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1 Introduction
We consider here a system with N electrons subjected to some external potential. The
Hamiltonian of this system takes the following general form

H = T + Vee + Vext

where

T =

N∑
i=1

p2i
2me

is the kinetic energy operator,

Vee =
1

2

N∑
i,j ̸=i

1

4πϵ0

e2

rij

(rij = ∥ri − rj∥) is the potential term arising from the electron-electron (repulsive) inter-
action and

Vext =

N∑
i=1

v(ri)

is a scalar potential describing an “external field” acting (in the same way) on each electron
of the system. In the “molecular Hamiltonian” the external potential takes the form

v(r) = − 1

4πϵ0

M∑
α=1

Zαe
2

∥Rα − r∥

where the sum runs over nuclear labels and Rα specify the position of the nuclei.
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The electronic system Hamiltonian is completely specified once N and v are given. We
may emphasize this fact by writing

H ≡ HN
v

Electrons, like any other sets of identical particles, are indistinguishable from each other
and this implies that for any state Ψ

|Ψ(x1,x2, ...,xN )|2 = |Ψ(x2,x1, ...,xN )|2 = ...

holds. Here, xi = (riσi) is a 4-dimensional vector specifying the position and the spin of
the ith electron, i.e., the normalization condition∫

|Ψ(x1,x2, ...,xN )|2 dNΓ = 1

means
∫
dNΓ{..} =

∫
d3r1d

3r2...d
3rN

∑
σ1,σ2,...,σN

{..} where σi takes only two values spec-
ifying, e.g., the projection of the electron spin along a given axis1. Since electrons are
fermions,

Ψ(x1,x2..xi..xj ..xN ) = −Ψ(x1,x2..xj ..xi..xN )

The wave function Ψ describes a particular state of the N -electron system. In coordinate
representation it is a very complicated, complex-valued function depending on 4N variables
which allows us to determine any system property (for the given state). Indeed, for any
observable A we have:

⟨A⟩ = ⟨Ψ|A |Ψ⟩ =
∫

Ψ∗(x1...xN )AΨ(x1...xN )dNΓ

where A is the quantum-mechanical operator corresponding to the observable A. Here,
since electrons are equal to each other in any respect, for A to be experimentally relevant
it must be a symmetric function of the electron coordinates.

Usually we are interested in one-, two- or few electrons “properties”. One-electron oper-
ators are of the form

A =

N∑
i=1

ai

where ai acts on the ith electron only. Two-electron operators are of the form

A =
1

2

N∑
i,j ̸=i

aij

Thus, for example, in our general Hamiltonian T and Vext are one-electron operators while
Vee is a two electron operator. m-electron operators are defined in a analogous way.

We now show that in order to compute 1-, 2- or few electron properties Ψ is much more
than we need. Let us first consider a one-electron operator and its expectation value

1More precisely, the Schrödinger-representation wavefunction Ψ(x1,x2, ...,xN ) stands for

Ψ(x1,x2, ...,xN ) = (⟨r1| ⟨σ1| ⊗ ⟨r2| ⟨σ2| ..⊗ ⟨rN | ⟨σN |) |Ψ⟩

where |σi⟩ is a spin state for the ith electron, e.g. |−1⟩ = |β⟩ and |+1⟩ = |α⟩ for the common choice of
states with definite spin projection ∓ℏ/2 on the z axis.
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⟨A⟩ =
N∑
i=1

∫
Ψ∗(x1x2...xi...xN )aiΨ(x1x2...xi...xN )dNΓ

= N

∫
Ψ∗(x1x2...xi...xN )a1Ψ(x1x2...xi...xN )dNΓ

where the second line follows from the symmetry properties of the wave function. Now∫
Ψ∗(x1..xN )a1Ψ(x1..xN )dNΓ =

∫
a1 [Ψ(x1..xN )Ψ∗(x′

1..xN )]

∣∣∣∣
x′
1=x1

dNΓ

where x′
1 = x1 has to be set after a acted on the quantity between brackets. Hence,

N

∫
a1 [Ψ(x1x2...xN )Ψ∗(x′

1x2...xN )]
∣∣
x′
1=x1

dx1d
N−1Γ =

∫
a1γ(x1|x′

1)

