Equivalences of K3 Surfaces and Orientation

Paolo Stellari

Dipartimento di Matematica "F. Enriques" Università degli Studi di Milano

Joint work with D. Huybrechts and E. Macrì (math.AG/0608430 + arXiv:0710.1645)

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Outline

Derived Torelli Theorem

- Motivations
- The statement
- Idea of the proof
- The main result: Szendroi's conjecture is true

Outline

Derived Torelli Theorem

- Motivations
- The statement
- Idea of the proof
- The main result: Szendroi's conjecture is true

2 The generic case

- The result
- Sketch of the proof

Outline

Derived Torelli Theorem

- Motivations
- The statement
- Idea of the proof
- The main result: Szendroi's conjecture is true

2 The generic case

- The result
- Sketch of the proof

3 The general projective case

- The strategy
- Deforming kernels
- Concluding the argument

The generic case The general projective case

Motivations

The statement Idea of the proof The main result: Szendroi's conjecture is true

Outline

Derived Torelli Theorem

- Motivations
- The statement
- Idea of the proof
- The main result: Szendroi's conjecture is true
- 2 The generic case
 - The result
 - Sketch of the proof
- 3 The general projective case
 - The strategy
 - Deforming kernels
 - Concluding the argument

The generic case The general projective case

Motivations

The statement Idea of the proof The main result: Szendroi's conjecture is true

The problem

Paolo Stellari Equivalences of K3 Surfaces and Orientation

<ロト <回 > < 回 > < 回 > .

∃ 990

The generic case The general projective case Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

The problem

Let X be a K3 surface (i.e. a smooth complex compact simply connected surface with trivial canonical bundle).

Main problem

Describe the group $Aut(D^b(X))$ of exact autoequivalences of the triangulated category

$$D^{b}(X) := D^{b}_{Coh}(\mathcal{O}_{X}\text{-Mod}).$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The generic case The general projective case

Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

The problem

Let X be a K3 surface (i.e. a smooth complex compact simply connected surface with trivial canonical bundle).

Main problem

Describe the group $Aut(D^b(X))$ of exact autoequivalences of the triangulated category

$$D^{b}(X) := D^{b}_{Coh}(\mathcal{O}_{X}\text{-Mod}).$$

Remark (Orlov)

Such a description is available when X is an abelian surface (actually an abelian variety).

The generic case The general projective case

Motivations

The statement Idea of the proof The main result: Szendroi's conjecture is true

Geometric case

Paolo Stellari Equivalences of K3 Surfaces and Orientation

The generic case The general projective case

Motivations

The statement Idea of the proof The main result: Szendroi's conjecture is true

Geometric case

Torelli Theorem

Let X and Y be K3 surfaces.

<ロト <回 > < 回 > < 回 > .

-31

The generic case The general projective case

Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

Geometric case

Torelli Theorem

Let X and Y be K3 surfaces. Suppose that there exists a Hodge isometry

$$g: H^2(X,\mathbb{Z}) \to H^2(Y,\mathbb{Z})$$

which maps the a Kähler class of X into the Kähler cone of Y.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The generic case The general projective case

Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

Geometric case

Torelli Theorem

Let X and Y be K3 surfaces. Suppose that there exists a Hodge isometry

$$g: H^2(X,\mathbb{Z}) \to H^2(Y,\mathbb{Z})$$

which maps the a Kähler class of X into the Kähler cone of Y. Then there exists a unique isomorphism

$$f: X \cong Y$$

such that $f_* = g$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The generic case The general projective case

Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

Geometric case

Torelli Theorem

Let X and Y be K3 surfaces. Suppose that there exists a Hodge isometry

$$g: H^2(X,\mathbb{Z}) \to H^2(Y,\mathbb{Z})$$

which maps the a Kähler class of X into the Kähler cone of Y. Then there exists a unique isomorphism

$$f: X \cong Y$$

such that $f_* = g$.

Lattice theory

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The generic case The general projective case

Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

Geometric case

Torelli Theorem

Let X and Y be K3 surfaces. Suppose that there exists a Hodge isometry

$$g: H^2(X,\mathbb{Z}) \to H^2(Y,\mathbb{Z})$$

which maps the a Kähler class of X into the Kähler cone of Y. Then there exists a unique isomorphism

$$f: X \cong Y$$

such that $f_* = g$.

Lattice theory + Hodge structures

・ロト ・ 日 ・ ・ ヨ ・

The generic case The general projective case Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

Geometric case

Torelli Theorem

Let X and Y be K3 surfaces. Suppose that there exists a Hodge isometry

$$g: H^2(X,\mathbb{Z}) \to H^2(Y,\mathbb{Z})$$

which maps the a Kähler class of X into the Kähler cone of Y. Then there exists a unique isomorphism

$$f: X \cong Y$$

such that $f_* = g$.

Lattice theory + Hodge structures + ample cone

The generic case The general projective case Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

Outline

Derived Torelli Theorem

- Motivations
- The statement
- Idea of the proof
- The main result: Szendroi's conjecture is true
- 2 The generic case
 - The result
 - Sketch of the proof
- 3 The general projective case
 - The strategy
 - Deforming kernels
 - Concluding the argument

The generic case The general projective case Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

The derived case

Paolo Stellari Equivalences of K3 Surfaces and Orientation

The generic case The general projective case Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

The derived case

Derived Torelli Theorem (Mukai, Orlov)

Let X and Y be smooth projective K3 surfaces.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

-2

The generic case The general projective case Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

The derived case

Derived Torelli Theorem (Mukai, Orlov)

Let X and Y be smooth projective K3 surfaces.

• If $\Phi : D^{b}(X) \cong D^{b}(Y)$ is an equivalence, then there exists a naturally defined Hodge isometry

$$\Phi_*: \widetilde{H}(X,\mathbb{Z})\cong \widetilde{H}(Y,\mathbb{Z}).$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The generic case The general projective case Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

The derived case

Derived Torelli Theorem (Mukai, Orlov)

Let X and Y be smooth projective K3 surfaces.

• If $\Phi : D^{b}(X) \cong D^{b}(Y)$ is an equivalence, then there exists a naturally defined Hodge isometry

$$\Phi_*:\widetilde{H}(X,\mathbb{Z})\cong\widetilde{H}(Y,\mathbb{Z}).$$

Suppose there exists a Hodge isometry g: H̃(X, ℤ) ≅ H̃(Y, ℤ) that preserves the natural orientation of the four positive directions. Then there exists an equivalence Φ : D^b(X) ≅ D^b(Y) such that Φ_{*} = g.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

The generic case The general projective case Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

The derived case

Derived Torelli Theorem (Mukai, Orlov)

Let X and Y be smooth projective K3 surfaces.

• If $\Phi : D^{b}(X) \cong D^{b}(Y)$ is an equivalence, then there exists a naturally defined Hodge isometry

$$\Phi_*:\widetilde{H}(X,\mathbb{Z})\cong\widetilde{H}(Y,\mathbb{Z}).$$

Suppose there exists a Hodge isometry g: H̃(X, ℤ) ≅ H̃(Y, ℤ) that preserves the natural orientation of the four positive directions. Then there exists an equivalence Φ : D^b(X) ≅ D^b(Y) such that Φ_{*} = g.

It is not symmetric!

・ロト ・四ト ・ヨト ・ヨト

The generic case The general projective case Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

Additional structures

Paolo Stellari Equivalences of K3 Surfaces and Orientation

<ロ> <同> <同> < 同> < 同> < 同> <

∃ 990

The generic case The general projective case Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

Additional structures

Lattice structure: The Mukai pairing (Euler–Poincaré form up to sign). The lattice is denoted $\widetilde{H}(X, \mathbb{Z})$.

