A Twisted Derived Torelli Theorem for K3 Surfaces

Paolo Stellari

Dipartimento di Matematica "F. Enriques" Università degli Studi di Milano

Based on (math.AG/0602399) and on joint works with A. Canonaco (math.AG/0605229), D. Huybrechts

(math.AG/0409030, math.AG/0411541) and D. Huybrechts-E. Macrì (math.AG/0608430)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We will always consider smooth projective varieties X.

DefinitionThe Brauer group of X is $\operatorname{Br}(X) := H^2(X, \mathcal{O}_X^*)_{\operatorname{tor}}.$

(日) (日) (日) (日) (日) (日) (日)

Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
Brauer g	roups				

Definition

The Brauer group of X is

$$\mathrm{Br}(X):=H^2(X,\mathcal{O}_X^*)_{\mathrm{tor}}.$$

Example

By the exponential exact sequence, we get

$$H^2(X, \mathcal{O}_X) \longrightarrow H^2(X, \mathcal{O}_X^*) \longrightarrow H^3(X, \mathbb{Z}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Brauer groups	Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
	Brauer g	roups				

Definition

The Brauer group of X is

$$\mathrm{Br}(X):=H^2(X,\mathcal{O}_X^*)_{\mathrm{tor}}.$$

Example

By the exponential exact sequence, we get

$$H^2(X, \mathcal{O}_X) \longrightarrow H^2(X, \mathcal{O}_X^*) \longrightarrow H^3(X, \mathbb{Z}).$$

If X is a curve, then

Brauer groups	Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
	Brauer g	roups				

Definition

The Brauer group of X is

$$\mathrm{Br}(X):=H^2(X,\mathcal{O}_X^*)_{\mathrm{tor}}.$$

Example

By the exponential exact sequence, we get

$$H^2(X, \mathcal{O}_X) \longrightarrow H^2(X, \mathcal{O}_X^*) \longrightarrow H^3(X, \mathbb{Z}).$$

If X is a curve, then $H^2(X, \mathcal{O}_X) = H^3(X, \mathbb{Z}) = 0$.

Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
Brauer g	roups				

Definition

The Brauer group of X is

$$\mathrm{Br}(X):=H^2(X,\mathcal{O}_X^*)_{\mathrm{tor}}.$$

Example

By the exponential exact sequence, we get

$$H^2(X, \mathcal{O}_X) \longrightarrow H^2(X, \mathcal{O}_X^*) \longrightarrow H^3(X, \mathbb{Z}).$$

If X is a curve, then $H^2(X, \mathcal{O}_X) = H^3(X, \mathbb{Z}) = 0$. Hence Br $(X) = \{0\}$

Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
Brauer g	roups				

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Example

The same calculation shows that $Br(\mathbb{P}^n) = 0$.

Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
Brauer g	roups				

The same calculation shows that $Br(\mathbb{P}^n) = 0$.

K3 surfaces

A K3 surface is a complex smooth projective surface X such that

Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
Brauer o	iroups				

The same calculation shows that $Br(\mathbb{P}^n) = 0$.

K3 surfaces

A K3 surface is a complex smooth projective surface X such that

•
$$H^1(X, \mathbb{Z}) = 0;$$

Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
Brauer c	iroups				

The same calculation shows that $Br(\mathbb{P}^n) = 0$.

K3 surfaces

A K3 surface is a complex smooth projective surface X such that

- $H^1(X, \mathbb{Z}) = 0;$
- the canonical bundle is trivial.

Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
Brauer o	iroups				

The same calculation shows that $Br(\mathbb{P}^n) = 0$.

K3 surfaces

A K3 surface is a complex smooth projective surface X such that

- $H^1(X, \mathbb{Z}) = 0;$
- the canonical bundle is trivial.

In this case, the Universal Coefficient Theorem, yields a nice description of Br(X):

Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
Brauer o	iroups				

The same calculation shows that $Br(\mathbb{P}^n) = 0$.

K3 surfaces

A K3 surface is a complex smooth projective surface X such that

- $H^1(X, \mathbb{Z}) = 0;$
- the canonical bundle is trivial.

In this case, the Universal Coefficient Theorem, yields a nice description of Br(X):

 $\operatorname{Br}(X) \cong \operatorname{Hom}(T(X), \mathbb{Q}/\mathbb{Z}).$

Due to the previous remark, for any $\alpha \in \operatorname{Br}(X)$ we put

 $T(X, \alpha) := \ker(\alpha) \subseteq T(X).$

Due to the previous remark, for any $\alpha \in \operatorname{Br}(X)$ we put

 $T(X,\alpha) := \ker(\alpha) \subseteq T(X).$

It inherits a weight-two Hodge structure from $H^2(X, \mathbb{Z})$.

$$T(X, \alpha) := \ker(\alpha) \subseteq T(X).$$

It inherits a weight-two Hodge structure from $H^2(X, \mathbb{Z})$.

Any $\alpha \in Br(X)$ is determined by some $B \in H^2(X, \mathbb{Q})$ and vice-versa.

$$T(X,\alpha) := \ker(\alpha) \subseteq T(X).$$

It inherits a weight-two Hodge structure from $H^2(X, \mathbb{Z})$.

Any $\alpha \in Br(X)$ is determined by some $B \in H^2(X, \mathbb{Q})$ and vice-versa. (Actually α is determined by $B \in T(X)^{\vee} \otimes \mathbb{Q}/\mathbb{Z}$.)

$$T(X,\alpha) := \ker(\alpha) \subseteq T(X).$$

It inherits a weight-two Hodge structure from $H^2(X, \mathbb{Z})$.

Any $\alpha \in Br(X)$ is determined by some $B \in H^2(X, \mathbb{Q})$ and vice-versa. (Actually α is determined by $B \in T(X)^{\vee} \otimes \mathbb{Q}/\mathbb{Z}$.)

(日) (日) (日) (日) (日) (日) (日)

In this case we write $\alpha_B := \alpha$.

$$T(X, \alpha) := \ker(\alpha) \subseteq T(X).$$

It inherits a weight-two Hodge structure from $H^2(X, \mathbb{Z})$.

Any $\alpha \in Br(X)$ is determined by some $B \in H^2(X, \mathbb{Q})$ and vice-versa. (Actually α is determined by $B \in T(X)^{\vee} \otimes \mathbb{Q}/\mathbb{Z}$.)

In this case we write $\alpha_B := \alpha$.

Any $B \in H^2(X, \mathbb{Q})$ is called B-field.

Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
Brauer g	roups				

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Definition

A pair (X, α) where X is a smooth projective variety and $\alpha \in Br(X)$ is a twisted variety.

Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
Brauer g	roups				

Definition

A pair (X, α) where X is a smooth projective variety and $\alpha \in Br(X)$ is a twisted variety.