∣∣∣∣
x′
1=x1

d4x1

where
∫
d4x{..} =

∑
σ

∫
d3r{..} and

γ(x|x′) = N

∫
Ψ(xx2...xN )Ψ∗(x′x2...xN ) dN−1Γ

is known as first-order reduced density matrix2. Note that

n(r) =
∑
σ

γ(rσ|rσ) = N

∫
dN−1Γ |Ψ(xx2...xN )|2

is the (number) electron density, correctly normalized to the number of particles∫
d3r n(r) = N

that is, the expectation value of the one-electron operator, the “number-density operator”3

n̂(r) =

N∑
i=1

δ(r− r̂i)

which is the quantum analogue of the classical number density for a set of particles located
at r1, r2, ..rN . Indeed, using the above results, a simple calculation shows that

⟨Ψ|n̂(r)|Ψ⟩ =
∑
σ

∫
d3r1δ(r− r1)γ(x1|x1) =

∑
σ

γ(rσ|rσ)

2This is of course the coordinate representation of an operator, the first-order reduced density operator,
γ̂ = NTrN−1 |Ψ⟩ ⟨Ψ|, where Trq denotes the trace over q electron coordinates and |Ψ⟩ ⟨Ψ| is the N -th order
density operator for a pure state. Note that the term “density operator” takes slightly different meaning
depending on the context (see below).

3There is some formal advantage in considering such number-density operator and its dynamics. For
instance, when particle number is conserved a continuity equation is easily derived and a (number) current-
density operator identified, to within a transverse component. For our purposes it may be worth noticing
that it allows us to re-write any local monoelectronic operator (e.g. Vext above) in an illuminating form

Vext =
∑
i

v(r̂i) =
∑
i

∫
d3rδ(r− r̂i)v(r) =

∫
d3rv(r)n̂(r)
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In this perspective, γ is an “extended” density which allows us to compute any one-electron
property, no matter whether the target operator is local or not4. Similarly, if A is a two-
electron operator we have

⟨A⟩ =
∑
i,j≥i

⟨Ψ|aij |Ψ⟩ =
N(N − 1)

2

∫
a12γ

(2)(x1x2|x′
1x

′
2)

∣∣∣∣
(x′

1,x
′
2)=(x1,x2)

d4x1d
4x2

where

γ(2) (x1x2|x′
1x

′
2) =

N(N − 1)

2

∫
Ψ(x1,x2, ...,xN )Ψ∗(x′

1,x
′
2, ...,xN ) dN−2Γ

is the second-order reduced density matrix. In general, for an m-electron operator
A(m),

⟨A(m)⟩ =
∫
a12..mγ

(m)(x1x2..xm|x′
1x

′
2..x

′
m)|x′

i=xi
d4x1..dxm

where5

γ(m)(x1...,xm|x′
1...,x

′
m) =

=

(
N
m

)∫
Ψ(x1...xm,xm+1...,xN )Ψ∗(x′

1...,x
′
m, xm+1...,xN ) dN−mΓ

is the “mth-order” reduced density matrix. Note, that once an mth order reduced density
matrix is known, any density matrix of order n < m can easily be obtained by properly
integrating the previously known density matrix,

γ(m−1)(x1..xm−1|x′
1..x

′
m−1) =

m

N −m+ 1

∫
d4xmγ

(m)(x1..xm−1xm|x′
1..x

′
m−1xm)

Since we are only interested in 1-, 2-, or few electron properties, the above arguments
suggest that we might replace the complicated function Ψ with some simpler function.
In particular, our general hamiltonian contains only 1- and 2- electron operators: if we
were able to compute γ(2) we could solve any electronic problem, with as many electron
as we like! This is the essence of the density matrix theory of the electronic problem.
Unfortunately, such a theory has enormous difficulties and cannot be used at present for
all but a few model problems. The reason is that is not yet clear how to select a generic
function ρ(x1x2|x′

1x
′
2) in such a way that it represents a second order density matrix of

some electron system.
However, a powerful theory based on the simpler electronic density n(r) turns out to be

possible. As we shall see in the following it has the only problem that, in practice, it cannot
be considered as truly ab initio. This Density Functional Theory (DFT) is possible
because of a number of facts.

1. We are usually interested in stationary states, that is we replace the Time-Dependent
Schrödinger Equation with the equation for stationary states

HΨ = EΨ

4Note the difference: γ is state-specific and general for mono-electronic properties, n̂ is universal and
useful for local mono-electronic properties only.

