The generic case

The general projective case

The strategy
Deforming kernels
Concluding the argument

The first order deformation

Let X ′
1 be the first order deformation corresponding to v ′1.

Using results of Toda one gets the following conclusion

Proposition (Toda)

For v1 and v ′1 as before, there exists E1 ∈ Db(X1 ×R1 X ′
1) such

that
i∗1E1 = E0 := E .

Here i1 : X0 ×C X0 ↪→ X ′
1 ×R1 X ′

1 is the natural inclusion.

Hence there is a first order deformation of E .

Paolo Stellari Equivalences of K3 Surfaces and Orientation



Derived Torelli Theorem
The generic case

The general projective case

The strategy
Deforming kernels
Concluding the argument

The first order deformation

Let X ′
1 be the first order deformation corresponding to v ′1.

Using results of Toda one gets the following conclusion

Proposition (Toda)

For v1 and v ′1 as before, there exists E1 ∈ Db(X1 ×R1 X ′
1) such

that
i∗1E1 = E0 := E .

Here i1 : X0 ×C X0 ↪→ X ′
1 ×R1 X ′

1 is the natural inclusion.

Hence there is a first order deformation of E .

Paolo Stellari Equivalences of K3 Surfaces and Orientation



Derived Torelli Theorem
The generic case

The general projective case

The strategy
Deforming kernels
Concluding the argument

The first order deformation

Let X ′
1 be the first order deformation corresponding to v ′1.

Using results of Toda one gets the following conclusion

Proposition (Toda)

For v1 and v ′1 as before, there exists E1 ∈ Db(X1 ×R1 X ′
1) such

that
i∗1E1 = E0 := E .

Here i1 : X0 ×C X0 ↪→ X ′
1 ×R1 X ′

1 is the natural inclusion.

Hence there is a first order deformation of E .

Paolo Stellari Equivalences of K3 Surfaces and Orientation



Derived Torelli Theorem
The generic case

The general projective case

The strategy
Deforming kernels
Concluding the argument

Higher order deformations

More generally

We construct, at any order n, an analytic deformation X ′
n such

that there exists En ∈ Db(Xn ×Rn X ′
n), with

i∗nEn = En−1.

Main difficulties
1 Rewrite Lieblich-Lowen’s obstruction for deforming

complexes in terms of Atiyah–Kodaira classes.
2 Show that the obstruction is zero.

Our approach imitates the first order case (using relative
Hochshild homology).
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Equivalences go to equivalences

There exists a sequence

Coh0(X ×R X ′) ↪→ Coh(X ×R X ′) → Coh((X ×R X ′)K ),

where Coh0(X ×R X ′) is the abelian category of sheaves on
X ×R X ′ supported on X × X .

Proposition

Let Ẽ ∈ Db(X ×R X ′) be such that E = i∗Ẽ (here
i : X × X → X ×R X ′ is the inclusion). Then Ẽ and ẼK are
kernels of Fourier–Mukai equivalences.

Here ẼK is the image via the natural functor in

Db((X ×R X ′)K ) := Db(Coh((X ×R X ′)K )).
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The generic fiber

Proposition

The triangulated category Db(XK ) := Db(Coh(XK )) is a generic
K3 category, i.e. [2] is the Serre functor and (OX )K is, up to
shifts, the unique spherical object.

Use the generic analytic case
Hence, reasoning as the analytic generic case, one can
compose ΦEK with some power of the spherical twist by (OX )K
getting a Fourier–Mukai equivalence ΦGK where
G ∈ Coh(X ×R X ′).
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The conclusion

Properties of G
1 G0 := i∗G is a sheaf in Coh(X × X ).
2 The natural morphism

(ΦG0)∗ : H∗(X , Q) → H∗(X , Q)

is such that (ΦG0)∗ = (ΦE)∗ = j .

Notice that G0 and E have the same Mukai vector!
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The conclusion

The contradiction is now obtained using the following lemma:

Lemma
If F ∈ Coh(X × X ), then (ΦF )∗ 6= j .

Open question

Which is the kernel of the map Aut (Db(X )) → O+(H̃(X , Z))?
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