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1 Introduction

These notes summarize the basic equations needed to understand the interaction of the electromagnetic
field with matter. We start with the microscopic Maxwell equations for the electric (E) and magnetic

(B) fields, here written in gaussian units:

VE = 4rp (1)
VB =0 (2)
V/\E—l—%%zﬂ (3)
VAB—%%:% (4)

Here p and J are the total charge and the current density, respectively, which obey a conservation

equation which follows from Eq.s 1 and 4

4 10 47 dp
= - VE=-"°%F
c v c&'tv c Ot
namely
dp
E-FVJ—

The above equations determine the field dynamics for given sources p and J, and must be supplemented

with an equation describing the charge dynamics, i. e. the Lorentz force (in a classical setting)
v;
Fl' = q; (E(T“t) + ? N B(T’l,t))

for each charge ¢; located at r; with speed v;.

The macroscopic Maxwell equations are obtained by performing suitable averages over microscopically
large but macroscopically small volumes of space to obtain fields which are experimentally measurable
(see Appendix A for a sketch of the derivation). In doing this, care has to be taken to include “higher
orders” of the microscopic density in order to define the observed fields. For instance, the macroscopic
density in a neutral system vanishes (as it is the average over volumes containing neutral molecules)
but the field is not necessarily zero (as the molecule may have a dipole and this might not average to

zero). The result is the set of equations

VD = 47mp (5)
VB =0 (6)
10B
ANE+-—=0 7
v + c Ot (7)
10D 4w



where the auziliary fields D and H (known as electric and magnetic displacements) contain the effects
of the higher order moments of the densities, and p and J are now the macroscopic charge and current
densities'. Note that H is also called magnetic field (H = B in vacuum) and then B is the magnetic
induction. These auxiliary fields are, to first order, given by

D==FE+4nP

H=B-4tM

where P and M are the mean number of electric and magnetic dipoles per unit volume.

The equations are closed by the constitutive relations
D=DI|E,B] H=HI|E,B] J=J|E, B]

which are material specific and not necessarily simple.
In the simplest case, i. e. for static fields,
D =¢€FE

H=yu'B

are first order expressions involving the dielectric tensor € and the magnetic permeability tensor p. In

general the relations are neither local in time nor in space, e. g.,
D,(r,t) = Z/d?’r’dt’eag(r —r't—t"Egz(r',t)
B

where we have still assumed space and time translational invariance (homogeneous system in thermal
equilibrium).

Neglecting spatial non-locality, however, we can still write

D(r,w) =€é(r,w)E(r,w)

for the Fourier-transforms

+o0 +oo
E(?ﬁw): /E(’I",t)eiwtdt’ D(r,w): /D(r’t)eiwtdt

—00 —00

and
—+o0

E(r,w) = /e(r,t)eiwtdt

— 00

The static result is a special case (w — 0) of the above equations.

L As in the previous, microscopic case they are related to each other by the continuity equation, 8p/0t + VJ = 0.



€ap(r,t) is a response function and must satisfy the causality condition, namely e,5(r,t) = 0 for ¢ <0,
which guarantees that the system responds only to the field in the past. This general requirement has
important consequence on the analytic properties of the Fourier transform €(r,w), see Appendix B for

an account.

2 Electromagnetic waves in dielectrics
Without external sources, in neutral dielectrics we can put p = 0 and J = 0 and obtain

VD=0

10B
VAE+-——=0
+c ot

Upon Fourier transforming in time, and noticing that

+oo +o00
1 ; E 1 ,
E(r,t) = Py / E(T,w)e—wtdw = %Z’t) — o / E(T,w)(—iw)e_Wtdw

we obtain

where we can now introduce D = éE and H = i ' B to write
VAB+ZpeE=0
c

VAE-YB-0o
C

Multiplying the above expressions for VA and assuming that 1 and € are uniform in space, we finally

arrive at?

2Remember that
VA(VAF)=V(VF)-V2F
holds. Indeed, with the implicit sum convention on repeated indexes, (V A (V A F)); = €;;,0;(V AN F), =
eijkajeklmalFm = eijkeklmajalFm = (§i16jm — §,~m6jl)8j61Fm = 31'(6ij) — ajajFi.



w2

V2B + C—zﬁEB =0 (9)

op W z
\Y% E+C—2ueE:O (10)

These equations can be further simplified if € and @ are simple scalars, as we assume is the case in the
following by writing € and f in their place.