5The normalization is chosen in such a way that the expectation value of an m-electron operator does
not require extra factor. Full integration of the r.h.s. of this definition gives precisely the number of distinct
m-tuples in the set of N electrons.
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This is because we are only interested in situations in which all electrons are bound
to a given “charged (stationary) core”. Note that for such states

d ⟨Ψ|A|Ψ⟩
dt

= 0

for any (stationary, i.e. not explicitly time dependent) observable A.

2. We are usually interested in the ground-state Ψ0, i.e., the state of minimum en-
ergy. This is so because in molecules electronic energy levels are well-separated in
energy, and at normal temperature only the ground-state is populated. Actually,
this condition cannot be satisfied in metallic systems where excited electronic states
with vanishing small excitation energy can be accessed even at very low temperatures
(“electron-hole excitations”).

Stationarity allows us to use the variational principle

δ

(
⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩

)
= 0

or simply

⟨δΨ|H|Ψ⟩ = 0

if norm-conservation is enforced6. In addition, the ground state has the minimum energy
property

E[Φ] = ⟨Φ|H|Φ⟩ ≥ E0 = ⟨Ψ0|H|Ψ0⟩

which holds for any “trial”, normalized wavefunction Φ.

Functionals and functional derivatives.
The map

H ∋ Φ→ E[Φ] =
⟨Φ|H|Φ⟩
⟨Φ|Φ⟩

∈ R

is called energy functional and the result

E[Φ] ≥ E0

is called wave function variational principle. In general, given a space of functions E , a
map

E ∋ Φ→ F [Φ] ∈ R (or C)

is called a functional. Thus, for example,

EH [n] =
1

2

∫
d3r1d

3r2
n(r1)n(r2)

∥r1 − r2∥

TTF [n] = A

∫
d3rn

5
3 (r)

6We generally use complex variations, meaning that for any variation |δΨ⟩ also i |δΨ⟩ is an allowed
variation.
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are functionals of the electron density. The functional derivative δF/δn is defined by
the equation

δF =

∫
d3r

δF

δn
(r)δn(r)

where δF = F [n+ δn] − F [n]. In other words, δF/δn is a function of r which, once
multiplied by δn and integrated over r, gives the variation of F around the given n.
Since δF/δn is also, in general, a functional of n one usually writes

δF

δn
=
δF

δn
(r, [n]) or

δF

δn
=

δF

δn(r)
[n]

More formally, let us consider the following ordinary function R ∋ λ → F [n+ λδn]
where n and δn are two functions of the domain7 E . The “variation” of F is defined
with the help of the standard derivative with respect to λ, according to

δF [n, δn] =
d

dλ
F [n+ λδn]

∣∣∣∣
λ=0

This “variation” (the “differential” of F ) is a functional of both n and δn. If it is linear
in δn, that is

δF [n, δn] = ∆[n]δn

where ∆[n] is a linear operator from (the tangent space of) E to R(C), then we have
linearized the map F and found a linear map ∆ that approximates F , in a certain
sense, in the neighborhoods of n. One usually write

∆[n]Φ =

∫
d3r

δF

δn
(r)Φ(r)

and identifies δF/δn with the integral representation of the operator ∆[n]. Thus, for
example,

TTF [n] = A

∫
d3rn

5
3 (r)

δTTF [n, δn] = A

∫
d3r

5

3
n

2
3 (r)δn(r)

i.e., δTTF/δn(r) = A 5
3n

2
3 (r). With the second (formally more correct) definition

δTTF [n, δn] =
d

dλ
A

∫
dr(n(r) + λδn(r))

5
3

∣∣∣∣
λ=0

=

= A

∫
d3r

5

3
(n(r) + λδn(r))

2
3 δn(r)

∣∣∣∣
λ=0

= A

∫
d3r

5

3
n

2
3 (r)δn(r)

For EH we have

δEH [n, δn] =
1

2

∫
d3r1d

3r2
δn(r1)n(r2) + n(r1)δn(r2)

∥r1 − r2∥
=

=
1

2

∫
d3r1d

3r2
n(r2)

∥r1 − r2∥
δn(r1) +

1

2

∫
d3r2d

3r1

∫
n(r1)

∥r1 − r2∥
δn(r2)

=

∫
d3r

δEH

δn
(r)δn(r)

with δEH/δn(r) =
∫
d3r n(r′)/ ∥r− r′∥.
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Since we are only interested in the ground-state Ψ of our N -electron system we may write

v, N → ΨN
v → X = X [v,N ]

where the ΨN
v is a functional of v (and a function of N) and X is any ground-state property

of the system. The above relationship means that once N is fixed any ground-state property
is a functional of v,

v → X = X [v]

The above relation holds thanks to the chain of relationships

v → Ψ [v]

Ψ→ X [Ψ]

The only assumption we need is that the ground-state is non degenerate, in such a way
that the potential uniquely determines the ground-state function (apart from an irrelevant
phase factor).

