Derived categories and cubic hypersurfaces

Paolo Stellari

UNIVERSITÀ
DEGLI STUDI
DI MILANO

Outline

Derived categories and cubic hypersurfaces

(1) The geometric setting

Paolo Stellari

Outline

Derived categories and cubic hypersurfaces

Outline
(1) The geometric setting
(2) 3-folds

- Geometry
- Derived categories
- Bridgeland stability conditions
- Irrationality

Outline

Derived categories and cubic hypersurfaces

Outline
(1) The geometric setting
(2) 3-folds

- Geometry
- Derived categories
- Bridgeland stability conditions
- Irrationality
(3) 4-folds
- Geometry
- Derived categories
- Categorical Torelli theorem
- Fano varieties of lines
- Rationality

Aim

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3 -folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

Aim

Derived categories and cubic hypersurfaces

Paolo Stellari

The
geometric setting

3-folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

The aim of the talk is to propose a 'categorical' treatment for some fundamental (often unknown) geometric properties of smooth (complex) hypersurfaces of degree 3

$$
Y \subseteq \mathbb{P}^{n+1}
$$

We will study cubic 3 -fold $(n=3)$ and cubic 4 -fold $(n=4)$.

Aim

The aim of the talk is to propose a 'categorical' treatment for some fundamental (often unknown) geometric properties of smooth (complex) hypersurfaces of degree 3

$$
Y \subseteq \mathbb{P}^{n+1}
$$

We will study cubic 3 -fold $(n=3)$ and cubic 4 -fold $(n=4)$.
For example:

Aim

The aim of the talk is to propose a 'categorical' treatment for some fundamental (often unknown) geometric properties of smooth (complex) hypersurfaces of degree 3

$$
Y \subseteq \mathbb{P}^{n+1}
$$

We will study cubic 3 -fold $(n=3)$ and cubic 4 -fold $(n=4)$.
For example:

- Rationality/irrationality of those varieties;

Aim

- Torelli type theorems;

Aim

The aim of the talk is to propose a 'categorical' treatment for some fundamental (often unknown) geometric properties of smooth (complex) hypersurfaces of degree 3

$$
Y \subseteq \mathbb{P}^{n+1}
$$

We will study cubic 3 -fold $(n=3)$ and cubic 4 -fold $(n=4)$.
For example:

- Rationality/irrationality of those varieties;
- Torelli type theorems;
- Geometric description of the Fano varieties of lines of those cubics.

The definition

Derived categories and cubic hypersurfaces

Paolo Stellari

The
geometric setting

3 -folds
Geometry
Derived categories
Bridgeland stability conditions

Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties oi lines
Rationality

The definition

Derived categories and cubic hypersurfaces

Paolo Stellari

The
geometric setting

3-folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

Let \mathbf{A} be an abelian category (e.g., mod- R, right R-modules, R an ass. ring with unity, and $\operatorname{Coh}(X)$).

The definition

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric setting

3 -folds
Geometry
Derived cate gories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

Let A be an abelian category (e.g., mod- R, right R-modules, R an ass. ring with unity, and $\operatorname{Coh}(X)$).

Define $C^{b}(\mathbf{A})$ to be the (abelian) category of bounded complexes of objects in A. In particular:

The definition

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric setting

3 -folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

Let A be an abelian category (e.g., mod-R, right R-modules, R an ass. ring with unity, and $\operatorname{Coh}(X)$).

Define $C^{b}(\mathbf{A})$ to be the (abelian) category of bounded complexes of objects in A. In particular:

- Objects:

$$
M^{\bullet}:=\left\{\cdots \rightarrow M^{p-1} \xrightarrow{d^{p-1}} M^{p} \xrightarrow{d^{p}} M^{p+1} \rightarrow \cdots\right\}
$$

The definition

Derived categories and cubic hypersurfaces

Paolo Stellari

The

3-folds
Geometry
Derived categories
Bridgeland stability
conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

Let A be an abelian category (e.g., mod- R, right R-modules, R an ass. ring with unity, and $\operatorname{Coh}(X)$).

Define $C^{b}(\mathbf{A})$ to be the (abelian) category of bounded complexes of objects in A. In particular:

- Objects:

$$
M^{\bullet}:=\left\{\cdots \rightarrow M^{p-1} \xrightarrow{d^{p-1}} M^{p} \xrightarrow{d^{p}} M^{p+1} \rightarrow \cdots\right\}
$$

- Morphisms: sets of arrows $f^{\bullet}:=\left\{f^{i}\right\}_{i \in \mathbb{Z}}$ making commutative the following diagram

$$
\begin{aligned}
& \cdots \xrightarrow{d_{M \bullet \bullet}^{i-2}} M^{i-1} \xrightarrow{d_{M^{\bullet}}^{i-1}} M^{i} \xrightarrow{d_{M^{\bullet}}^{i}} M^{i+1} \xrightarrow{d_{M^{\bullet}}^{i+1}} \cdots
\end{aligned}
$$

The definition

Derived categories and cubic hypersurfaces

Paolo Stellari

The
geometric setting

3 -folds
Geometry
Derived categories
Bridgeland stability conditions

Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties oi lines
Rationality

The definition

Derived categories and cubic hypersurfaces

Paolo Stellari

The
geometric setting

3 -folds
Geometry
Derived categories
Bridgeland stability conditions

Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem

Fano varieties of lines
Rationality

For a complex $M^{\bullet} \in C^{b}(\mathbf{A})$, its i-th cohomology is

$$
H^{i}\left(M^{\bullet}\right):=\frac{\operatorname{ker}\left(d^{i}\right)}{\operatorname{im}\left(d^{i-1}\right)} \in \mathbf{A} .
$$

The definition

Derived categories and cubic hypersurfaces

Paolo Stellari

The
geometric setting

3-folds
Geometry
Derived categories
Bridgeland stability conditions

Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

For a complex $M^{\bullet} \in C^{b}(\mathbf{A})$, its i-th cohomology is

$$
H^{i}\left(M^{\bullet}\right):=\frac{\operatorname{ker}\left(d^{i}\right)}{\operatorname{im}\left(d^{i-1}\right)} \in \mathbf{A} .
$$

A morphism of complexes is a quasi-isomorphism (qis) if it induces isomorphisms on cohomology.

