Geometry of Schemes

Academic Year 2023/2024

Exercise Sheet

Paolo Stellari

Exercise 1.1 Let $\varphi: A \to B$ be an integral homomorphism of commutative rings. Show that $\operatorname{Spec}(\varphi)$ maps a closed point to a closed point and that the preimage of a closed point is a closed point.

Exercise 1.2 Let \mathcal{B} be a base of open subsets on a topological space X (with this we mean that \mathcal{B} is closed under finite intersections). Let \mathcal{F} and \mathcal{G} be two sheaves (of abelian groups) on X. Suppose that, for any $U \in \mathcal{B}$ there exists a homomorphism $\alpha(U): \mathcal{F}(U) \to \mathcal{G}(U)$ which is compatible with restrictions. Show that this extends in a unique way to a morphism of sheaves $\alpha: \mathcal{F} \to \mathcal{G}$.

Exercise 1.3 Let A be a graded ring and let Z be a reduced closed subscheme of $\operatorname{Proj}(A)$. Show that there exists a homogeneous ideal I of A such that $Z \cong \operatorname{Proj}(A/I)$.

Exercise 1.4 Show that an open subscheme of an algebraic variety over a field is an algebraic variety as well.

Exercise 1.5 Show that an open immersion is of finite type if it is quasi-compact. Show that in a scheme which is of finite type over a field, the set of closed points is dense.

Contacts: paolo.stellari@unimi.it