2 Density Functional Theory
The beauty and power of the so-called Density Functional Theory relies on two very simple
theorems, known as Hohenberg-Kohn theorems, whose results can be summarized as
follows

In studying ground-state electronic properties one can replace the ground-state electronic
wave function Ψ(x1, ...,xN ) with the simpler electron density n(r). In other words one
can use the electron density as fundamental variable: the ground-state wave function (and
therefore any ground-state property) is a functional of the electron density, Ψ = Ψ [n].

These properties follow from two very simple theorems.

Theorem I The density n uniquely determines v, that is v = v [n] or, in other words, for
each electron density n there exists one and only one potential v (mathematically,
∀n∃! v) such that n is its ground-state density.

Proof. We use the reductio ad absurdum procedure first used by Hohenberg and Kohn.
Suppose there exist two potentials v1, v2 whose ground-state density is n, i.e

v1 → Hv1 → Ψ1 → n

v2 → Hv2 → Ψ2 → n

and consider
Hv1 = T + Vee + V ext

1 = U + V ext
1

Hv2 = T + Vee + V ext
2 = U + V ext

2

where

V ext
1 =

N∑
i=1

v
(i)
1 V ext

2 =

N∑
i=1

v
(i)
2
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Here U is the “internal energy operator”, U = T + Vee. It is a “universal operator”,
meaning that it is the same for any N -electron system. We have (E[Φ] ≥ E0)

⟨Ψ2|Hv1 |Ψ2⟩ = ⟨Ψ2|U |Ψ2⟩+
∫
drv1(r)n(r) >

> ⟨Ψ1|Hv1 |Ψ1⟩ ≡ ⟨Ψ1|U |Ψ1⟩+
∫
drv1(r)n(r)

i.e.
⟨Ψ2|U |Ψ2⟩ > ⟨Ψ1|U |Ψ1⟩

By the same token, from

⟨Ψ1|Hv2 |Ψ1⟩ > ⟨Ψ2|Hv2 |Ψ2⟩

it follows
⟨Ψ1|U |Ψ1⟩ > ⟨Ψ2|U |Ψ2⟩

which is clearly absurd.

Note that we have implicitly assumed that Ψ is uniquely determined by v, which is only
possible if the ground-state is not degenerate (as it almost always happens). Furthermore,
il v1 and v2 give accidentally the same Ψ (e.g. because v1 = v2 + c) in any case Ψ is still
uniquely given by n.

Note. To be precise, n is a function with the following properties,

n(r) ≥ 0

∫
d3rn(r) = N n← Ψv ← v

Here the last condition means that n must be an electronic density derivable from a
ground state wavefunction Ψv for some external potential v. Densities of this kind
are called v-representable.

The above theorem makes use of (i) the non-degenerate nature of the ground-state, and
(ii) the possibility to identify the class of “v-representable” densities. We will lift these
two assumptions with a second, more general formulation. Before doing this, however, let
us state the second Hohenberg-Kohn theorem, which proves to be extremely useful for the
application of the theory.

Theorem II For any given external potential v a density variational principle can be
formulated, i.e. there exist a functional, called “energy functional ” Ev [n] such that

Ev [n] ≥ Ev
0

where E0 is the ground-state energy. The equality sign holds if and only if n is the
ground-state density.

Proof. Let us consider v fixed. Then for any Φ giving the density n we may write

⟨Φ|Hv|Φ⟩ = ⟨Φ|U |Φ⟩+
∫
d3rv(r)n(r)

Thanks to theorem I we can now focus on

Φ = Ψ [n]

8



where Ψ is the ground-state wavefunction for some unspecified potential v′ uniquely
determined by n. Then the quantity

Ev [n] = ⟨Ψ[n]|Hv|Ψ[n]⟩

is a functional of the electron density and we know that

Ev [n] ≥ Ev
0

the equality being satisfied by the ground-state density n of our problem only (since
in that case v′ = v is our fixed external potential).

Please note that we have used again the v-representability property. Note also that

Ev [n] = U [n] +

∫
d3rv(r)n(r)

and this functional can be minimized subjected to the constraint

N =

∫
d3rn(r)

When employing Langrange’s mulitpliers8 the stationary condition reads as

δ

(
Ev [n]− µ

(∫
d3rn (r)−N

))
= 0

where µ is the Lagrange multiplier related to the above normalization constraint, hence

δU [n] +

∫
d3rv(r)δn(r)− µ

∫
d3rδn(r) = 0

and we obtain Euler’s equation

δU

δn
(r) + v(r) = µ

In principle, knowing U we should solve this equation for n(n = nµ) and µ has to be
adjusted in order to satisfy the normalization constraint, i.e.

∫
nµ(r)d

3r = N . In practice,
U is an unknown functional and this means that it must be approximated in some way. This
explains why the theory is not ab-initio, though it comes from first-principles.

Lagrange multipliers and constrained minimization
Suppose we have a function f = f(x1, x2) to be minimized. In the absence of constraints
we use

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 = 0⇒ ∂f

∂x1
=

∂f

∂x2
= 0

since dx1, dx2 are arbitrary (i.e., one can take for example dx2 = 0). If the function f
has to be minimized with the constraint

g(x1, x2) = 0

we can no longer consider dx1 and dx2 arbitrary. Rather, we have

dg =
∂g

∂x1
dx1 +

∂g

∂x2
dx2 = 0

8It may be worth noticing that application of the technique requires Ev [n] to be extended to non-integer
electronic systems (densities that integrate to non-integer number of electrons).
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This means that the vector dx = (dx1, dx2)
t must be orthogonal to the vector g =

( ∂g
∂x1

, ∂g
∂x2

)t, i.e., g · dx = 0. The stationary condition then reads

df = f · dx = 0 ∀ dx ∈ g⊥

Here g⊥ is the “orthogonal complement” of g, that is the (linear) space of vectors
orthogonal to g, and f = ( ∂f

∂x1
, ∂f

∂x2
)t is the gradient vector. It follows

f ∈ dx⊥ = g⊥⊥ = V {g}

where V {g} is the space spanned by g, V = {u such that u = λg, with λ ∈ R(C)}, or
also

f − λg = 0

This equation has to be solved in conjunction with the constraint g(x) = 0, which
determines the value of the parameter λ, the so-called Lagrange multiplier. Note that
the above equation is equivalent to the constraint-free stationarity condition

d(f − λg) = 0

of the Lagrange function Lλ = f − λg. Analogous relations hold for functions of more
than two variables, in the presence of a number of constraints.

Before considering the problem of how determining U (at least approximately) let us
consider an alternative derivation of Theorems I and II. This is due to Levy and has the
merit of removing some restrictions. From the wave function variational principle we have

Ev
0 = min

Ψ
⟨Ψ|Hv|Ψ⟩

where minimization is over all possible normalized states. We can separate the minimization
in two steps by “grouping” wavefunctions which give the same density

min
Ψ
≡ min

n
min
Ψ→n

where Ψ→ n means a Ψ which gives the density n. Now, let us consider

min
Ψ→n

⟨Ψ|Hv|Ψ⟩ = min
Ψ→n

⟨Ψ|U |Ψ⟩+
∫
d3rn(r)v(r)

This is a well-defined functional of n,

Ev [n] = U [n] +

∫
d3rn(r)v(r)

in which the first term,
U [n] = min

Ψ→n
⟨Ψ|U |Ψ⟩

extends the previous HK internal energy functional to non-v-representable densities, pro-
vided they are derived from a wavefunction9. We also have

Ev
0 = min

n
Ev [n]

9This is known as “Levy-Lieb” extension, denoted ULL[n]. A further extension due to Lieb, UL[n] adds
some desirable mathematical properties (e.g. convexity) and is usually preferred.
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which means that Ev [n] is minimum when n is the ground-state density. It follows that
the ground-state density satisfies the following “stationary condition” (Euler’s equation)10

δU

δn
(r) + v(r) = µ

where µ is the Lagrange multiplier associated with the constraint
∫
drn(r) = N . This equa-

tion tells us that v is uniquely determined by n, or by one of the ground-state densities if the
ground-state is degenerate. We therefore have removed the constraint of a non degenerate
ground-state. We also note that minimization of Ev is performed over all n which come
from a wavefunction: it is no longer necessary that Ψ is a ground-state wavefunction for
some potential. Densities satisfying

n(r) ≥ 0

∫
d3rn(r) = n n← Ψ

are calledN−representable, a condition which is clearly weaker than the v−representability.
N -representability is satisfied by any “reasonable” density: it can be shown that n is N -
representable if and only if11

n(r) ≥ 0

∫
n(r)d3r = n

∫
∥∇n

1
2 ∥2d3r <∞

Note however that the fact that v is uniquely determined by n does not imply, in general,
that any ground-state property is a functional of n. For this it is yet necessary that the
ground-state is non-degenerate, since degenerate ground-state wavefunctions gives different
expectation values and may yet correspond to the same electron density12 (e.g., in a non-
interacting world Li has a four-fold degenerate ground-state, with configurations (1s2, 2s),
(1s2, 2p0) and (1s2, 2p±); the latter two gives rise to the same electron density).

3 The Kohn-Sham approach
The energy density functional,

Ev [n] = min
Ψ→n

⟨Ψ|U |Ψ⟩+
∫
d3rn(r)v(r)

= U [n] +

∫
d3rn(r)v(r)

is quite hard to approximate because of the presence of the term

U [n] = min
Ψ→n

⟨Ψ|T + Vee|Ψ⟩

which includes both kinetic and electronic repulsion terms. Let us then consider a different
form of this term.

Consider an alternative world, which we call the “Kohn-Sham world”, where electrons
do not interact with each other. In this world

UKS [n] ≡ TKS [n] = min
Ψ→n

⟨Ψ|T |Ψ⟩

10As above, application of the Lagrange’s method requires Ev [n] to be extended to non-integer electronic
systems (denisities that integrate to non-integer number of electrons).

11See Parr&Yang, “Density Functional Theory of Atoms and Molecules”, p. 55
12See Dreizler & Gross, “Density Functional Theory - An approach to the quantum many-body problem”.
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where the minimum has to be searched among those independent N -electron wavefunctions
that gives the density n, i.e., Slater determinants

ΨKS =
1√
N

∣∣ϕKS
1 ϕKS

2 ...ϕKS
N

∣∣
built with simple spin-orbitals13 ϕKS

i (x) = ψi(r)χi(σ)

n(r) =

occ∑
i

∣∣ψKS
i (r)

∣∣2
For any density n there exist a potential vKS(r) in which n is the ground-state density

δTKS

δn
(r) + vKS(r) = µ

and such potential also determines the orbitals(
p2

2me
+ vKS(r)

)
ψKS
i (r) = ϵiψ

KS
i (r)

For the above stationary condition in the Kohn-Sham world to be equivalent to

δU

δn
(r) + v(r) = µ

(we absorb any possible difference between µ
′
and µ in v(r)) we have to set

vKS(r) =
δU

δn
(r)− δTKS

δn
(r) + v(r)

In this expression, U comes as the sum of a kinetic functional, the trivial part of the
electron-electron interaction functional (the Hartree energy functional) and an “exchange-
correlation” functional ∆Vee

U [n] = T [n] + EH[n] + ∆Vee[n]

and thus, absorbing the (reasonably small) difference T [n] − TKS[n] into the working “ex-
change and correlation” energy functional14

Exc[n] := U [n]− TKS[n]− EH[n] = T [n]− TKS[n] + ∆Vee[n]

we arrive at

vKS(r) = v(r) +
δEH

δn
(r) +

δExc

δn
(r)

where v(r) is the external potential, the second term on the r.h.s. is the Hartree potential
vH(r) and the third one is the exchange-correlation potential vxc(r). Therefore, one
can solve the Kohn-Sham equation for the orbitals {ψKS

i, }{
p2

2me
+ v(r) + vH(r) + vxc(r)

}
ψKS
i (r) = ϵiψ

KS
i (r)

13We use i to label the spin-orbitals, meaning (see below), that the same spatial orbital can be doubly
occupied.

14Note that it has both a kinetic and a potential contribution.
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and the ground-state density

nout(r) =

occ∑
i

∣∣ψKS
i (r)

∣∣2
until self-consistency is reached, i.e. until the Kohn-Sham density nout above matches the
density n used to build up the Kohn-Sham Hamiltonian. Once done, the total, ground-state
energy is given by

Ev = TKS[n0] + vH[n0] + Exc[n0] +

∫
d3rn0(r)v(r)

=

occ∑
i

⟨ψi|T |ψi⟩+ vH [n0] + Exc [n0] +

∫
d3rn0(r)v(r)

=

occ∑
i

ϵi − EH [n0] + Exc [n0]−
∫
d3rn0(r)vxc(r)

where n0 is the self-consistent solution of the Kohn-Sham equation. This is the popular
Kohn-Sham method: the only problem left is now to approximate Exc [n].

Note that from a computational point of view the method is almost equivalent to the
Hartree-Fock method. This, however, does not means that the ground-state wavefunction is
a Slater determinant! The latter is the ground-state wave function of a fictitious independent
electron problem with potential vKS. Orbitals appear in the theory only as a tool to
represent the ground-state density, and to write down an exact expression for the kinetic
energy functional (or, better, to its most important part).

Example
We show here how to devise approximate functionals, focusing on the exchange part
of the exchange-correlation functional. If we consider a uniform electron gas in the
Hartree-Fock approximation the exchange energy (per unit volume) can be easily com-
puted for any value of the density n, ϵHF

ex = ϵHF
ex (n), and thus an approximate exchange

functional could be written as

Eex =

∫
d3rϵHF

ex (n(r))

This is the Local Density Approximation to the exchange functional, also known
as Slater exchange (J.C. Slater, Phys. Rev. B, 81 (1951) 385). The calculation is
straightforward if we remember that in Hartree-Fock theory the exchange operator
takes the form

J(x|x′) =
γ(x|x′)

||r− r′||
where the first-order density matrix reads as

γ(x|x′) =
∑
v

ϕv(r)ϕ
∗
v(r

′)

For a uniform electron gas, upon using ν = (k, σ),

ϕv(x) ≡ ϕk,σ′(x) =
1√
V
eikrδσσ′

13



where the set of k−vectors span the Fermi sphere

N = 2
∑
k

1 =
2

∆k

∫
k≤kF

d3k =
8

3∆k
πk2F

∆k = (2π)3/V being the volume of k-space “occupied” by each k-vector. That is

3π2n = k3F

is the relation linking the Fermi momentum to the electron gas density n. Notice that
one obtains similarly the energy (per unit volume) of the free-electron gas, i.e., the
quantity defining the Thomas-Fermi functional,

E = 2
∑
k

ℏ2k2

2me
=

2

∆k

ℏ2

2me

∫
k≤kF

d3kk2 ≡ V ℏ2

10π2me
k5F

which then follows as

ϵTF[n] =
E

V
=

3 3
√
9π4/3ℏ2

10me
n5/3

For our exchange functional we have

γαα(r|r′) =
∑
k

ϕαk(r)ϕ
α
k(r

′) =
1

∆kV

∫
k≤kF

d3keik(r−r′)

i.e., after a simple integration,

γαα(r|r′) ≡ f(ξF ) =
3n

2

sin(ξF )− ξF cos(ξF )

ξ3F

where ξF = kF∆r with ∆r = ||r − r′||. Notice that f → n/2 as ∆r → 0, as it should
be since f in such limit represents the density of the α electrons (similarly for the β
species). Hence,

Jαα(r|r′) = Jββ(r|r′) =
f(kF∆r)

∆r

The exchange energy is given by

Eex = −1

2

∑
ν

⟨ν|J |ν⟩ ≡ −
∑
k

⟨k|Jαα|k⟩

where for each k

⟨k|Jαα|k⟩ =
1

V

∫
d3r1d

3r2Jαα(r1|r2)eik(r2−r1)

≡ 1

V

∫
d3r1d

3r2e
ik(r2−r1)

f(kF ||r2 − r1||)
||r2 − r1||

The integral can be simplified by introducing the relative and the center of mass coor-
dinates (a transformation with unit Jacobian),

r = r2 − r1

R =
r1 + r2

2
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namely

⟨k|Jαα|k⟩ =
∫
d3reikr

f(kF r)

r

Summing over k we obtain

Eex = −
∑
k

⟨k|Jαα|k⟩ = −
1

∆k

∫
d3r

f(kF r)

r

∫
k≤kF

d3keikr = −V
∫
d3r

f(kF r)
2

r

and thus, introducing ξ = kF r,

Eex = − V

k2F

9n2

4

∫
d3ξ

[sin(ξ)− ξ cos(ξ)]2

ξ7

i.e.,

ϵ =
Eex

V
= −C ′k4F = −Cn4/3

where C is a (positive) numerical coefficient [the integral is well defined, since for ξ → 0
we have sin ξ − ξ cos ξ → ξ3/3].
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