Thus, each component of the electric and magnetic field satisfies a wave equation of the form
2

w”

V2u(r,w) + C—Queu(r,w) =0

with fi and € possibly w-dependent. For each w this is a standard eigenvalue problem
—V2u(r,w) = Mw)u(r,w)

which has solutions
2 2
L w
[i€ = —
c v2

| §

u(r,w) o e where k? = \(w) =

In the last term on the r.h.s. we have introduced v = v(w) (or v = v(k)) which is the w-dependent
speed of light in the medium, as we shall see below. We also introduce the generalized refraction index

7 as

in such a way

kzgn
c

The general solution of the above wave-equation then reads as
d » d A’k » »
u(r,t) = /%u(r,w)e*“"t = / % [/ Wu(k,w)e“"&(k - %7}) et

i.e., introducing k= k/k,
u(r,t) = /dk/dwf(l%,w)ei“’(%i"*t)

where it appears as a superposition of elementary waves

m w(r’ t) _ eiw(%fcrft)

traveling at a speed v = % in direction k.

The same applies when the refraction index has an imaginary component (which can be the case, since

n? = ji€ and ji, € can be complex, being the Fourier transform of p, €). Writing n = ' + n”’, with 7’

and 1" real numbers,

o1 R ieo(2 o
Uk,w("',t) — s krezw( Lkr—t)



Hence
n' = Re/ i€

is the frequency-dependent “traditional” refraction index n(w) determining the phase velocity of the

waves in the medium (v = ¢/n(w)) and
n" = Im+/[i€

relates to the absorption coefficient r(w) of the medium?. Indeed, the “intensity” of the wave in the
medium decays in the k direction as

|U’fc w(,,,7t)|2 —_ 6720.1%/1%7' —_ efnfcr

2w

1
K= —
c

In most media /i ~ 1 and thus 7% ~ €. The relation between 1 and € is given schematically in Fig. 1
for two representative cases.

Notice also
e = 77/2 _ 77//2

1 /1.1

€ =2n'n

and for normal dispersion (" << '), € ~ 72 >0 and n” ~ -~ i. e.

3 Electromagnetic waves in conductors

Conductors differ from dielectrics by the possibility of sustaining a current when an electric field is

applied. The latter is almost always accurately described by Ohm’s law, which takes the form
Jo(r,t) = Z/dgr’/dtlaaﬁ(r -7t —t")Eg(r',t')
B

if we include retardation effects and spatial non-locality. In the following, for simplicity, we neglect

spatial non-locality, consider isotropic media only (o;; = d;;0), and write the Fourier transform as

J(r,w)=6w)E(r,w)

3For notational convenience, here and in the following, we abandon the traditional use of « for the absorption
coefficient. The inverse k1 is also called attenuation length.
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Figure 1: Relation between 7 and € for weak (left panel) and strong (right) absorption

where 6(w) is the frequency-dependent conductivity. The traditional conductivity, i. e. for static fields,

is recovered for w — 0

ul)ig% g(w) =09 = yooa(t)dt = 7U(t)dt
—o0 0

Note that for high frequencies there is no real distinction between dielectrics and conductors as J
describes in any case an oscillatory motion of the charges. This becomes more evident from the

Maxwell equations themselves, that read in this case as

VD = 4np
VAE-Y“B-0
C
- W ~ 41 ~
VANH+ —D=—J
C C
VB =0

where the frequency-dependent charge and current density have been introduced. Using Ohm'’s law,

the third equation above can be re-arranged as (after introducing D = éE and B = iH)

_ o qw _ f_ ddm )\ =
VAB+ —plée+—a | E=0
c w

which is identical to that found above for dielectrics

VAB+f§mE:0 (11)



provided we identify the total dielectric function as
€tot(w) = €(w) + — G (w)

Since € is associated with “bound-charges” (it characterizes the polarization of these charges) the extra
term on the r.h.s. is the contribution of the “free charges”, which is singular for w — 0 because
in that limit polarization of these charges becomes current generation. Apart from this singular
behavior, however, there is no real distinction for w#0 between dielectrics and conductors. Only the
total dielectric function is relevant and the only difference between dielectrics and conductors is the
behavior for w — 0 in that function: for conductors €, is singular at w = 0 and the singularity is
related to the “direct-current” (DC) conductivity oyg.