The definition

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric setting

3 -folds
Geometry
Derived categories
Bridgeland stability
conditions
Irrationality
4-folds
Geometry

For a complex $M^{\bullet} \in C^{b}(\mathbf{A})$, its i-th cohomology is

$$
H^{i}\left(M^{\bullet}\right):=\frac{\operatorname{ker}\left(d^{i}\right)}{\operatorname{im}\left(d^{i-1}\right)} \in \mathbf{A} .
$$

A morphism of complexes is a quasi-isomorphism (qis) if it induces isomorphisms on cohomology.

Definition

The bounded derived category $\mathrm{D}^{b}(\mathbf{A})$ of the abelian category \mathbf{A} is such that:

The definition

Derived categories and cubic hypersurfaces

Paolo Stellari

The

3 -folds
Geometry
Derived categories
Bridgeland stability
conditions
Irrationality
4-folds
Geometry

For a complex $M^{\bullet} \in C^{b}(\mathbf{A})$, its i-th cohomology is

$$
H^{i}\left(M^{\bullet}\right):=\frac{\operatorname{ker}\left(d^{i}\right)}{\operatorname{im}\left(d^{i-1}\right)} \in \mathbf{A} .
$$

A morphism of complexes is a quasi-isomorphism (qis) if it induces isomorphisms on cohomology.

Definition

The bounded derived category $\mathrm{D}^{b}(\mathbf{A})$ of the abelian category \mathbf{A} is such that:

- Objects: $\mathrm{Ob}\left(C^{b}(\mathbf{A})\right)=\mathrm{Ob}\left(\mathrm{D}^{b}(\mathbf{A})\right)$;

The definition

Derived categories and cubic hypersurfaces

Paolo Stellari

The

3 -folds
Geometry
Derived categories
Bridgeland stability
conditions
Irrationality
4-folds
Geometry
Derived cate gories

For a complex $M^{\bullet} \in C^{b}(\mathbf{A})$, its i-th cohomology is

$$
H^{i}\left(M^{\bullet}\right):=\frac{\operatorname{ker}\left(d^{i}\right)}{\operatorname{im}\left(d^{i-1}\right)} \in \mathbf{A} .
$$

A morphism of complexes is a quasi-isomorphism (qis) if it induces isomorphisms on cohomology.

Definition

The bounded derived category $\mathrm{D}^{b}(\mathbf{A})$ of the abelian category \mathbf{A} is such that:

- Objects: $\mathrm{Ob}\left(C^{b}(\mathbf{A})\right)=\mathrm{Ob}\left(\mathrm{D}^{b}(\mathbf{A})\right)$;
- Morphisms: (very) roughly speaking, obtained 'by inverting qis in $C^{b}(\mathbf{A})^{\prime}$.

Semi-orthogonal decompositions

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3 -folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of
lines
Rationality

Semi-orthogonal decompositions

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric setting

3-folds
Geometry
Derived categories
Bridgeland stability
conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

Suppose we have a sequence of full triangulated subcategories $\mathbf{T}_{1}, \ldots, \mathbf{T}_{n} \subseteq \mathrm{D}^{\mathrm{b}}(X):=\mathrm{D}^{\mathrm{b}}(\mathbf{C o h}(X))$, where X is smooth projective, such that:

Semi-orthogonal decompositions

Derived categories and cubic hypersurfaces

Paolo Stellari

The
geometric setting

3-folds
Geometry
Derived categories
Bridgeland stability
conditions
Irrationality
4-folds
Geometry
Derived cate gories
Categorical Torelli theorem
Fano varieties of lines
Rationality

Suppose we have a sequence of full triangulated subcategories $\mathbf{T}_{1}, \ldots, \mathbf{T}_{n} \subseteq \mathrm{D}^{\mathrm{b}}(X):=\mathrm{D}^{\mathrm{b}}(\mathbf{C o h}(X))$, where X is smooth projective, such that:

- $\operatorname{Hom}_{\mathrm{D}(X)}\left(\mathbf{T}_{i}, \mathbf{T}_{j}\right)=0$, for $i>j$,

Semi-orthogonal decompositions

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric setting

3-folds
Geometry
Derived categories
Bridgeland stability
conditions
Irrationality
4-folds
Geometry

Suppose we have a sequence of full triangulated subcategories $\mathbf{T}_{1}, \ldots, \mathbf{T}_{n} \subseteq \mathrm{D}^{\mathrm{b}}(X):=\mathrm{D}^{\mathrm{b}}(\mathbf{C o h}(X))$, where X is smooth projective, such that:

- $\operatorname{Hom}_{\mathrm{D}(X)}\left(\mathbf{T}_{i}, \mathbf{T}_{j}\right)=0$, for $i>j$,
- For all $K \in \mathrm{D}^{\mathrm{b}}(X)$, there exists a chain of morphisms in $\mathrm{D}^{\mathrm{b}}(X)$

$$
0=K_{n} \rightarrow K_{n-1} \rightarrow \ldots \rightarrow K_{1} \rightarrow K_{0}=K
$$

with cone $\left(K_{i} \rightarrow K_{i-1}\right) \in \mathbf{T}_{i}$, for all $i=1, \ldots, n$.

Semi-orthogonal decompositions

Derived categories and cubic hypersurfaces

Paolo Stellari

The

3 -folds
Geometry
Derived categories

Suppose we have a sequence of full triangulated subcategories $\mathbf{T}_{1}, \ldots, \mathbf{T}_{n} \subseteq \mathrm{D}^{\mathrm{b}}(X):=\mathrm{D}^{\mathrm{b}}(\mathbf{C o h}(X))$, where X is smooth projective, such that:

- $\operatorname{Hom}_{\mathrm{D}(X)}\left(\mathbf{T}_{i}, \mathbf{T}_{j}\right)=0$, for $i>j$,
- For all $K \in \mathrm{D}^{\mathrm{b}}(X)$, there exists a chain of morphisms in $\mathrm{D}^{\mathrm{b}}(X)$

$$
0=K_{n} \rightarrow K_{n-1} \rightarrow \ldots \rightarrow K_{1} \rightarrow K_{0}=K
$$

$$
\text { with cone }\left(K_{i} \rightarrow K_{i-1}\right) \in \mathbf{T}_{i}, \text { for all } i=1, \ldots, n
$$

This is a semi-orthogonal decomposition of $\mathrm{D}^{\mathrm{b}}(X)$:

$$
\mathrm{D}^{\mathrm{b}}(X)=\left\langle\mathbf{T}_{1}, \ldots, \mathbf{T}_{n}\right\rangle
$$

Derived categories and Fano varieties

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3 -folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of
lines
Rationality

Derived categories and Fano varieties

Derived categories and cubic hypersurfaces

Paolo Stellari

The
geometric setting

3-folds
Geometry
Derived categories
Bridgeland stability
conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

Theorem (Bondal-Orlov)

Let X be a smooth projective complex Fano variety and assume that Y is a smooth projective variety such that

$$
\mathrm{D}^{\mathrm{b}}(X) \cong \mathrm{D}^{\mathrm{b}}(Y) .
$$

Then $X \cong Y$.

