Derived categories and cubic hypersurfaces

Paolo Stellari

Derived categories and cubic hypersurfaces

Paolo Stellari

Roma, February 2011

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Derived categories and cubic hypersurfaces

1 The geometric setting

Paolo Stellari

Outline

Derived categories and cubic hypersurfaces

Paolo Stellari

Outline

The geometric setting

2 3-folds

- Geometry
- Derived categories
- Bridgeland stability conditions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Irrationality

Derived categories and cubic hypersurfaces

Paolo Stellari

Outline

The geometric setting

3-folds

- Geometry
- Derived categories
- Bridgeland stability conditions
- Irrationality

4-folds

- Geometry
- Derived categories
- Categorical Torelli theorem

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Fano varieties of lines
- Rationality

۸im

Derived categories and cubic hy- persurfaces
Paolo Stellari
The
geometric setting
3-folds
Geometry Derived categories
Bridgeland stability conditions
Irrationality 4 -folds
Geometry Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Rationality The aim of the talk is to propose a 'categorical' treatment for some fundamental (often unknown) geometric properties of smooth (complex) hypersurfaces of degree 3

 $Y \subseteq \mathbb{P}^{n+1}$.

We will study **cubic** 3-fold (n = 3) and **cubic** 4-fold (n = 4).

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Rationality The aim of the talk is to propose a 'categorical' treatment for some fundamental (often unknown) geometric properties of smooth (complex) hypersurfaces of degree 3

 $Y \subseteq \mathbb{P}^{n+1}$.

We will study cubic 3-fold (n = 3) and cubic 4-fold (n = 4).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

For example:

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Rationality The aim of the talk is to propose a 'categorical' treatment for some fundamental (often unknown) geometric properties of smooth (complex) hypersurfaces of degree 3

 $Y\subseteq \mathbb{P}^{n+1}.$

We will study **cubic** 3-fold (n = 3) and **cubic** 4-fold (n = 4).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

For example:

• Rationality/irrationality of those varieties;

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Rationality The aim of the talk is to propose a 'categorical' treatment for some fundamental (often unknown) geometric properties of smooth (complex) hypersurfaces of degree 3

 $Y \subseteq \mathbb{P}^{n+1}$.

We will study **cubic** 3-fold (n = 3) and **cubic** 4-fold (n = 4).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

For example:

- Rationality/irrationality of those varieties;
- Torelli type theorems;

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Rationality The aim of the talk is to propose a 'categorical' treatment for some fundamental (often unknown) geometric properties of smooth (complex) hypersurfaces of degree 3

 $Y\subseteq \mathbb{P}^{n+1}.$

We will study **cubic** 3-fold (n = 3) and **cubic** 4-fold (n = 4).

For example:

- Rationality/irrationality of those varieties;
- Torelli type theorems;
- Geometric description of the Fano varieties of lines of those cubics.

Derived
categories
and cubic hy-
persurfaces
Paolo Stellari
The
geometric
setting
conditions
4 folds
4-folds

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Let **A** be an abelian category (e.g., **mod**-R, right R-modules, R an ass. ring with unity, and **Coh**(X)).

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Let **A** be an abelian category (e.g., **mod**-R, right R-modules, R an ass. ring with unity, and **Coh**(X)).

Define $C^{b}(\mathbf{A})$ to be the (abelian) category of bounded complexes of objects in **A**. In particular:

(ロ) (同) (三) (三) (三) (三) (○) (○)

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Let **A** be an abelian category (e.g., **mod**-R, right R-modules, R an ass. ring with unity, and **Coh**(X)).

Define $C^{b}(\mathbf{A})$ to be the (abelian) category of bounded complexes of objects in **A**. In particular:

• Objects:

$$M^{\bullet} := \{ \cdots \to M^{p-1} \xrightarrow{d^{p-1}} M^p \xrightarrow{d^p} M^{p+1} \to \cdots \}$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

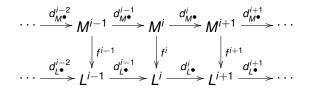
Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Patienality Let **A** be an abelian category (e.g., **mod**-R, right R-modules, R an ass. ring with unity, and **Coh**(X)).

Define $C^{b}(\mathbf{A})$ to be the (abelian) category of bounded complexes of objects in **A**. In particular:

Objects:

$$M^{\bullet} := \{ \cdots \to M^{p-1} \xrightarrow{d^{p-1}} M^p \xrightarrow{d^p} M^{p+1} \to \cdots \}$$

Morphisms: sets of arrows f[●] := {fⁱ}_{i∈ℤ} making commutative the following diagram



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Derived
categories
and cubic hy-
persurfaces
Paolo Stellari
The
geometric
setting
conditions
4 folds
4-folds

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stabilit conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines For a complex $M^{\bullet} \in C^{b}(\mathbf{A})$, its *i*-th cohomology is

$$H^{i}(M^{\bullet}) := rac{\ker\left(\mathcal{O}^{i}
ight)}{\operatorname{im}\left(\mathcal{O}^{i-1}
ight)} \in \mathbf{A}.$$

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines For a complex $M^{\bullet} \in C^{b}(\mathbf{A})$, its *i*-th cohomology is

$$H^{i}(M^{\bullet}) := rac{\ker\left(\mathcal{d}^{i}
ight)}{\operatorname{im}\left(\mathcal{d}^{i-1}
ight)} \in \mathbf{A}.$$

A morphism of complexes is a **quasi-isomorphism** (qis) if it induces isomorphisms on cohomology.

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Retionality For a complex $M^{\bullet} \in C^{b}(\mathbf{A})$, its *i*-th cohomology is

$$\mathcal{H}^{i}(M^{ullet}):=rac{\ker{(\mathcal{d}^{i})}}{\operatorname{im}(\mathcal{d}^{i-1})}\in oldsymbol{\mathsf{A}}.$$

A morphism of complexes is a **quasi-isomorphism** (qis) if it induces isomorphisms on cohomology.