Notice that Eq.(11), upon applying VA , reduces to a wave equation

om W =
V'B + CfgﬂﬁtotB =0

thanks to the condition VB = 0, whereas the same manipulation on the second Maxwell equation

(after the introduction of D = éE and B = jiH) gives

5 2 5 V5
V2E(w) + %getotE — 4 2P

€

However, continuity equation in the form

—iwp(w) + VJ(w) =0

along with Ohm’s law gives?

(2 + 27600 ) ) = arnllie) =0

Thus, unless &¢(w) = 0 (and this happens at the so-called plasmon frequency, see below) the above
equation becomes similar to the one given above, and wave propagation depends on the properties of
n(w) = Vii€or-

Stated differently, for any frequency but the plasmon one no charge density oscillation is supported in
the system. This does not mean that charges are static, rather that the current density has to satisfy
VJ = 0. Such currents are called transverse for reasons made clear in Appendix E. For homogeneous
and isotropic systems the same has to hold for the electric field E if the Ohm’s law J = o E applies.
In other words, with the exception above, we can put p = 0 in the Maxwell equations and keep only

the current term.

4This just means that the only Fourier transformable solution of the continuity equation in Ohmic systems is p = 0.



4 Boundary conditions

In the previous Sections we have considered wave propagation within either a dielectric or a conductor
without caring about how the electromagnetic field traverses the surface sample from e.g. the vacuum
to its bulk. To this end we consider here wave propagation across a flat surface® separating two media
1 and 2 with refractive index n; = /€ p; and 1, = |/ p¢, respectively, and call n the surface normal
from medium 1 to medium 2.

Clearly, an incident wave with wavector k; will in general be splitted into a transmitted (or refractred)
wave with vector k; and a reflected wave with vector k... Since scattering is elastic (i.e. k. = k; and
ke/ne = ki/n; = ko = w/c) and parallel momentum is conserved (k:ZH =kl = k,lf‘) the following relations
exist between the incident 6; = cos™!(nk;), the reflection 6, = cos™'(—nk,) and the refraction angle

0, = cos™(nky;) (Snell’s law)®
97‘ = 91' Nt sin(@t) =1 sm(91)

To determine the intensity of the reflected and transmitted waves we need the relations between the
values of the vector fields right below the surface and those right above it. In other words, if a local
reference frame is chosen such as its z axis is aligned with the surface normal and the surface is at
z = 0, we would need the limiting vectors lim,_,q+ F = F*for F=E,D,B.H. In general, if VF
is known to be continuous so is F,/dz and hence necessarily F; = F or equivalently F,, = F,I for
the component F,, = F'n along the surface normal. With the same token, if (V A F),, are known to
be continuous so are OF,/0z and OF, /0z, hence F; = F;, where F, is the component of F' parallel
(tangent) to the surface. This argument can be applied to the magnetic field B only which satisfies
VB =0 and gives
(Bf—-B )n=0

For the other fields and /or different components we use Gauss (Stokes) integral theorem (which only
requires integrability of VF (VA F) ) to a small volume (surface) element which crosses the boundary
between medium 1 and medium 2 (see Fig. 2), and consider the limit where the transverse dimension

0z vanishes. Then, equation (5) gives in general

(DT — D )n = 4r0

5We assume that a macroscopic description holds and macroscopic averages can be taken on scales much larger than
the atomic one (this requires A > ap where X is the wavelength of radiation and ag is the Bohr radius). Hence the
surface can be considered flat at least on the atomic scale.