Derived categories and Fano varieties

Derived categories and cubic hypersurfaces

Paolo Stellari

The
geometric setting

3-folds
Geometry
Derived categories
Bridgeland stability
conditions
Irrationality
4-folds
Geometry
Derived cate gories
Categorical Torelli theorem
Fano varieties of lines
Rationality

Theorem (Bondal-Orlov)

Let X be a smooth projective complex Fano variety and assume that Y is a smooth projective variety such that

$$
\mathrm{D}^{\mathrm{b}}(X) \cong \mathrm{D}^{\mathrm{b}}(Y)
$$

Then $X \cong Y$.

Thus, if Y is a cubic hypersurface as above, then $\mathrm{D}^{\mathrm{b}}(Y)$ is a too strong invariant.

Derived categories and Fano varieties

Theorem (Bondal-Orlov)

Let X be a smooth projective complex Fano variety and assume that Y is a smooth projective variety such that

$$
\mathrm{D}^{\mathrm{b}}(X) \cong \mathrm{D}^{\mathrm{b}}(Y)
$$

Then $X \cong Y$.

Thus, if Y is a cubic hypersurface as above, then $\mathrm{D}^{\mathrm{b}}(Y)$ is a too strong invariant.

Question

Does some 'piece' in a semi-orthogonal decomposition of $\mathrm{D}^{\mathrm{b}}(Y)$ behave nicely?

Outline

Derived categories and cubic hypersurfaces

Paolo Stellari

The
geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

(1) The geometric setting

2 3-folds

- Geometry
- Derived categories
- Bridgeland stability conditions
- Irrationality

3. 4-folds

- Geometry
- Derived categories
- Categorical Torelli theorem
- Fano varieties of lines
- Rationality

First properties

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

First properties

Derived categories and cubic hypersurfaces

Paolo Stellar

The

geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability conditions

Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem

Fano varieties of lines
Rationality

Let $Y \subseteq \mathbb{P}^{4}$ be a smooth cubic 3-fold. The following are classical results:

First properties

Derived categories and cubic hypersurfaces

Paolo Stellari

The
geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability
conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

Let $Y \subseteq \mathbb{P}^{4}$ be a smooth cubic 3-fold. The following are classical results:

Torelli Theorem (Clemens-Griffiths, Tyurin)

Let Y_{1} and Y_{3} be cubic 3-folds. Then $Y_{1} \cong Y_{2}$ if and only if the intermediate Jacobians $\left(J\left(Y_{1}\right), \Theta_{1}\right)$ and $\left(J\left(Y_{2}\right), \Theta_{2}\right)$ are isomorphic.

First properties

Theorem (Clemens-Griffiths)

Cubic 3-folds are not rational.

First properties

Let $Y \subseteq \mathbb{P}^{4}$ be a smooth cubic 3-fold. The following are classical results:

Torelli Theorem (Clemens-Griffiths, Tyurin)

Let Y_{1} and Y_{3} be cubic 3-folds. Then $Y_{1} \cong Y_{2}$ if and only if the intermediate Jacobians $\left(J\left(Y_{1}\right), \Theta_{1}\right)$ and $\left(J\left(Y_{2}\right), \Theta_{2}\right)$ are isomorphic.

Theorem (Clemens-Griffiths)

Cubic 3-folds are not rational.

Use that $J(Y)$ does not decompose as direct sum of Jacobians of curves.

Outline

Derived categories and cubic hypersurfaces

Paolo Stellari

2 3-folds

- Geometry
- Derived categories
- Bridgeland stability conditions
- Irrationality

Bridgeland stability conditions
Irrationality
4-folds

- Geometry
- Derived categories
- Categorical Torelli theorem
- Fano varieties of lines
- Rationality

The decomposition

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric
setting
3 -folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

The decomposition

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric
setting
3 -folds
Geometry
Derived categories
Bridgeland stability conditions

Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem

Fano varieties of lines
Rationality

Let $Y \subseteq \mathbb{P}^{4}$ be a smooth cubic 3-fold.

The decomposition

Derived categories and cubic hypersurfaces

Paolo Stellari

The
geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

Let $Y \subseteq \mathbb{P}^{4}$ be a smooth cubic 3-fold.

Theorem (Kuznetsov)

The derived category $\mathrm{D}^{\mathrm{b}}(Y)$ has a semi-orthogonal decomposition

$$
\mathrm{D}^{\mathrm{b}}(Y)=\left\langle\mathbf{T}_{Y}, \mathcal{O}_{Y}, \mathcal{O}_{Y}(1)\right\rangle
$$

The decomposition

Derived categories and cubic hypersurfaces

Paolo Stellari

The
geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-foid's
Geometry

Let $Y \subseteq \mathbb{P}^{4}$ be a smooth cubic 3-fold.

Theorem (Kuznetsov)

The derived category $\mathrm{D}^{\mathrm{b}}(Y)$ has a semi-orthogonal decomposition

$$
\mathrm{D}^{\mathrm{b}}(Y)=\left\langle\mathbf{T}_{Y}, \mathcal{O}_{Y}, \mathcal{O}_{Y}(1)\right\rangle
$$

The subcategory \mathbf{T}_{Y} is highly non-trivial and cannot be the derived category of a smooth projective variety.

The decomposition

Let $Y \subseteq \mathbb{P}^{4}$ be a smooth cubic 3-fold.

Theorem (Kuznetsov)

The derived category $\mathrm{D}^{\mathrm{b}}(Y)$ has a semi-orthogonal decomposition

$$
\mathrm{D}^{\mathrm{b}}(Y)=\left\langle\mathbf{T}_{Y}, \mathcal{O}_{Y}, \mathcal{O}_{Y}(1)\right\rangle
$$

The subcategory \mathbf{T}_{Y} is highly non-trivial and cannot be the derived category of a smooth projective variety.

Indeed the Serre functor $S_{\mathbf{T}_{Y}}$ is such that $S_{\boldsymbol{T}_{Y}}^{3} \cong[5]$. So \mathbf{T}_{Y} is a so called Calabi-Yau category of fractional dimension $\frac{5}{3}$.

Categorical Torelli

Derived categories and cubic hypersurfaces

Paolo Stellari

The
geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of
lines
Rationality

Categorical Torelli

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric
setting
3 -folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

Question (Kuznetsov)

Given two cubic 3-folds Y_{1} and Y_{2}, is it true that $Y_{1} \cong Y_{2}$ if and only if $\mathbf{T}_{Y_{1}} \cong \mathbf{T}_{Y_{2}}$?

Categorical Torelli

Question (Kuznetsov)

Given two cubic 3-folds Y_{1} and Y_{2}, is it true that $Y_{1} \cong Y_{2}$ if and only if $\mathbf{T}_{Y_{1}} \cong \mathbf{T}_{Y_{2}}$?

Theorem (Bernardara-Macrì-Mehrotra-S.)

The answer to the above question is positive.

Categorical Torelli

Question (Kuznetsov)

Given two cubic 3-folds Y_{1} and Y_{2}, is it true that $Y_{1} \cong Y_{2}$ if and only if $\mathbf{T}_{Y_{1}} \cong \mathbf{T}_{Y_{2}}$?

Theorem (Bernardara-Macri-Mehrotra-S.)

The answer to the above question is positive.

Idea: realize the Fano variety of lines of Y_{i} as moduli space of stable objects according to a Bridgeland stability condition on $\mathbf{T}_{Y_{i}}$.

Outline

Derived categories and cubic hypersurfaces

Paolo Stellari

The
geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability conditions

Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

(1) The geometric setting

2 3-folds

- Geometry
- Derived categories
- Bridgeland stability conditions
- Irrationality

4-folds

- Geometry
- Derived categories
- Categorical Torelli theorem
- Fano varieties of lines
- Rationality

The definition

Derived categories and cubic hypersurfaces

Paolo Stellari

The
geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines

Rationality

The definition

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability conditions

Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

A stability condition on a triangulated category \mathbf{T} is a pair $\sigma=(Z, \mathcal{P})$ where

The definition

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric
setting
3 -folds
Geometry
Derived categories
Bridgeland stability conditions

Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

A stability condition on a triangulated category \mathbf{T} is a pair $\sigma=(Z, \mathcal{P})$ where

- $Z: K(\mathbf{T}) \rightarrow \mathbb{C}$ is a linear map called central charge (similar to the slope for sheaves);

The definition

Derived categories and cubic hypersurfaces

Paolo Stellari

The
geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

A stability condition on a triangulated category \mathbf{T} is a pair $\sigma=(Z, \mathcal{P})$ where

- $Z: K(\mathbf{T}) \rightarrow \mathbb{C}$ is a linear map called central charge (similar to the slope for sheaves);
- $\mathcal{P}(\phi) \subset \mathbf{T}$ are full additive subcategories for each $\phi \in \mathbb{R}$ (semistable objects of phase ϕ)
satisfying some compatibilities.

The definition

Derived categories and cubic hypersurfaces

A stability condition on a triangulated category \mathbf{T} is a pair $\sigma=(Z, \mathcal{P})$ where

- $Z: K(\mathbf{T}) \rightarrow \mathbb{C}$ is a linear map called central charge (similar to the slope for sheaves);
- $\mathcal{P}(\phi) \subset \mathbf{T}$ are full additive subcategories for each $\phi \in \mathbb{R}$ (semistable objects of phase ϕ)
satisfying some compatibilities.

The minimal objects in $\mathcal{P}(\phi)$ are called stable objects.

The definition

A stability condition on a triangulated category \mathbf{T} is a pair $\sigma=(Z, \mathcal{P})$ where

- $Z: K(\mathbf{T}) \rightarrow \mathbb{C}$ is a linear map called central charge (similar to the slope for sheaves);
- $\mathcal{P}(\phi) \subset \mathbf{T}$ are full additive subcategories for each $\phi \in \mathbb{R}$ (semistable objects of phase ϕ)
satisfying some compatibilities.

The minimal objects in $\mathcal{P}(\phi)$ are called stable objects.
$\operatorname{Stab}(\mathbf{T})$ is the space parametrizing stability conditions on \mathbf{T}.

Some questions

Derived categories and cubic hypersurfaces

Paolo Stellari

The
geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

Some questions

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability conditions

Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

Let Y be a cubic 3-fold. As a consequence of the result of Bernardara-Macrì-Mehrotra-S. above, we have that

Some questions

Let Y be a cubic 3-fold. As a consequence of the result of Bernardara-Macrì-Mehrotra-S. above, we have that

$$
\operatorname{Stab}\left(\mathrm{D}^{\mathrm{b}}(Y)\right) \neq \emptyset \neq \operatorname{Stab}\left(\mathbf{T}_{Y}\right)
$$

The category \mathbf{T}_{Y} behaves almost as the derived category of a smooth complex curve C. The stability conditions on $\mathrm{D}^{\mathrm{b}}(C)$ are completely classified.

Some questions

Let Y be a cubic 3-fold. As a consequence of the result of Bernardara-Macrì-Mehrotra-S. above, we have that

$$
\operatorname{Stab}\left(\mathrm{D}^{\mathrm{b}}(Y)\right) \neq \emptyset \neq \operatorname{Stab}\left(\mathbf{T}_{Y}\right)
$$

The category \mathbf{T}_{Y} behaves almost as the derived category of a smooth complex curve C. The stability conditions on $\mathrm{D}^{\mathrm{b}}(C)$ are completely classified.

Problem

Classify completely all the stability conditions in $\operatorname{Stab}\left(\mathbf{T}_{Y}\right)$.

Outline

Derived categories and cubic hypersurfaces

Paolo Stellari

(2) 3-folds

- Geometry
- Derived categories
- Bridgeland stability conditions
- Irrationality

Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

1) The geometric setting

The

geometric
setting
3 -folds
Geometry
Derived categories

3 4-folds

- Geometry
- Derived categories
- Categorical Torelli theorem
- Fano varieties of lines
- Rationality

Open question and new perspectives

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of
lines
Rationality

Open question and new perspectives

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem

Fano varieties of lines
Rationality

Question

Does the category \mathbf{T}_{Y} encode the irrationality of Y ?

Open question and new perspectives

Derived categories and cubic hypersurfaces

The

geometric
setting
3 -folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

Question

Does the category \mathbf{T}_{Y} encode the irrationality of Y ?

A new perspective in this direction is provided by the recent work of Ballard-Favero-Katzarkov:

Open question and new perspectives

Question

Does the category \mathbf{T}_{Y} encode the irrationality of Y ?

A new perspective in this direction is provided by the recent work of Ballard-Favero-Katzarkov:
(1) Idea: the irrationality of Y should be related to the presence of gaps in the interval of integers corresponding to the 'generation time' of the objects in $\mathrm{D}^{\mathrm{b}}(Y)$.
(2) This is related to a conjecture of Orlov. In this case: the dimension of the category $\mathrm{D}^{\mathrm{b}}(Y)$ is $3=\operatorname{dim}(Y)$.

Outline

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3 -folds
Geometry
Derived categories
Bridgeland stability conditions

Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

1 The geometric setting

2. 3-folds

- Geometry
- Derived categories
- Bridgeland stability conditions
- Irrationality
(3) 4-folds
- Geometry
- Derived categories
- Categorical Torelli theorem
- Fano varieties of lines
- Rationality

The basic definitions

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

The basic definitions

Derived categories and cubic hypersurfaces

The

geometric
setting
3 -folds
Geometry
Derived categories
Bridgeland stability conditions

Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

Let $Y \subseteq \mathbb{P}^{5}$ be a smooth cubic 4-fold. Denote by H^{2} the self-intersection of the hyperplane class of Y.

The basic definitions

Derived categories and cubic hypersurfaces

Let $Y \subseteq \mathbb{P}^{5}$ be a smooth cubic 4-fold. Denote by H^{2} the self-intersection of the hyperplane class of Y.

The moduli space \mathcal{C} of smooth cubic 4 -folds is a quasi-projective variety of dimension 20.

The basic definitions

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability
conditions
irrationality
4-folds
Geometry

Let $Y \subseteq \mathbb{P}^{5}$ be a smooth cubic 4-fold. Denote by H^{2} the self-intersection of the hyperplane class of Y.

The moduli space \mathcal{C} of smooth cubic 4 -folds is a quasi-projective variety of dimension 20.

Voisin: Smooth cubic 4-folds Y containing a plane P form a divisor \mathcal{C}_{8} in \mathcal{C}.

The basic definitions

Derived categories and cubic hypersurfaces

Let $Y \subseteq \mathbb{P}^{5}$ be a smooth cubic 4-fold. Denote by H^{2} the self-intersection of the hyperplane class of Y.

The moduli space \mathcal{C} of smooth cubic 4 -folds is a quasi-projective variety of dimension 20.

Voisin: Smooth cubic 4-folds Y containing a plane P form a divisor \mathcal{C}_{8} in \mathcal{C}.

Denote by $T:=\left\langle H^{2}, P\right\rangle$ the primitive sublattice (with respect to the intersection form) of $H^{4}(Y, \mathbb{Z})$ generated by H^{2} and P. Then the intersection form is of type

$$
\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right) .
$$

The basic definitions

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

The basic definitions

Derived categories and cubic hypersurfaces

Projecting from P onto a disjoint \mathbb{P}^{2}, we get $\pi_{P}: Y \xrightarrow{ } \mathbb{P}^{2}$. Blowing up the plane inside Y gives a quadric fibration

$$
\pi_{P}^{\prime}: \tilde{Y} \rightarrow \mathbb{P}^{2}
$$

whose fibres degenerate along a plane sextic C.

The basic definitions

Derived

Projecting from P onto a disjoint \mathbb{P}^{2}, we get $\pi_{P}: Y \xrightarrow{ }$ P Blowing up the plane inside Y gives a quadric fibration

$$
\pi_{P}^{\prime}: \tilde{Y} \rightarrow \mathbb{P}^{2}
$$

whose fibres degenerate along a plane sextic C.
The double cover of \mathbb{P}^{2} ramified along C is a K3 surface S (i.e. a smooth complex projective simply connected surface with trivial canonical bundle).

The basic definitions

Projecting from P onto a disjoint \mathbb{P}^{2}, we get $\pi_{P}: Y \xrightarrow{P^{2}}$. Blowing up the plane inside Y gives a quadric fibration

$$
\pi_{P}^{\prime}: \tilde{Y} \rightarrow \mathbb{P}^{2}
$$

whose fibres degenerate along a plane sextic C.
The double cover of \mathbb{P}^{2} ramified along C is a K3 surface S (i.e. a smooth complex projective simply connected surface with trivial canonical bundle).

The quadric fibration provides an element

$$
\beta \in \operatorname{Br}(S):=H^{2}\left(S, \mathcal{O}_{S}^{*}\right)_{\text {tor }}
$$

in the Brauer group of S.

Hodge theory

Derived categories and cubic hypersurfaces

Paolo Stellari

The
geometric
setting
3 -folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of
lines
Rationality

Hodge theory

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

Back to the case of Y any cubic 4-fold (not necessarily containing a plane). We have the following remarkable results:

Hodge theory

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric
setting
3 -folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality

Back to the case of Y any cubic 4-fold (not necessarily containing a plane). We have the following remarkable results:

- Torelli theorem (Voisin): Let Y_{1} and Y_{2} be two cubic 4-folds and assume that there exists a Hodge isometry

$$
\phi: H^{4}\left(Y_{1}, \mathbb{Z}\right) \rightarrow H^{4}\left(Y_{2}, \mathbb{Z}\right)
$$

sending H_{1}^{2} to H_{2}^{2}. Then there exists an isomorphism $f: Y_{2} \cong Y_{1}$ such that $\phi=f^{*}$.

Hodge theory

Derived categories and cubic hypersurfaces

Paolo Stellari

The
geometric
setting
3 -folds
Geometry

Back to the case of Y any cubic 4 -fold (not necessarily containing a plane). We have the following remarkable results:

- Torelli theorem (Voisin): Let Y_{1} and Y_{2} be two cubic 4-folds and assume that there exists a Hodge isometry

$$
\phi: H^{4}\left(Y_{1}, \mathbb{Z}\right) \rightarrow H^{4}\left(Y_{2}, \mathbb{Z}\right)
$$

sending H_{1}^{2} to H_{2}^{2}. Then there exists an isomorphism $f: Y_{2} \cong Y_{1}$ such that $\phi=f^{*}$.

- Surjectivity of the period map (Looijenga, Laza): The period map surjects onto an explicitly described subset of the period domain.

Hassett: constructing divisors

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of
lines
Rationality

Hassett: constructing divisors

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem

Fano varieties of lines
Rationality

Hassett proposed a very nice way to construct divisors in the moduli space \mathcal{C}.

Hassett: constructing divisors

Hassett proposed a very nice way to construct divisors in the moduli space \mathcal{C}.

For a positive integer d, define \mathcal{C}_{d} to be the set of all $Y \in \mathcal{C}$ such that

- There is a rank-2 lattice K_{d} with $\operatorname{det}\left(K_{d}\right)=d$.
- There is a primitive embedding $K_{d} \hookrightarrow H^{4}(Y, \mathbb{Z})$.
- There is $h^{2} \in K_{d}$ mapped to H^{2}.

Hassett: constructing divisors

Hassett proposed a very nice way to construct divisors in the moduli space \mathcal{C}.

For a positive integer d, define \mathcal{C}_{d} to be the set of all $Y \in \mathcal{C}$ such that

- There is a rank-2 lattice K_{d} with $\operatorname{det}\left(K_{d}\right)=d$.
- There is a primitive embedding $K_{d} \hookrightarrow H^{4}(Y, \mathbb{Z})$.
- There is $h^{2} \in K_{d}$ mapped to H^{2}.

Hassett: \mathcal{C}_{d} is an irreducible divisor as soon as $d>6$ and $d \equiv 0,2(\bmod 6)$.

Outline

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric
setting
3 -folds
Geometry
Derived categories
Bridgeland stability conditions

Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

(1) The geometric setting

2. 3-folds

- Geometry
- Derived categories
- Bridgeland stability conditions
- Irrationality
(3)-folds
- Geometry
- Derived categories
- Categorical Torelli theorem
- Fano varieties of lines
- Rationality

The semi-orthogonal decomposition

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-foids
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of
lines
Rationality

The semi-orthogonal decomposition

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability
conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

Theorem (Kuznetsov)

The derived category $\mathrm{D}^{\mathrm{b}}(Y)$ has a semi-orthogonal decomposition

$$
\mathrm{D}^{\mathrm{b}}(Y)=\left\langle\mathbf{T}_{Y}, \mathcal{O}_{Y}, \mathcal{O}_{Y}(1), \mathcal{O}_{Y}(2)\right\rangle
$$

The semi-orthogonal decomposition

Theorem (Kuznetsov)

The derived category $\mathrm{D}^{\mathrm{b}}(Y)$ has a semi-orthogonal decomposition

$$
\mathrm{D}^{\mathrm{b}}(Y)=\left\langle\mathbf{T}_{Y}, \mathcal{O}_{Y}, \mathcal{O}_{Y}(1), \mathcal{O}_{Y}(2)\right\rangle
$$

Theorem (Kuznetsov)

The triangulated category \mathbf{T}_{Y} is a 2-Calabi-Yau category.

The semi-orthogonal decomposition

Theorem (Kuznetsov)

The derived category $\mathrm{D}^{\mathrm{b}}(Y)$ has a semi-orthogonal decomposition

$$
\mathrm{D}^{\mathrm{b}}(Y)=\left\langle\mathbf{T}_{Y}, \mathcal{O}_{Y}, \mathcal{O}_{Y}(1), \mathcal{O}_{Y}(2)\right\rangle
$$

Theorem (Kuznetsov)

The triangulated category \mathbf{T}_{Y} is a 2-Calabi-Yau category.

Recall that a triangulated category \mathbf{T} is a 2 -Calabi-Yau category if \mathbf{T} has a Serre functor which is isomorphic to the shift by 2.

Which 2-Calabi-Yau category?

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

Which 2-Calabi-Yau category?

Derived categories and cubic hypersurfaces

Paolo Stellari

The
geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability
conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

Theorem (Kuznetsov)

Let Y be a cubic 4-fold containing a plane and such that the plane sextic C is smooth. Then there exists an exact equivalence

$$
\mathbf{T}_{Y} \cong \mathrm{D}^{\mathrm{b}}(S, \beta)
$$

Which 2-Calabi-Yau category?

Theorem (Kuznetsov)

Let Y be a cubic 4-fold containing a plane and such that the plane sextic C is smooth. Then there exists an exact equivalence

$$
\mathbf{T}_{Y} \cong \mathrm{D}^{\mathrm{b}}(S, \beta)
$$

Remark

If Y is generic with the above properties (i.e. $\left.H^{4}(Y, \mathbb{Z}) \cap H^{2,2}(Y)=\left\langle H^{2}, P\right\rangle\right)$, then there is no smooth projective K3 surface S^{\prime} such that

$$
\mathbf{T}_{Y} \cong \mathrm{D}^{\mathrm{b}}\left(S^{\prime}\right) .
$$

Twisted sheaves

Derived categories and cubic hypersurfaces

Paolo Stellari

The
geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of
lines
Rationality

Twisted sheaves

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric
setting
3 -folds
Geometry
Derived categories
Bridgeland stability conditions

Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

Represent $\beta \in \operatorname{Br}(S)$ as a Čech 2-cocycle

$$
\left\{\beta_{i j k} \in \Gamma\left(U_{i} \cap U_{j} \cap U_{k}, \mathcal{O}_{x}^{*}\right)\right\}
$$

on an analytic open cover $S=\bigcup_{i \in I} U_{i}$.

