Defective graphene, not so bad after all..

Rocco Martinazzo

Department of Physical Chemistry and Electrochemistry
Universita’ degli Studi di Milano, Milan, Italy

Universität Potsdam
Dec. 17th 2010
Outline

1. Introduction

2. H atom adsorption energetics
 - Clusters of H atoms

3. Bandgap engineering
 - Superlattices of H atoms and the like
Outline

1. Introduction

2. H atom adsorption energetics
 - Clusters of H atoms

3. Bandgap engineering
 - Superlattices of H atoms and the like
1. Introduction

2. H atom adsorption energetics
 - Clusters of H atoms

3. Bandgap engineering
 - Superlattices of H atoms and the like
Outline

1. Introduction

2. H atom adsorption energetics
 - Clusters of H atoms

3. Bandgap engineering
 - Superlattices of H atoms and the like
Hydrogen is the most abundant element of the Universe

H$_2$ is formed on the surface of dust grain

\[f_{\text{grain}} = \frac{n_{\text{grain}}}{n_H} \sim 10^{-12} \text{ i.e. } \sim 1\% \text{ of ISM mass} \]

Hydrogen-graphite (graphene) is an important model for understanding H$_2$ formation in ISM
Technology

- Hydrogen storage
- Nuclear fusion
- Nanoelectronics, spintronics, nanomagnetism
Outline

1. Introduction

2. H atom adsorption energetics
 - Clusters of H atoms

3. Bandgap engineering
 - Superlattices of H atoms and the like
The need for understanding adsorption

H on Graphite (Graphene) vs metal substrates

- Chemisorption is thermally activated\(^1,2\)
- Substantial lattice reconstruction upon sticking\(^1,2\)
- Diffusion of chemisorbed H atoms does not occur\(^3\)
- Preferential sticking\(^3\)
- Clustering of H atoms\(^3,4,5\)
- Dimer recombination\(^6\)

Single-H adsorption

Substrate electronic structure

..patterned spin-density
Substrate electronic structure

..patterned spin-density
Substrate electronic structure

Properties of \textit{bipartite} lattices

\[H^{TB} = \sum_{\sigma,ij}(t_{ij}a_{i,\sigma}^{\dagger}b_{j,\sigma} + t_{ji}b_{j,\sigma}^{\dagger}a_{i,\sigma}) \]

Electron-hole symmetry

\[b_i \rightarrow -b_i \implies H \rightarrow -H \]

if \(\epsilon_i \) is eigenvalue and
\[c_i^{\dagger} = \sum_i \alpha_i a_i^{\dagger} + \sum_j \beta_j b_j^{\dagger} \]

\(c_i^{\dagger} \) is eigenvector

\[\Downarrow \]

\(-\epsilon_i \) is also eigenvalue and
\[c_i^{\prime\dagger} = \sum_i \alpha_i a_i^{\dagger} - \sum_j \beta_j b_j^{\dagger} \]

\(c_i^{\prime\dagger} \) is eigenvector

\[n_A + n_B - 2n_* \]

\[n_* \]
Properties of \textit{bipartite} lattices

\[H^{TB} = \sum_{\tau,ij} (t_{ij} a^\dagger_{i,\tau} b_{j,\tau} + t_{ji} b^\dagger_{j,\tau} a_{i,\tau}) \]

\textbf{Theorem}

If \(n_A > n_B \) there exist (at least) \(n_I = n_A - n_B \) "midgap states" with vanishing components on \(B \) sites.

\textbf{Proof.}

\[\begin{bmatrix} 0 & T^\dagger \\ T & 0 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \] with \(T_{n_B \times n_A} (n_B > n_B) \)

\[\implies T\alpha = 0 \] has \(n_A - n_B \) solutions
H atom adsorption energetics

Properties of bipartite lattices

\[H_{Hb} = \sum_{\tau,ij} (t_{ij} a_{i,\tau}^{\dagger} b_{j,\tau} + t_{ji} b_{j,\tau}^{\dagger} a_{i,\tau}) + U \sum_i n_{i,\tau} n_{i,-\tau} \]

Theorem

If \(U > 0 \), the ground-state at half-filling has

\[S = |n_A - n_B|/2 = n_I/2 \]

Proof.