・ロト ・ 四ト ・ ヨト ・

Derived Torelli Theorem The generic case

The general projective case

Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

Additional structures

Lattice structure: The Mukai pairing (Euler–Poincaré form up to sign). The lattice is denoted $\widetilde{H}(X, \mathbb{Z})$.

Orientation: Let σ be a generator of $H^{2,0}(X)$ and ω a Kähler class. Then

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

Additional structures

Lattice structure: The Mukai pairing (Euler–Poincaré form up to sign). The lattice is denoted $\widetilde{H}(X, \mathbb{Z})$.

Orientation: Let σ be a generator of $H^{2,0}(X)$ and ω a Kähler class. Then

$$P(X,\sigma,\omega) := \langle \operatorname{Re}(\sigma), \operatorname{Im}(\sigma), 1 - \omega^2/2, \omega \rangle,$$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

Additional structures

Lattice structure: The Mukai pairing (Euler–Poincaré form up to sign). The lattice is denoted $\widetilde{H}(X, \mathbb{Z})$.

Orientation: Let σ be a generator of $H^{2,0}(X)$ and ω a Kähler class. Then

$$\boldsymbol{P}(\boldsymbol{X},\sigma,\omega) := \langle \operatorname{Re}(\sigma), \operatorname{Im}(\sigma), 1 - \omega^2/2, \omega \rangle,$$

is a positive four-space in $\widetilde{H}(X,\mathbb{R})$ with a natural orientation.

Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

Additional structures

Lattice structure: The Mukai pairing (Euler–Poincaré form up to sign). The lattice is denoted $\widetilde{H}(X, \mathbb{Z})$.

Orientation: Let σ be a generator of $H^{2,0}(X)$ and ω a Kähler class. Then

$$\boldsymbol{P}(\boldsymbol{X},\sigma,\omega) := \langle \operatorname{Re}(\sigma), \operatorname{Im}(\sigma), 1 - \omega^2/2, \omega \rangle,$$

is a positive four-space in $\widetilde{H}(X,\mathbb{R})$ with a natural orientation.

Hodge structure: The weight-2 Hodge structure on $H^*(X, \mathbb{Z})$ is

$$egin{aligned} &\widetilde{H}^{2,0}(X) := H^{2,0}(X), \ &\widetilde{H}^{0,2}(X) := H^{0,2}(X), \ &\widetilde{H}^{1,1}(X) := H^0(X,\mathbb{C}) \oplus H^{1,1}(X) \oplus H^4(X,\mathbb{C}) \end{aligned}$$

・ロト ・ 四ト ・ ヨト ・ ヨト

The generic case The general projective case Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

Orientation

Paolo Stellari Equivalences of K3 Surfaces and Orientation

<ロ> <同> <同> < 同> < 同> < 同> <

三 のへで

The generic case The general projective case Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

Orientation

Paolo Stellari Equivalences of K3 Surfaces and Orientation

<ロ> <同> <同> < 同> < 同> < 同> <

三 のへで

The generic case The general projective case Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

Orientation

• Due to the choice of a basis, the space $P(X, \sigma, \omega)$ comes with a natural orientation.

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・ ・

-20

Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

Orientation

- Due to the choice of a basis, the space $P(X, \sigma, \omega)$ comes with a natural orientation.
- 2 The orientation is independent of the choice of σ_X and ω .

Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

Orientation

- Due to the choice of a basis, the space $P(X, \sigma, \omega)$ comes with a natural orientation.
- 2 The orientation is independent of the choice of σ_X and ω .
- It is easy to see that the isometry

$$j:=(\mathrm{id})_{H^0\oplus H^4}\oplus (-\mathrm{id})_{H^2}$$

is not orientation preserving.

Problem

According to the Derived Torelli Theorem, is the isometry *j* induced by an autoequivalence?

The generic case The general projective case Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

Outline

Derived Torelli Theorem

- Motivations
- The statement
- Idea of the proof
- The main result: Szendroi's conjecture is true
- 2 The generic case
 - The result
 - Sketch of the proof
- 3 The general projective case
 - The strategy
 - Deforming kernels
 - Concluding the argument

The generic case The general projective case Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

Idea of the proof

Paolo Stellari Equivalences of K3 Surfaces and Orientation

<ロト <回 > < 回 > < 回 > .

-31

The generic case The general projective case Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

Idea of the proof

Definition

 $F : D^{b}(X) \rightarrow D^{b}(Y)$ is of Fourier–Mukai type if there exists $\mathcal{E} \in D^{b}(X \times Y)$ and an isomorphism of functors

$$F \cong \Phi_{\mathcal{E}} := \mathbf{R} p_*(\mathcal{E} \overset{\mathsf{L}}{\otimes} q^*(-)),$$

where $p : X \times Y \rightarrow Y$ and $q : X \times Y \rightarrow X$ are the natural projections.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

The generic case The general projective case Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

Idea of the proof

Definition

 $F : D^{b}(X) \rightarrow D^{b}(Y)$ is of Fourier–Mukai type if there exists $\mathcal{E} \in D^{b}(X \times Y)$ and an isomorphism of functors

$$F \cong \Phi_{\mathcal{E}} := \mathbf{R} p_*(\mathcal{E} \overset{\mathsf{L}}{\otimes} q^*(-)),$$

where $p : X \times Y \rightarrow Y$ and $q : X \times Y \rightarrow X$ are the natural projections.

The complex \mathcal{E} is the kernel of F.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

The generic case The general projective case Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

Idea of the proof

Definition

 $F : D^{b}(X) \rightarrow D^{b}(Y)$ is of Fourier–Mukai type if there exists $\mathcal{E} \in D^{b}(X \times Y)$ and an isomorphism of functors

$$F \cong \Phi_{\mathcal{E}} := \mathbf{R} p_*(\mathcal{E} \overset{\mathsf{L}}{\otimes} q^*(-)),$$

where $p : X \times Y \rightarrow Y$ and $q : X \times Y \rightarrow X$ are the natural projections.

The complex \mathcal{E} is the kernel of F. Orlov: Every equivalence is of Fourier–Mukai type.

・ロト ・ 一日 ト ・ 日 ト

The generic case The general projective case Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

Ideas form the proof

Paolo Stellari Equivalences of K3 Surfaces and Orientation

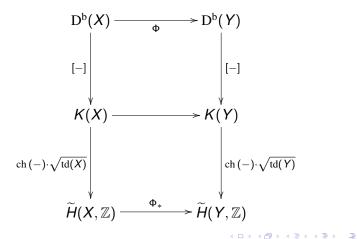
・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

-31

The generic case The general projective case Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

Ideas form the proof

Using the Chern character one gets the commutative diagram:



The generic case The general projective case Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

Outline

Derived Torelli Theorem

- Motivations
- The statement
- Idea of the proof
- The main result: Szendroi's conjecture is true
- 2) The generic case
 - The result
 - Sketch of the proof
- 3 The general projective case
 - The strategy
 - Deforming kernels
 - Concluding the argument

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The generic case The general projective case Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

The statement

Paolo Stellari Equivalences of K3 Surfaces and Orientation

The generic case The general projective case Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

The statement

Main Theorem (Huybrechts-Macrì-S.)

Let X and Y be smooth projective K3 surfaces.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

3

The generic case The general projective case Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

The statement

Main Theorem (Huybrechts-Macrì-S.)

Let *X* and *Y* be smooth projective K3 surfaces. Any equivalence $\Phi : D^{b}(X) \cong D^{b}(Y)$ induces naturally a Hodge isometry $\Phi_{*} : \widetilde{H}(X, \mathbb{Z}) \to \widetilde{H}(Y, \mathbb{Z})$ preserving the natural orientation of the four positive directions.