Twisted sheaves

Derived categories and cubic hypersurfaces

Represent $\beta \in \operatorname{Br}(S)$ as a Čech 2-cocycle

$$
\left\{\beta_{i j k} \in \Gamma\left(U_{i} \cap U_{j} \cap U_{k}, \mathcal{O}_{X}^{*}\right)\right\}
$$

on an analytic open cover $S=\bigcup_{i \in I} U_{i}$.
A β-twisted coherent sheaf \mathcal{E} is a collection of pairs $\left(\left\{\mathcal{E}_{i}\right\}_{i \in I},\left\{\varphi_{i j}\right\}_{i, j \in I}\right)$ where

- \mathcal{E}_{i} is a coherent sheaf on the open subset U_{i};
- $\varphi_{i j}: \mathcal{E}_{j}\left|U_{i} \cap U_{j} \rightarrow \mathcal{E}_{i}\right| U_{i} \cap U_{j}$ is an isomorphism
such that

Twisted sheaves

Derived

Represent $\beta \in \operatorname{Br}(S)$ as a Čech 2-cocycle

$$
\left\{\beta_{i j k} \in \Gamma\left(U_{i} \cap U_{j} \cap U_{k}, \mathcal{O}_{X}^{*}\right)\right\}
$$

on an analytic open cover $S=\bigcup_{i \in I} U_{i}$.
A β-twisted coherent sheaf \mathcal{E} is a collection of pairs $\left(\left\{\mathcal{E}_{i}\right\}_{i \in I},\left\{\varphi_{i j}\right\}_{i, j \in I}\right)$ where

- \mathcal{E}_{i} is a coherent sheaf on the open subset U_{i};
- $\varphi_{i j}: \mathcal{E}_{j}\left|U_{i} \cap U_{j} \rightarrow \mathcal{E}_{i}\right| U_{i} \cap U_{j}$ is an isomorphism
such that
(1) $\varphi_{i i}=\mathrm{id}$ and $\varphi_{j i}=\varphi_{i j}^{-1}$;
(2) $\varphi_{i j} \circ \varphi_{j k} \circ \varphi_{k i}=\beta_{i j k} \cdot \mathrm{id}$.

Twisted sheaves

Derived
categories and cubic hypersurfaces

Represent $\beta \in \operatorname{Br}(S)$ as a Čech 2-cocycle

$$
\left\{\beta_{i j k} \in \Gamma\left(U_{i} \cap U_{j} \cap U_{k}, \mathcal{O}_{X}^{*}\right)\right\}
$$

on an analytic open cover $S=\bigcup_{i \in I} U_{i}$.
A β-twisted coherent sheaf \mathcal{E} is a collection of pairs $\left(\left\{\mathcal{E}_{i}\right\}_{i \in I},\left\{\varphi_{i j}\right\}_{i, j \in I}\right)$ where

- \mathcal{E}_{i} is a coherent sheaf on the open subset U_{i};
- $\varphi_{i j}: \mathcal{E}_{j}\left|U_{i} \cap U_{j} \rightarrow \mathcal{E}_{i}\right| U_{i} \cap U_{j}$ is an isomorphism
such that
(1) $\varphi_{i i}=\mathrm{id}$ and $\varphi_{j i}=\varphi_{i j}^{-1}$;
(2) $\varphi_{i j} \circ \varphi_{j k} \circ \varphi_{k i}=\beta_{i j k} \cdot \mathrm{id}$.

In this way we get the abelian category $\operatorname{Coh}(S, \beta)$.

Outline

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric
setting
3 -folds
Geometry
Derived categories
Bridgeland stability conditions

Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem

Fano varieties of lines
Rationality

(1) The geometric setting

2) 3-folds

- Geometry
- Derived categories
- Bridgeland stability conditions
- Irrationality
(3) 4-folds
- Geometry
- Derived categories
- Categorical Torelli theorem
- Fano varieties of lines
- Rationality

Results and questions

Derived categories and cubic hypersurfaces

Paolo Stellari

The
geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem

Fano varieties of lines
Rationality

Results and questions

Theorem (Bernardara-Macrì-Mehrotra-S.)

Given a cubic fourfold Y containing a plane P and such that C is smooth, there exist only finitely many isomorphism classes of cubic 4-folds $Y_{1}=Y, Y_{2}, \ldots, Y_{n}$ containing a plane and with smooth plane sextics such that $\mathbf{T}_{Y} \cong \mathbf{T}_{Y_{j}}$, with $j \in\{1, \ldots, n\}$. Moreover, if Y is generic, then $n=1$.

Results and questions

Theorem (Bernardara-Macrì-Mehrotra-S.)

Given a cubic fourfold Y containing a plane P and such that C is smooth, there exist only finitely many isomorphism classes of cubic 4-folds $Y_{1}=Y, Y_{2}, \ldots, Y_{n}$ containing a plane and with smooth plane sextics such that $\mathbf{T}_{Y} \cong \mathbf{T}_{Y_{j}}$, with $j \in\{1, \ldots, n\}$. Moreover, if Y is generic, then $n=1$.

Questions

(1) Can we prove a similar result for any possible cubic 4-fold (with a plane or not)?
(2) Can the number n be arbitrarily large?

Outline

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric
setting
3 -folds
Geometry
Derived categories
Bridgeland stability conditions

Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of

Rationality

(1) The geometric setting

2) 3-folds

- Geometry
- Derived categories
- Bridgeland stability conditions
- Irrationality
(3) 4-folds
- Geometry
- Derived categories
- Categorical Torelli theorem
- Fano varieties of lines
- Rationality

Classical results

Derived categories and cubic hypersurfaces

Paolo Stellari

The
geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli
theorem
Fano varieties of
lines
Rationality

Classical results

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability conditions

Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of
lines
Rationality

For a cubic 4-fold Y, we denote by $F(Y)$ the Fano variety of lines contained in Y.

Classical results

For a cubic 4-fold Y, we denote by $F(Y)$ the Fano variety of lines contained in Y.

Theorem (Beauville-Donagi)

(1) $F(Y)$ is a irreducible holomorphic symplectic manifold of dimension 4 (i.e. a simply connected, Kähler manifold such that $H^{2,0}(F(Y))$ is generated by a non-degenerate 2 -form).

Classical results

For a cubic 4-fold Y, we denote by $F(Y)$ the Fano variety of lines contained in Y.

Theorem (Beauville-Donagi)

(1) $F(Y)$ is a irreducible holomorphic symplectic manifold of dimension 4 (i.e. a simply connected, Kähler manifold such that $H^{2,0}(F(Y))$ is generated by a non-degenerate 2 -form).
(2) $F(Y)$ is deformation equivalent to $\operatorname{Hilb}^{2}(S)$, the Hilbert scheme of length-2 0-dimensional subschemes on a K3 surface S.

Hassett's results

Derived categories and cubic hypersurfaces

Paolo Stellari

The
geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli
theorem
Fano varieties of
lines
Rationality

Hassett's results

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability
conditions
irrationatily
4-folds

Geometry

Derived categories
Categorical Torelli theorem
Fano varieties of
lines
Rationality

Theorem (Hassett)

Assume that $d=2\left(n^{2}+n+1\right)$ for $n \geq 2$. Then the generic cubic 4 -fold Y contained in \mathcal{C}_{d} is such that $F(Y) \cong \operatorname{Hilb}^{2}(S)$ for some K3 surface S.

Hassett's results

Theorem (Hassett)

Assume that $d=2\left(n^{2}+n+1\right)$ for $n \geq 2$. Then the generic cubic 4 -fold Y contained in \mathcal{C}_{d} is such that $F(Y) \cong \operatorname{Hilb}^{2}(S)$ for some K3 surface S.

Question (Hassett)

Are there other d's such that the generic points in \mathcal{C}_{d} have the same property for some K3 surface?

Hassett's results

Theorem (Hassett)

Assume that $d=2\left(n^{2}+n+1\right)$ for $n \geq 2$. Then the generic cubic 4 -fold Y contained in \mathcal{C}_{d} is such that $F(Y) \cong \operatorname{Hilb}^{2}(S)$ for some K3 surface S.

Question (Hassett)

Are there other d's such that the generic points in \mathcal{C}_{d} have the same property for some K3 surface?

When there is a plane, the twist cannot be avoided...

The answer when there is a plane

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of
lines
Rationality

The answer when there is a plane

Theorem (Macrì-S.)

If Y is a generic cubic fourfold containing a plane, then $F(Y)$ is isomorphic to a moduli space of stable objects in the derived category $\mathrm{D}^{\mathrm{b}}(S, \beta)$ of bounded complexes of β-twisted coherent sheaves on S.

The answer when there is a plane

Theorem (Macri-S.)

If Y is a generic cubic fourfold containing a plane, then $F(Y)$ is isomorphic to a moduli space of stable objects in the derived category $\mathrm{D}^{\mathrm{b}}(S, \beta)$ of bounded complexes of β-twisted coherent sheaves on S.

Theorem (Macrì-S.)

For all cubic fourfolds Y containing a plane, the Fano variety $F(Y)$ is birational to a smooth projective moduli space of twisted sheaves on a K3 surface. Moreover, if Y is generic, then such a birational map is either an isomorphism or a Mukai flop.

Outline

Derived categories and cubic hypersurfaces

Paolo Stellari

The geometric setting

3-folds
Geometry
Derived categories
Bridgeland stability conditions

Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

1 The geometric setting

2. 3-folds

- Geometry
- Derived categories
- Bridgeland stability conditions
- Irrationality

3 4-folds

- Geometry
- Derived categories
- Categorical Torelli theorem
- Fano varieties of lines
- Rationality

Hodge theoretical results

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of
lines
Rationality

Hodge theoretical results

Derived categories and cubic hypersurfaces

Paolo Stellari
Beauville-Donagi, Morin: The provide examples of rational cubic 4-folds (Pfaffian cubic 4-folds).

The
geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

Hodge theoretical results

Beauville-Donagi, Morin: The provide examples of rational cubic 4-folds (Pfaffian cubic 4-folds).

Hassett: Using lattice and Hodge theory, he constructs countably many divisors in \mathcal{C}_{8} consisting of rational cubic 4-folds.

Hodge theoretical results

Beauville-Donagi, Morin: The provide examples of rational cubic 4-folds (Pfaffian cubic 4-folds).

Hassett: Using lattice and Hodge theory, he constructs countably many divisors in \mathcal{C}_{8} consisting of rational cubic 4-folds.

The way he defines these families is by showing that the quadric fibration mentioned above has a section.

Hodge theoretical results

Beauville-Donagi, Morin: The provide examples of rational cubic 4-folds (Pfaffian cubic 4-folds).

Hassett: Using lattice and Hodge theory, he constructs countably many divisors in \mathcal{C}_{8} consisting of rational cubic 4-folds.

The way he defines these families is by showing that the quadric fibration mentioned above has a section.

Notice that the presence of such a section implies that the Brauer class β in $\operatorname{Br}(S)$ is automatically trivial.

The categorical approach

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric
setting
3 -folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines

Rationality

The categorical approach

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric
setting
3 -folds
Geometry
Derived categories
Bridgeland stability conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines

Rationality

The categorical approach

Derived categories and cubic hypersurfaces

Paolo Stellari

The

geometric
setting
3-folds
Geometry
Derived categories
Bridgeland stability
conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

Conjecture (Kuznetsov)

A cubic 4 -fold Y is rational if and only if there exists a K 3 surface S^{\prime} and an exact equivalence $\mathbf{T}_{Y} \cong \mathrm{D}^{\mathrm{b}}\left(S^{\prime}\right)$.

The categorical approach

Derived categories and cubic hypersurfaces

Paolo Stellari

The
geometric
setting
3 -folds
Geometry
Derived categories
Bridgeland stability
conditions
Irrationality
4-folds
Geometry
Derived categories
Categorical Torelli theorem
Fano varieties of lines
Rationality

Conjecture (Kuznetsov)

A cubic 4 -fold Y is rational if and only if there exists a K 3 surface S^{\prime} and an exact equivalence $\mathbf{T}_{Y} \cong \mathrm{D}^{\mathrm{b}}\left(S^{\prime}\right)$.

The conjecture is verified by Beauville-Donagi-Morin's and Hassett's examples.

The categorical approach

Conjecture (Kuznetsov)

A cubic 4 -fold Y is rational if and only if there exists a K 3 surface S^{\prime} and an exact equivalence $\mathbf{T}_{Y} \cong \mathrm{D}^{\mathrm{b}}\left(S^{\prime}\right)$.

The conjecture is verified by Beauville-Donagi-Morin's and Hassett's examples.

The generic cubic 4 -fold with a plane is such that there are no K3 surfaces S^{\prime} with the property above.

The categorical approach

Conjecture (Kuznetsov)

A cubic 4 -fold Y is rational if and only if there exists a K 3 surface S^{\prime} and an exact equivalence $\mathbf{T}_{Y} \cong \mathrm{D}^{\mathrm{b}}\left(S^{\prime}\right)$.

The conjecture is verified by Beauville-Donagi-Morin's and Hassett's examples.

The generic cubic 4 -fold with a plane is such that there are no K3 surfaces S^{\prime} with the property above.

Problem

Use categorical methods to prove that the generic cubic 4 -fold with a plane is not rational.