Definition

The **bounded derived category** $D^{b}(\mathbf{A})$ of the abelian category \mathbf{A} is such that:

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4**-folds**

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Bationality For a complex $M^{\bullet} \in C^{b}(\mathbf{A})$, its *i*-th cohomology is

$$\mathcal{H}^{i}(M^{ullet}):=rac{\ker{(\mathcal{d}^{i})}}{\operatorname{im}(\mathcal{d}^{i-1})}\in oldsymbol{\mathsf{A}}.$$

A morphism of complexes is a **quasi-isomorphism** (qis) if it induces isomorphisms on cohomology.

Definition

The **bounded derived category** $D^{b}(\mathbf{A})$ of the abelian category \mathbf{A} is such that:

• Objects: $Ob(C^{b}(\mathbf{A})) = Ob(D^{b}(\mathbf{A}));$

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4**-folds**

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Bationality For a complex $M^{\bullet} \in C^{b}(\mathbf{A})$, its *i*-th cohomology is

$$\mathcal{H}^{i}(M^{ullet}):=rac{\ker\left(\mathcal{d}^{i}
ight)}{\operatorname{im}\left(\mathcal{d}^{i-1}
ight)}\inoldsymbol{\mathsf{A}}.$$

A morphism of complexes is a **quasi-isomorphism** (qis) if it induces isomorphisms on cohomology.

Definition

The **bounded derived category** $D^{b}(\mathbf{A})$ of the abelian category \mathbf{A} is such that:

- Objects: $Ob(C^{b}(\mathbf{A})) = Ob(D^{b}(\mathbf{A}));$
- Morphisms: (very) roughly speaking, obtained 'by inverting qis in C^b(A)'.

Derived
categories
and cubic hy-
persurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stabilit conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Suppose we have a sequence of full triangulated subcategories $T_1, \ldots, T_n \subseteq D^b(X) := D^b(Coh(X))$, where X is smooth projective, such that:

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Suppose we have a sequence of full triangulated subcategories $T_1, \ldots, T_n \subseteq D^b(X) := D^b(Coh(X))$, where X is smooth projective, such that:

• Hom
$$_{D^{b}(X)}(\mathbf{T}_{i},\mathbf{T}_{j}) = 0$$
, for $i > j$,

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Suppose we have a sequence of full triangulated subcategories $T_1, \ldots, T_n \subseteq D^b(X) := D^b(Coh(X))$, where X is smooth projective, such that:

• Hom
$$_{\mathrm{D^b}(X)}(\mathbf{T}_i,\mathbf{T}_j)=0$$
, for $i>j$,

• For all $K \in D^{b}(X)$, there exists a chain of morphisms in $D^{b}(X)$

$$0 = K_n \to K_{n-1} \to \ldots \to K_1 \to K_0 = K$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

with cone($K_i \rightarrow K_{i-1}$) $\in \mathbf{T}_i$, for all i = 1, ..., n.

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Rationality Suppose we have a sequence of full triangulated subcategories $T_1, \ldots, T_n \subseteq D^b(X) := D^b(Coh(X))$, where X is smooth projective, such that:

• Hom
$$_{\mathrm{D^b}(X)}(\mathbf{T}_i,\mathbf{T}_j) = 0$$
, for $i > j$,

• For all $K \in D^{b}(X)$, there exists a chain of morphisms in $D^{b}(X)$

$$0 = K_n \to K_{n-1} \to \ldots \to K_1 \to K_0 = K$$

with cone(
$$K_i \rightarrow K_{i-1}$$
) $\in \mathbf{T}_i$, for all $i = 1, ..., n$.

This is a **semi-orthogonal** decomposition of $D^{b}(X)$:

$$D^{b}(X) = \langle \mathbf{T}_{1}, \ldots, \mathbf{T}_{n} \rangle.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Derived
categories
and cubic hy-
persurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines

Theorem (Bondal–Orlov)

Let X be a smooth projective complex Fano variety and assume that Y is a smooth projective variety such that

 $\mathrm{D}^{\mathrm{b}}(X) \cong \mathrm{D}^{\mathrm{b}}(Y).$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Then $X \cong Y$.

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Rationality

Theorem (Bondal–Orlov)

Let X be a smooth projective complex Fano variety and assume that Y is a smooth projective variety such that

 $\mathrm{D}^{\mathrm{b}}(X) \cong \mathrm{D}^{\mathrm{b}}(Y).$

Then $X \cong Y$.

Thus, if *Y* is a cubic hypersurface as above, then $D^{b}(Y)$ is a too strong invariant.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Bationality

Theorem (Bondal–Orlov)

Let X be a smooth projective complex Fano variety and assume that Y is a smooth projective variety such that

 $\mathrm{D}^{\mathrm{b}}(X) \cong \mathrm{D}^{\mathrm{b}}(Y).$

Then $X \cong Y$.

Thus, if *Y* is a cubic hypersurface as above, then $D^{b}(Y)$ is a too strong invariant.

Question

Does some 'piece' in a semi-orthogonal decomposition of $D^{b}(Y)$ behave nicely?

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry

Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categoria Categorical Torel theorem Fano varieties of lines

Rationality

The geometric setting

2 3-folds

- Geometry
- Derived categories
- Bridgeland stability conditions
- Irrationality

4-folds

- Geometry
- Derived categories
- Categorical Torelli theorem

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Fano varieties of lines
- Rationality

Derived
categories
and cubic hy-
persurfaces
porouriacoo
Paolo Stellari
The
geometric
setting
Geometry
Bridgeland stability
conditions
theorem

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometrie setting

3-folds

Geometry

Derived categories Bridgeland stabilit conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines

Let $Y \subseteq \mathbb{P}^4$ be a smooth cubic 3-fold. The following are classical results:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry

Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Bationality Let $Y \subseteq \mathbb{P}^4$ be a smooth cubic 3-fold. The following are classical results:

Torelli Theorem (Clemens–Griffiths, Tyurin)

Let Y_1 and Y_3 be cubic 3-folds. Then $Y_1 \cong Y_2$ if and only if the intermediate Jacobians $(J(Y_1), \Theta_1)$ and $(J(Y_2), \Theta_2)$ are isomorphic.