<ロ> <同> <同> < 同> < 同> < 同> <

The generic case The general projective case Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

The statement

Main Theorem (Huybrechts-Macrì-S.)

Let X and Y be smooth projective K3 surfaces. Any equivalence $\Phi : D^{b}(X) \cong D^{b}(Y)$ induces naturally a Hodge isometry $\Phi_{*} : \widetilde{H}(X, \mathbb{Z}) \to \widetilde{H}(Y, \mathbb{Z})$ preserving the natural orientation of the four positive directions.

Remark

This result was previously conjectured by Szendroi as a mirror-symmetric analogue of a result of Borcea and Donaldson about the group of diffeomorphisms of a K3 surface.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

The generic case The general projective case Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

Equivalent statements

Let $O_+ := O_+(\widetilde{H}(X,\mathbb{Z}))$ be the group of orientation preserving Hodge isometries of $\widetilde{H}(X,\mathbb{Z})$.

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・ ・

Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

Equivalent statements

Let $O_+ := O_+(\widetilde{H}(X,\mathbb{Z}))$ be the group of orientation preserving Hodge isometries of $\widetilde{H}(X,\mathbb{Z})$.

Using the previous result, we would get

$$1 \rightarrow ? \rightarrow \operatorname{Aut}(\operatorname{D}^{\operatorname{b}}(X)) \xrightarrow{\Pi} \operatorname{O}_{+} \rightarrow 1.$$

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Motivations The statement Idea of the proof The main result: Szendroi's conjecture is true

Equivalent statements

Let $O_+ := O_+(\widetilde{H}(X,\mathbb{Z}))$ be the group of orientation preserving Hodge isometries of $\widetilde{H}(X,\mathbb{Z})$.

Using the previous result, we would get

$$1 \rightarrow ? \rightarrow \operatorname{Aut}(\operatorname{D}^{\operatorname{b}}(X)) \xrightarrow{\Pi} \operatorname{O}_{+} \rightarrow 1.$$

There is a conjectural description by Bridgeland of the kernel in terms of the geometry of the complex manifold parametrizing stability conditions on $D^{b}(X)$.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

The result Sketch of the proof

Outline

- Derived Torelli Theorem
 - Motivations
 - The statement
 - Idea of the proof
 - The main result: Szendroi's conjecture is true

2 The generic case

- The result
- Sketch of the proof
- 3 The general projective case
 - The strategy
 - Deforming kernels
 - Concluding the argument

A (10) A (10) A (10)

The result Sketch of the proof

The statement

Paolo Stellari Equivalences of K3 Surfaces and Orientation

<ロ> <同> <同> < 同> < 同> < 同> <

∃ 990

The result Sketch of the proof

The statement

Theorem (Huybrechts-Macri-S.)

Let X and Y be generic analytic K3 surfaces (i.e. Pic(X) = Pic(Y) = 0). If

$$\Phi_{\mathcal{E}}:\mathrm{D}^{\mathrm{b}}(X)\xrightarrow{\sim}\mathrm{D}^{\mathrm{b}}(Y)$$

is an equivalence of Fourier-Mukai type, then up to shift

$$\Phi_{\mathcal{E}} \cong T^n_{\mathcal{O}_Y} \circ f_*$$

for some $n \in \mathbb{Z}$ and an isomorphism

$$f: X \xrightarrow{\sim} Y.$$

Image: Image:

The result Sketch of the proof

The functors

Paolo Stellari Equivalences of K3 Surfaces and Orientation

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

∃ 990

The result Sketch of the proof

The functors

Definition

An object $\mathcal{E} \in D^{b}(X)$ is spherical if

Hom
$$(\mathcal{E}, \mathcal{E}[i]) \cong \begin{cases} \mathbb{C} & \text{if } i \in \{0, 2\} \\ 0 & \text{otherwise.} \end{cases}$$

Paolo Stellari Equivalences of K3 Surfaces and Orientation

・ロト ・四ト ・ヨト

-2

The result Sketch of the proof

The functors

Definition

An object $\mathcal{E} \in \mathrm{D}^\mathrm{b}(X)$ is spherical if

Hom
$$(\mathcal{E}, \mathcal{E}[i]) \cong \begin{cases} \mathbb{C} & \text{if } i \in \{0, 2\} \\ 0 & \text{otherwise.} \end{cases}$$

In particular, \mathcal{O}_X is spherical.

・ロト ・四ト ・ヨト

-2

The result Sketch of the proof

The functors

Definition

An object $\mathcal{E} \in D^b(X)$ is spherical if

$$\operatorname{Hom}\left(\mathcal{E},\mathcal{E}[i]\right)\cong \left\{\begin{array}{ll} \mathbb{C} & \text{if } i\in\{0,2\}\\ 0 & \text{otherwise.} \end{array}\right.$$

In particular, \mathcal{O}_X is spherical.

The spherical twist $\mathcal{T}_{\mathcal{O}_X} : D^b(X) \to D^b(X)$ that sends $\mathcal{F} \in D^b(X)$ to the cone of

$$\bigoplus_{i} (\operatorname{Hom} \left(\mathcal{O}_{X}, \mathcal{F}[i] \right) \otimes \mathcal{O}_{X}[-i]) \to \mathcal{F}$$

is an orientation preserving equivalence.

The result Sketch of the proof

Outline

- Derived Torelli Theorem
 - Motivations
 - The statement
 - Idea of the proof
 - The main result: Szendroi's conjecture is true

2 The generic case

- The result
- Sketch of the proof
- 3) The general projective case
 - The strategy
 - Deforming kernels
 - Concluding the argument

A (10) < A (10) < A (10) </p>

The result Sketch of the proof

Stability conditions (Bridgeland)

Paolo Stellari Equivalences of K3 Surfaces and Orientation

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

-

The result Sketch of the proof

Stability conditions (Bridgeland)

For simplicity, we restrict ourselves to the case of stability conditions on derived categories!

Any triangulated category would fit.

・ロト ・ 一日 ト ・ 日 ト

The result Sketch of the proof

Stability conditions (Bridgeland)

For simplicity, we restrict ourselves to the case of stability conditions on derived categories!

Any triangulated category would fit.

A stability condition on $D^{b}(X)$ is a pair $\sigma = (Z, \mathcal{P})$ where

• $Z : \mathcal{N}(X) \otimes \mathbb{C} \to \mathbb{C}$ is a linear map

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ </p>

The result Sketch of the proof

Stability conditions (Bridgeland)

For simplicity, we restrict ourselves to the case of stability conditions on derived categories!

Any triangulated category would fit.

A stability condition on $D^{b}(X)$ is a pair $\sigma = (Z, \mathcal{P})$ where

• $Z : \mathcal{N}(X) \otimes \mathbb{C} \to \mathbb{C}$ is a linear map (the central charge; here $\mathcal{N}(X)$ is the sublattice of $\widetilde{H}(X, \mathbb{Z})$ orthogonal to $H^{2,0}(X)$.)

(日)

The result Sketch of the proof

Stability conditions (Bridgeland)

For simplicity, we restrict ourselves to the case of stability conditions on derived categories!

Any triangulated category would fit.