Represent $\alpha \in Br(X)$ as a Čech 2-cocycle

 $\{\alpha_{ijk} \in \Gamma(U_i \cap U_j \cap U_k, \mathcal{O}_X^*)\}$

(日) (日) (日) (日) (日) (日) (日)

on an analytic open cover $X = \bigcup_{i \in I} U_i$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

An α -twisted coherent sheaf \mathcal{E} is a collection of pairs $(\{\mathcal{E}_i\}_{i \in I}, \{\varphi_{ij}\}_{i,j \in I})$ where

An α -twisted coherent sheaf \mathcal{E} is a collection of pairs $(\{\mathcal{E}_i\}_{i \in I}, \{\varphi_{ij}\}_{i,j \in I})$ where

• \mathcal{E}_i is a coherent sheaf on the open subset U_i ;

An α -twisted coherent sheaf \mathcal{E} is a collection of pairs $(\{\mathcal{E}_i\}_{i \in I}, \{\varphi_{ij}\}_{i,j \in I})$ where

• \mathcal{E}_i is a coherent sheaf on the open subset U_i ;

•
$$\varphi_{ij} : \mathcal{E}_j|_{U_i \cap U_j} \to \mathcal{E}_i|_{U_i \cap U_j}$$
 is an isomorphism

An α -twisted coherent sheaf \mathcal{E} is a collection of pairs $(\{\mathcal{E}_i\}_{i \in I}, \{\varphi_{ij}\}_{i,j \in I})$ where

• \mathcal{E}_i is a coherent sheaf on the open subset U_i ;

• $\varphi_{ij} : \mathcal{E}_j|_{U_i \cap U_j} \to \mathcal{E}_i|_{U_i \cap U_j}$ is an isomorphism

such that

An α -twisted coherent sheaf \mathcal{E} is a collection of pairs $(\{\mathcal{E}_i\}_{i \in I}, \{\varphi_{ij}\}_{i,j \in I})$ where

• \mathcal{E}_i is a coherent sheaf on the open subset U_i ;

• $\varphi_{ij}: \mathcal{E}_j|_{U_i \cap U_j} \to \mathcal{E}_i|_{U_i \cap U_j}$ is an isomorphism such that

An α -twisted coherent sheaf \mathcal{E} is a collection of pairs $(\{\mathcal{E}_i\}_{i \in I}, \{\varphi_{ij}\}_{i,j \in I})$ where

• \mathcal{E}_i is a coherent sheaf on the open subset U_i ;

• $\varphi_{ij} : \mathcal{E}_j |_{U_i \cap U_j} \to \mathcal{E}_i |_{U_i \cap U_j}$ is an isomorphism such that

1
$$\varphi_{ii} = id,$$

2 $\varphi_{ji} = \varphi_{ij}^{-1}$ and

An α -twisted coherent sheaf \mathcal{E} is a collection of pairs $(\{\mathcal{E}_i\}_{i \in I}, \{\varphi_{ij}\}_{i,j \in I})$ where

• \mathcal{E}_i is a coherent sheaf on the open subset U_i ;

•
$$\varphi_{ij} : \mathcal{E}_j |_{U_i \cap U_j} \to \mathcal{E}_i |_{U_i \cap U_j}$$
 is an isomorphism uch that

1
$$\varphi_{ii} = \text{id},$$

2 $\varphi_{ji} = \varphi_{ij}^{-1}$ and
3 $\varphi_{ij} \circ \varphi_{jk} \circ \varphi_{ki} = \alpha_{ijk} \cdot \text{id}.$

s

• In this way we get the abelian category $Coh(X, \alpha)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- In this way we get the abelian category $Coh(X, \alpha)$.
- Pass to the category of bounded complexes.

- In this way we get the abelian category $Coh(X, \alpha)$.
- Pass to the category of bounded complexes.
- Localize: require that any quasi-isomorphism is invertible.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- moted derived categories
 - In this way we get the abelian category $Coh(X, \alpha)$.
 - Pass to the category of bounded complexes.
 - Localize: require that any quasi-isomorphism is invertible.

• We get the bounded derived category $D^{b}(X, \alpha)$.

- In this way we get the abelian category $Coh(X, \alpha)$.
- Pass to the category of bounded complexes.
- Localize: require that any guasi-isomorphism is invertible.
- We get the bounded derived category $D^{b}(X, \alpha)$.

Not all functors with geometric meaning are exact in **Coh**(X, α).

- In this way we get the abelian category $Coh(X, \alpha)$.
- Pass to the category of bounded complexes.
- Localize: require that any guasi-isomorphism is invertible.
- We get the bounded derived category $D^{b}(X, \alpha)$.

Not all functors with geometric meaning are exact in **Coh**(X, α). Procedure to produce from them exact functors in $D^{b}(X, \alpha)$ (not abelian but triangulated).

(日) (日) (日) (日) (日) (日) (日)

- In this way we get the abelian category $Coh(X, \alpha)$.
- Pass to the category of bounded complexes.
- Localize: require that any guasi-isomorphism is invertible.
- We get the bounded derived category $D^{b}(X, \alpha)$.

Not all functors with geometric meaning are exact in **Coh**(X, α). Procedure to produce from them exact functors in $D^{b}(X, \alpha)$ (not abelian but triangulated).

We get left and right derived functors.

- In this way we get the abelian category $Coh(X, \alpha)$.
- Pass to the category of bounded complexes.
- Localize: require that any guasi-isomorphism is invertible.
- We get the bounded derived category $D^{b}(X, \alpha)$.

Not all functors with geometric meaning are exact in **Coh**(X, α). Procedure to produce from them exact functors in $D^{b}(X, \alpha)$ (not abelian but triangulated).

We get left and right derived functors.

All "geometric functors" can be derived.

Mirror Symmetry (Kontsevich)

Mirror Symmetry (Kontsevich)

This conjecture predicts a nice relationship between a Calabi-Yau manifold X_1 and its mirror X_2 .

Mirror Symmetry (Kontsevich)

This conjecture predicts a nice relationship between a Calabi-Yau manifold X_1 and its mirror X_2 .

In particular it "cross relates" the following categories:

Mirror Symmetry (Kontsevich)

This conjecture predicts a nice relationship between a Calabi-Yau manifold X_1 and its mirror X_2 .

In particular it "cross relates" the following categories:

• the bounded derived category of the Fukaya category of X_i

Mirror Symmetry (Kontsevich)

This conjecture predicts a nice relationship between a Calabi-Yau manifold X_1 and its mirror X_2 .

In particular it "cross relates" the following categories:

 the bounded derived category of the Fukaya category of X_i (Lagrangian submanifolds);

Mirror Symmetry (Kontsevich)

This conjecture predicts a nice relationship between a Calabi-Yau manifold X_1 and its mirror X_2 .

In particular it "cross relates" the following categories:

- the bounded derived category of the Fukaya category of X_i (Lagrangian submanifolds);
- the bounded derived categories D^b(X_i)

Mirror Symmetry (Kontsevich)

This conjecture predicts a nice relationship between a Calabi-Yau manifold X_1 and its mirror X_2 .

In particular it "cross relates" the following categories:

- the bounded derived category of the Fukaya category of X_i (Lagrangian submanifolds);
- the bounded derived categories $D^{b}(X_{i})$ (sheaves).

Mirror Symmetry (Kontsevich)

This conjecture predicts a nice relationship between a Calabi-Yau manifold X_1 and its mirror X_2 .

In particular it "cross relates" the following categories:

- the bounded derived category of the Fukaya category of X_i (Lagrangian submanifolds);
- the bounded derived categories $D^{b}(X_{i})$ (sheaves).

If one allows B-fields then on the derived categories level one has to consider twists!

Mirror Symmetry (Kontsevich)

This conjecture predicts a nice relationship between a Calabi-Yau manifold X_1 and its mirror X_2 .

In particular it "cross relates" the following categories:

- the bounded derived category of the Fukaya category of X_i (Lagrangian submanifolds);
- the bounded derived categories $D^{b}(X_{i})$ (sheaves).