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry

Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Bationality Let $Y \subseteq \mathbb{P}^4$ be a smooth cubic 3-fold. The following are classical results:

Torelli Theorem (Clemens–Griffiths, Tyurin)

Let Y_1 and Y_3 be cubic 3-folds. Then $Y_1 \cong Y_2$ if and only if the intermediate Jacobians $(J(Y_1), \Theta_1)$ and $(J(Y_2), \Theta_2)$ are isomorphic.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem (Clemens–Griffiths)

Cubic 3-folds are not rational.

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry

Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Rationality Let $Y \subseteq \mathbb{P}^4$ be a smooth cubic 3-fold. The following are classical results:

Torelli Theorem (Clemens–Griffiths, Tyurin)

Let Y_1 and Y_3 be cubic 3-folds. Then $Y_1 \cong Y_2$ if and only if the intermediate Jacobians $(J(Y_1), \Theta_1)$ and $(J(Y_2), \Theta_2)$ are isomorphic.

Theorem (Clemens–Griffiths)

Cubic 3-folds are not rational.

Use that J(Y) does not decompose as direct sum of Jacobians of curves.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Outline

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry

Derived categories

Bridgeland stabilit conditions Irrationality

4-folds

Geometry Derived categorie Categorical Torel theorem Fano varieties of lines

Rationality

The geometric setting

2 3-folds

- Geometry
- Derived categories
- Bridgeland stability conditions
- Irrationality

4-folds

- Geometry
- Derived categories
- Categorical Torelli theorem

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

- Fano varieties of lines
- Rationality

Derived
categories
and cubic hy-
persurfaces
persuraces
Paolo Stellari
Paolo Stellari
The
The
geometric
setting
3 -folds
Derived categories
4-folds

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds Geometry Derived categories

Bridgeland sta conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Let $Y \subseteq \mathbb{P}^4$ be a smooth cubic 3-fold.

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds Geometry Derived categories

conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Let $Y \subseteq \mathbb{P}^4$ be a smooth cubic 3-fold.

Theorem (Kuznetsov)

The derived category $D^{b}(Y)$ has a semi-orthogonal decomposition

$$\mathsf{D}^{\mathrm{b}}(Y) = \langle \mathbf{T}_{Y}, \mathcal{O}_{Y}, \mathcal{O}_{Y}(1) \rangle.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds Geometry Derived categories Bridgeland stability conditions

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Rationality Let $Y \subseteq \mathbb{P}^4$ be a smooth cubic 3-fold.

Theorem (Kuznetsov)

The derived category $D^{b}(Y)$ has a semi-orthogonal decomposition

$$\mathrm{D}^{\mathrm{b}}(Y) = \langle \mathbf{T}_{Y}, \mathcal{O}_{Y}, \mathcal{O}_{Y}(1) \rangle.$$

The subcategory \mathbf{T}_{Y} is highly non-trivial and cannot be the derived category of a smooth projective variety.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds Geometry Derived categories Bridgeland stability conditions

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Rationality Let $Y \subseteq \mathbb{P}^4$ be a smooth cubic 3-fold.

Theorem (Kuznetsov)

The derived category $D^{b}(Y)$ has a semi-orthogonal decomposition

$$\mathrm{D}^{\mathrm{b}}(Y) = \langle \mathbf{T}_{Y}, \mathcal{O}_{Y}, \mathcal{O}_{Y}(1) \rangle.$$

The subcategory \mathbf{T}_{Y} is highly non-trivial and cannot be the derived category of a smooth projective variety.

Indeed the Serre functor $S_{T_{\gamma}}$ is such that $S_{T_{\gamma}}^3 \cong [5]$. So T_{γ} is a so called Calabi–Yau category of fractional dimension $\frac{5}{3}$.

(日) (日) (日) (日) (日) (日) (日)

Derived
categories
and cubic hy-
persurfaces
Paolo Stellari
The
geometric
setting
3 -folds
Derived categories
4 -folds
theorem

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3**-folds**

Geometry

Derived categories Bridgeland stability conditions

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines

Question (Kuznetsov)

Given two cubic 3-folds Y_1 and Y_2 , is it true that $Y_1 \cong Y_2$ if and only if $T_{Y_1} \cong T_{Y_2}$?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry

Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Pationality

Question (Kuznetsov)

Given two cubic 3-folds Y_1 and Y_2 , is it true that $Y_1 \cong Y_2$ if and only if $T_{Y_1} \cong T_{Y_2}$?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Theorem (Bernardara–Macrì–Mehrotra–S.)

The answer to the above question is positive.

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry

Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Rationality

Question (Kuznetsov)

Given two cubic 3-folds Y_1 and Y_2 , is it true that $Y_1 \cong Y_2$ if and only if $T_{Y_1} \cong T_{Y_2}$?

Theorem (Bernardara–Macrì–Mehrotra–S.)

The answer to the above question is positive.

Idea: realize the Fano variety of lines of Y_i as moduli space of stable objects according to a Bridgeland stability condition on \mathbf{T}_{Y_i} .