A stability condition on $D^{b}(X)$ is a pair $\sigma = (Z, \mathcal{P})$ where

- $Z : \mathcal{N}(X) \otimes \mathbb{C} \to \mathbb{C}$ is a linear map (the central charge; here $\mathcal{N}(X)$ is the sublattice of $\widetilde{H}(X,\mathbb{Z})$ orthogonal to $H^{2,0}(X)$.)
- *P*(φ) ⊂ D^b(X) are full additive subcategories for each φ ∈ ℝ

satisfying the following conditions:

The result Sketch of the proof

The definition

Paolo Stellari Equivalences of K3 Surfaces and Orientation

-31

The result Sketch of the proof

The definition

(a) If $0 \neq \mathcal{E} \in \mathcal{P}(\phi)$, then $Z(\mathcal{E}) = m(\mathcal{E}) \exp(i\pi\phi)$ for some $m(\mathcal{E}) \in \mathbb{R}_{>0}$.

The result Sketch of the proof

The definition

(a) If $0 \neq \mathcal{E} \in \mathcal{P}(\phi)$, then $Z(\mathcal{E}) = m(\mathcal{E}) \exp(i\pi\phi)$ for some $m(\mathcal{E}) \in \mathbb{R}_{>0}$.

(b) $\mathcal{P}(\phi + 1) = \mathcal{P}(\phi)[1]$ for all ϕ .

(日) (圖) (E) (E) (E)

The result Sketch of the proof

The definition

- (a) If $0 \neq \mathcal{E} \in \mathcal{P}(\phi)$, then $Z(\mathcal{E}) = m(\mathcal{E}) \exp(i\pi\phi)$ for some $m(\mathcal{E}) \in \mathbb{R}_{>0}$.
- (b) $\mathcal{P}(\phi + 1) = \mathcal{P}(\phi)[1]$ for all ϕ .
- (c) Hom $(\mathcal{E}_1, \mathcal{E}_2) = 0$ for all $\mathcal{E}_i \in \mathcal{P}(\phi_i)$ with $\phi_1 > \phi_2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

The result Sketch of the proof

The definition

- (a) If $0 \neq \mathcal{E} \in \mathcal{P}(\phi)$, then $Z(\mathcal{E}) = m(\mathcal{E}) \exp(i\pi\phi)$ for some $m(\mathcal{E}) \in \mathbb{R}_{>0}$.
- (b) $\mathcal{P}(\phi + 1) = \mathcal{P}(\phi)[1]$ for all ϕ .
- (c) Hom $(\mathcal{E}_1, \mathcal{E}_2) = 0$ for all $\mathcal{E}_i \in \mathcal{P}(\phi_i)$ with $\phi_1 > \phi_2$.
- (d) Any $0 \neq \mathcal{E} \in D^b(X)$ admits a Harder–Narasimhan filtration given by a collection of distinguished triangles

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

The result Sketch of the proof

The definition

(a) If $0 \neq \mathcal{E} \in \mathcal{P}(\phi)$, then $Z(\mathcal{E}) = m(\mathcal{E}) \exp(i\pi\phi)$ for some $m(\mathcal{E}) \in \mathbb{R}_{>0}$.

(b)
$$\mathcal{P}(\phi + 1) = \mathcal{P}(\phi)[1]$$
 for all ϕ .

- (c) Hom $(\mathcal{E}_1, \mathcal{E}_2) = 0$ for all $\mathcal{E}_i \in \mathcal{P}(\phi_i)$ with $\phi_1 > \phi_2$.
- (d) Any $0 \neq \mathcal{E} \in D^{b}(X)$ admits a Harder–Narasimhan filtration given by a collection of distinguished triangles

$$\mathcal{E}_{i-1} \to \mathcal{E}_i \to \mathcal{A}_i$$

(日) (圖) (E) (E) (E)

The result Sketch of the proof

The definition

(a) If $0 \neq \mathcal{E} \in \mathcal{P}(\phi)$, then $Z(\mathcal{E}) = m(\mathcal{E}) \exp(i\pi\phi)$ for some $m(\mathcal{E}) \in \mathbb{R}_{>0}$.

(b)
$$\mathcal{P}(\phi + 1) = \mathcal{P}(\phi)[1]$$
 for all ϕ .

- (c) Hom $(\mathcal{E}_1, \mathcal{E}_2) = 0$ for all $\mathcal{E}_i \in \mathcal{P}(\phi_i)$ with $\phi_1 > \phi_2$.
- (d) Any $0 \neq \mathcal{E} \in D^{b}(X)$ admits a Harder–Narasimhan filtration given by a collection of distinguished triangles

$$\mathcal{E}_{i-1} \to \mathcal{E}_i \to \mathcal{A}_i$$

with $\mathcal{E}_0 = 0$ and $\mathcal{E}_n = \mathcal{E}$ such that $\mathcal{A}_i \in \mathcal{P}(\phi_i)$ with $\phi_1 > \ldots > \phi_n$.

The result Sketch of the proof

Stability conditions (Bridgeland)

Paolo Stellari Equivalences of K3 Surfaces and Orientation

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

-

The result Sketch of the proof

Stability conditions (Bridgeland)

The non-zero objects in the category P(φ) are the semistable objects of phase φ. The objects A_i in (d) are the semistable factors of E.

(日)

The result Sketch of the proof

Stability conditions (Bridgeland)

- The non-zero objects in the category P(φ) are the semistable objects of phase φ. The objects A_i in (d) are the semistable factors of E.
- The minimal objects of $\mathcal{P}(\phi)$ are called stable of phase ϕ .

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

The result Sketch of the proof

Stability conditions (Bridgeland)

- The non-zero objects in the category P(φ) are the semistable objects of phase φ. The objects A_i in (d) are the semistable factors of E.
- The minimal objects of $\mathcal{P}(\phi)$ are called stable of phase ϕ .
- The category $\mathcal{P}((0, 1])$ is called the heart of σ .

The result Sketch of the proof

Stability conditions (Bridgeland)

Paolo Stellari Equivalences of K3 Surfaces and Orientation

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

-

The result Sketch of the proof

Stability conditions (Bridgeland)

To exhibit a stability condition on $D^{b}(X)$, it is enough to give

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

The result Sketch of the proof

Stability conditions (Bridgeland)

To exhibit a stability condition on $D^{b}(X)$, it is enough to give

• a bounded *t*-structure on $D^{b}(X)$ with heart **A**;

・ロト ・ 一日 ト ・ 日 ト

Stability conditions (Bridgeland)

To exhibit a stability condition on $D^{b}(X)$, it is enough to give

- a bounded *t*-structure on $D^{b}(X)$ with heart **A**;
- a group homomorphism Z : K(A) → C such that Z(E) ∈ H, for all 0 ≠ E ∈ A, and with the Harder–Narasimhan property (H := {z ∈ C : z = |z| exp(iπφ), 0 < φ ≤ 1}).

イロト イポト イヨト イヨト 三日

Stability conditions (Bridgeland)

To exhibit a stability condition on $D^{b}(X)$, it is enough to give

- a bounded *t*-structure on $D^{b}(X)$ with heart **A**;
- a group homomorphism Z : K(A) → C such that Z(E) ∈ H, for all 0 ≠ E ∈ A, and with the Harder–Narasimhan property (H := {z ∈ C : z = |z| exp(iπφ), 0 < φ ≤ 1}).

All stability conditions are assumed to be locally-finite. Hence every object in $\mathcal{P}(\phi)$ has a finite Jordan–Hölder filtration. Stab ($D^{b}(X)$) is the manifold parametrizing locally finite stability conditions.

イロト イポト イヨト イヨト 三日

Stability conditions (Bridgeland)

To exhibit a stability condition on $D^{b}(X)$, it is enough to give

- a bounded *t*-structure on $D^{b}(X)$ with heart **A**;
- a group homomorphism Z : K(A) → C such that Z(E) ∈ H, for all 0 ≠ E ∈ A, and with the Harder–Narasimhan property (H := {z ∈ C : z = |z| exp(iπφ), 0 < φ ≤ 1}).

