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Homological algebra

Let X be a cubic hypersurface (i.e. a smooth hypersurface of
degree 3 in P” over an algebraically closed field K with
char(K) # 2) and let H be a hyperplane section:

D°(X) := DP(Coh(X))
Il
( KuX) .  Ox,...,0x((n=3)H) )

Ku(X)

- Exceptional objects:
E e D*(X) : Hom (Ox(iH), E[p]) = 0
’ i=0,...,n—3 VpGZ (Ox(IH»ng(pt)

Kuznetsov component of X



Homological algebra

Keep in mind that the symbol (. ..) stays for a semiorthogonal
decomposition:

m D°(X) is generated by extensions, shifts, direct sums and
summands by the objects in the n — 1 admissible
subcategories;

m There are no Homs from right to left between the 4
subcategories:

© © ©
KuX)  (0x)_ T (Ox(n-9H)
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n = 4: cubic threefolds

The admissible subcategory Ku(X) has a Serre functor Siy(x)
(this is easy!). Moreover, there is an isomorphism of exact
functors

Stox) = 8]

Because of this, Ku(X) is called fractional Calabi-Yau
category of fractional dimension 3.

Remark [N

If X' smooth proj. var., equivalent to the derived
Spox)(—) = (=) ® wx[dim (X)]. category of a smooth and
projective variety.



n = 5: cubic fourfolds

Also in this case, the admissible subcategory Ku(X) has a
Serre functor Sy, (x) with an isomorphism of exact functors

Skux) = [2]-

Hence, Ku(X) is called 2-Calabi-Yau category.

I

Hence Ku(X) could be equivalent to the derived
category either of a K3 or of an abelian surface.

K3 and abelian surfaces can be distinguished by the fact the
former ones do not have odd cohomoloy.




n = 5: cubic fourfolds

Addington-Thomas: Ku(X) comes with an integral
cohomology theory in the following sense (here K = C):

m Consider the Z-module

H*(Ku(X),Z) is deformation invariant. So, as a lattice:

H*(Ku(X),Z) = H*(Ku(Pfaff), Z) = H*(K3,Z) = U* @ Eg(—1)?

Hence Ku(X) is K3-like!



n = 5: cubic fourfolds

m The Hodge decomposition of H*(X, C) induces a weight-2
Hodge structure on H*(Ku(X),Z).

The lattice H*(Ku(X),Z) with the above Hodge structure is the
Mukai lattice of Ku(X) which we denote by H(Ku(X),Z).

If X is very general (i.e. H>?(X,Z) = ZH?), then there is no K3
surface S such that Ku(X) = D°(S)!

Ku(X) is a noncommutative K3 surface.
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Stability conditions: a quick recap

Let us start with a quick recall about Bridgeland stability

conditions.

T =D"C), for C a
smooth projective curve.

m Let T be a triangulated category;

[ =N(C) = H® @ H?

m Let I be a free abelian group of )
finite rank with a surjective map with
v: K(T) —»T. v = (%, 6l

A Bridgeland stability condition on T is a pair o = (A, 2):

12



Stability conditions: a quick recap

x As the heart of a T

bounded ¢-structure on T; A = Coh(C)

mZ: I — Cisagroup
homomorphism Z(v(=)) = —deg + V—Trk.

such that, for any 0 # E € A,
B Z(v(E)) € Ruoe® N1,

H E has a Harder-Narasimhan filtration with respect to

Ao = —Eﬁgg (or +o00);

HE Support property (Kontsevich-Soibelman): wall and

chamber structure with locally finitely many walls.
13



Stability conditions: a quick recap

Warning

The example is somehow misleading: it only works in
dimension 1!

We denote by
Stabr(T) (or Stabr ,(T) or Stab(T))

the set of all stability conditions on T.

Theorem (Bridgeland)

If non-empty, Stabr(T) is a complex manifold of dimension rk(I").
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Existence of stability conditions

Theorem 1 (Bayer-Lahoz-Macri-S., The 4 + Nuer-Perry)

El For any cubic threefold or fourfold X, we have
Stab(Ku(X)) # 0.

A If X is a cubic fourfold (K = C), we can explicitely describe
a connected component Stab' (Ku(X)) of Stab(Cu(X)).

m This result was conjectured by Addington-Thomas,
Kuznetsov and Huybrechts.

m The reason for this conjecure is the wealth of applications
that we will discuss.
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Moduli spaces

The construction of moduli spaces of stable objects in Lu(X):

m Let 0 # v be a primitive class in the numerical
Grothendieck group (when X is a 3-fold) or in
Hag(Ku(X),Z) (when X is a 4-fold);

m Let o € Stab(Ku(X)) (actually in Stab’(KCu(X))) be
v-generic (here it means that o-semistable=c-stable for
objects with Mukai vector v).

Let M, (Ku(X), v) be the moduli space of o-stable objects (in
the heart of o) contained in Cu(X) and with Mukai vector v.

What is the geometry of M, (Ku(X), v)?




Moduli spaces: cubic fourfolds

Theorem 2 (BLMNPS)

Let X be a cubic fourfold (K = C).

B M,(Ku(X),v) is non-empty if and only if v2 +2 > 0.
Moreover, in this case, it is a smooth projective irreducible
holomorphic symplectic manifold of dimension v + 2,
deformation-equivalent to a Hilbert scheme of points on a
K3 surface.

HE If v2 > 0, then there exists a natural Hodge isometry

vt if v2>0

. 42 =
0: H (MU(]CU(X)’ V)’Z) _ {VL/ZV if V2 = 07

where the orthogonal is taken in H(Ku(X), Z).
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Moduli spaces: cubic fourfolds

Definition

A hyperkahler manifold is a simply connected compact kéahler
manifold X such that H%(X, Q%) is generated by an everywhere
non-degenerate holomorphic 2-form.

There are very few examples (up to deformation):
Bl K3 surfaces;

HE Hilbert schemes of points on K3 surface (denoted by
Hilb"(K3));

HE Generalized Kummer varieties (from abelian surfaces);

A Two sporadic examples by O’'Grady.
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A Derived Torelli Theorem for cubic threefolds

Let X be a cubic threefold (K = C).

Theorem 3 (Bernardara-Macri-Merhotra-S., Yang-Pertusi)

There is an isomorhism (of polarized surfaces)

F(X) := {lines C X} = M,(Ku(X), v),
where v is the class of the ideal sheaf of a line.

From this we deduce the following Refined Derived Torelli
Theorem:

Theorem 4 (Bernardara-Macri-Merhotra-S.)

If Xi and X> are cubic threefolds, then X; = X if and only if
Ku(Xq) = Ku(X2).
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Families of HK manifolds

One can make Theorem 2 work relative over a base and get
the following striking application:

Theorem 5 (BLMNOPS)

For any pair (a, b) of coprime integers, there is a unirational
locally complete 20-dimensional family, over an open subset of
the moduli space of cubic fourfolds, of polarized smooth
projective irreducible holomorphic symplectic manifolds of
dimension 2n + 2, where n = a°> — ab + b?. The polarization
has divisibility 2 and degree either 6n if 3 does not divide n, or
2n otherwise.

...this solves a long standing problem!
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Gushel-Mukai fourfolds

Definition
A Gushel-Mukai fourfold is a smooth intersection of the cone
in P19 over Gr(2,5) C P® with P® C P'? and a quadric Q C P'°.

Kuznetsov, Perry: D*(X) has a semiorthogonal decomposition
with a componet Ku(X) of K3 type and 4 exceptional objects.

Problem 1
Show that Ku(X) carries stability conditions.

Some progress by Perry-Pertusi-Zhao. This would yield many
new geometric results.
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Debarre-Voisin fourfolds

Definition
A Debarre-Voisin fourfold is a smooth linear section of
Gr(3,10).

Debarre, Voisin, Fonarev, Kuznetsov: D°(X) has a
semiorthogonal decomposition with a componet u(X) of K3
type and 108 exceptional objects.

Problem 2
Show that Ku(X) carries stability conditions.

More difficult than the previous case!
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