Outline

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds Geometry Derived categories Bridgeland stability conditions Irrationality

4**-folds**

Geometry Derived categorie Categorical Torel theorem Fano varieties of lines

Rationality

The geometric setting

3-folds

- Geometry
- Derived categories
- Bridgeland stability conditions
- Irrationality

4-folds

- Geometry
- Derived categories
- Categorical Torelli theorem

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

- Fano varieties of lines
- Rationality

Derived
categories
and cubic hy-
persurfaces
porounacco
Paolo Stellari
The
geometric
setting
3-folds
Bridgeland stability
conditions
4 -folds
Categorical Torelli theorem
Fano varieties of
lines

Derived categories and cubic hypersurfaces

Paolo Stellari

A stability condition on a triangulated category **T** is a pair $\sigma = (Z, P)$ where

The geometric setting

3-folds Geometry Derived categories Bridgeland stability conditions

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines

- < ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > の < ()

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds Geometry Derived categories Bridgeland stability conditions

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines

A stability condition on a triangulated category **T** is a pair $\sigma = (Z, P)$ where

 Z : K(T) → C is a linear map called central charge (similar to the slope for sheaves);

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds Geometry Derived categories Bridgeland stability conditions

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Bationality A stability condition on a triangulated category **T** is a pair $\sigma = (Z, P)$ where

- Z : K(T) → C is a linear map called central charge (similar to the slope for sheaves);
- P(φ) ⊂ T are full additive subcategories for each φ ∈ ℝ (semistable objects of phase φ)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

satisfying some compatibilities.

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds Geometry Derived categories Bridgeland stability conditions

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Rationality A stability condition on a triangulated category **T** is a pair $\sigma = (Z, P)$ where

- Z : K(T) → C is a linear map called central charge (similar to the slope for sheaves);
- P(φ) ⊂ T are full additive subcategories for each φ ∈ ℝ (semistable objects of phase φ)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

satisfying some compatibilities.

The minimal objects in $\mathcal{P}(\phi)$ are called **stable objects**.

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds Geometry Derived categories Bridgeland stability conditions

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Rationality A stability condition on a triangulated category **T** is a pair $\sigma = (Z, P)$ where

- Z : K(T) → C is a linear map called central charge (similar to the slope for sheaves);
- P(φ) ⊂ T are full additive subcategories for each φ ∈ ℝ (semistable objects of phase φ)

satisfying some compatibilities.

The minimal objects in $\mathcal{P}(\phi)$ are called **stable objects**.

Stab(T) is the space parametrizing stability conditions on T.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Derived
categories
and cubic hy-
persurfaces
Paolo Stellari
The
geometric
setting
3-folds
Bridgeland stability
conditions
4-folds

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds Geometry Derived categories Bridgeland stability conditions

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Let Y be a cubic 3-fold. As a consequence of the result of Bernardara–Macri–Mehrotra–S. above, we have that

 $\operatorname{Stab}(\operatorname{D^b}(Y)) \neq \emptyset \neq \operatorname{Stab}(\mathbf{T}_Y).$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-TOIOS Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Bationality Let Y be a cubic 3-fold. As a consequence of the result of Bernardara–Macri–Mehrotra–S. above, we have that

 $\operatorname{Stab}(\operatorname{D^b}(Y)) \neq \emptyset \neq \operatorname{Stab}(\mathbf{T}_Y).$

The category \mathbf{T}_Y behaves almost as the derived category of a smooth complex curve *C*. The stability conditions on $D^b(C)$ are completely classified.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-TOIDS Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Rationality Let *Y* be a cubic 3-fold. As a consequence of the result of Bernardara–Macrì–Mehrotra–S. above, we have that

 $\operatorname{Stab}(\operatorname{D^b}(Y)) \neq \emptyset \neq \operatorname{Stab}(\mathbf{T}_Y).$

The category \mathbf{T}_Y behaves almost as the derived category of a smooth complex curve *C*. The stability conditions on $D^b(C)$ are completely classified.

Problem

Classify completely all the stability conditions in $Stab(\mathbf{T}_{Y})$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions

Irrationality

4**-folds**

Geometry Derived categori Categorical Tore theorem Fano varieties of lines

Rationality

The geometric setting

3-folds

- Geometry
- Derived categories
- Bridgeland stability conditions
- Irrationality

4-folds

- Geometry
- Derived categories
- Categorical Torelli theorem

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Fano varieties of lines
- Rationality

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions

Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines

Question

Does the category \mathbf{T}_{Y} encode the irrationality of Y?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions

Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines

Question

Does the category \mathbf{T}_{Y} encode the irrationality of Y?

A new perspective in this direction is provided by the recent work of Ballard–Favero–Katzarkov:

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Derived categories and cubic hypersurfaces

Paolo Stellari

- The geometric setting
- 3-folds
- Geometry Derived categories Bridgeland stability conditions Irrationality
- 4-folds
- Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Rationality

Question

Does the category \mathbf{T}_{Y} encode the irrationality of Y?

A new perspective in this direction is provided by the recent work of Ballard–Favero–Katzarkov:

- Idea: the irrationality of Y should be related to the presence of gaps in the interval of integers corresponding to the 'generation time' of the objects in D^b(Y).
- 2 This is related to a conjecture of Orlov. In this case: the dimension of the category $D^{b}(Y)$ is $3 = \dim(Y)$.

Outline

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4**-folds**

Geometry

Derived categories Categorical Torelli theorem Fano varieties of lines Rationality

The geometric setting

3-folds

- Geometry
- Derived categories
- Bridgeland stability conditions
- Irrationality

4-folds

Geometry

- Derived categories
- Categorical Torelli theorem

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Fano varieties of lines
- Rationality

Derived
categories
and cubic hy-
persurfaces
Paolo Stellari
The
geometric
setting
3 -folds
conditions
4-folds
Geometry
Fano varieties of lines

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry

Derived categories Categorical Torelli theorem Fano varieties of lines Bationality Let $Y \subseteq \mathbb{P}^5$ be a smooth cubic 4-fold. Denote by H^2 the self-intersection of the hyperplane class of *Y*.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry

Derived categories Categorical Torelli theorem Fano varieties of lines Bationality Let $Y \subseteq \mathbb{P}^5$ be a smooth cubic 4-fold. Denote by H^2 the self-intersection of the hyperplane class of *Y*.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The moduli space C of smooth cubic 4-folds is a quasi-projective variety of dimension 20.