All stability conditions are assumed to be locally-finite. Hence every object in $\mathcal{P}(\phi)$ has a finite Jordan–Hölder filtration. Stab ($D^{b}(X)$) is the manifold parametrizing locally finite stability conditions.

The group Aut $(D^{b}(X))$ of exact autoequivalences of $D^{b}(X)$ acts on Stab $(D^{b}(X))$.

・ロト ・ 四ト ・ ヨト ・ ヨ

The result Sketch of the proof

Stability conditions: the generic case

Paolo Stellari Equivalences of K3 Surfaces and Orientation

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

-20

The result Sketch of the proof

Stability conditions: the generic case

Consider the open subset

$$R := \mathbb{C} \setminus \mathbb{R}_{\geq -1} = R_+ \cup R_- \cup R_0,$$

where the sets are defined in the natural way:

・ロト ・ 一日 ト ・ 日 ト

The result Sketch of the proof

Stability conditions: the generic case

Consider the open subset

$$R := \mathbb{C} \setminus \mathbb{R}_{\geq -1} = R_+ \cup R_- \cup R_0,$$

where the sets are defined in the natural way:

•
$$R_+ := R \cap (\mathbb{H} \setminus \mathbb{R}_{<0}),$$

・ロト ・ 一日 ト ・ 日 ト

The result Sketch of the proof

Stability conditions: the generic case

Consider the open subset

$$R := \mathbb{C} \setminus \mathbb{R}_{\geq -1} = R_+ \cup R_- \cup R_0,$$

where the sets are defined in the natural way:

•
$$R_+ := R \cap (\mathbb{H} \setminus \mathbb{R}_{<0}),$$

•
$$R_{-} := R \cap (-\mathbb{H} \setminus \mathbb{R}_{<0}),$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

The result Sketch of the proof

Stability conditions: the generic case

Consider the open subset

$$R := \mathbb{C} \setminus \mathbb{R}_{\geq -1} = R_+ \cup R_- \cup R_0,$$

where the sets are defined in the natural way:

•
$$R_+ := R \cap (\mathbb{H} \setminus \mathbb{R}_{<0}),$$

•
$$R_{-} := R \cap (-\mathbb{H} \setminus \mathbb{R}_{<0}),$$

• $R_0 := R \cap \mathbb{R}$.

The result Sketch of the proof

Stability conditions: the generic case

Consider the open subset

$$R := \mathbb{C} \setminus \mathbb{R}_{\geq -1} = R_+ \cup R_- \cup R_0,$$

where the sets are defined in the natural way:

•
$$R_+ := R \cap (\mathbb{H} \setminus \mathbb{R}_{<0}),$$

•
$$R_{-} := R \cap (-\mathbb{H} \setminus \mathbb{R}_{<0}),$$

•
$$R_0 := R \cap \mathbb{R}$$
.

Proposition

For any $z \in R$, there exist an abelian category $\mathcal{A}(z)$ and a linear function Z yielding a stability condition $\sigma_z \in \text{Stab}(D^{b}(X))$.

The result Sketch of the proof

Stability conditions: the generic case

Paolo Stellari Equivalences of K3 Surfaces and Orientation

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

-20

The result Sketch of the proof

Stability conditions: the generic case

Proposition

For any $\sigma \in \text{Stab}(D^{b}(X))$, there is $n \in \mathbb{Z}$ such that $T^{n}_{\mathcal{O}_{X}}(\mathcal{O}_{p})$ is stable in σ , for any closed point $p \in X$.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

The result Sketch of the proof

Stability conditions: the generic case

Proposition

For any $\sigma \in \text{Stab}(D^{b}(X))$, there is $n \in \mathbb{Z}$ such that $T^{n}_{\mathcal{O}_{X}}(\mathcal{O}_{p})$ is stable in σ , for any closed point $p \in X$.

Definition

An object $\mathcal{E} \in D^{b}(X)$ is semi-rigid if $\operatorname{Hom}_{D^{b}(X)}(\mathcal{E}, \mathcal{E}[1]) \cong \mathbb{C}^{\oplus 2}$.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

The result Sketch of the proof

Stability conditions: the generic case

Proposition

For any $\sigma \in \text{Stab}(D^{b}(X))$, there is $n \in \mathbb{Z}$ such that $T^{n}_{\mathcal{O}_{X}}(\mathcal{O}_{p})$ is stable in σ , for any closed point $p \in X$.

Definition

An object $\mathcal{E} \in D^{b}(X)$ is semi-rigid if $\operatorname{Hom}_{D^{b}(X)}(\mathcal{E}, \mathcal{E}[1]) \cong \mathbb{C}^{\oplus 2}$.

Lemma

If $z \in \mathbb{R}_{<0}$, then the only semi-rigid stable objects in $\mathcal{A}(z)$ are the skyscraper sheaves.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

The result Sketch of the proof

The proof

Paolo Stellari Equivalences of K3 Surfaces and Orientation

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

∃ 990

The result Sketch of the proof

The proof

Consider an equivalence of Fourier–Mukai type $\Phi: \mathrm{D}^{\mathrm{b}}(X) \to \mathrm{D}^{\mathrm{b}}(Y).$

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

-20

The result Sketch of the proof

The proof

Consider an equivalence of Fourier–Mukai type $\Phi: \mathrm{D}^{\mathrm{b}}(X) \to \mathrm{D}^{\mathrm{b}}(Y).$

(a) Take the distinguished stability condition

$$\sigma = \sigma_{z=(u,v=0)}$$

constructed before. Let

$$\tilde{\sigma} := \Phi_{\mathcal{E}}(\sigma).$$

・ロト ・ 一日 ト ・ 日 ト

The result Sketch of the proof

The proof

Consider an equivalence of Fourier–Mukai type $\Phi: D^{b}(X) \rightarrow D^{b}(Y).$

(a) Take the distinguished stability condition

$$\sigma = \sigma_{z=(u,v=0)}$$

constructed before. Let

$$\tilde{\sigma} := \Phi_{\mathcal{E}}(\sigma).$$

(b) We have seen that, there exists an integer *n* such that all skyscraper sheaves \mathcal{O}_{ρ} are stable of the same phase in the stability condition $T^n_{\mathcal{O}_{Y}}(\tilde{\sigma})$.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The result Sketch of the proof

The proof

Paolo Stellari Equivalences of K3 Surfaces and Orientation

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

∃ 990

The result Sketch of the proof

The proof

(c) The composition $\Psi := T^n_{\mathcal{O}_Y} \circ \Phi_{\mathcal{E}}$ has the properties:

Paolo Stellari Equivalences of K3 Surfaces and Orientation

<ロ> <同> <同> < 同> < 同> < 同> <

-20

The result Sketch of the proof

The proof

- (c) The composition $\Psi := T_{\mathcal{O}_{Y}}^{n} \circ \Phi_{\mathcal{E}}$ has the properties:
 - It sends the stability condition σ to a stability condition σ' for which all skyscraper sheaves are stable of the same phase.