6These equations hold for arbitrary (complex) refractive indexes, hence complez angles. A complex angle arises in
lossy media and its physical meaning is not as immediate as a real angle. Thus, in lossy media, these equations are
best replaced by those for the (complex) components of the k vectors, k = kze; + kyey + k.e., using the standard
scalar product of a real vector space (e.g. putting k? = (kgeq + kyey + kz.e;)? = k2 + kz + k2 € C). Tt thus follows,

for instance, (k¢). = \/(Et/,Lt — €ipi)k3 + (k;)2 for the components along the interface normal (z), or more simply
(ki) = kov/etput — €;155in%(6;), where 6; is the incidence angle, provided medium 1 is transparent. Notice that the

“real” angle 6 that the propagating wave makes with the normal is determined by k = R(kz)er + R(ky)ey + R(kz)e: ,
e.g. it holds cos(f) = R(k),/k where k? = kk.



2 %A 2

1 1

Figure 2: The small volume and surface elements (left and right panel, respectively) used to determine
the boundary conditions for the normal and the parallel components of the fields, respectively. In the
left panel n is the outward normal of the elemental voloume in medium 2 and is also the surface normal
defined in the main text. In the right panel ¢ is normal to the elemental surface and thus parallel to
the boundary.

where o is the surface charge density (if any) which makes p discontinuos at the surface. Specifically,
if 6Q = limg,,0Q is the charge contained in the volume when its height shrinks to zero, we have
o = limgs_00Q/5A where §A is the surface element parallel to the boundary”. With the same token,
since 0B/0t and 0D /0t are always finite, from Eq.s (7,8) we obtain

(Et—E )An=0

and A
(HF —H )An=—K
C

respectively, where K is the surface charge current (if any) which makes J discontinuos at the surface.
Similarly to above, if 7 is the unit vector along J; = J — (Jn)n =n A (J An) and 61 = limg, oI is
the current through the infinitesimal surface element 6@523 when its height shrinks to zero, we have
K =limgq_061/daj .

To summarize, at the boundary we have

(DY — D7 )n = 4no (BF =B )n=0
(Et—E )An=0 (H"-H )An=%K

where m is the surface normal and o, K are surface densities defined by

€ €

o(x) = lime_,o/ plx + zn)dz, K(x)= lime_m/ Ji(x + zn)dz

—€ —€

for any x on the boundary.

In the most typical situation no surface density term appears’ and the D and B fields preserve their

7Such a term only appears if p takes locally the form p(x) ~ o(z,y)5(2), with the above choice of coordinates, for x
close to the boundary.

8Similarly to above, such a term only appears if the intensity of the current density parallel to the boundary is of the
form Ji(xz) = K(z,y)d(z).

9Notable exceptions are dielectric-conductor interfaces with a static distribution of charges. In such cases the electric
field must vanish in the conductor, and thus o necessarily builds up to make non-vanishing the field outside the conductor.

10



Figure 3: The scattering plane, with the indicated electric fields E;,E, and E;, for the P- an the S-
polarization cases (left and right panel, respectively). Also indicated the surface normal n and the
incident (6;), the reflection (6,.) and the refraction angles (6;).

normal component while E and H preserve their parallel component. These are the relations we were
looking for to determine the intensity of the reflected and transmitted waves. To this end, let E7 D, .
be the components at frequency w of an electromagnetic wave E, D, .. and consider isotropic media.

In either medium the fields of a uniform plane wave traveling in direction k would satisfy
uwI:I =ckNE wgtotE =—ckANH
where k = %nfc and €. is the total dieletric function introduced above!?, or, equivalently,
,uI:I:nfc/\E nE: —ul%/\ff

Because of the presence of the interface, though, both “right-” and “left-” moving components along z
appears for each field F’
F(z) = Fy(2) + F_(2) = FOe'*+* 4 FOe k=2

where k, is the z component of the k vector. These two components are useful to describe propagation
within each medium (Fy(z+Az) = Fy(2)et?*=2%) but are unconvenient to match the fields across the
boundary. Hence, we need to seek two independent variables f1, fo that replace F.y and are continuos

across the separation surface. For a generic incident wave with vector k; we distinguish two cases,

10T hese are nothing that that the “rotor equations” in k-space. There is no need to consider the “divergence equations”
here since they are both contained in the above expressions, namely kH = 0 and kE = 0. Stated differently (see
Appendix E), an electromagnetic wave has only transverse components, E = E| and B = B (Notice that trasverse
and parallel components below have nothing to do with the boundary, only with the k vector). In general, B = B
while E' = E | + E|;, where the parallel component of the electric field is the only one that results from a charge density,
i.e. according to ekE| = —ip(k) for a uniform medium in k—space. Notice that the charge density relates to the parallel
component of the current density,fiGp/atJrkJH = 0. The transverse component J | , by definition, is solenoidal, i.e. its
flux vanishes for any closed surface and thus J | cannot describe any change of the total charge contained in its interior.

