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Introduction

Discrete Variable Representation (DVR) methods were introduced long ago [3,
2, 6, 5, 7, 1, 4], but only recently have been put on a �rm theoretical basis
[12, 10, 9, 8, 11]. Here, we give a brief (and simpli�ed) account of the recent
work by Littlejohn and Cargo.

1 De�nition and properties

Let H be the Hilbert space of a quantum mechanical system and P the projector
onto a subspace S = PH in which we are interested. Let M be the con�guration
space of the system upon which the coordinate representation of H is based; for
example, for a single particle M = R3 and Hx = L2(R3). Finally, let {xα} be a
set of grid points in M. Then, we say that the combination of the projector P
and the grid {xα} forms a DVR set if the set of vectors

|∆α〉 = P |xα〉

is orthogonal
〈∆α|∆β〉 = Nαδαβ Nα > 0

and complete in S. In this case, the complete, orthonormalized set of vectors

|Fα〉 =
1√
Nα

|∆α〉

is the DVR set of the space S on the grid {xα}.
The above de�nition makes clear that each DVR state |Fα〉 is, in some sense,

localized around the grid point xα, thereby establishing a natural correspon-
dence between points in con�guration space and state vectors. The following,
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schematic interpretation may be useful. Close to H there are two simple spaces,
the Schwartz space of `rapid decreasing functions' and the temperated distribu-

tion space of continuous linear functionals on the Schwartz space. The �rst space
is dense in H; the latter is somewhat larger than H and contains `exotic' ele-
ments such as improper vectors. A simple map between M and the distribution
space is given by the (improper) eigenvectors of the coordinate operator

M 3 x  |x〉

Then, the DVR maps a set of point of M directly on H and almost preserves
the metric properties, in the sense

〈xα|x′β〉 = δ(xα − x′β) 〈Fα|Fβ〉 = δαβ

By de�nition, using P † = P 2 = P , it follows

〈∆α|∆β〉 = 〈xα|Pxβ〉 = ∆β(xα) = ∆∗
α(xβ) = Nαδαβ

or equivalently
Fβ(xα) = δαβ

√
Nα

that is, the coordinate representation of a DVR set is made up of functions
which vanish at each other grid points, but at their own. In other words, DVR
functions satisfy simultaneously two properties: orthogonality and interpolation

property. These properties can be used to get two di�erent representations of
vectors.

Let us �rst consider the case |ψ〉 ∈ S. Then, |ψ〉 can exactly be represented
by the DVR set

|ψ〉 =
∑
α

|Fα〉 〈Fα|ψ〉 =
∑
α

1
Nα

ψ(xα) |Fα〉

where the property 〈Fα|ψ〉 = 1√
Nα

〈Pxα|ψ〉 = 1√
Nα

〈xα|ψ〉 has been used. The

DVR representation of the state vector |ψ〉, ψDV R
α = 〈Fα|ψ〉, is therefore simply

related to the values of the wavefunction at grid points; in this case, one may
indi�erently use the `scalar product de�nition'

ψDV R
α = 〈Fα|ψ〉

or the `grid de�nition'

ψDV R
α =

1√
Nα

ψ(xα)

When |ψ〉 /∈ S the two expressions above are di�erent and only the projection
of |ψ〉 onto S can exactly be represented by the DVR. That is, two di�erent
approximation to the state vector are possible, one based on its projection on S

|ψ〉 ' |ψS〉 = P |ψ〉 =
∑
α

|Fα〉 〈Fα|ψ〉

and one based on the DVR formula

|ψ〉 ' |ψDV R〉 =
∑
α

1√
Nα

ψ(xα) |Fα〉 (1)
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The two vectors |ψS〉 and |ψDV R〉 lie in the same space S but they are only
approximately equal, since in this case 〈xα|Pψ〉 = ψS(xα) ' ψ(xα). Both

vectors are approximate representation of |ψ〉 and, in some sense, they are ex-
ponentially close to |ψ〉 in the measure that |ψ〉 is close to S [12]. Equation 1
de�nes the (approximate) Discrete Variable representation of the state vector,

ψDV R
α = 〈Fα|ψDV R〉 = ψ(xα)N−1/2

α .
Now, let |ψ〉 , |φ〉 ∈ S and let us consider the scalar product

〈ψ|φ〉 =
∑
α

〈φ|Fα〉 〈Fα|ψ〉 =
∑
α

1
Nα

φ∗(xα)ψ(xα)

In other words, the DVR introduces an exact quadrature rule for the scalar
product,

〈ψ|φ〉 =
∑
α

ωαφ
∗(xα)ψ(xα) with ωα = N−1

α (2)

When |ψ〉 , |φ〉 /∈ S this formula is the DVR approximation to the scalar product,
according to

〈ψ|φ〉 ' 〈ψDV R|φDV R〉

where vectors on r.h.s. are de�ned by equation 1.
Note that once a DVR set has been de�ned in a space S = PH with the grid

points {xα} one can obtain further DVR sets by simply throwing out grid points.
This is useful if the wavefunction we are interested in is known to be vanishing
small at some grid points. The proof follows directly from the de�nition using
the projector P ′ =

∑′
α |Fα〉 〈Fα| in which the sum is restricted to a subset of

the original grid.