(日)

The result Sketch of the proof

The proof

- (c) The composition $\Psi := T_{\mathcal{O}_{Y}}^{n} \circ \Phi_{\mathcal{E}}$ has the properties:
 - It sends the stability condition σ to a stability condition σ' for which all skyscraper sheaves are stable of the same phase.
 - Op to shifting the kernel *F* of Ψ sufficiently, we can assume that φ_{σ'}(O_y) ∈ (0, 1] for all closed points y ∈ Y.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

The result Sketch of the proof

The proof

- (c) The composition $\Psi := T_{\mathcal{O}_{Y}}^{n} \circ \Phi_{\mathcal{E}}$ has the properties:
 - It sends the stability condition σ to a stability condition σ' for which all skyscraper sheaves are stable of the same phase.
 - Op to shifting the kernel *F* of Ψ sufficiently, we can assume that φ_{σ'}(O_y) ∈ (0, 1] for all closed points y ∈ Y.

Thus, the heart $\mathcal{P}'((0, 1])$ of the *t*-structure associated to σ' (identified with $\mathcal{A}(z)$) contains as stable objects the images $\Psi(\mathcal{O}_p)$ of all closed points $p \in X$ and all skyscraper sheaves \mathcal{O}_y .

The result Sketch of the proof

The proof

Paolo Stellari Equivalences of K3 Surfaces and Orientation

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

∃ 990

The result Sketch of the proof

The proof

(d) We observed that the only semi-rigid stable objects in A(z) are the skyscraper sheaves.

(日)

The result Sketch of the proof

The proof

(d) We observed that the only semi-rigid stable objects in A(z) are the skyscraper sheaves. Hence, for all p ∈ X there exists a point y ∈ Y such that Ψ(O_p) ≅ O_y.

・ロト ・ 一日 ト ・ 日 ト

The result Sketch of the proof

The proof

(d) We observed that the only semi-rigid stable objects in A(z) are the skyscraper sheaves. Hence, for all p ∈ X there exists a point y ∈ Y such that Ψ(O_p) ≅ O_y. Therefore Ψ is a composition of f_{*}, for some isomorphism

$$f: X \xrightarrow{\sim} Y,$$

and the tensorization by a line bundle.

(日)

The result Sketch of the proof

The proof

(d) We observed that the only semi-rigid stable objects in A(z) are the skyscraper sheaves. Hence, for all p ∈ X there exists a point y ∈ Y such that Ψ(O_p) ≅ O_y. Therefore Ψ is a composition of f_{*}, for some isomorphism

$$f: X \xrightarrow{\sim} Y,$$

and the tensorization by a line bundle.

(e) But there are no non-trivial line bundles on Y.

(日)

The result Sketch of the proof

Concluding remarks

Paolo Stellari Equivalences of K3 Surfaces and Orientation

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

-31

The result Sketch of the proof

Concluding remarks

There are some important features in the proof:

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

3

The result Sketch of the proof

Concluding remarks

There are some important features in the proof:

Proposition

Up to shifts, \mathcal{O}_X is the only spherical object in the category $D^{b}(X)$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The result Sketch of the proof

Concluding remarks

There are some important features in the proof:

Proposition

Up to shifts, \mathcal{O}_X is the only spherical object in the category $D^b(X)$.

Theorem (Huybrechts-Macri-S.)

The manifold parametrizing numerical stability conditions on $D^{b}(X)$ is connected and simply-connected.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

The result Sketch of the proof

Concluding remarks

There are some important features in the proof:

Proposition

Up to shifts, \mathcal{O}_X is the only spherical object in the category $D^b(X)$.

Theorem (Huybrechts-Macri-S.)

The manifold parametrizing numerical stability conditions on $D^{b}(X)$ is connected and simply-connected.

This proves a conjecture by Bridgeland in the generic analytic case.

The strategy Deforming kernels Concluding the argument

Outline

- Derived Torelli Theorem
 - Motivations
 - The statement
 - Idea of the proof
 - The main result: Szendroi's conjecture is true
- 2 The generic case
 - The result
 - Sketch of the proof

3 The general projective case

- The strategy
- Deforming kernels
- Concluding the argument

A (10) A (10) A (10)

The strategy Deforming kernels Concluding the argument

The non-orienatation Hodge isometry

Paolo Stellari Equivalences of K3 Surfaces and Orientation

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

-2

The strategy Deforming kernels Concluding the argument

The non-orienatation Hodge isometry

Take any projective K3 surface X.

(日)

The strategy Deforming kernels Concluding the argument

The non-orienatation Hodge isometry

Take any projective K3 surface X.

We have already remarked that the isometry

$$j:=(\mathrm{id})_{H^0\oplus H^4}\oplus (-\mathrm{id})_{H^2}$$

is not orientation preserving.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

The strategy Deforming kernels Concluding the argument

The non-orienatation Hodge isometry

Take any projective K3 surface X.

We have already remarked that the isometry

 $j := (\mathrm{id})_{H^0 \oplus H^4} \oplus (-\mathrm{id})_{H^2}$

is not orientation preserving.

Since any orientation preserving Hodge isometry lifts to an equivalence $\Phi : D^{b}(X) \rightarrow D^{b}(X)$ (due to HLOY and Huybrechts-S.), to prove the main theorem, it is enough to prove that *j* is not induced by a Fourier–Mukai equivalence.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

The strategy Deforming kernels Concluding the argument

The non-orienatation Hodge isometry

Take any projective K3 surface X.

We have already remarked that the isometry

 $j := (\mathrm{id})_{H^0 \oplus H^4} \oplus (-\mathrm{id})_{H^2}$

is not orientation preserving.

Since any orientation preserving Hodge isometry lifts to an equivalence $\Phi : D^{b}(X) \rightarrow D^{b}(X)$ (due to HLOY and Huybrechts-S.), to prove the main theorem, it is enough to prove that *j* is not induced by a Fourier–Mukai equivalence.

We proceed by contradiction assuming that there exists $\mathcal{E} \in D^{b}(X \times X)$ such that $(\Phi_{\mathcal{E}})_{*} = j$.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

The strategy Deforming kernels Concluding the argument

The twistor space

Paolo Stellari Equivalences of K3 Surfaces and Orientation

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The strategy Deforming kernels Concluding the argument

The twistor space

Definition

A Kähler class $\omega \in H^{1,1}(X, \mathbb{R})$ is called very general if there is no non-trivial integral class $0 \neq \alpha \in H^{1,1}(X, \mathbb{Z})$ orthogonal to ω , i.e. $\omega^{\perp} \cap H^{1,1}(X, \mathbb{Z}) = 0$.

(日)

The strategy Deforming kernels Concluding the argument

The twistor space

Definition

A Kähler class $\omega \in H^{1,1}(X, \mathbb{R})$ is called very general if there is no non-trivial integral class $0 \neq \alpha \in H^{1,1}(X, \mathbb{Z})$ orthogonal to ω , i.e. $\omega^{\perp} \cap H^{1,1}(X, \mathbb{Z}) = 0$.

Take the twistor space $\mathbb{X}(\omega)$ of X determined by the choice of a very general Kähler class $\omega \in \mathcal{K}_X \cap \operatorname{Pic}(X) \otimes \mathbb{R}$. Hence we get a complex deformation

$$\pi: \mathbb{X}(\omega) \to \mathbb{P}(\omega).$$

(日)

The strategy Deforming kernels Concluding the argument

The twistor space

Definition

A Kähler class $\omega \in H^{1,1}(X, \mathbb{R})$ is called very general if there is no non-trivial integral class $0 \neq \alpha \in H^{1,1}(X, \mathbb{Z})$ orthogonal to ω , i.e. $\omega^{\perp} \cap H^{1,1}(X, \mathbb{Z}) = 0$.

Take the twistor space $\mathbb{X}(\omega)$ of X determined by the choice of a very general Kähler class $\omega \in \mathcal{K}_X \cap \operatorname{Pic}(X) \otimes \mathbb{R}$. Hence we get a complex deformation

$$\pi: \mathbb{X}(\omega) \to \mathbb{P}(\omega).$$

Take $R := \mathbb{C}[[t]]$ to be the ring of power series in t with residue field $K := \mathbb{C}((t))$.