11



according to whether the electric field E; is on the scattering plane (P polarization, from “parallel”) or
perpendicular to it (S polarization, from “senkrecht”, the German word for perpendicular), see Fig. 3,
left and right panel respectively. They are also called transverse magnetic (TM) and transverse electric
(TE), respectively, depending on which field is perpendicular to the surface normal. We consider first
the TE (or S) case, and write E = E& assuming that the scattering plane is yz. Since E is parallel
to the surface, E is continuos across the boundary, F; = E5, and we choose E as the first component
of the “matching” vector, e; = E. A second independent variable follows from the continuity of the

parallel component of H, which can be readily computed from the Maxwell’s equations,

o i C(0E, 9F, __;c9F,

and is conveniently chosen as eo = E’/p where E’ is understood to be the z derivative of the electric
field. Hence the vector €' = (E, E’/u) is continuos across the surface and relates to the right- and left-

moving components through

1 1 ol , B, 11—
e=| ) and viceversa = =
in 'k, —iplk, E_ 2|1 i

Now, for the configuration of Fig. 3 with 2 = n, the transmitted field in medium 2 is purely right

moving (i.e. moving along the positive z direction), E; = Ey& = E4 o& and at the boundary it holds

i i pr k=2
By | 1|1 i ]elzl L 162:1 14 = ‘|Et
B | 2|1 o4 211 i 2 1=

It follows that the field amplitudes of the trasmitted and reflected waves are related to that of the

incident wave by

By _ 2puok 1 _ 2pm; cos(6;)

E;  pok.1+ k.o  pinecos(0;) + pem; cos(6y)
By pokai — koo puni cos(0;) — pimne cos(0;)
E;  poks1+pkso  pmecos(6;) + pemi cos(y)

which can also be written in terms of the incident angle only with the help of Snell’s law
e cos(6) = \/17 — 117 sin® (6)

Similarly for the TM (or P) case, where H = HZ and E| =i~ H'y, H' being the z derivative of the
magnetic field. In this case h' = (H e 1H' ) is the appropriate “matching” vector,

1 1 H H 1 —i-<
h = * and viceversa Tl = l '%s
ie Yk, —ie lk, H_ o 9

1 +iE

h

12



relate hi, ho to the right- and left- moving components H4 of the magnetic field, and

Hy 2e9k, 1 _ 2u; ¢ cos(0;)
H;i  ek.i+ek.o py'nicos(6;) + p; i cos(6y)

H, _ eshzn—ethop _ py 0 cos(0;) — gy ni cos(6;)

Hy  ek.i+ek.a  p'ncos(6:) + p; ' cos(6r)

are the appropriate transmission and reflection amplitude coefficients. The electric field amplitudes
then read as F; = umi_lHi, E, = umi_lHT and E; = ,umt_lHt, as it follows from E = /m*IIQ: NH
which hold separately for each component.

The above expressions allow us to write down the (power) transmission (T') and reflection (R) coeffi-

cients which are defined by!'!

T < Re (umtcosﬁt> |Ey |2 B |E,|?

pmicosb; ) |Ei2 T |E[?
and satisfy R+ 7T = 1. In particular, at normal incidence we have

nen; + Kekg (ne —ny)* + (ke — K;)?

(e +ma)? + (ke + k) (1) + (ke + 50)?
in terms of the real and imaginary parts of the refractive indexes, here written as n; = n; + ix; and
N =Ny + 1Rt .
The above expressions are rather general, provided we remember that they apply right at the boundary
between medium 1 and medium 2; if one of the two is absorbing (i.e. either x; or s, is not vanishing)
the measured intensity ratios differ from the ones predicted by the above expression because absorption
occurs in traveling from the boundary to the detector and/or from the source to the boundary. In the

simplest case, medium 1 is transparent with n; =1 (e.g. air) and the reflection coefficient reads