...basically, we can apply Hund’s rule to previous result
Midgap states for isolated “defects”

\[\psi(x, y, z) \sim 1/r \]
Dimers

![Graphene Dimer Diagram]

\(E_{\text{bind}} / \text{eV} \) for different configurations of dimers in graphene.
H atom adsorption energetics

Dimers

Dimers

(defse@university of milan)
3-atom clusters, etc.

H atom adsorption energetics

Clustering

A\textsubscript{2}B
Outline

1. Introduction

2. H atom adsorption energetics
 - Clusters of H atoms

3. Bandgap engineering
 - Superlattices of H atoms and the like
Bandgap engineering

Superlattices of H atoms and the like

Basic electronic structure

\[H \approx -t \sum_{i,\tau} \sum_j a_{\tau i}^\dagger(R_i)b_{\tau}(R_i + \delta_j) + c.c. \]

\[a_{\tau i} = \frac{1}{\sqrt{N}} \sum_k e^{-ikR_i} a_{\tau}(k) \]

\[H = -t \sum_{k,\tau} f(k)a_{\tau}(k)b_{\tau}(k) + c.c. \]

\[H = -t \sum_{k,\tau} \begin{bmatrix} a_{\tau}(k), b_{\tau}(k) \end{bmatrix} \begin{bmatrix} 0 & f(k) \\ f^*(k) & 0 \end{bmatrix} \begin{bmatrix} a_{\tau}(k) \\ b_{\tau}(k) \end{bmatrix} \]
Technology
Device related properties

- **Thickness**: thinnest gate-controlled regions in transistors
- **Mobility**: high-mobility carriers
- **High-field transport**: high saturation velocities
- **Band-gap**: high on-off ratios are not achievable without a bandgap
Device related properties

- **Thickness**: thinnest gate-controlled regions in transistors
- **Mobility**: high-mobility carriers
- **High-field transport**: high saturation velocities
- **Band-gap**: high on-off ratios are not achievable without a bandgap
Logic applications

\[n_S = \varepsilon_0 \varepsilon \frac{V_g}{t e} \]

P. Avouris et al., Nat. Mat., 605, 2, (2007)

CNT-FET with ordinary and wrapped around gates
Logic applications

\[I - V_g \text{ characteristics of a CNT-FET} \]

\[I = I(V_g, V_{ds}) \text{ GNR-FET} \]
Band-gap opening

- **Electron confinement**: nanoribbons, (nanotubes), etc.
- **Symmetry breaking**: epitaxial growth, deposition, etc.
- **Symmetry preserving**: “supergraphenes”
Band-gap opening

- **Electron confinement**: nanoribbons, (nanotubes), etc.
- **Symmetry breaking**: epitaxial growth, deposition, etc.
- **Symmetry preserving**: “supergraphenes”
Band-gap opening

- **Electron confinement**: nanoribbons, (nanotubes), etc.
- **Symmetry breaking**: epitaxial growth, deposition, etc.
- **Symmetry preserving**: “supergraphenes”
e-h symmetry

\[H_{\text{TB}} = \sum_{\sigma,ij} (t_{ij} a_{i,\sigma}^\dagger b_{j,\sigma} + t_{ji} b_{j,\sigma}^\dagger a_{i,\sigma}) \]

Electron-hole symmetry

\[b_i \rightarrow -b_i \implies h \rightarrow -h \]

if \(\epsilon_i \) is eigenvalue and
\[c_i^\dagger = \sum_i \alpha_i a_i^\dagger + \sum_j \beta_j b_j^\dagger \] is eigenvector

\[\downarrow \]