2 Finite Basis Representations

Let {|φn〉} be a complete, orthonormal set in S. This set can be used to obtain
an alternative representation of any vector in S which we call the Finite Basis
Representation,

|ψ〉 =
∑

n

|φn〉 〈φn|ψ〉 ψFBR
n = 〈φn|ψ〉

A unitary transformation exists such that

|Fα〉 =
∑

n

|φn〉Unα

and this can be used to transform FB representations to DV representations,

ψDV R =
∑

n

(U†)αnψ
FBR
n (3)

where
Unα = 〈φα|Fα〉 =

√
ωαφ

∗
n(xα) (4)

It is clear, however, from the discussion of the previous section, that eq. 3
is exact only for vectors of S; for a generic vector |ψ〉, eq. 3 relates di�erent
representations of its projection on S, |ψS〉. The assumption is always made
that |ψS〉 ' |ψDV R〉.
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Operator representations and transformations follow easily from

〈Fα|A |Fβ〉 =
∑
nm

〈Fα|φn〉 〈φn|A |φm〉 〈φm|Fβ〉

i.e.
ADV R = U†AFBRU (5)

which is exact only for operators projected onto S, AP = PA and, as before,
the assumption is always made that |αS〉 = PA |Fα〉 ' |αDV R〉. Local operators
may be approximated as follows

〈Fα|A |Fβ〉 = A(xα)δαβ (6)

if one takes into account the localized properties of the DVR vectors. As before,
this formula is exact only if A = PA.

In practice, one uses the DVR approximation of eq. 6 for operators which are
local in system coordinates and, starting from an appropriate FBR for non-local
operators, (s)he gets (approximate) DV representations for the latter using eq.
5. Usually, the FB set diagonalizes the operator A and thus

(ADV R)αβ =
∑

n

√
ωαωβφn(xα)φ∗n(xβ)an

where an are the eigenvalues of A. A more general result is

(f(A)DV R)αβ =
∑

n

√
ωαωβφn(xα)φ∗n(xβ)f(an)

3 Simple examples

De�ning a DVR set is generally di�cult and not even always possible. Usually,
one starts with a set of orthogonal vectors {|φn〉}, de�nes the projector

P =
∑

n

|φn〉 〈φn|

and looks for grid points xα such that the vectors

P |xα〉 = |∆α〉 =
∑

n

|φn〉φ∗n(xα)

are orthogonal,

〈∆α|∆β〉 =
∑

n

φn(xα)φ∗n(xβ) = Nαδαβ (7)

This task may be very di�cult or even impossible. However, for several one-
dimensional problems a convenient choice for {|φn〉} is a real orthogonal poly-

nomial set times the square root of some weighting function W (x),

φn(x) = W 1/2(x)Pn(x)

〈φn|φm〉 =
∫
W (x)Pn(x)Pm(x)dx = δnm
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In such case, given that Pn(x) (n = 0, ..N − 1) are polynomials of degree n one
chooses as grid points the zero of PN (x), the �rst neglected polynomial

PN (xα) = 0α = 1, ..N

They are known as Gauss-quadrature points. The above DVR condition of eq.
7 may be rewritten as follows

∆α(xβ) =
N−1∑
n=0

√
W (xα)W (xβ)Pn(xα)Pm(xβ) ∝ δαβ

Now, from Gauss' quadrature theory it is known that the following relation holds

δnm =
∫
W (x)Pn(x)Pm(x)dx

≡
∑
α

wαW (xα)Pn(xα)Pm(xα) (8)

for n,m = 0, 1, ..N − 1. Here {xα} are Gauss quadrature points and wα are
Gauss quadrature weights. This formula tells us that scalar products involving
Pn(x)n = 0, ..N − 1 polynomials (and their linear combinations) are exactly

computed by quadrature with a careful choice of grid points. From eq. 8 it
follows that the vectors Xβ = {Xβ

m}N−1
m=1 = {

√
W (xβ)Pm(xβ)}N−1

m=1 are linearly
independent since they are orthogonal with respect to the weights wβ , and

N∑
β

wβ∆α(xβ)Xβ
m =

√
W (xα)Pm(xα)

holds. In other words
N∑

β=1

wβ∆α(xβ)Xβ = Xα

or, equivalently, wβ∆α(xβ) = δαβ . Thus, the set

Fα(x) =
√
wα

N−1∑
n=0

√
W (x)W (xα)Pn(x)Pm(xα)

is the DVR set.
Another very common, one-dimensional set is the sync set. To introduce it,

let us consider M = R and the following projection operator

P =
∫ +pmax

−pmax

dp |p〉 〈p|

where |p〉 are momentum eigenstates. This operator and the grid

{xα =
π

pmax
α}α∈Z

allow us to de�ne a DVR set. Indeed,

|∆α〉 =
∫ +pmax

−pmax

dp |p〉 e
−ipxα

√
2π
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and

〈∆α|∆β〉 =
∫ +pmax

−pmax

dp
eip(xα−xβ)

√
2π

= δαβ
pmax

π

Therefore, a DVR set can be de�ned,

Fα(x) =
√

π

pmax
∆α(x) =

1
√
πpmax

sin[pmax(x− xα)]
(x− xα)

which is known as sync DVR set. Note that in this case the space S = PH is
in�nite dimensional and the DVR set is in�nite. Its completeness follows from
its momentum representation

〈p|Fα〉 =
√

π

pmax
〈p|∆α〉 =

1√
2pmax

e−i π
pmax

pα

which is the known complete Fourier basis set for square-integrable functions in
M = [−pmax, pmax]. Note also that this DVR set allows one to exactly repre-
sent any band -limited function through an in�nite but discrete set of function
evaluations (or measurements)

S 3 |ψ〉 |ψ〉 =
∑
α

|Fα〉
√

π

pmax
ψ(xα)

Actual sync sets used in practice are obtained from that de�ned above by throw-
ing out points, e.g. retaining points |α| ≤ N . The corresponding space S ′
comprises only discrete momentum values, pα = pmax

N α, and is the space of
band-limited, square-integrable functions in M =[−L,L] with L = πN/pmax.
This set underlies the use of Fast Fourier Transforms1.
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