(1 —n)? + K2

= (14 n)2 4 K2

(12)
where now n, k are the real and imaginary parts of the medium 2 under study. Furthermore, if medium
2 is only weakly absorbing (k =~ 0 and n ~ 1) radiation can be collected after passing through a second
interface between medium 1 and 2; under such circumstances reflections at both interfaces is negligeble,
and the overall transmission coefficient just account for absorption in medium 2. More generally, one
has to take into account both interfaces, and possibly sum over all contributing paths with multiple
reflections; in such case, however, the result depends on whether such paths interfere with each other

(when the coherence length is larger than the sample dimension), or the probabilities just add up

The ratio uin; cos 0 /uin; cos §; appearing in the trasmission coefficient is a flux-related term that accounts for the
different speed that the wave has in the two media and for the fact that the flux has to be projected onto the normal of
the boundary surface.

13
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Figure 4: Contour map of the reflection coefficient at normal incidence (Eq. 12) on the complex e-
plane given in a log-scale (colours change linearly from red to blue for R going from zero to one). Also
shown two typical paths undertaken by the dieletric function e¢(w) when increasing w as indicated by
the arrows direction. Red curve is for a dielectric (just close to a resonance peak) and black curve for
a conductor. Parameters are the same as in the next Fig.s 5,6.

classically (when the coherence length is much smaller than the sample dimension)!2.

The above expressions show how, e.g., reflection from a surface depends on the frequency-dependent
refractive index or total dieletric function €;,;, thereby determining how solid substances look like. The
dependence of €, on the frequency is clearly crucial for that, and Sections below give some general
properties for dielectrics and conductors. Here, we just exploit the consequences of such analysis and
report in Fig. 4, on a log-log scale, the behaviour of R at normal incidence on the complex e-plane,
along with two typical “paths” of the functions ¢(w) when changing w, one for a dielectric and one for
a conductor. As you can see from Fig. 4 the dielectric is mostly transparent, even close to a resonance
(absorption) peak, whereas a conductor reflects the vast majority of the radiation incident on it unless
the frequency takes a very large value (larger than the plasmon frequency mentioned in the previous

Section, which typically lies in the ultra-violet region).

5 Simple models

The main features of the dielectric function are easily understood in terms of a simple model of matter,
the Lorentz model, where a number of charges ¢; are harmonically bounded to some center (of opposite

charge if the matter has to be neutral) and forced by an external electric field. The equation for one

121n this respect, transmission through thin films can be safely handled as a coherent process and the above described
“propagation” and “matching” steps can be easily combined to describe the optical properties of arbitrarly layered
structures.

14



such charge reads as (in one dimension)
mi(t) + myi(t) + mwiz(t) = C(t) + eB(t) (13)

where m is the mass, wy the frequency and e the charge. In this equation we have introduced a damping
coefficient v which describes system relaxation to the equilibrium state, and a fluctuating force ((t)
which describes the environmental-induced fluctuations.

Since we are interested in the average behavior (of an ensemble of identical systems) Eq. 13 can be
rewritten in terms of (x) (note that ({(¢)) =0):

m (&) +my (&) + mw} (z) = eE
Upon Fourier transforming'?
—mw? (F(w)) — iwmy (Z(w)) + mwi (Z(w)) = eE

- 1 el
(Z(w)) = R
wy —w wy m

and the average polarization vector is obtained by introducing the number of dipoles per unit volume,
N, i. e. the number density of molecules

~ _ Ne? E(w)

P(w) = Ne(Z(w)) = 5

m wy

—w? —wy

If each molecules has Z electrons, and each oscillates with a characteristic frequency w; and relaxation

Vi

X Ne2 G fiBE(w)
P = E
(w) me < wiz —w? —iwy;

where f; is the number of electrons'? (oscillator strength) with the given set of w;, 7; parameters, and

> ; fi = Z. These relations define the electric susceptibility

as IV times the molecular polarizability

2 Z

~ _ € Ji
ol (W) = Z W2 — w2 — G
Me 5~ Wi — W? — 1w

13This amounts to focus on the “stationary” solution only, i.e. the one prevailing after the transient (which does
depend on the detailed initial conditions) has decayed.
14This is not necessarily an integer.