If one allows B-fields then on the derived categories level one has to consider twists!

We will mainly ignore this problem.

Mirror Symmetry (Kontsevich)

This conjecture predicts a nice relationship between a Calabi-Yau manifold X_1 and its mirror X_2 .

In particular it "cross relates" the following categories:

- the bounded derived category of the Fukaya category of X_i (Lagrangian submanifolds);
- the bounded derived categories $D^{b}(X_{i})$ (sheaves).

If one allows B-fields then on the derived categories level one has to consider twists!

We will mainly ignore this problem. (Not completely settled.)

Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
Why twis	sts?				

If X is a K3 surface and M is a fine moduli space of stable sheaves on X with suitable properties, then M is a K3 surface.

If X is a K3 surface and M is a fine moduli space of stable sheaves on X with suitable properties, then M is a K3 surface.

there exists an equivalence

$$\Phi:\mathrm{D}^\mathrm{b}(X)\longrightarrow\mathrm{D}^\mathrm{b}(M)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

induced by the universal family (Mukai).

If X is a K3 surface and M is a fine moduli space of stable sheaves on X with suitable properties, then M is a K3 surface.

there exists an equivalence

$$\Phi:\mathrm{D}^\mathrm{b}(X)\longrightarrow\mathrm{D}^\mathrm{b}(M)$$

induced by the universal family (Mukai).

• There is a Hodge isometry $T(X) \cong T(M)$ of the transcendental lattices.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Mukai proved that there exists an embedding

$$\varphi: T(X) \hookrightarrow T(M)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

which preserves the Hodge and lattice structures.

Mukai proved that there exists an embedding

$$\varphi: T(X) \hookrightarrow T(M)$$

which preserves the Hodge and lattice structures.

• We have the short exact sequence

$$0 \longrightarrow T(X) \stackrel{\varphi}{\longrightarrow} T(M) \longrightarrow \mathbb{Z}/n\mathbb{Z} \longrightarrow 0.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Mukai proved that there exists an embedding

$$\varphi: T(X) \hookrightarrow T(M)$$

which preserves the Hodge and lattice structures.

• We have the short exact sequence

$$0 \longrightarrow T(X) \stackrel{\varphi}{\longrightarrow} T(M) \longrightarrow \mathbb{Z}/n\mathbb{Z} \longrightarrow 0.$$

(日) (日) (日) (日) (日) (日) (日)

• Apply $Hom(-, \mathbb{Q}/\mathbb{Z})$

Mukai proved that there exists an embedding

$$\varphi: T(X) \hookrightarrow T(M)$$

which preserves the Hodge and lattice structures.

• We have the short exact sequence

$$0 \longrightarrow T(X) \stackrel{\varphi}{\longrightarrow} T(M) \longrightarrow \mathbb{Z}/n\mathbb{Z} \longrightarrow 0.$$

• Apply $Hom(-, \mathbb{Q}/\mathbb{Z})$ and get

$$0 \longrightarrow \mathbb{Z}/n\mathbb{Z} \longrightarrow \operatorname{Br}(M) \xrightarrow{\varphi^{\vee}} \operatorname{Br}(X) \longrightarrow 0.$$

Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
Căldărar	u's resu	lts			

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The obstruction

A special generator $\alpha \in Br(M)$ of the kernel of φ^{\vee} is the obstruction to the existence of a universal family on M.

Caluararu S results

The obstruction

A special generator $\alpha \in Br(M)$ of the kernel of φ^{\vee} is the obstruction to the existence of a universal family on M.

Theorem

Let X be a K3 surface and let M be a coarse moduli space of stable sheaves on X as above. Then

Căldăraru's results

The obstruction

A special generator $\alpha \in Br(M)$ of the kernel of φ^{\vee} is the obstruction to the existence of a universal family on M.

Theorem

Let X be a K3 surface and let M be a coarse moduli space of stable sheaves on X as above. Then

• $D^{b}(X) \cong D^{b}(M, \alpha^{-1})$ (via the twisted universal/quasi-universal family);

Căldăraru's results

The obstruction

A special generator $\alpha \in Br(M)$ of the kernel of φ^{\vee} is the obstruction to the existence of a universal family on M.

Theorem

Let X be a K3 surface and let M be a coarse moduli space of stable sheaves on X as above. Then

- $D^{b}(X) \cong D^{b}(M, \alpha^{-1})$ (via the twisted universal/quasi-universal family);
- there is a Hodge isometry

$$T(X) \cong T(M, \alpha^{-1}).$$

The previous result makes the twisted/coarse setting very similar to the untwisted/fine one!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The previous result makes the twisted/coarse setting very similar to the untwisted/fine one!

Conjecture

Let (X, α) and (Y, β) be twisted K3 surfaces. Then the following two conditions are equivalent:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The previous result makes the twisted/coarse setting very similar to the untwisted/fine one!

Conjecture

Let (X, α) and (Y, β) be twisted K3 surfaces. Then the following two conditions are equivalent:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The previous result makes the twisted/coarse setting very similar to the untwisted/fine one!

Conjecture

Let (X, α) and (Y, β) be twisted K3 surfaces. Then the following two conditions are equivalent:

$$D^{\mathsf{b}}(X,\alpha) \cong D^{\mathsf{b}}(Y,\beta);$$

2 there exists a Hodge isometry $T(X, \alpha) \cong T(Y, \beta)$.

(日) (日) (日) (日) (日) (日) (日)

The previous result makes the twisted/coarse setting very similar to the untwisted/fine one!

Conjecture

Let (X, α) and (Y, β) be twisted K3 surfaces. Then the following two conditions are equivalent:

$$D^{\mathsf{b}}(X,\alpha) \cong D^{\mathsf{b}}(Y,\beta);$$

2 there exists a Hodge isometry $T(X, \alpha) \cong T(Y, \beta)$.

Evidence: Work of Donagi and Pantev about elliptic fibrations.

Twisted sheaves

Motivations

Functors

Torelli Theorems

Applications

Kummer surfaces

Fourier-Mukai functors

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Torelli Theorems

Applications

Kummer surfaces

Fourier-Mukai functors

Definition

 $F : D^{b}(X) \rightarrow D^{b}(Y)$ is of Fourier-Mukai type if there exists $\mathcal{E} \in D^{b}(X \times Y)$ and an isomorphism of functors

$$F \cong \mathbf{R} p_*(\mathcal{E} \overset{\mathsf{L}}{\otimes} q^*(-)),$$

where $p : X \times Y \rightarrow Y$ and $q : X \times Y \rightarrow X$ are the natural projections.

・ロト・西ト・西ト・西ト・日・ つんぐ

Torelli Theorems

Applications

Kummer surfaces

(日) (日) (日) (日) (日) (日) (日)

Fourier-Mukai functors

Definition

 $F : D^{b}(X) \rightarrow D^{b}(Y)$ is of Fourier-Mukai type if there exists $\mathcal{E} \in D^{b}(X \times Y)$ and an isomorphism of functors

$$F \cong \mathbf{R} p_*(\mathcal{E} \overset{\mathsf{L}}{\otimes} q^*(-)),$$

where $p : X \times Y \rightarrow Y$ and $q : X \times Y \rightarrow X$ are the natural projections.

The complex \mathcal{E} is called the kernel of F and a Fourier-Mukai functor with kernel \mathcal{E} is denoted by $\Phi_{\mathcal{E}}$.

Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
Orlov's r	esult				

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
Orlov's r	esult				

Theorem (Orlov)

Any exact functor $F : D^{b}(X) \rightarrow D^{b}(Y)$ which

Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
Orlov's r	esult				

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Orlov)

Any exact functor $F : D^{b}(X) \rightarrow D^{b}(Y)$ which

is fully faithful

Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
Orlov's r	esult				

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (Orlov)

Any exact functor $F : D^{b}(X) \rightarrow D^{b}(Y)$ which

- is fully faithful
- admits a left adjoint

Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
Orlov's r	esult				

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Theorem (Orlov)

Any exact functor $F : D^{b}(X) \rightarrow D^{b}(Y)$ which

- is fully faithful
- admits a left adjoint
- is a Fourier-Mukai functor.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem (Orlov)

Any exact functor $F : D^{b}(X) \rightarrow D^{b}(Y)$ which

- is fully faithful
- admits a left adjoint
- is a Fourier-Mukai functor.

Remark (Bondal, Van den Bergh)

Item (2) is automatic!

Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
Twisted	case				

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
Twisted o	case				

Are all equivalences between the twisted derived categories of smooth projective varieties of Fourier-Mukai type?

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
Twisted	case				

Are all equivalences between the twisted derived categories of smooth projective varieties of Fourier-Mukai type?

This is known in some geometric cases involving K3 surfaces:

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Are all equivalences between the twisted derived categories of smooth projective varieties of Fourier-Mukai type?

This is known in some geometric cases involving K3 surfaces:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 moduli spaces of stable sheaves on K3 surfaces (Căldăraru);

Are all equivalences between the twisted derived categories of smooth projective varieties of Fourier-Mukai type?

This is known in some geometric cases involving K3 surfaces:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- moduli spaces of stable sheaves on K3 surfaces (Căldăraru);
- K3 surfaces with large Picard number (H.-S.).

Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
The mair	n theore	m			

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Let (X, α) and (Y, β) be twisted varieties. Let

$$F: \mathrm{D}^{\mathrm{b}}(X, \alpha) \to \mathrm{D}^{\mathrm{b}}(Y, \beta)$$

be an exact functor

Let (X, α) and (Y, β) be twisted varieties. Let

 $F: \mathrm{D^b}(X, \alpha) \to \mathrm{D^b}(Y, \beta)$

be an exact functor such that, for any $\mathcal{F}, \mathcal{G} \in \mathbf{Coh}(X, \alpha)$,

 $\operatorname{Hom}_{\operatorname{D^b}(Y,\beta)}(F(\mathcal{F}),F(\mathcal{G})[j])=0 \ \text{ if } j<0.$

Let (X, α) and (Y, β) be twisted varieties. Let

$$F: \mathrm{D^b}(X, \alpha) \to \mathrm{D^b}(Y, \beta)$$

be an exact functor such that, for any $\mathcal{F}, \mathcal{G} \in \mathbf{Coh}(X, \alpha)$,

$$\operatorname{Hom}_{\operatorname{D^b}(Y,\beta)}(F(\mathcal{F}),F(\mathcal{G})[j])=0 \ \text{ if } j<0.$$

Then there exist $\mathcal{E} \in D^{b}(X \times Y, \alpha^{-1} \boxtimes \beta)$

Let (X, α) and (Y, β) be twisted varieties. Let

$$F: \mathrm{D^b}(X, \alpha) \to \mathrm{D^b}(Y, \beta)$$

be an exact functor such that, for any $\mathcal{F}, \mathcal{G} \in \mathbf{Coh}(X, \alpha)$,

$$\operatorname{Hom}_{\operatorname{D^b}(Y,\beta)}(F(\mathcal{F}),F(\mathcal{G})[j])=0 \ \text{ if } j<0.$$

Then there exist $\mathcal{E} \in D^{b}(X \times Y, \alpha^{-1} \boxtimes \beta)$ and an isomorphism of functors $F \cong \Phi_{\mathcal{E}}$.

Let (X, α) and (Y, β) be twisted varieties. Let

$$F: \mathrm{D^b}(X, \alpha) \to \mathrm{D^b}(Y, \beta)$$

be an exact functor such that, for any $\mathcal{F}, \mathcal{G} \in \mathbf{Coh}(X, \alpha)$,

$$\operatorname{Hom}_{\operatorname{D^b}(Y,\beta)}(F(\mathcal{F}),F(\mathcal{G})[j])=0 \ \text{ if } j<0.$$

Then there exist $\mathcal{E} \in D^{b}(X \times Y, \alpha^{-1} \boxtimes \beta)$ and an isomorphism of functors $F \cong \Phi_{\mathcal{E}}$. Moreover, \mathcal{E} is uniquely determined up to isomorphism.

Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
Commen	its				

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
Commen	its				

The previous result covers some interesting cases:

Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
Commen	its				

The previous result covers some interesting cases:

• full functors;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The previous result covers some interesting cases:

- full functors;
- (as a special case) equivalences.

The previous result covers some interesting cases:

- full functors;
- (as a special case) equivalences.

It also simplifies the proof of Kawamata's generalization of Orlov's result to the case of smooth stacks.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
More co	nments				

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

More commer	te		

Let (X, α) and (Y, β) be twisted varieties. Then there exists an isomorphism $f : X \cong Y$ such that $f^*(\beta) = \alpha$ if and only if there exists an exact equivalence **Coh** $(X, \alpha) \cong$ **Coh** (Y, β) .

(日) (日) (日) (日) (日) (日) (日)

Let (X, α) and (Y, β) be twisted varieties. Then there exists an isomorphism $f : X \cong Y$ such that $f^*(\beta) = \alpha$ if and only if there exists an exact equivalence **Coh** $(X, \alpha) \cong$ **Coh** (Y, β) .

(日) (日) (日) (日) (日) (日) (日)

The abelian category $Coh(X, \alpha)$ is a too strong invariant!

Let (X, α) and (Y, β) be twisted varieties. Then there exists an isomorphism $f : X \cong Y$ such that $f^*(\beta) = \alpha$ if and only if there exists an exact equivalence **Coh** $(X, \alpha) \cong$ **Coh** (Y, β) .

(日) (日) (日) (日) (日) (日) (日)

The abelian category **Coh**(X, α) is a too strong invariant! Needs:

Let (X, α) and (Y, β) be twisted varieties. Then there exists an isomorphism $f : X \cong Y$ such that $f^*(\beta) = \alpha$ if and only if there exists an exact equivalence **Coh** $(X, \alpha) \cong$ **Coh** (Y, β) .

The abelian category $Coh(X, \alpha)$ is a too strong invariant!

Needs:

Preserve deep geometric relationships (moduli spaces) (Mukai,...).

(日) (日) (日) (日) (日) (日) (日)

Let (X, α) and (Y, β) be twisted varieties. Then there exists an isomorphism $f : X \cong Y$ such that $f^*(\beta) = \alpha$ if and only if there exists an exact equivalence **Coh** $(X, \alpha) \cong$ **Coh** (Y, β) .

The abelian category $Coh(X, \alpha)$ is a too strong invariant!

Needs:

Preserve deep geometric relationships (moduli spaces) (Mukai,...).

(日) (日) (日) (日) (日) (日) (日)

A good birational invariant.

Let (X, α) and (Y, β) be twisted varieties. Then there exists an isomorphism $f : X \cong Y$ such that $f^*(\beta) = \alpha$ if and only if there exists an exact equivalence **Coh** $(X, \alpha) \cong$ **Coh** (Y, β) .

The abelian category $Coh(X, \alpha)$ is a too strong invariant!

Needs:

- Preserve deep geometric relationships (moduli spaces) (Mukai,...).
- A good birational invariant. Some kind of "Derived MMP" (Kawamata, Bridgeland, Chen,...).

Let (X, α) and (Y, β) be twisted varieties. Then there exists an isomorphism $f : X \cong Y$ such that $f^*(\beta) = \alpha$ if and only if there exists an exact equivalence **Coh** $(X, \alpha) \cong$ **Coh** (Y, β) .

The abelian category $Coh(X, \alpha)$ is a too strong invariant!

Needs:

- Preserve deep geometric relationships (moduli spaces) (Mukai,...).
- A good birational invariant. Some kind of "Derived MMP" (Kawamata, Bridgeland, Chen,...).
- 8 Relevant for physics

Let (X, α) and (Y, β) be twisted varieties. Then there exists an isomorphism $f : X \cong Y$ such that $f^*(\beta) = \alpha$ if and only if there exists an exact equivalence **Coh** $(X, \alpha) \cong$ **Coh** (Y, β) .

The abelian category $Coh(X, \alpha)$ is a too strong invariant!

Needs:

- Preserve deep geometric relationships (moduli spaces) (Mukai,...).
- A good birational invariant. Some kind of "Derived MMP" (Kawamata, Bridgeland, Chen,...).
- **3** Relevant for physics \Rightarrow Mirror Symmetry (Kontsevich,...).

Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
Geometr	ic case				

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Let X and Y be K3 surfaces.

Let X and Y be K3 surfaces. Suppose that there exists a Hodge isometry

$$g: H^2(X,\mathbb{Z}) \to H^2(Y,\mathbb{Z})$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

which maps the class of an ample line bundle on X into the ample cone of Y.

Let X and Y be K3 surfaces. Suppose that there exists a Hodge isometry

$$g: H^2(X,\mathbb{Z}) \to H^2(Y,\mathbb{Z})$$

which maps the class of an ample line bundle on X into the ample cone of Y. Then there exists a unique isomorphism

$$f: X \cong Y$$

such that $f_* = g$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Let X and Y be K3 surfaces. Suppose that there exists a Hodge isometry

$$g: H^2(X,\mathbb{Z}) \to H^2(Y,\mathbb{Z})$$

which maps the class of an ample line bundle on X into the ample cone of Y. Then there exists a unique isomorphism

$$f: X \cong Y$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

such that $f_* = g$.

Lattice theory

Let X and Y be K3 surfaces. Suppose that there exists a Hodge isometry

$$g: H^2(X,\mathbb{Z}) \to H^2(Y,\mathbb{Z})$$

which maps the class of an ample line bundle on X into the ample cone of Y. Then there exists a unique isomorphism

$$f: X \cong Y$$

such that $f_* = g$.

Lattice theory + Hodge structures

Let X and Y be K3 surfaces. Suppose that there exists a Hodge isometry

$$g: H^2(X,\mathbb{Z}) \to H^2(Y,\mathbb{Z})$$

which maps the class of an ample line bundle on X into the ample cone of Y. Then there exists a unique isomorphism

$$f: X \cong Y$$

such that $f_* = g$.

Lattice theory + Hodge structures + ample cone

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
Derived	case				

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Derived Torelli Theorem (Orlov+Mukai)

Let X and Y be K3 surfaces. Then the following conditions are equivalent:

▲ロト ▲園 ト ▲画 ト ▲画 ト ▲ 回 ト

Let X and Y be K3 surfaces. Then the following conditions are equivalent:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$D^{\mathbf{b}}(X) \cong D^{\mathbf{b}}(Y);$$

Let X and Y be K3 surfaces. Then the following conditions are equivalent:

$$D^{\mathbf{b}}(X) \cong D^{\mathbf{b}}(Y);$$

2 there exists a Hodge isometry $f : \widetilde{H}(X, \mathbb{Z}) \to \widetilde{H}(Y, \mathbb{Z});$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Let X and Y be K3 surfaces. Then the following conditions are equivalent:

$$D^{\mathbf{b}}(X) \cong D^{\mathbf{b}}(Y);$$

2 there exists a Hodge isometry $f: H(X, \mathbb{Z}) \to H(Y, \mathbb{Z});$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

3 there exists a Hodge isometry $g: T(X) \to T(Y)$;

Let X and Y be K3 surfaces. Then the following conditions are equivalent:

$$D^{\mathbf{b}}(X) \cong D^{\mathbf{b}}(Y);$$

- 2 there exists a Hodge isometry $f : \widetilde{H}(X, \mathbb{Z}) \to \widetilde{H}(Y, \mathbb{Z});$
- there exists a Hodge isometry $g : T(X) \rightarrow T(Y)$;
- Y is isomorphic to a smooth compact 2-dimensional fine moduli space of stable sheaves on X.

(日) (日) (日) (日) (日) (日) (日)

Let X and Y be K3 surfaces. Then the following conditions are equivalent:

$$D^{\mathbf{b}}(X) \cong D^{\mathbf{b}}(Y);$$

- 2 there exists a Hodge isometry $f : \widetilde{H}(X, \mathbb{Z}) \to \widetilde{H}(Y, \mathbb{Z});$
- there exists a Hodge isometry $g : T(X) \rightarrow T(Y)$;
- Y is isomorphic to a smooth compact 2-dimensional fine moduli space of stable sheaves on X.

(日) (日) (日) (日) (日) (日) (日)

Lattice theory

Let X and Y be K3 surfaces. Then the following conditions are equivalent:

$$D^{\mathbf{b}}(X) \cong D^{\mathbf{b}}(Y);$$

- 2 there exists a Hodge isometry $f : \widetilde{H}(X, \mathbb{Z}) \to \widetilde{H}(Y, \mathbb{Z});$
- there exists a Hodge isometry $g : T(X) \rightarrow T(Y)$;
- Y is isomorphic to a smooth compact 2-dimensional fine moduli space of stable sheaves on X.

Lattice theory + Hodge structures

Twisted derived case

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Twisted Derived Torelli Theorem (H.-S.)

Let X and X' be two projective K3 surfaces endowed with B-fields $B \in H^2(X, \mathbb{Q})$ and $B' \in H^2(X', \mathbb{Q})$.

Twisted derived case

Twisted Derived Torelli Theorem (H.-S.)

Let X and X' be two projective K3 surfaces endowed with B-fields $B \in H^2(X, \mathbb{Q})$ and $B' \in H^2(X', \mathbb{Q})$.

If Φ : D^b(X, α_B) ≅ D^b(X', α_{B'}) is an equivalence, then there exists a naturally defined Hodge isometry Φ^{B,B'}_{*} : H̃(X, B, Z) ≅ H̃(X', B', Z).

Twisted derived case

Twisted Derived Torelli Theorem (H.-S.)

Let X and X' be two projective K3 surfaces endowed with B-fields $B \in H^2(X, \mathbb{Q})$ and $B' \in H^2(X', \mathbb{Q})$.

- If Φ : D^b(X, α_B) ≅ D^b(X', α_{B'}) is an equivalence, then there exists a naturally defined Hodge isometry Φ^{B,B'}_{*} : H̃(X, B, Z) ≅ H̃(X', B', Z).
- Suppose there exists a Hodge isometry $g: \widetilde{H}(X, B, \mathbb{Z}) \cong \widetilde{H}(X', B', \mathbb{Z})$ that preserves the natural orientation of the four positive directions. Then there exists an equivalence $\Phi: D^{b}(X, \alpha_{B}) \cong D^{b}(X', \alpha_{B'})$ such that $\Phi^{B,B'}_{*} = g$.

Twisted derived case

Twisted Derived Torelli Theorem (H.-S.)

Let X and X' be two projective K3 surfaces endowed with B-fields $B \in H^2(X, \mathbb{Q})$ and $B' \in H^2(X', \mathbb{Q})$.

- If Φ : D^b(X, α_B) ≅ D^b(X', α_{B'}) is an equivalence, then there exists a naturally defined Hodge isometry Φ^{B,B'}_{*} : H̃(X, B, Z) ≅ H̃(X', B', Z).
- Suppose there exists a Hodge isometry g: H̃(X, B, ℤ) ≅ H̃(X', B', ℤ) that preserves the natural orientation of the four positive directions. Then there exists an equivalence Φ : D^b(X, α_B) ≅ D^b(X', α_{B'}) such that Φ^{B,B'}_{*} = g.

There is something missing!

Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
Lattice s	tructure				

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Using the cup product, we get the Mukai pairing on $H^*(X, \mathbb{Z})$:

Using the cup product, we get the Mukai pairing on $H^*(X, \mathbb{Z})$:

$$\langle \alpha, \beta \rangle := -\alpha_1 \cdot \beta_3 + \alpha_2 \cdot \beta_2 - \alpha_3 \cdot \beta_1,$$

for every $\alpha = (\alpha_1, \alpha_2, \alpha_3)$ and $\beta = (\beta_1, \beta_2, \beta_3)$ in $H^*(X, \mathbb{Z})$.

Using the cup product, we get the Mukai pairing on $H^*(X, \mathbb{Z})$:

$$\langle \alpha, \beta \rangle := -\alpha_1 \cdot \beta_3 + \alpha_2 \cdot \beta_2 - \alpha_3 \cdot \beta_1,$$

for every $\alpha = (\alpha_1, \alpha_2, \alpha_3)$ and $\beta = (\beta_1, \beta_2, \beta_3)$ in $H^*(X, \mathbb{Z})$.

 $H^*(X,\mathbb{Z})$ endowed with the Mukai pairing is called Mukai lattice and we write $\widetilde{H}(X,\mathbb{Z})$ for it.

The Hodge structure

▲□▶▲圖▶▲≣▶▲≣▶ = ● のへで

Let $H^{2,0}(X) = \langle \sigma \rangle$ and let *B* be a B-field on *X*.

...

Let $H^{2,0}(X) = \langle \sigma \rangle$ and let *B* be a B-field on *X*.

$$arphi = \exp(B) \cdot \sigma = \sigma + B \wedge \sigma \in H^2(X, \mathbb{C}) \oplus H^4(X, \mathbb{C})$$

Let $H^{2,0}(X) = \langle \sigma \rangle$ and let *B* be a B-field on *X*.

$$\varphi = \exp(B) \cdot \sigma = \sigma + B \wedge \sigma \in H^2(X, \mathbb{C}) \oplus H^4(X, \mathbb{C})$$

is a generalized Calabi-Yau structure (Hitchin and Huybrechts).

The Hodge structure

Let $H^{2,0}(X) = \langle \sigma \rangle$ and let *B* be a B-field on *X*.

$$\varphi = \exp(B) \cdot \sigma = \sigma + B \wedge \sigma \in H^2(X, \mathbb{C}) \oplus H^4(X, \mathbb{C})$$

is a generalized Calabi-Yau structure (Hitchin and Huybrechts).

Definition

Let X be a K3 surface with a B-field $B \in H^2(X, \mathbb{Q})$. We denote by $\widetilde{H}(X, B, \mathbb{Z})$ the weight-two Hodge structure on $H^*(X, \mathbb{Z})$ with

$$\widetilde{H}^{2,0}(X,B):=\exp(B)\left(H^{2,0}(X)
ight)$$

and $\widetilde{H}^{1,1}(X,B)$ its orthogonal complement with respect to the Mukai pairing.

Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
Orienata	tion				

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Let X be a K3 surface, σ_X be a generator of $H^{2,0}(X)$ and ω be a Kähler class.

Let *X* be a K3 surface, σ_X be a generator of $H^{2,0}(X)$ and ω be a Kähler class. Then

$$\langle \operatorname{Re}(\sigma_X), \operatorname{Im}(\sigma_X), 1 - \omega^2/2, \omega \rangle$$

(日) (日) (日) (日) (日) (日) (日)

is a positive four-space in $\widetilde{H}(X, \mathbb{R})$.

Let *X* be a K3 surface, σ_X be a generator of $H^{2,0}(X)$ and ω be a Kähler class. Then

$$\langle \operatorname{Re}(\sigma_X), \operatorname{Im}(\sigma_X), 1 - \omega^2/2, \omega \rangle$$

is a positive four-space in $\widetilde{H}(X, \mathbb{R})$.

Remark

It comes, by the choice of the basis, with a natural orientation.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Let *X* be a K3 surface, σ_X be a generator of $H^{2,0}(X)$ and ω be a Kähler class. Then

$$\langle \operatorname{Re}(\sigma_X), \operatorname{Im}(\sigma_X), 1 - \omega^2/2, \omega \rangle$$

is a positive four-space in $\widetilde{H}(X, \mathbb{R})$.

Remark

It comes, by the choice of the basis, with a natural orientation.

Remark

It is easy to see that this orientation is independent of the choice of σ_X and ω .

Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
Orienata	tion				

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Proposition (H.-S.)

Any known twisted or untwisted equivalence is orientation preserving.

Proposition (H.-S.)

Any known twisted or untwisted equivalence is orientation preserving.

Conjecture

Let X and X' be two algebraic K3 surfaces with B-fields B and B'.

Proposition (H.-S.)

Any known twisted or untwisted equivalence is orientation preserving.

Conjecture

Let X and X' be two algebraic K3 surfaces with B-fields B and B'. If $\Phi : D^{b}(X, \alpha_{B}) \cong D^{b}(X', \alpha_{B'})$ is a Fourier-Mukai transform,

Proposition (H.-S.)

Any known twisted or untwisted equivalence is orientation preserving.

Conjecture

Let *X* and *X'* be two algebraic K3 surfaces with B-fields *B* and *B'*. If $\Phi : D^{b}(X, \alpha_{B}) \cong D^{b}(X', \alpha_{B'})$ is a Fourier-Mukai transform, then $\Phi^{B,B'}_{*} : \widetilde{H}(X, B, \mathbb{Z}) \to \widetilde{H}(X', B', \mathbb{Z})$ preserves the natural orientation of the four positive directions.

Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
Orienata	tion				

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Theorem (H.-M.-S.)

For a generic twisted K3 surface (X, α_B) there exists a short exact sequence

$$\mathbf{1} \to \mathbb{Z}[\mathbf{2}] \to \operatorname{Aut}\left(\operatorname{D^b}(X, \alpha_B)\right) \xrightarrow{\varphi} \operatorname{O_+} \to \mathbf{1},$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

where O_+ is the group of the Hodge isometries of $\widetilde{H}(X, B, \mathbb{Z})$ preserving the orientation.

Theorem (H.-M.-S.)

For a generic twisted K3 surface (X, α_B) there exists a short exact sequence

$$\mathbf{1} \to \mathbb{Z}[\mathbf{2}] \to \operatorname{Aut}\left(\operatorname{D^b}(X, \alpha_B)\right) \xrightarrow{\varphi} \operatorname{O_+} \to \mathbf{1},$$

where O_+ is the group of the Hodge isometries of $H(X, B, \mathbb{Z})$ preserving the orientation.

We proved Bridgeland's Conjecture for generic twisted K3 surfaces.

(日) (日) (日) (日) (日) (日) (日)

Torelli Theorems

Applications

Kummer surfaces

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Căldăraru's conjecture is false

Torelli Theorems

Applications

Kummer surfaces

Căldăraru's conjecture is false

Lemma

If $\Phi : D^{b}(X, \alpha) \cong D^{b}(X', \alpha')$ is an equivalence, then there is a Hodge isometry $T(X, \alpha) \cong T(X', \alpha')$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

・ロト・日本・日本・日本・日本

Căldăraru's conjecture is false

Lemma

If $\Phi : D^{b}(X, \alpha) \cong D^{b}(X', \alpha')$ is an equivalence, then there is a Hodge isometry $T(X, \alpha) \cong T(X', \alpha')$.

• Take (X, α) such that $T(X, \alpha) \cong T(X, \alpha^2)$ but $\widetilde{H}(X, B, \mathbb{Z}) \ncong \widetilde{H}(X, 2B, \mathbb{Z}).$

Applications

Kummer surfaces

(日) (日) (日) (日) (日) (日) (日)

Căldăraru's conjecture is false

Lemma

If $\Phi : D^{b}(X, \alpha) \cong D^{b}(X', \alpha')$ is an equivalence, then there is a Hodge isometry $T(X, \alpha) \cong T(X', \alpha')$.

- Take (X, α) such that $T(X, \alpha) \cong T(X, \alpha^2)$ but $\widetilde{H}(X, B, \mathbb{Z}) \ncong \widetilde{H}(X, 2B, \mathbb{Z}).$
- No twisted Fourier-Mukai transforms $D^{b}(X, \alpha) \cong D^{b}(X, \alpha^{2})$.

Applications

Kummer surfaces

(日) (日) (日) (日) (日) (日) (日)

Căldăraru's conjecture is false

Lemma

If $\Phi : D^{b}(X, \alpha) \cong D^{b}(X', \alpha')$ is an equivalence, then there is a Hodge isometry $T(X, \alpha) \cong T(X', \alpha')$.

- Take (X, α) such that $T(X, \alpha) \cong T(X, \alpha^2)$ but $\widetilde{H}(X, B, \mathbb{Z}) \ncong \widetilde{H}(X, 2B, \mathbb{Z}).$
- No twisted Fourier-Mukai transforms $D^{b}(X, \alpha) \cong D^{b}(X, \alpha^{2})$.
- One implication in Căldăraru's conjecture is false.

Applications

Kummer surfaces

Number of Fourier-Mukai partners

▲□▶▲□▶▲□▶▲□▶ □ のへで

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Number of Fourier-Mukai partners

Proposition (H.-S.)

Any twisted K3 surface (X, α) admits only finitely many Fourier-Mukai partners up to isomorphisms.

Number of Fourier-Mukai partners

Proposition (H.-S.)

Any twisted K3 surface (X, α) admits only finitely many Fourier-Mukai partners up to isomorphisms.

Untwisted \neq Twisted!!

Number of Fourier-Mukai partners

Proposition (H.-S.)

Any twisted K3 surface (X, α) admits only finitely many Fourier-Mukai partners up to isomorphisms.

Untwisted \neq Twisted!!

Proposition (H.-S.)

For any positive integer N there exist N pairwise non-isomorphic twisted K3 surfaces

$$(X_1, \alpha_1), \ldots, (X_N, \alpha_N)$$

of Picard number 20 and such that the twisted derived categories $D^b(X_i, \alpha_i)$, are all Fourier-Mukai equivalent.

Applications

Kummer surfaces

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The untwisted case: HLOY

 $\mathrm{D}^{\mathrm{b}}(A)\cong\mathrm{D}^{\mathrm{b}}(B)$

if and only if

 $D^{b}(Km(A)) \cong D^{b}(Km(B)).$

 $\mathrm{D}^{\mathrm{b}}(A)\cong\mathrm{D}^{\mathrm{b}}(B)$

if and only if

 $D^{b}(Km(A)) \cong D^{b}(Km(B)).$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The argument:

 $\mathrm{D}^\mathrm{b}(A)\cong\mathrm{D}^\mathrm{b}(B)$

if and only if

 $D^{b}(Km(A)) \cong D^{b}(Km(B)).$

The argument: they notice that, due to the geometric construction of the Kummer surfaces Km(A) and Km(B), the transcendental lattices of *A* and *B* are Hodge isometric if and only if the transcendental lattices of Km(A) and Km(B) are Hodge isometric.

 $\mathrm{D}^\mathrm{b}(A)\cong\mathrm{D}^\mathrm{b}(B)$

if and only if

 $D^{b}(Km(A)) \cong D^{b}(Km(B)).$

The argument: they notice that, due to the geometric construction of the Kummer surfaces Km(A) and Km(B), the transcendental lattices of *A* and *B* are Hodge isometric if and only if the transcendental lattices of Km(A) and Km(B) are Hodge isometric. Then, they apply the Derived Torelli Theorem.

Applications

Kummer surfaces

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The untwisted case: HLOY

• Given two abelian surfaces A and B,

 $D^{b}(Km(A)) \cong D^{b}(Km(B))$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

if and only if there exists a Hodge isometry between the transcendental lattices of *A* and *B*.

• Given two abelian surfaces A and B,

 $D^{b}(Km(A)) \cong D^{b}(Km(B))$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

if and only if there exists a Hodge isometry between the transcendental lattices of *A* and *B*.

Due to a result of Mukai, equivalent to:

Given two abelian surfaces A and B.

 $D^{b}(Km(A)) \cong D^{b}(Km(B))$

if and only if there exists a Hodge isometry between the transcendental lattices of A and B.

Due to a result of Mukai, equivalent to:

• Given two abelian surfaces A and B, $D^{b}(A) \cong D^{b}(B)$ if and only if $\operatorname{Km}(A) \cong \operatorname{Km}(B)$.

Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
The twis	ted case)			

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
The twis	ted case				

Definition

Let (X_1, α_1) and (X_2, α_2) be twisted K3 or abelian surfaces.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Definition

Let (X_1, α_1) and (X_2, α_2) be twisted K3 or abelian surfaces.

They are <u>D</u>-equivalent if there exists a twisted Fourier-Mukai transform

$$\Phi: \mathrm{D}^{\mathrm{b}}(X_1, \alpha_1) \to \mathrm{D}^{\mathrm{b}}(X_2, \alpha_2).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Definition

Let (X_1, α_1) and (X_2, α_2) be twisted K3 or abelian surfaces.

They are <u>D</u>-equivalent if there exists a twisted Fourier-Mukai transform

$$\Phi: \mathrm{D}^{\mathrm{b}}(X_1, \alpha_1) \to \mathrm{D}^{\mathrm{b}}(X_2, \alpha_2).$$

2 They are *T*-equivalent if there exist $B_i \in H^2(X_i, \mathbb{Q})$ such that $\alpha_i = \alpha_{B_i}$ and a Hodge isometry

$$\varphi: T(X_1, \alpha_{B_1}) \to T(X_2, \alpha_{B_2}).$$

Twisted sheaves	Motivations	Functors	Torelli Theorems	Applications	Kummer surfaces
The twis	ted case)			

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem (S.)

Let A_1 and A_2 be abelian surfaces. Then the following two conditions are equivalent:

Theorem (S.)

Let A_1 and A_2 be abelian surfaces. Then the following two conditions are equivalent:

• there exist $\alpha_1 \in Br(Km(A_1))$ and $\alpha_2 \in Br(Km(A_2))$ such that $(Km(A_1), \alpha_1)$ and $(Km(A_2), \alpha_2)$ are *D*-equivalent;

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem (S.)

Let A_1 and A_2 be abelian surfaces. Then the following two conditions are equivalent:

- there exist $\alpha_1 \in Br(Km(A_1))$ and $\alpha_2 \in Br(Km(A_2))$ such that $(Km(A_1), \alpha_1)$ and $(Km(A_2), \alpha_2)$ are *D*-equivalent;
- 2 there exist $\beta_1 \in Br(A_1)$ and $\beta_2 \in Br(A_2)$ such that (A_1, β_1) and (A_2, β_2) are *T*-equivalent.

(日) (日) (日) (日) (日) (日) (日)

Theorem (S.)

Let A_1 and A_2 be abelian surfaces. Then the following two conditions are equivalent:

- there exist $\alpha_1 \in Br(Km(A_1))$ and $\alpha_2 \in Br(Km(A_2))$ such that $(Km(A_1), \alpha_1)$ and $(Km(A_2), \alpha_2)$ are *D*-equivalent;
- 2 there exist $\beta_1 \in Br(A_1)$ and $\beta_2 \in Br(A_2)$ such that (A_1, β_1) and (A_2, β_2) are *T*-equivalent.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Furthermore, if one of these two equivalent conditions holds true, then A_1 and A_2 are isogenous.

Theorem (S.)

Let A_1 and A_2 be abelian surfaces. Then the following two conditions are equivalent:

- there exist $\alpha_1 \in Br(Km(A_1))$ and $\alpha_2 \in Br(Km(A_2))$ such that $(Km(A_1), \alpha_1)$ and $(Km(A_2), \alpha_2)$ are *D*-equivalent;
- 2 there exist $\beta_1 \in Br(A_1)$ and $\beta_2 \in Br(A_2)$ such that (A_1, β_1) and (A_2, β_2) are *T*-equivalent.

(日) (日) (日) (日) (日) (日) (日)

Furthermore, if one of these two equivalent conditions holds true, then A_1 and A_2 are isogenous.

Analogue of the second statement!

Theorem (S.)

Let A_1 and A_2 be abelian surfaces. Then the following two conditions are equivalent:

- there exist $\alpha_1 \in Br(Km(A_1))$ and $\alpha_2 \in Br(Km(A_2))$ such that $(Km(A_1), \alpha_1)$ and $(Km(A_2), \alpha_2)$ are *D*-equivalent;
- 2 there exist $\beta_1 \in Br(A_1)$ and $\beta_2 \in Br(A_2)$ such that (A_1, β_1) and (A_2, β_2) are *T*-equivalent.

Furthermore, if one of these two equivalent conditions holds true, then A_1 and A_2 are isogenous.

Analogue of the second statement!

There are no twisted analogues of the first and third statement!

Applications

Kummer surfaces

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The number of Kummer structures

The number of Kummer structures

By the previous theorem, we have a surjective map

$$\Psi: \{\text{Tw ab surf}\} / \cong \longrightarrow \{\text{Tw Kum surf}\} / \cong$$

The number of Kummer structures

By the previous theorem, we have a surjective map

$$\Psi: \{\text{Tw ab surf}\}/\cong \longrightarrow \{\text{Tw Kum surf}\}/\cong.$$

The main result of Hosono, Lian, Oguiso and Yau proves that

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The number of Kummer structures

By the previous theorem, we have a surjective map

$$\Psi: \{\text{Tw ab surf}\}/\cong \longrightarrow \{\text{Tw Kum surf}\}/\cong.$$

The main result of Hosono, Lian, Oguiso and Yau proves that

• the preimage of [(Km(A), 1)] is finite, for any abelian surface A and $1 \in Br(A)$ the trivial class.

(日) (日) (日) (日) (日) (日) (日)

The number of Kummer structures

By the previous theorem, we have a surjective map

$$\Psi: \{\text{Tw ab surf}\}/\cong \longrightarrow \{\text{Tw Kum surf}\}/\cong.$$

The main result of Hosono, Lian, Oguiso and Yau proves that

- the preimage of [(Km(A), 1)] is finite, for any abelian surface A and $1 \in Br(A)$ the trivial class.
- 2 The cardinality of the preimages of Ψ can be arbitrarily large.

The number of Kummer structures

By the previous theorem, we have a surjective map

$$\Psi: \{\text{Tw ab surf}\}/\cong \longrightarrow \{\text{Tw Kum surf}\}/\cong.$$

The main result of Hosono, Lian, Oguiso and Yau proves that

- the preimage of [(Km(A), 1)] is finite, for any abelian surface A and $1 \in Br(A)$ the trivial class.
- 2 The cardinality of the preimages of Ψ can be arbitrarily large.

This answers an old question of Shioda.

Applications

Kummer surfaces

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The number of Kummer structures

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

The number of Kummer structures

This picture can be completely generalized to the twisted case.

The number of Kummer structures

This picture can be completely generalized to the twisted case.

Proposition (S.)

(i) For any twisted Kummer surface $(Km(A), \alpha)$, the preimage

 $\Psi^{-1}([(\mathrm{Km}(A),\alpha)])$

is finite.

・ロト・西ト・西ト・日 シック

(日) (日) (日) (日) (日) (日) (日)

The number of Kummer structures

This picture can be completely generalized to the twisted case.

Proposition (S.)

(i) For any twisted Kummer surface $(Km(A), \alpha)$, the preimage

 $\Psi^{-1}([(\operatorname{Km}(A), \alpha)])$

is finite.

(ii) For positive integers *N* and *n*, there exists a twisted Kummer surface $(\text{Km}(A), \alpha)$ with α of order *n* in Br (Km(A)) and such that

 $|\Psi^{-1}([(\operatorname{Km}(A),\alpha)])| \geq N.$

The number of Kummer structures

This picture can be completely generalized to the twisted case.

Proposition (S.)

(i) For any twisted Kummer surface $(Km(A), \alpha)$, the preimage

 $\Psi^{-1}([(\operatorname{Km}(A), \alpha)])$

is finite.

(ii) For positive integers *N* and *n*, there exists a twisted Kummer surface ($\text{Km}(A), \alpha$) with α of order *n* in Br (Km(A)) and such that

 $|\Psi^{-1}([(\operatorname{Km}(A),\alpha)])| \geq N.$

On a twisted K3 surface we can put just a finite number of non-isomorphic twisted Kummer structures.