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry

Derived categories Categorical Torelli theorem Fano varieties of lines Rationality Let $Y \subseteq \mathbb{P}^5$ be a smooth cubic 4-fold. Denote by H^2 the self-intersection of the hyperplane class of *Y*.

The moduli space C of smooth cubic 4-folds is a quasi-projective variety of dimension 20.

Voisin: Smooth cubic 4-folds *Y* containing a plane *P* form a divisor C_8 in *C*.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4**-folds**

Geometry

Derived categories Categorical Torelli theorem Fano varieties of lines Bationality Let $Y \subseteq \mathbb{P}^5$ be a smooth cubic 4-fold. Denote by H^2 the self-intersection of the hyperplane class of *Y*.

The moduli space C of smooth cubic 4-folds is a quasi-projective variety of dimension 20.

Voisin: Smooth cubic 4-folds *Y* containing a plane *P* form a divisor C_8 in C.

Denote by $T := \langle H^2, P \rangle$ the primitive sublattice (with respect to the intersection form) of $H^4(Y, \mathbb{Z})$ generated by H^2 and *P*. Then the intersection form is of type

$$\left(\begin{array}{cc} 3 & 1 \\ 1 & 3 \end{array}\right)$$

Derived
categories
and cubic hy-
persurfaces
Paolo Stellari
The
geometric
setting
3 -folds
conditions
4-folds
Geometry
Fano varieties of lines

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry

Derived categories Categorical Torelli theorem Fano varieties of lines Bationality Projecting from *P* onto a disjoint \mathbb{P}^2 , we get $\pi_P : Y \dashrightarrow \mathbb{P}^2$. Blowing up the plane inside *Y* gives a quadric fibration

$$\pi'_P: \tilde{Y} \to \mathbb{P}^2$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

whose fibres degenerate along a plane sextic C.

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry

Derived categories Categorical Torelli theorem Fano varieties of lines Rationality Projecting from *P* onto a disjoint \mathbb{P}^2 , we get $\pi_P : Y \dashrightarrow \mathbb{P}^2$. Blowing up the plane inside *Y* gives a quadric fibration

$$\pi'_P: \tilde{Y} \to \mathbb{P}^2$$

whose fibres degenerate along a plane sextic *C*.

The double cover of \mathbb{P}^2 ramified along *C* is a **K3 surface** *S* (i.e. a smooth complex projective simply connected surface with trivial canonical bundle).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry

Derived categories Categorical Torelli theorem Fano varieties of lines Rationality Projecting from *P* onto a disjoint \mathbb{P}^2 , we get $\pi_P : Y \dashrightarrow \mathbb{P}^2$. Blowing up the plane inside *Y* gives a quadric fibration

$$\pi'_P: \tilde{Y} \to \mathbb{P}^2$$

whose fibres degenerate along a plane sextic C.

The double cover of \mathbb{P}^2 ramified along *C* is a **K3 surface** *S* (i.e. a smooth complex projective simply connected surface with trivial canonical bundle).

The quadric fibration provides an element

$$eta\in \mathrm{Br}(\mathcal{S}):= H^2(\mathcal{S},\mathcal{O}^*_{\mathcal{S}})_{\mathrm{tor}}$$

(ロ) (同) (三) (三) (三) (○) (○)

in the **Brauer group** of *S*.

Derived categories and cubic hy- persurfaces
Paolo Stellari
The geometric setting
Bridgeland stability conditions Irrationality
4-folds Geometry
Categorical Torelli theorem
Fano varieties of lines

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds Geometry Derived categorie Bridgeland stabil conditions

4-folds

Geometry

Derived categories Categorical Torelli theorem Fano varieties of lines Bationality Back to the case of Y any cubic 4-fold (not necessarily containing a plane). We have the following remarkable results:

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry

Derived categories Categorical Torelli theorem Fano varieties of lines Rationality Back to the case of Y any cubic 4-fold (not necessarily containing a plane). We have the following remarkable results:

• **Torelli theorem (Voisin):** Let *Y*₁ and *Y*₂ be two cubic 4-folds and assume that there exists a Hodge isometry

$$\phi: H^4(Y_1,\mathbb{Z}) \to H^4(Y_2,\mathbb{Z})$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

sending H_1^2 to H_2^2 . Then there exists an isomorphism $f: Y_2 \cong Y_1$ such that $\phi = f^*$.

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry

Derived categories Categorical Torelli theorem Fano varieties of lines Rationality Back to the case of Y any cubic 4-fold (not necessarily containing a plane). We have the following remarkable results:

Torelli theorem (Voisin): Let Y₁ and Y₂ be two cubic
 4-folds and assume that there exists a Hodge isometry

$$\phi: H^4(Y_1,\mathbb{Z}) \to H^4(Y_2,\mathbb{Z})$$

sending H_1^2 to H_2^2 . Then there exists an isomorphism $f: Y_2 \cong Y_1$ such that $\phi = f^*$.

• Surjectivity of the period map (Looijenga, Laza): The period map surjects onto an explicitly described subset of the period domain.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry

Derived categories Categorical Torelli theorem Fano varieties of lines Rationality Hassett proposed a very nice way to construct divisors in the moduli space $\mathcal{C}.$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3**-folds**

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry

Derived categories Categorical Torelli theorem Fano varieties of lines Rationality Hassett proposed a very nice way to construct divisors in the moduli space $\mathcal{C}.$

For a positive integer *d*, define C_d to be the set of all $Y \in C$ such that

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- There is a rank-2 lattice K_d with det $(K_d) = d$.
- There is a primitive embedding $K_d \hookrightarrow H^4(Y, \mathbb{Z})$.
- There is $h^2 \in K_d$ mapped to H^2 .

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3**-folds**

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry

Derived categories Categorical Torelli theorem Fano varieties of lines Rationality Hassett proposed a very nice way to construct divisors in the moduli space \mathcal{C} .

For a positive integer *d*, define C_d to be the set of all $Y \in C$ such that

- There is a rank-2 lattice K_d with det $(K_d) = d$.
- There is a primitive embedding $K_d \hookrightarrow H^4(Y, \mathbb{Z})$.
- There is $h^2 \in K_d$ mapped to H^2 .

Hassett: C_d is an irreducible divisor as soon as d > 6 and $d \equiv 0, 2 \pmod{6}$.

Outline

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry

Derived categories

Categorical Torelli theorem Fano varieties of lines Bationality

The geometric setting

3-folds

- Geometry
- Derived categories
- Bridgeland stability conditions
- Irrationality

4-folds

- Geometry
- Derived categories
- Categorical Torelli theorem

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Fano varieties of lines
- Rationality

Derived categories and cubic hy- persurfaces
Paolo Stellari
The geometric setting
Bridgeland stability conditions Irrationality
Geometry Derived categories
Categorical Torelli theorem
Fano varieties of lines

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry

Derived categories

Categorical Torelli theorem Fano varieties of lines Bationality

Theorem (Kuznetsov)

The derived category $D^{b}(Y)$ has a semi-orthogonal decomposition

$$\mathrm{D^{b}}(Y) = \langle \mathbf{T}_{Y}, \mathcal{O}_{Y}, \mathcal{O}_{Y}(1), \mathcal{O}_{Y}(2) \rangle.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories

Categorical Torelli theorem Fano varieties of lines Bationality

Theorem (Kuznetsov)

The derived category $D^{b}(Y)$ has a semi-orthogonal decomposition

 $\mathrm{D}^{\mathrm{b}}(Y) = \langle \mathbf{T}_{Y}, \mathcal{O}_{Y}, \mathcal{O}_{Y}(1), \mathcal{O}_{Y}(2) \rangle.$

Theorem (Kuznetsov)

The triangulated category T_Y is a 2-Calabi–Yau category.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4**-folds**

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines

Rationality

Theorem (Kuznetsov)

The derived category $D^{b}(Y)$ has a semi-orthogonal decomposition

 $\mathrm{D}^{\mathrm{b}}(Y) = \langle \mathbf{T}_{Y}, \mathcal{O}_{Y}, \mathcal{O}_{Y}(1), \mathcal{O}_{Y}(2) \rangle.$

Theorem (Kuznetsov)

The triangulated category T_Y is a 2-Calabi–Yau category.

Recall that a triangulated category **T** is a 2-Calabi–Yau category if **T** has a Serre functor which is isomorphic to the shift by 2.

Which 2-Calabi–Yau category?

Deriv catego and cub persurf	ories lic hy-
Paolo S	tellari
The geometi setting	
3-folds Geometry Derived car Bridgeland conditions Irrationality	
Geometry Derived ca	tegories
Categorica theorem	
Fano variet lines	

Which 2-Calabi–Yau category?

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry

Derived categories

Categorical Torelli theorem Fano varieties of lines Bationality

Theorem (Kuznetsov)

Let Y be a cubic 4-fold containing a plane and such that the plane sextic C is smooth. Then there exists an exact equivalence

$$\mathbf{T}_{Y} \cong \mathrm{D}^{\mathrm{b}}(\mathcal{S},\beta)$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Which 2-Calabi–Yau category?

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4**-folds**

Geometry

Derived categories Categorical Torelli theorem Fano varieties of lines Rationality

Theorem (Kuznetsov)

Let Y be a cubic 4-fold containing a plane and such that the plane sextic C is smooth. Then there exists an exact equivalence

$$\mathbf{T}_{\mathbf{Y}} \cong \mathrm{D}^{\mathrm{b}}(\boldsymbol{S},\beta)$$

Remark

If *Y* is generic with the above properties (i.e. $H^4(Y, \mathbb{Z}) \cap H^{2,2}(Y) = \langle H^2, P \rangle$), then there is no smooth projective K3 surface *S'* such that

$$\mathbf{T}_{\mathbf{Y}}\cong \mathrm{D}^{\mathrm{b}}(\mathcal{S}').$$

Derived
categories
and cubic hy
persurfaces
Paolo Stellar
a abro otonai
The
Bridgeland stabili
4-folds
Derived categories
Categorical Torelli theorem
Fano varieties of lines

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometrie setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry

Derived categories

Categorical Torelli theorem Fano varieties of lines Bationality

Represent $\beta \in Br(S)$ as a Čech 2-cocycle

$$\{\beta_{ijk} \in \Gamma(U_i \cap U_j \cap U_k, \mathcal{O}_X^*)\}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

on an analytic open cover $S = \bigcup_{i \in I} U_i$.

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry

Derived categories

Categorical Torelli theorem Fano varieties of lines Potionality

Represent $\beta \in \operatorname{Br}(S)$ as a Čech 2-cocycle

$$\{\beta_{ijk} \in \Gamma(U_i \cap U_j \cap U_k, \mathcal{O}_X^*)\}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

on an analytic open cover $S = \bigcup_{i \in I} U_i$.

A β -twisted coherent sheaf \mathcal{E} is a collection of pairs $(\{\mathcal{E}_i\}_{i \in I}, \{\varphi_{ij}\}_{i,j \in I})$ where

• \mathcal{E}_i is a coherent sheaf on the open subset U_i ;

• $\varphi_{ij}: \mathcal{E}_j|_{U_i \cap U_j} \to \mathcal{E}_i|_{U_i \cap U_j}$ is an isomorphism such that

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry

Derived categories

Categorical Torell theorem Fano varieties of lines Rationality

Represent $\beta \in Br(S)$ as a Čech 2-cocycle

$$\{\beta_{ijk} \in \Gamma(U_i \cap U_j \cap U_k, \mathcal{O}_X^*)\}$$

on an analytic open cover $S = \bigcup_{i \in I} U_i$.

A β -twisted coherent sheaf \mathcal{E} is a collection of pairs $(\{\mathcal{E}_i\}_{i \in I}, \{\varphi_{ij}\}_{i,j \in I})$ where

• \mathcal{E}_i is a coherent sheaf on the open subset U_i ;

• $\varphi_{ij}: \mathcal{E}_j|_{U_i \cap U_j} \to \mathcal{E}_i|_{U_i \cap U_j}$ is an isomorphism such that

• $\varphi_{ii} = \text{id and } \varphi_{ji} = \varphi_{ii}^{-1};$

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry

Derived categories

Categorical Torell theorem Fano varieties of lines Rationality

Represent $\beta \in \operatorname{Br}(S)$ as a Čech 2-cocycle

$$\{\beta_{ijk} \in \Gamma(U_i \cap U_j \cap U_k, \mathcal{O}_X^*)\}$$

on an analytic open cover $S = \bigcup_{i \in I} U_i$.

A β -twisted coherent sheaf \mathcal{E} is a collection of pairs $(\{\mathcal{E}_i\}_{i \in I}, \{\varphi_{ij}\}_{i,j \in I})$ where

• \mathcal{E}_i is a coherent sheaf on the open subset U_i ;

• $\varphi_{ij}: \mathcal{E}_j|_{U_i \cap U_j} \to \mathcal{E}_i|_{U_i \cap U_j}$ is an isomorphism such that

- $\varphi_{ii} = \text{id and } \varphi_{ji} = \varphi_{ii}^{-1};$

In this way we get the abelian category $Coh(S, \beta)$.

< 日 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry

Categorical Torelli theorem

Fano varieties of lines Rationality

The geometric setting

3-folds

- Geometry
- Derived categories
- Bridgeland stability conditions
- Irrationality

4-folds

- Geometry
- Derived categories
- Categorical Torelli theorem

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

- Fano varieties of lines
- Rationality

Results and questions

Derived
categories
and cubic hy-
persurfaces
porounacoo
Paolo Stellari
Paolo Stellari
The
geometric
3-folds
4-folds
Categorical Torelli
theorem
Fano varieties of

Results and questions

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categor

Categorical Torelli theorem

Fano varieties o lines Rationality

Theorem (Bernardara–Macrì–Mehrotra–S.)

Given a cubic fourfold *Y* containing a plane *P* and such that *C* is smooth, there exist only finitely many isomorphism classes of cubic 4-folds $Y_1 = Y, Y_2, ..., Y_n$ containing a plane and with smooth plane sextics such that $\mathbf{T}_Y \cong \mathbf{T}_{Y_j}$, with $j \in \{1, ..., n\}$. Moreover, if *Y* is generic, then n = 1.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Results and questions

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categor

Categorical Torelli theorem

Fano varieties o lines Bationality

Theorem (Bernardara–Macrì–Mehrotra–S.)

Given a cubic fourfold *Y* containing a plane *P* and such that *C* is smooth, there exist only finitely many isomorphism classes of cubic 4-folds $Y_1 = Y, Y_2, ..., Y_n$ containing a plane and with smooth plane sextics such that $\mathbf{T}_Y \cong \mathbf{T}_{Y_j}$, with $j \in \{1, ..., n\}$. Moreover, if *Y* is generic, then n = 1.

Questions

- Can we prove a similar result for any possible cubic 4-fold (with a plane or not)?
- 2 Can the number *n* be arbitrarily large?

Outline

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categorie Categorical Torel theorem

Fano varieties of lines

Rationality

The geometric setting

3-folds

- Geometry
- Derived categories
- Bridgeland stability conditions
- Irrationality

4-folds

- Geometry
- Derived categories
- Categorical Torelli theorem

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

- Fano varieties of lines
- Rationality

Derived
categories
and cubic hy-
persurfaces
Paolo Stellari
The
geometric
setting
3 -folds
Fano varieties of
lines

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem

Fano varieties of lines

For a cubic 4-fold Y, we denote by F(Y) the Fano variety of lines contained in Y.

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem

Fano varieties of lines

Rationality

For a cubic 4-fold Y, we denote by F(Y) the Fano variety of lines contained in Y.

Theorem (Beauville–Donagi)

F(Y) is a irreducible holomorphic symplectic manifold of dimension 4 (i.e. a simply connected, Kähler manifold such that H^{2,0}(F(Y)) is generated by a non-degenerate 2-form).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem

Fano varieties of lines

For a cubic 4-fold Y, we denote by F(Y) the Fano variety of lines contained in Y.

Theorem (Beauville–Donagi)

- F(Y) is a irreducible holomorphic symplectic manifold of dimension 4 (i.e. a simply connected, Kähler manifold such that $H^{2,0}(F(Y))$ is generated by a non-degenerate 2-form).
- F(Y) is deformation equivalent to Hilb²(S), the Hilbert scheme of length-2 0-dimensional subschemes on a K3 surface S.

Derived
categories
and cubic hy-
persurfaces
Paolo Stellari
Faulo Stellari
The
geometric
setting
3-folds
Bridgeland stability conditions
4-folds
Categorical Torelli theorem
Fano varieties of lines

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem

Fano varieties of lines

Theorem (Hassett)

Assume that $d = 2(n^2 + n + 1)$ for $n \ge 2$. Then the generic cubic 4-fold *Y* contained in C_d is such that $F(Y) \cong \operatorname{Hilb}^2(S)$ for some K3 surface *S*.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem

Fano varieties of lines

Rationality

Theorem (Hassett)

Assume that $d = 2(n^2 + n + 1)$ for $n \ge 2$. Then the generic cubic 4-fold *Y* contained in C_d is such that $F(Y) \cong \operatorname{Hilb}^2(S)$ for some K3 surface *S*.