15



It relates to € through
éw) = 1+ 4 (w)

In deriving these equations we have implicitly assumed that the local fields are also the macroscopic
ones, i.e. we neglected the fields generated by the (induced) molecular dipoles on the one under
observation. This is reasonable in low density media, in condensed matter y.(w) = N@me(w) has to
be revised to account for the local fields generated by the polarized medium.

For conductors, one of the frequencies is zero and we exhibit separately this term to write

Z

. Ne? ; Ar
€rot(w) =144 Z 3 J;l , Jrz—iao
Me “—~ w7 — w? — iwy; w Y — W
i#0
where
Ne? fo
gg = —
Mme Y0

is the Drude’s DC' conductivity for a metal with N fy electrons per unit volume, with an average

relaxation time 7 = 7 ! and

~ Y000
o(w) = :
Yo — W
is the Drude’s frequency-dependent conductivity.
Note that v;’s enter the above equations as a broadening factor, and this may be of secondary im-
portance for w; > 0 (since the main interest in that case is in the position of the resonance) but is of

fundamental importance for w; = 0 (since it determines the DC conductivity).

6 Dielectric polarization

Let us now focus on dielectrics (o9 = 0). For w — 0, ét(w) — €(0) = €(0) = 1 4+ 47N @mo(0), i. e.
€ becomes real at low frequencies and € = 1 to a good approximation in low-density media (@,0(0)
is the static polarizability which is of the order of molecular volume, i. e. much smaller than the
volume available to each molecule, N~1); for w >> 0, é(w) differs from &(0) only close to the resonant

frequencies and, in any case, for w — oo

w
= P
€rot(w) =1 — o2
where wp is given by
9 NZe?
wp = 4m
Me

and is known as plasmon frequency. At such high frequency, the behaviour of any system no longer
depends on its detailed structure, and the charges (either bound or free) behave in a universal way as

the matter were fully ionized.
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Figure 5: Typical behaviour of the real (left panel) and imaginary (right) parts of the dielectric
function. Data are for a model system resembling water vapour at a density n = 1072 gem ™3 with
three resonant frequencies in the infrared region, w; = 1960, 4049, 4048 ¢m ™! with a common relaxation
time y~! = 1ps and oscillator strengths f; = 0.1,0.02,0.05, respectively.

At intermediate frequencies the general behavior can be easily guessed from

Ne? i fiw? —w?)
(w

¢ =144
é(w) =144 2 0?2+ w2y?

€ .
(2

Z

Ne? fiwvi
~I! — 4 (3 K3
€' (w) a0 e Z (w2 w2)2+w2%~2

i K2

and is illustrated in Fig.5. Notice that for “normal dispersion” (which occurs unless €” is very high or

¢ becomes negative) the absorption coefficient can be written as

(where n(w) = V¢ is the refractive index) and becomes proportional to N, in agreement with Lambert-

Beer law. In this context, then, one also defines the molecular photoabsorption cross-section
oph(w) = k(w)/N

which reads in the non-dispersive limit (n(w) = 1) as

() = T () (14)
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Notice that in the limit!'® ~; ~ 0

Mme C
and thus s

(@) = S ot )
and

Trt) = 5, Zf —wi) (15)

The above equations, though referring to a rather crude model of the matter, offer a number of
alternative possibilities to compute the optical properties of dielectrics.

In the low-density limit, for instance, each individual molecule contributes independently of the others
and one can directly follow the dipole moment y of a single molecule in time and compute the frequency

dependent polarizability by Fourier transforming

p(0) o = [ cmalt VB
Here, an arbitrary classical field'® is used (e.g. a kick E(t) = Iod(t) —where —Iy/|e| is the impulse
given to each electron— directly gives o (t) = Au(t)/Ip) and the molecular (electron) dynamics is
followed to extract u(t), i.e. the time-dependent Schrédinger equation for the molecule in the external

field
d|v)

dt
is solved to compute p(t) = (¥ (¢)|u|P(t)) for a reasonably long time interval. Notice that the integral

ik = (Hpmot + Hint(1)) |¥)

above actually runs for ¢’ < ¢ since a0 (t) obeys causality, and pg is the dipole at any time before the
field has been switched on'?. This approach is rather general, and goes well beyond the linear-response
regime used above to define a,,,; in terms of F.