\(-\epsilon_i \) is also eigenvalue and
\[c_i^{\prime \dagger} = \sum_i \alpha_i a_i^\dagger - \sum_j \beta_j b_j^\dagger \] is eigenvector

\[\begin{align*}
 n_A + n_B - 2n_* \\
 n_*
\end{align*} \]
Spatial symmetry

\[r\text{-space} \]

\[k\text{-space} \]

\[G_0 = D_{6h} \]

\[G(k) = \{g \in G_0 | gk = k + G\} \Rightarrow G(K) = D_{3h} \]
Spatial symmetry

\[G_0 = D_{6h} \]

\[G(k) = \{ g \in G_0 | gk = k + G \} \Rightarrow G(K) = D_{3h} \]
Spatial symmetry

\[|A_k\rangle = \frac{1}{\sqrt{N_{BK}}} \sum_{R \in BK} e^{-i k R} |A_R\rangle \]

\[|B_k\rangle = \frac{1}{\sqrt{N_{BK}}} \sum_{R \in BK} e^{-i k R} |B_R\rangle \]

\[\langle r | A_R \rangle = \phi_{pZ}(r - R) \]

for \(k = K \)

\{ |A_k\rangle, |B_k\rangle \} span the \(E'' \) irrep of \(D_{3h} \)
Spatial symmetry

\[|A_k\rangle = \frac{1}{\sqrt{N_{BK}}} \sum_{R \in BK} e^{-i k R} |A_R\rangle \]

\[|B_k\rangle = \frac{1}{\sqrt{N_{BK}}} \sum_{R \in BK} e^{-i k R} |B_R\rangle \]

\[\langle r | A_R \rangle = \phi_{pZ} (r - R) \]

for \(k = K \)

\{ |A_k\rangle, |B_k\rangle \} span the \(E'' \) irrep of \(D_{3h} \)
Spatial and e-h symmetry

Lemma

e-h symmetry holds within each kind of symmetry species (A, E, ..)

Theorem

For any bipartite lattice at half-filling, if the number of E irreps is odd at a special point, there is a degeneracy at the Fermi level, i.e. \(E_{\text{gap}} = 0 \)

Proof.

Use electron-hole symmetry
A simple recipe

- Consider nxn graphene superlattices (i.e. $G = D_{6h}$): degeneracy is expected at Γ, K
- Introduce p_Z vacancies while preserving point symmetry
- Check whether it is possible to turn the number of E irreps to be even both at Γ and at K
Counting the number of E irreps

\[n = 4 \]

\[\Gamma: 2A + 2E \quad \Gamma: 2A \quad K: 2A + 2E \quad K: E \]

\[\Rightarrow n = 3m + 1, 3m + 2, \ m \in \mathbb{N} \]
An example

$(14, 0)$-honeycomb

p_z vacancies

2.0 nm
Band-gap opening.

Tight-binding

\[\epsilon_{\text{gap}}(K) \sim 2t \sqrt{1.683/n} \]

DFT

..and Dirac cones

..not only: as degeneracy may still occur at $\epsilon \neq \epsilon_F$
new Dirac points are expected

graphene (4x4) (4,0)–honeycomb
..and Dirac cones

..not only: as degeneracy may still occur at $\epsilon \neq \epsilon_F$
new Dirac points are expected
Antidot superlattices

...the same holds for honeycomb antidots
Antidot superlattices

...the same holds for honeycomb antidots

..novel transistor?
Summary

Thermodynamically and kinetically favoured H clusters minimize sublattice imbalance.

Defects can be used to open a gap without breaking the substrate symmetry.
Acknowledgements

University of Milan

Gian Franco Tantardini

Simone Casolo

Matteo Bonfanti

Chemical Dynamics Theory Group
http://users.unimi.it/cdtg

University of Oslo

Ole Martin Lovvik

ISTM

Alessandro Ponti

+-x:

C.I.L.E.A. Supercomputing Center
Notur
I.S.T.M.
Acknowledgements

Thank you for your attention!