Geometry of Schemes

Academic Year 2016/2017

Exercise Sheet 1

Paolo Stellari

Exercise 1.1 Let \mathcal{B} be a base of open subsets on a topological space X (with this we mean that \mathcal{B} is closed under finite intersections). Let \mathcal{F} and \mathcal{G} be two sheaves (of abelian groups) on X. Suppose that, for any $U \in \mathcal{B}$ there exists a homomorphism $\alpha(U): \mathcal{F}(U) \to \mathcal{G}(U)$ which is compatible with restrictions. Show that this extends in a unique way to a morphism of sheaves $\alpha: \mathcal{F} \to \mathcal{G}$.

Exercise 1.2 Let X be a scheme and let $f \in \mathcal{O}_X(X)$. Show that the association $U \mapsto f|_U \mathcal{O}_X(U)$, for every open subset $U \subseteq X$, defines a sheaf of ideals on X. Show that the support of this sheaf is closed.

Exercise 1.3 Let A be a graded ring and let Z be a reduced closed subscheme of Proj(A). Show that there exists a homogeneous ideal I of A such that $Y \cong Proj(A/I)$.

Contacts: paolo.stellari@unimi.it