Linear-response, when holds, provides simpler (“more practical”) approaches to the problem. For
instance, for a (closed) system initially in its ground-state, the problem (in the limit v — 0) is

equivalently handled in ordinary perturbation theory to give
2 .
ol (t) = @(t)% Zn: | (Pnlptlo) [*sin(wnot) (16)

where p is the dipole operator and w,g = (FE,, — Eg)/h are the transition frequencies. To show this,

5We use wv; /(w2 — w?)? + w?42) = 16(w? — w?).

16This is semiclassical theory of the interaction between matter and radiation. Quantization of the electromagnetic
field is necessary for describing spontaneous emission processes.

17We assume that the system was initially in an equilibrium state, typically the ground-state (this is fine for the
electronic contribution which is the main contribution in the visible range).
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consider the system initially in its ground state, |¥(t)) = [Uo(t)) = e~ Fot/7 |®y) for ¢t < 0, and a kick
Hiny = —plpd(t) at time ¢t = 0. The field E(t) = Iyd(t) is treated here in the dipole approximation,
which means that it is considered to be uniform over the molecular volume. It is clear that before
and after the kick the systems evolves under the unperturbed Hamiltonian H,,,;, thus the problem
reduces to determining the state for ¢ — 0. This can be solved by writing the integral form of the

Schrédinger equation
t

iR (t)) =ih|P(07)) + H |U(t") dt’

and taking the limit ¢ — 0" after replacing ¥(t) with the unperturbed solution Wq(t)
ih|W(07)) = i |®o) — ulo | Do)

Hence, [¥(t)) = |®g) e Eot/h i1y /RS @) (D11 Po) e ~*Ent/R can be used to compute Ay (to first
order in Iy) at any time ¢ > 0, and a;,, follows as given in Eq.(16) . On taking the Fourier transform

of the latter equation!®:19,

1 1 1
Yo =z D, |p|® 21- - 17
o) = 3 i) iy (o - ) (17)

and for w >0
- 7r
Ao (@) = & D (@l o) [P6(w — wn)
On comparing with Eq.(15) we get the quantum-mechanical definition of the oscillator strength?°

2777Je(~‘)'r10

fn= W' (@ |pa|Po) |2 (18)

Thus, one can solve the time-independent Schrodinger equation for the isolated molecule
Hmol |(I)n> = En ‘(bn>

and obtain the necessary transition frequencies w,o and transition moments o = (@, |u|Po).
Eq. (16) analogously follows from the frequency-dependent polarizability obtained previously within

the classical model,

Aot (t) = 1 I Z—fi e~ wldw
mol\") = on Me w? — w? —jwy;

—00 i 4

18The e converging factor plays here the role of a damping coefficient which is present in real systems but seldom
considered in calculations.

19Tt also follows auper(t) = %Im (eiEUt/ﬁ (xolxt)) where |x0) = pt|®o) and |x¢) =e

20Tt can be shown that, analogously to the classical case, the sum rule > fn = Z holds.

—iHt/h |XO>~
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Here, each term in the sum, as a function of a complex w, has poles in the lower half plane?!

wzﬁ:——lf:tQ where Q; = /w2 — &

and for ¢t > 0 (¢t < 0) the integral can be evaluated by contour integration by closing the contour with

a large semicircle in the lower (upper) half plane. The result is

aft) = Z —sm _%t

which reduces to Eq.(16) in the limit v; — 0, provided Eq.(18) is used.

More generally, Eq.(17) represents a sort of equilibrium dipole-dipole correlation function, here eval-
uated for a non-degenerate ground-state at 7" = 0 K. This general result is best appreciated at the
classical level by going back to the original Langevin equation, Eq.(13). Indeed, it is clear that the
average response of the system to the external field is also the pointwise response to the fluctuating

force in the field-free situation, i.e.22

i) = L el
— WY Me

This relates to the equilibrium spontaneous fluctuations of the dipole in the system, as can be seen

upon remembering that, according to the Wiener-Khinchine theorem, the square modules of above
expression relates to the Fourier transform of some autocorrelation function??, i.e.
2 o2

—5Ce(w)

m2

— Wy

where C,(t) = (u(t)u(0)), Ce(t) = (£()€(0)) and C’s are their Fourier transforms. