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Twisted sheaves Motivations Functors Torelli Theorems Applications Kummer surfaces

Brauer groups

We will always consider smooth projective varieties X .

Definition
The Brauer group of X is

Br (X ) := H2(X ,O∗
X )tor.

Example
By the exponential exact sequence, we get

H2(X ,OX ) −→ H2(X ,O∗
X ) −→ H3(X , Z).

If X is a curve, then H2(X ,OX ) = H3(X , Z) = 0.
Hence Br (X ) = {0}
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Brauer groups

Example
The same calculation shows that Br (Pn) = 0.

K3 surfaces
A K3 surface is a complex smooth projective surface X such
that

H1(X , Z) = 0;
the canonical bundle is trivial.

In this case, the Universal Coefficient Theorem, yields a nice
description of Br (X ):

Br (X ) ∼= Hom(T (X ), Q/Z).
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Brauer groups

Due to the previous remark, for any α ∈ Br (X ) we put

T (X , α) := ker (α) ⊆ T (X ).

It inherits a weight-two Hodge structure from H2(X , Z).

Any α ∈ Br (X ) is determined by some B ∈ H2(X , Q) and
vice-versa. (Actually α is determined by B ∈ T (X )∨ ⊗Q/Z.)

In this case we write αB := α.

Any B ∈ H2(X , Q) is called B-field.
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Brauer groups

Definition
A pair (X , α) where X is a smooth projective variety and
α ∈ Br (X ) is a twisted variety.

Represent α ∈ Br(X ) as a Čech 2-cocycle

{αijk ∈ Γ(Ui ∩ Uj ∩ Uk ,O∗
X )}

on an analytic open cover X =
⋃

i∈I Ui .
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Twisted sheaves

An α-twisted coherent sheaf E is a collection of pairs
({Ei}i∈I , {ϕij}i,j∈I) where

Ei is a coherent sheaf on the open subset Ui ;
ϕij : Ej |Ui∩Uj → Ei |Ui∩Uj is an isomorphism

such that
1 ϕii = id,
2 ϕji = ϕ−1

ij and
3 ϕij ◦ ϕjk ◦ ϕki = αijk · id.
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Twisted derived categories

In this way we get the abelian category Coh(X , α).

Pass to the category of bounded complexes.
Localize: require that any quasi-isomorphism is invertible.
We get the bounded derived category Db(X , α).

Not all functors with geometric meaning are exact in Coh(X , α).

Procedure to produce from them exact functors in Db(X , α) (not
abelian but triangulated).

We get left and right derived functors.

All “geometric functors” can be derived.
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Why twists?

There are two order of problems which requires twists.

Mirror Symmetry (Kontsevich)

This conjecture predicts a nice relationship between a
Calabi-Yau manifold X1 and its mirror X2.

In particular it “cross relates” the following categories:
the bounded derived category of the Fukaya category of Xi
(Lagrangian submanifolds);
the bounded derived categories Db(Xi) (sheaves).

If one allows B-fields then on the derived categories level one
has to consider twists!

We will mainly ignore this problem. (Not completely settled.)
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Why twists?

Moduli spaces (Mukai)

If X is a K3 surface and M is a fine moduli space of stable
sheaves on X with suitable properties, then M is a K3 surface.

there exists an equivalence

Φ : Db(X ) −→ Db(M)

induced by the universal family (Mukai).

There is a Hodge isometry T (X ) ∼= T (M) of the
transcendental lattices.
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And if M is coarse?

M is a 2-dimensional, irreducible, smooth and projective coarse
moduli space of stable sheaves on X .

Mukai proved that there exists an embedding

ϕ : T (X ) ↪→ T (M)

which preserves the Hodge and lattice structures.

We have the short exact sequence

0 −→ T (X )
ϕ−→ T (M) −→ Z/nZ −→ 0.

Apply Hom(−, Q/Z) and get

0 −→ Z/nZ −→ Br(M)
ϕ∨
−→ Br(X ) −→ 0.
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0 −→ T (X )
ϕ−→ T (M) −→ Z/nZ −→ 0.

Apply Hom(−, Q/Z) and get

0 −→ Z/nZ −→ Br(M)
ϕ∨
−→ Br(X ) −→ 0.
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Căldăraru’s results

The obstruction
A special generator α ∈ Br (M) of the kernel of ϕ∨ is the
obstruction to the existence of a universal family on M.

Theorem
Let X be a K3 surface and let M be a coarse moduli space of
stable sheaves on X as above. Then

1 Db(X ) ∼= Db(M, α−1) (via the twisted
universal/quasi-universal family);

2 there is a Hodge isometry

T (X ) ∼= T (M, α−1).
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Căldăraru’s results

The obstruction
A special generator α ∈ Br (M) of the kernel of ϕ∨ is the
obstruction to the existence of a universal family on M.

Theorem
Let X be a K3 surface and let M be a coarse moduli space of
stable sheaves on X as above. Then

1 Db(X ) ∼= Db(M, α−1) (via the twisted
universal/quasi-universal family);

2 there is a Hodge isometry

T (X ) ∼= T (M, α−1).



Twisted sheaves Motivations Functors Torelli Theorems Applications Kummer surfaces

Căldăraru’s results

The previous result makes the twisted/coarse setting very
similar to the untwisted/fine one!

Conjecture
Let (X , α) and (Y , β) be twisted K3 surfaces. Then the
following two conditions are equivalent:

1 Db(X , α) ∼= Db(Y , β);
2 there exists a Hodge isometry T (X , α) ∼= T (Y , β).

Evidence: Work of Donagi and Pantev about elliptic fibrations.
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Fourier-Mukai functors

Definition

F : Db(X ) → Db(Y ) is of Fourier-Mukai type if there exists
E ∈ Db(X × Y ) and an isomorphism of functors

F ∼= Rp∗(E
L
⊗ q∗(−)),

where p : X × Y → Y and q : X × Y → X are the natural
projections.

The complex E is called the kernel of F and a Fourier-Mukai
functor with kernel E is denoted by ΦE .
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Orlov’s result

Theorem (Orlov)

Any exact functor F : Db(X ) → Db(Y ) which
1 is fully faithful
2 admits a left adjoint

is a Fourier-Mukai functor.

Remark (Bondal, Van den Bergh)
Item (2) is automatic!
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Twisted case

Question
Are all equivalences between the twisted derived categories of
smooth projective varieties of Fourier-Mukai type?

This is known in some geometric cases involving K3 surfaces:
moduli spaces of stable sheaves on K3 surfaces
(Căldăraru);
K3 surfaces with large Picard number (H.-S.).
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(Căldăraru);

K3 surfaces with large Picard number (H.-S.).



Twisted sheaves Motivations Functors Torelli Theorems Applications Kummer surfaces

Twisted case

Question
Are all equivalences between the twisted derived categories of
smooth projective varieties of Fourier-Mukai type?

This is known in some geometric cases involving K3 surfaces:
moduli spaces of stable sheaves on K3 surfaces
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The main theorem

Theorem. (C.-S.)
Let (X , α) and (Y , β) be twisted varieties. Let

F : Db(X , α) → Db(Y , β)

be an exact functor such that, for any F ,G ∈ Coh(X , α),

Hom Db(Y ,β)(F (F), F (G)[j]) = 0 if j < 0.

Then there exist E ∈ Db(X × Y , α−1 � β) and an isomorphism
of functors F ∼= ΦE . Moreover, E is uniquely determined up to
isomorphism.
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Comments

The previous result covers some interesting cases:
full functors;
(as a special case) equivalences.

It also simplifies the proof of Kawamata’s generalization of
Orlov’s result to the case of smooth stacks.
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More comments

Proposition
Let (X , α) and (Y , β) be twisted varieties. Then there exists an
isomorphism f : X ∼= Y such that f ∗(β) = α if and only if there
exists an exact equivalence Coh(X , α) ∼= Coh(Y , β).

The abelian category Coh(X , α) is a too strong invariant!

Needs:
1 Preserve deep geometric relationships (moduli spaces)

(Mukai,. . . ).
2 A good birational invariant. Some kind of “Derived MMP”

(Kawamata, Bridgeland, Chen,. . . ).
3 Relevant for physics ⇒ Mirror Symmetry (Kontsevich,. . . ).
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Geometric case

Theorem (Torelli Theorem)
Let X and Y be K3 surfaces. Suppose that there exists a
Hodge isometry

g : H2(X , Z) → H2(Y , Z)

which maps the class of an ample line bundle on X into the
ample cone of Y . Then there exists a unique isomorphism

f : X ∼= Y

such that f∗ = g.

Lattice theory + Hodge structures + ample cone
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Derived case

Derived Torelli Theorem (Orlov+Mukai)
Let X and Y be K3 surfaces. Then the following conditions are
equivalent:

1 Db(X ) ∼= Db(Y );
2 there exists a Hodge isometry f : H̃(X , Z) → H̃(Y , Z);
3 there exists a Hodge isometry g : T (X ) → T (Y );
4 Y is isomorphic to a smooth compact 2-dimensional fine

moduli space of stable sheaves on X .

Lattice theory + Hodge structures
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Lattice theory + Hodge structures
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Twisted derived case

Twisted Derived Torelli Theorem (H.-S.)

Let X and X ′ be two projective K3 surfaces endowed with
B-fields B ∈ H2(X , Q) and B′ ∈ H2(X ′, Q).

1 If Φ : Db(X , αB) ∼= Db(X ′, αB′) is an equivalence, then there
exists a naturally defined Hodge isometry
ΦB,B′
∗ : H̃(X , B, Z) ∼= H̃(X ′, B′, Z).

2 Suppose there exists a Hodge isometry
g : H̃(X , B, Z) ∼= H̃(X ′, B′, Z) that preserves the natural
orientation of the four positive directions. Then there exists
an equivalence Φ : Db(X , αB) ∼= Db(X ′, αB′) such that
ΦB,B′
∗ = g.

There is something missing!
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Lattice structure

Using the cup product, we get the Mukai pairing on H∗(X , Z):

〈α, β〉 := −α1 · β3 + α2 · β2 − α3 · β1,

for every α = (α1, α2, α3) and β = (β1, β2, β3) in H∗(X , Z).

H∗(X , Z) endowed with the Mukai pairing is called Mukai lattice
and we write H̃(X , Z) for it.
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The Hodge structure

Let H2,0(X ) = 〈σ〉 and let B be a B-field on X .

ϕ = exp(B) · σ = σ + B ∧ σ ∈ H2(X , C)⊕ H4(X , C)

is a generalized Calabi-Yau structure (Hitchin and Huybrechts).

Definition

Let X be a K3 surface with a B-field B ∈ H2(X , Q). We denote
by H̃(X , B, Z) the weight-two Hodge structure on H∗(X , Z) with

H̃2,0(X , B) := exp(B)
(

H2,0(X )
)

and H̃1,1(X , B) its orthogonal complement with respect to the
Mukai pairing.
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Orienatation

Let X be a K3 surface, σX be a generator of H2,0(X ) and ω be a
Kähler class. Then

〈Re(σX ), Im(σX ), 1− ω2/2, ω〉

is a positive four-space in H̃(X , R).

Remark
It comes, by the choice of the basis, with a natural orientation.

Remark
It is easy to see that this orientation is independent of the
choice of σX and ω.
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Orienatation

The orientation preserving requirement is missing in item (i) of
the Twisted Derived Torelli Theorem.

Proposition (H.-S.)
Any known twisted or untwisted equivalence is orientation
preserving.

Conjecture

Let X and X ′ be two algebraic K3 surfaces with B-fields B and
B′. If Φ : Db(X , αB) ∼= Db(X ′, αB′) is a Fourier-Mukai transform,
then ΦB,B′

∗ : H̃(X , B, Z) → H̃(X ′, B′, Z) preserves the natural
orientation of the four positive directions.
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Orienatation

Theorem (H.-M.-S.)
For a generic twisted K3 surface (X , αB) there exists a short
exact sequence

1 −→ Z[2] −→ Aut (Db(X , αB))
ϕ−→ O+ −→ 1,

where O+ is the group of the Hodge isometries of H̃(X , B, Z)
preserving the orientation.

We proved Bridgeland’s Conjecture for generic twisted K3
surfaces.
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Căldăraru’s conjecture is false

Lemma

If Φ : Db(X , α) ∼= Db(X ′, α′) is an equivalence, then there is a
Hodge isometry T (X , α) ∼= T (X ′, α′).

Take (X , α) such that T (X , α) ∼= T (X , α2) but
H̃(X , B, Z) 6∼= H̃(X , 2B, Z).

No twisted Fourier-Mukai transforms Db(X , α) ∼= Db(X , α2).

One implication in Căldăraru’s conjecture is false.
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Number of Fourier-Mukai partners

Proposition (H.-S.)
Any twisted K3 surface (X , α) admits only finitely many
Fourier-Mukai partners up to isomorphisms.

Untwisted 6= Twisted!!

Proposition (H.-S.)
For any positive integer N there exist N pairwise
non-isomorphic twisted K3 surfaces

(X1, α1), . . . , (XN , αN)

of Picard number 20 and such that the twisted derived
categories Db(Xi , αi), are all Fourier-Mukai equivalent.
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The untwisted case: HLOY

Given two abelian surfaces A and B,

Db(A) ∼= Db(B)

if and only if
Db(Km(A)) ∼= Db(Km(B)).

The argument: they notice that, due to the geometric
construction of the Kummer surfaces Km(A) and Km(B), the
transcendental lattices of A and B are Hodge isometric if and
only if the transcendental lattices of Km(A) and Km(B) are
Hodge isometric. Then, they apply the Derived Torelli Theorem.
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The untwisted case: HLOY

Can be reformulated in the following way:

Given two abelian surfaces A and B,

Db(Km(A)) ∼= Db(Km(B))
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The twisted case

Definition
Let (X1, α1) and (X2, α2) be twisted K3 or abelian surfaces.

1 They are D-equivalent if there exists a twisted
Fourier-Mukai transform

Φ : Db(X1, α1) → Db(X2, α2).

2 They are T -equivalent if there exist Bi ∈ H2(Xi , Q) such
that αi = αBi and a Hodge isometry

ϕ : T (X1, αB1) → T (X2, αB2).
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The twisted case

Theorem (S.)
Let A1 and A2 be abelian surfaces. Then the following two
conditions are equivalent:

1 there exist α1 ∈ Br (Km(A1)) and α2 ∈ Br (Km(A2)) such
that (Km(A1), α1) and (Km(A2), α2) are D-equivalent;

2 there exist β1 ∈ Br (A1) and β2 ∈ Br (A2) such that (A1, β1)
and (A2, β2) are T -equivalent.

Furthermore, if one of these two equivalent conditions holds
true, then A1 and A2 are isogenous.

Analogue of the second statement!

There are no twisted analogues of the first and third statement!
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The number of Kummer structures

By the previous theorem, we have a surjective map

Ψ : {Tw ab surf}/ ∼=−→ {Tw Kum surf}/ ∼= .

The main result of Hosono, Lian, Oguiso and Yau proves that
1 the preimage of [(Km(A), 1)] is finite, for any abelian

surface A and 1 ∈ Br (A) the trivial class.
2 The cardinality of the preimages of Ψ can be arbitrarily

large.

This answers an old question of Shioda.
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The number of Kummer structures

This picture can be completely generalized to the twisted case.

Proposition (S.)
(i) For any twisted Kummer surface (Km(A), α), the preimage

Ψ−1([(Km(A), α)])

is finite.
(ii) For positive integers N and n, there exists a twisted Kummer
surface (Km(A), α) with α of order n in Br (Km(A)) and such
that

|Ψ−1([(Km(A), α)])| ≥ N.

On a twisted K3 surface we can put just a finite number of
non-isomorphic twisted Kummer structures.
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