The strategy Deforming kernels Concluding the argument

The twistor space

Paolo Stellari Equivalences of K3 Surfaces and Orientation

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The strategy Deforming kernels Concluding the argument

The twistor space

If $R_n := k[[t]]/(t^{n+1})$, then the infinitesimal neighbourhoods

$$\mathcal{X}_n := \mathbb{X}(\omega) \times \operatorname{Spec}(R_n),$$

form an inductive system and give rise to a formal R-scheme

$$\pi: \mathcal{X} \to \mathrm{Spf}(R),$$

which is the formal neighbourhood of X in $\mathbb{X}(\omega)$.

<ロ> <同> <同> < 同> < 同> < 同> <

The strategy Deforming kernels Concluding the argument

Outline

- Derived Torelli Theorem
 - Motivations
 - The statement
 - Idea of the proof
 - The main result: Szendroi's conjecture is true
- 2 The generic case
 - The result
 - Sketch of the proof

3 The general projective case

- The strategy
- Deforming kernels
- Concluding the argument

A (10) A (10) A (10)

The strategy Deforming kernels Concluding the argument

The first order deformation

Paolo Stellari Equivalences of K3 Surfaces and Orientation

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

The strategy Deforming kernels Concluding the argument

The first order deformation

The equivalence $\Phi_{\mathcal{E}}$ induces a morphim

$$\Phi_{\mathcal{E}}^{H\!H}:H\!H^2(X)\to H\!H^2(X).$$

(日)

3

The strategy Deforming kernels Concluding the argument

The first order deformation

The equivalence $\Phi_{\mathcal{E}}$ induces a morphim

$$\Phi_{\mathcal{E}}^{H\!H}:H\!H^2(X)\to H\!H^2(X).$$

Proposition

Let $v_1 \in H^1(X, \mathcal{T}_X)$ be the Kodaira–Spencer class of first order deformation given by a twistor space $\mathbb{X}(\omega)$ as above. Then

$$v_1':=\Phi_{\mathcal{E}}^{HH}(v_1)\in H^1(X,\mathcal{T}_X).$$

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The strategy Deforming kernels Concluding the argument

The first order deformation

Paolo Stellari Equivalences of K3 Surfaces and Orientation

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

The strategy Deforming kernels Concluding the argument

The first order deformation

Let \mathcal{X}'_1 be the first order deformation corresponding to v'_1 .

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

3

The strategy Deforming kernels Concluding the argument

The first order deformation

Let \mathcal{X}'_1 be the first order deformation corresponding to v'_1 .

Using results of Toda one gets the following conclusion

・ロト ・ 一日 ト ・ 日 ト

The strategy Deforming kernels Concluding the argument

The first order deformation

Let \mathcal{X}'_1 be the first order deformation corresponding to v'_1 .

Using results of Toda one gets the following conclusion

Proposition (Toda)

For v_1 and v'_1 as before, there exists $\mathcal{E}_1 \in D^b(\mathcal{X}_1 \times_{R_1} \mathcal{X}'_1)$ such that

$$i_1^*\mathcal{E}_1=\mathcal{E}_0:=\mathcal{E}.$$

Here $i_1 : \mathcal{X}_0 \times_{\mathbb{C}} \mathcal{X}_0 \hookrightarrow \mathcal{X}'_1 \times_{R_1} \mathcal{X}'_1$ is the natural inclusion.

(日) (圖) (E) (E) (E)

The strategy Deforming kernels Concluding the argument

The first order deformation

Let \mathcal{X}'_1 be the first order deformation corresponding to v'_1 .

Using results of Toda one gets the following conclusion

Proposition (Toda)

For v_1 and v_1' as before, there exists $\mathcal{E}_1 \in D^b(\mathcal{X}_1 \times_{R_1} \mathcal{X}_1')$ such that

$$i_1^*\mathcal{E}_1=\mathcal{E}_0:=\mathcal{E}.$$

Here $i_1 : \mathcal{X}_0 \times_{\mathbb{C}} \mathcal{X}_0 \hookrightarrow \mathcal{X}'_1 \times_{R_1} \mathcal{X}'_1$ is the natural inclusion.

Hence there is a first order deformation of \mathcal{E} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ </p>

The strategy Deforming kernels Concluding the argument

Higher order deformations

Paolo Stellari Equivalences of K3 Surfaces and Orientation

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The strategy Deforming kernels Concluding the argument

Higher order deformations

More generally

We construct, at any order *n*, an analytic deformation \mathcal{X}'_n such that there exists $\mathcal{E}_n \in D^{\mathrm{b}}(\mathcal{X}_n \times_{R_n} \mathcal{X}'_n)$, with

 $i_n^* \mathcal{E}_n = \mathcal{E}_{n-1}.$

(日)

The strategy Deforming kernels Concluding the argument

Higher order deformations

More generally

We construct, at any order *n*, an analytic deformation \mathcal{X}'_n such that there exists $\mathcal{E}_n \in D^{\mathrm{b}}(\mathcal{X}_n \times_{R_n} \mathcal{X}'_n)$, with

$$i_n^* \mathcal{E}_n = \mathcal{E}_{n-1}.$$

Main difficulties

Paolo Stellari Equivalences of K3 Surfaces and Orientation

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The strategy Deforming kernels Concluding the argument

Higher order deformations

More generally

We construct, at any order *n*, an analytic deformation \mathcal{X}'_n such that there exists $\mathcal{E}_n \in D^{\mathrm{b}}(\mathcal{X}_n \times_{R_n} \mathcal{X}'_n)$, with

$$i_n^*\mathcal{E}_n=\mathcal{E}_{n-1}.$$

Main difficulties

Rewrite Lieblich-Lowen's obstruction for deforming complexes in terms of Atiyah–Kodaira classes.

(日)

The strategy Deforming kernels Concluding the argument

Higher order deformations

More generally

We construct, at any order *n*, an analytic deformation \mathcal{X}'_n such that there exists $\mathcal{E}_n \in D^b(\mathcal{X}_n \times_{R_n} \mathcal{X}'_n)$, with

$$i_n^*\mathcal{E}_n=\mathcal{E}_{n-1}.$$

Main difficulties

- Rewrite Lieblich-Lowen's obstruction for deforming complexes in terms of Atiyah–Kodaira classes.
- Show that the obstruction is zero.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

The strategy Deforming kernels Concluding the argument

Higher order deformations

More generally

We construct, at any order *n*, an analytic deformation \mathcal{X}'_n such that there exists $\mathcal{E}_n \in D^b(\mathcal{X}_n \times_{R_n} \mathcal{X}'_n)$, with

$$i_n^*\mathcal{E}_n=\mathcal{E}_{n-1}.$$

Main difficulties

- Rewrite Lieblich-Lowen's obstruction for deforming complexes in terms of Atiyah–Kodaira classes.
- Show that the obstruction is zero.

Our approach imitates the first order case (using relative Hochshild homology).