Question (Hassett)

Are there other *d*'s such that the generic points in C_d have the same property for some K3 surface?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem

Fano varieties of lines

Rationality

Theorem (Hassett)

Assume that $d = 2(n^2 + n + 1)$ for $n \ge 2$. Then the generic cubic 4-fold *Y* contained in C_d is such that $F(Y) \cong \operatorname{Hilb}^2(S)$ for some K3 surface *S*.

Question (Hassett)

Are there other *d*'s such that the generic points in C_d have the same property for some K3 surface?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

When there is a plane, the twist cannot be avoided...

The answer when there is a plane

Derived categories and cubic hy- persurfaces
Paolo Stellari
The geometric setting
3-folds Geometry Derived categories Bridgeland stability conditions
Categorical Torelli theorem Fano varieties of
lines Rationality

The answer when there is a plane

Theorem (Macri–S.)

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem

Fano varieties of lines If *Y* is a generic cubic fourfold containing a plane, then F(Y) is isomorphic to a moduli space of stable objects in the derived category $D^{b}(S, \beta)$ of bounded complexes of β -twisted coherent sheaves on *S*.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The answer when there is a plane

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem

Fano varieties of lines

Rationality

Theorem (Macrì–S.)

If *Y* is a generic cubic fourfold containing a plane, then F(Y) is isomorphic to a moduli space of stable objects in the derived category $D^{b}(S, \beta)$ of bounded complexes of β -twisted coherent sheaves on *S*.

Theorem (Macrì–S.)

For all cubic fourfolds Y containing a plane, the Fano variety F(Y) is birational to a smooth projective moduli space of twisted sheaves on a K3 surface. Moreover, if Y is generic, then such a birational map is either an isomorphism or a Mukai flop.

Outline

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categori Categorical Tore theorem Fano varieties of lines Rationality

The geometric setting

3-folds

- Geometry
- Derived categories
- Bridgeland stability conditions
- Irrationality

4-folds

- Geometry
- Derived categories
- Categorical Torelli theorem

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

- Fano varieties of lines
- Rationality

Derived
categories
and cubic hy-
persurfaces
Paolo Stellari
Faulo Stellari
The
geometric
setting
3-folds
4-folds
Fano varieties of lines
Rationality

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines

Rationality

Beauville–Donagi, Morin: The provide examples of rational cubic 4-folds (Pfaffian cubic 4-folds).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines

Rationality

Beauville–Donagi, Morin: The provide examples of rational cubic 4-folds (Pfaffian cubic 4-folds).

Hassett: Using lattice and Hodge theory, he constructs countably many divisors in C_8 consisting of rational cubic 4-folds.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines

Rationality

Beauville–Donagi, Morin: The provide examples of rational cubic 4-folds (Pfaffian cubic 4-folds).

Hassett: Using lattice and Hodge theory, he constructs countably many divisors in C_8 consisting of rational cubic 4-folds.

The way he defines these families is by showing that the quadric fibration mentioned above has a section.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4**-folds**

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines Rationality **Beauville–Donagi, Morin:** The provide examples of rational cubic 4-folds (Pfaffian cubic 4-folds).

Hassett: Using lattice and Hodge theory, he constructs countably many divisors in C_8 consisting of rational cubic 4-folds.

The way he defines these families is by showing that the quadric fibration mentioned above has a section.

Notice that the presence of such a section implies that the Brauer class β in Br(*S*) is automatically trivial.

Derived categories and cubic hy- persurfaces		
Paolo Stellari		
The geometric setting		
3-folds Geometry Derived categories Bridgeland stability conditions Irrationality		
Categorical Torelli theorem Fano varieties of lines		

Rationality

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Derived categories and cubic hy- persurfaces		
Paolo Stellari		
The geometric setting		
3-folds Geometry Derived categories Bridgeland stability conditions Irrationality		
Categorical Torelli theorem Fano varieties of lines		

Rationality

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines

Rationality

Conjecture (Kuznetsov)

A cubic 4-fold *Y* is rational if and only if there exists a K3 surface *S'* and an exact equivalence $\mathbf{T}_Y \cong D^b(S')$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines

Rationality

Conjecture (Kuznetsov)

A cubic 4-fold *Y* is rational if and only if there exists a K3 surface *S'* and an exact equivalence $\mathbf{T}_Y \cong D^b(S')$.

The conjecture is verified by Beauville–Donagi–Morin's and Hassett's examples.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines

Rationality

Conjecture (Kuznetsov)

A cubic 4-fold *Y* is rational if and only if there exists a K3 surface *S'* and an exact equivalence $\mathbf{T}_Y \cong D^b(S')$.

The conjecture is verified by Beauville–Donagi–Morin's and Hassett's examples.

The generic cubic 4-fold with a plane is such that there are no K3 surfaces S' with the property above.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds

Geometry Derived categories Bridgeland stability conditions Irrationality

4-folds

Geometry Derived categories Categorical Torelli theorem Fano varieties of lines

Rationality

Conjecture (Kuznetsov)

A cubic 4-fold *Y* is rational if and only if there exists a K3 surface *S'* and an exact equivalence $\mathbf{T}_Y \cong D^b(S')$.

The conjecture is verified by Beauville–Donagi–Morin's and Hassett's examples.

The generic cubic 4-fold with a plane is such that there are no K3 surfaces S' with the property above.

Problem

Use categorical methods to prove that the generic cubic 4-fold with a plane is not rational.