Cubic hypersurfaces and derived categories: results and open problems

Paolo Stellari

Congresso Nazionale dell'Unione Matematica Italiana September 2019

2 Results

2

2 Results

Homological algebra

Let X be a *cubic hypersurface* (i.e. a smooth hypersurface of degree 3 in \mathbb{P}^n over an algebraically closed field \mathbb{K} with $char(\mathbb{K}) \neq 2$) and let H be a hyperplane section:

$$D^{b}(X) := D^{b}(Coh(X))$$

$$\parallel$$

$$\langle \mathcal{K}u(X), \mathcal{O}_{X}, \dots, \mathcal{O}_{X}((n-3)H) \rangle$$

$$\begin{cases} \mathcal{K}u(X) \\ & \parallel \\ \operatorname{Hom}\left(\mathcal{O}_{X}(i\mathcal{H}), \mathcal{E}[p]\right) = 0 \\ i = 0, \dots, n-3 \quad \forall p \in \mathbb{Z} \end{cases} \end{cases}$$

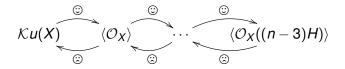
Exceptional objects:

 $\langle \mathcal{O}_{\boldsymbol{X}}(\boldsymbol{i}\boldsymbol{H})\rangle \cong \mathrm{D}^{\mathrm{b}}(\mathrm{pt})$

Kuznetsov component of X

Keep in mind that the symbol $\langle \ldots \rangle$ stays for a semiorthogonal decomposition:

- D^b(X) is generated by extensions, shifts, direct sums and summands by the objects in the n − 1 admissible subcategories;
- There are no Homs from right to left between the 4 subcategories:



The admissible subcategory $\mathcal{K}u(X)$ has a Serre functor $S_{\mathcal{K}u(X)}$ (this is easy!). Moreover, there is an isomorphism of exact functors

 $S_{\mathcal{K}u(X)}^{\circ 3} \cong [5].$

Because of this, $\mathcal{K}u(X)$ is called **fractional Calabi-Yau** category of fractional dimension $\frac{5}{3}$.

Remark

If X smooth proj. var., $S_{D^{b}(X)}(-) \cong (-) \otimes \omega_{X}[\dim(X)].$ Hence $\mathcal{K}u(X)$ cannot be equivalent to the derived category of a smooth and projective variety. Also in this case, the admissible subcategory $\mathcal{K}u(X)$ has a Serre functor $S_{\mathcal{K}u(X)}$ with an isomorphism of exact functors

$$S_{\mathcal{K}u(X)}\cong [2].$$

Hence, $\mathcal{K}u(X)$ is called 2-Calabi-Yau category.

Hence $\mathcal{K}u(X)$ could be equivalent to the derived category either of a **K3** or of an **abelian surface**.

Recall

K3 and **abelian** surfaces can be distinguished by the fact the former ones do not have odd cohomoloy.

Addington-Thomas: $\mathcal{K}u(X)$ comes with an integral cohomology theory in the following sense (here $\mathbb{K} = \mathbb{C}$):

■ Consider the Z-module

$$H^*(\mathcal{K}u(X),\mathbb{Z}) := \left\{ e \in \mathcal{K}_{\mathrm{top}}(X) : \begin{array}{l} \chi([\mathcal{O}_X(iH)], e) = 0 \\ i = 0, 1, 2 \end{array} \right\}.$$

Remark

 $H^*(\mathcal{K}u(X),\mathbb{Z})$ is deformation invariant. So, as a lattice:

 $H^*(\mathcal{K}u(X),\mathbb{Z}) = H^*(\mathcal{K}u(\operatorname{Pfaff}),\mathbb{Z}) = H^*(\operatorname{K3},\mathbb{Z}) = U^4 \oplus E_8(-1)^2$

Hence $\mathcal{K}u(X)$ is **K3-like**!

■ The Hodge decomposition of H⁴(X, C) induces a weight-2 Hodge structure on H^{*}(Ku(X), Z).

Definition

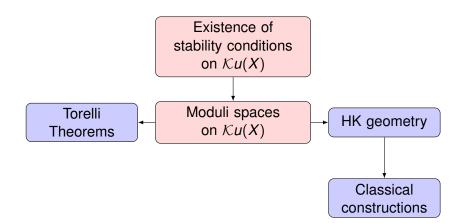
The lattice $H^*(\mathcal{K}u(X),\mathbb{Z})$ with the above Hodge structure is the **Mukai lattice** of $\mathcal{K}u(X)$ which we denote by $\widetilde{H}(\mathcal{K}u(X),\mathbb{Z})$.

Remark

If X is **very general** (i.e. $H^{2,2}(X, \mathbb{Z}) = \mathbb{Z}H^2$), then there is no K3 surface S such that $\mathcal{K}u(X) \cong D^b(S)$!

 $\mathcal{K}u(X)$ is a **noncommutative K3 surface**.

A quick overview



Let us start with a quick recall about Bridgeland stability conditions.

Let **T** be a triangulated category;

Let Γ be a free abelian group of finite rank with a surjective map ν: K(T) → Γ.

Example

 $\mathbf{T} = D^{b}(C)$, for C a smooth projective curve.

$$\Gamma = N(C) = H^0 \oplus H^2$$

with

v = (rk, deg)

A Bridgeland stability condition on **T** is a pair $\sigma = (\mathbf{A}, Z)$:

Stability conditions: a quick recap

- A is the heart of a bounded *t*-structure on T;
- $Z: \Gamma \to \mathbb{C}$ is a group homomorphism

Example

$$\mathbf{A} = \operatorname{Coh}(\mathcal{C})$$

$$Z(\nu(-)) = -\deg + \sqrt{-1} \mathrm{rk}.$$

such that, for any $0 \neq E \in \mathbf{A}$,

1
$$Z(v(E)) \in \mathbb{R}_{>0} e^{(0,1]\pi\sqrt{-1}};$$

2 *E* has a Harder-Narasimhan filtration with respect to
$$\lambda_{\sigma} = -\frac{\operatorname{Re}(Z)}{\operatorname{Im}(Z)}$$
 (or $+\infty$);

 Support property (Kontsevich-Soibelman): wall and chamber structure with locally finitely many walls.

Stability conditions: a quick recap

Warning

The example is somehow misleading: it only works in dimension 1!

We denote by

$\operatorname{Stab}_{\Gamma}(\mathbf{T})$ (or $\operatorname{Stab}_{\Gamma,\nu}(\mathbf{T})$ or $\operatorname{Stab}(\mathbf{T})$)

the set of all stability conditions on **T**.

Theorem (Bridgeland)

If non-empty, $\operatorname{Stab}_{\Gamma}(\mathbf{T})$ is a complex manifold of dimension $\operatorname{rk}(\Gamma)$.

The results: existence of stability conditions

Existence of stability conditions on $\mathcal{K}u(X)$

Existence of stability conditions

Theorem 1 (Bayer-Lahoz-Macri-S., The 4 + Nuer-Perry)

- 1 For any cubic threefold or fourfold X, we have $\operatorname{Stab}(\mathcal{K}u(X)) \neq \emptyset$.
- If X is a cubic fourfold (K = C), we can explicitly describe a connected component Stab[†](Ku(X)) of Stab(Ku(X)).

- This result was conjectured by Addington-Thomas, Kuznetsov and Huybrechts.
- The reason for this conjecure is the wealth of applications that we will discuss.

Moduli spaces



The construction of moduli spaces of stable objects in $\mathcal{K}u(X)$:

- Let $0 \neq v$ be a primitive class in the numerical Grothendieck group (when X is a 3-fold) or in $\widetilde{H}_{alg}(\mathcal{K}u(X),\mathbb{Z})$ (when X is a 4-fold);
- Let σ ∈ Stab(Ku(X)) (actually in Stab[†](Ku(X))) be v-generic (here it means that σ-semistable=σ-stable for objects with Mukai vector v).

Let $M_{\sigma}(\mathcal{K}u(X), v)$ be the moduli space of σ -stable objects (in the heart of σ) contained in $\mathcal{K}u(X)$ and with Mukai vector v.

Question

What is the geometry of $M_{\sigma}(\mathcal{K}u(X), v)$?

Moduli spaces: cubic fourfolds

Theorem 2 (BLMNPS)

Let *X* be a cubic fourfold ($\mathbb{K} = \mathbb{C}$).

M_σ(*Ku*(*X*), *v*) is non-empty if and only if *v*² + 2 ≥ 0. Moreover, in this case, it is a smooth projective irreducible holomorphic symplectic manifold of dimension *v*² + 2, deformation-equivalent to a Hilbert scheme of points on a K3 surface.

2 If $v^2 \ge 0$, then there exists a natural Hodge isometry

$$\theta \colon H^2(M_{\sigma}(\mathcal{K}u(X), \nu), \mathbb{Z}) \cong \begin{cases} \nu^{\perp} & \text{if } \nu^2 > 0\\ \nu^{\perp}/\mathbb{Z}\nu & \text{if } \nu^2 = 0, \end{cases}$$

where the orthogonal is taken in $\widetilde{H}(\mathcal{K}u(X),\mathbb{Z})$.

Moduli spaces: cubic fourfolds

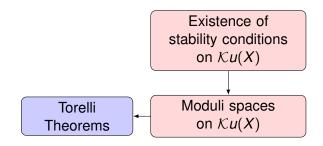
Definition

A **hyperkähler manifold** is a simply connected compact kähler manifold X such that $H^0(X, \Omega_X^2)$ is generated by an everywhere non-degenerate holomorphic 2-form.

There are very few examples (up to deformation):

- 1 K3 surfaces;
- Hilbert schemes of points on K3 surface (denoted by Hilbⁿ(K3));
- 3 Generalized Kummer varieties (from abelian surfaces);
- 4 Two sporadic examples by O'Grady.

A quick overview



A Derived Torelli Theorem for cubic threefolds

Let *X* be a cubic threefold ($\mathbb{K} = \mathbb{C}$).

Theorem 3 (Bernardara-Macrì-Merhotra-S., Yang-Pertusi)

There is an isomorhism (of polarized surfaces)

 $F(X) := \{ \text{lines} \subseteq X \} \cong M_{\sigma}(\mathcal{K}u(X), v),$

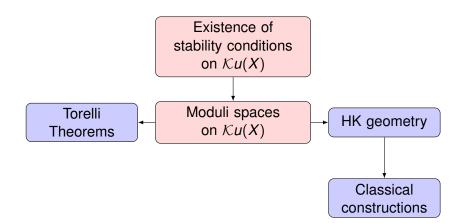
where v is the class of the ideal sheaf of a line.

From this we deduce the following Refined Derived Torelli Theorem:

Theorem 4 (Bernardara-Macrì-Merhotra-S.)

If X_1 and X_2 are cubic threefolds, then $X_1 \cong X_2$ if and only if $\mathcal{K}u(X_1) \cong \mathcal{K}u(X_2)$.

A quick overview



One can make Theorem 2 work relative over a base and get the following striking application:

Theorem 5 (BLMNOPS)

For any pair (a, b) of coprime integers, there is a unirational locally complete 20-dimensional family, over an open subset of the moduli space of cubic fourfolds, of polarized smooth projective irreducible holomorphic symplectic manifolds of dimension 2n + 2, where $n = a^2 - ab + b^2$. The polarization has divisibility 2 and degree either 6n if 3 does not divide n, or $\frac{2}{3}n$ otherwise.

...this solves a long standing problem!

2 Results

Gushel-Mukai fourfolds

Definition

A **Gushel-Mukai fourfold** is a smooth intersection of the cone in \mathbb{P}^{10} over $\operatorname{Gr}(2,5) \subseteq \mathbb{P}^9$ with $\mathbb{P}^8 \subseteq \mathbb{P}^{10}$ and a quadric $Q \subseteq \mathbb{P}^{10}$.

Kuznetsov, Perry: $D^{b}(X)$ has a semiorthogonal decomposition with a componet $\mathcal{K}u(X)$ of K3 type and 4 exceptional objects.

Problem 1

Show that $\mathcal{K}u(X)$ carries stability conditions.

Some progress by Perry-Pertusi-Zhao. This would yield many new geometric results.

Debarre-Voisin fourfolds

Definition

A **Debarre-Voisin fourfold** is a smooth linear section of Gr(3, 10).

Debarre, Voisin, Fonarev, Kuznetsov: $D^{b}(X)$ has a semiorthogonal decomposition with a componet $\mathcal{K}u(X)$ of K3 type and 108 exceptional objects.

Problem 2

Show that $\mathcal{K}u(X)$ carries stability conditions.

More difficult than the previous case!