The strategy Deforming kernels Concluding the argument

Outline

- Derived Torelli Theorem
 - Motivations
 - The statement
 - Idea of the proof
 - The main result: Szendroi's conjecture is true
- 2 The generic case
 - The result
 - Sketch of the proof

3 The general projective case

- The strategy
- Deforming kernels
- Concluding the argument

A (10) A (10) A (10)

The strategy Deforming kernels Concluding the argument

Equivalences go to equivalences

Paolo Stellari Equivalences of K3 Surfaces and Orientation

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The strategy Deforming kernels Concluding the argument

Equivalences go to equivalences

There exists a sequence

$$\textbf{Coh}_0(\mathcal{X}\times_R\mathcal{X}') \hookrightarrow \textbf{Coh}(\mathcal{X}\times_R\mathcal{X}') \to \textbf{Coh}((\mathcal{X}\times_R\mathcal{X}')_{\mathcal{K}}),$$

where $\mathbf{Coh}_0(\mathcal{X} \times_R \mathcal{X}')$ is the abelian category of sheaves on $\mathcal{X} \times_R \mathcal{X}'$ supported on $X \times X$.

The strategy Deforming kernels Concluding the argument

Equivalences go to equivalences

There exists a sequence

$$\textbf{Coh}_0(\mathcal{X}\times_R\mathcal{X}') \hookrightarrow \textbf{Coh}(\mathcal{X}\times_R\mathcal{X}') \to \textbf{Coh}((\mathcal{X}\times_R\mathcal{X}')_{\mathcal{K}}),$$

where $\mathbf{Coh}_0(\mathcal{X} \times_R \mathcal{X}')$ is the abelian category of sheaves on $\mathcal{X} \times_R \mathcal{X}'$ supported on $X \times X$.

Proposition

Let $\widetilde{\mathcal{E}} \in D^{b}(\mathcal{X} \times_{R} \mathcal{X}')$ be such that $\mathcal{E} = i^{*}\widetilde{\mathcal{E}}$ (here $i : \mathcal{X} \times \mathcal{X} \to \mathcal{X} \times_{R} \mathcal{X}'$ is the inclusion). Then $\widetilde{\mathcal{E}}$ and $\widetilde{\mathcal{E}}_{\mathcal{K}}$ are kernels of Fourier–Mukai equivalences.

・ロト ・ 一日 ト ・ 日 ト

The strategy Deforming kernels Concluding the argument

Equivalences go to equivalences

There exists a sequence

$$\textbf{Coh}_0(\mathcal{X}\times_R\mathcal{X}') \hookrightarrow \textbf{Coh}(\mathcal{X}\times_R\mathcal{X}') \to \textbf{Coh}((\mathcal{X}\times_R\mathcal{X}')_{\mathcal{K}}),$$

where $\mathbf{Coh}_0(\mathcal{X} \times_R \mathcal{X}')$ is the abelian category of sheaves on $\mathcal{X} \times_R \mathcal{X}'$ supported on $X \times X$.

Proposition

Let $\widetilde{\mathcal{E}} \in D^{b}(\mathcal{X} \times_{R} \mathcal{X}')$ be such that $\mathcal{E} = i^{*}\widetilde{\mathcal{E}}$ (here $i : \mathcal{X} \times \mathcal{X} \to \mathcal{X} \times_{R} \mathcal{X}'$ is the inclusion). Then $\widetilde{\mathcal{E}}$ and $\widetilde{\mathcal{E}}_{\mathcal{K}}$ are kernels of Fourier–Mukai equivalences.

Here $\widetilde{\mathcal{E}}_{\mathcal{K}}$ is the image via the natural functor in

$$\mathrm{D}^{\mathrm{b}}((\mathcal{X} \times_{R} \mathcal{X}')_{\mathcal{K}}) := \mathrm{D}^{\mathrm{b}}(\mathbf{Coh}((\mathcal{X} \times_{R} \mathcal{X}')_{\mathcal{K}})).$$

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

The strategy Deforming kernels Concluding the argument

The generic fiber

Paolo Stellari Equivalences of K3 Surfaces and Orientation

The strategy Deforming kernels Concluding the argument

The generic fiber

Proposition

The triangulated category $D^b(\mathcal{X}_K) := D^b(\mathbf{Coh}(\mathcal{X}_K))$ is a generic K3 category, i.e. [2] is the Serre functor and $(\mathcal{O}_{\mathcal{X}})_K$ is, up to shifts, the unique spherical object.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The strategy Deforming kernels Concluding the argument

The generic fiber

Proposition

The triangulated category $D^b(\mathcal{X}_K) := D^b(\mathbf{Coh}(\mathcal{X}_K))$ is a generic K3 category, i.e. [2] is the Serre functor and $(\mathcal{O}_{\mathcal{X}})_K$ is, up to shifts, the unique spherical object.

Use the generic analytic case

Hence, reasoning as the analytic generic case, one can compose $\Phi_{\mathcal{E}_{\mathcal{K}}}$ with some power of the spherical twist by $(\mathcal{O}_{\mathcal{X}})_{\mathcal{K}}$ getting a Fourier–Mukai equivalence $\Phi_{\mathcal{G}_{\mathcal{K}}}$ where $\mathcal{G} \in \mathbf{Coh}(\mathcal{X} \times_{R} \mathcal{X}')$.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

The strategy Deforming kernels Concluding the argument

The conclusion

Paolo Stellari Equivalences of K3 Surfaces and Orientation

The strategy Deforming kernels Concluding the argument

The conclusion

Properties of \mathcal{G}

Paolo Stellari Equivalences of K3 Surfaces and Orientation

3

The strategy Deforming kernels Concluding the argument

The conclusion

Properties of \mathcal{G}

• $\mathcal{G}_0 := i^* \mathcal{G}$ is a sheaf in **Coh**($X \times X$).

Paolo Stellari Equivalences of K3 Surfaces and Orientation

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

The strategy Deforming kernels Concluding the argument

The conclusion

Properties of \mathcal{G}

- $\mathcal{G}_0 := i^* \mathcal{G}$ is a sheaf in $\mathbf{Coh}(X \times X)$.
- 2 The natural morphism

$$(\Phi_{\mathcal{G}_0})_*: H^*(X,\mathbb{Q}) \to H^*(X,\mathbb{Q})$$

is such that $(\Phi_{\mathcal{G}_0})_* = (\Phi_{\mathcal{E}})_* = j$.

<ロト <回 > < 回 > < 回 > .

3

The strategy Deforming kernels Concluding the argument

The conclusion

Properties of \mathcal{G}

- $\mathcal{G}_0 := i^* \mathcal{G}$ is a sheaf in $\mathbf{Coh}(X \times X)$.
- 2 The natural morphism

$$(\Phi_{\mathcal{G}_0})_*: H^*(X,\mathbb{Q}) \to H^*(X,\mathbb{Q})$$

is such that $(\Phi_{\mathcal{G}_0})_* = (\Phi_{\mathcal{E}})_* = j$.

Notice that \mathcal{G}_0 and \mathcal{E} have the same Mukai vector!

<ロト <回 > < 回 > < 回 > .

The strategy Deforming kernels Concluding the argument

The conclusion

Paolo Stellari Equivalences of K3 Surfaces and Orientation

The strategy Deforming kernels Concluding the argument

The conclusion

The contradiction is now obtained using the following lemma:

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

3

The strategy Deforming kernels Concluding the argument

The conclusion

The contradiction is now obtained using the following lemma:

Lemma

If $\mathcal{F} \in \mathbf{Coh}(X \times X)$, then $(\Phi_{\mathcal{F}})_* \neq j$.

The strategy Deforming kernels Concluding the argument

The conclusion

The contradiction is now obtained using the following lemma:

Lemma

If $\mathcal{F} \in \mathbf{Coh}(X \times X)$, then $(\Phi_{\mathcal{F}})_* \neq j$.

Open question

Which is the kernel of the map $\operatorname{Aut}(\operatorname{D^b}(X)) \to \operatorname{O_+}(\widetilde{H}(X,\mathbb{Z}))$?

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト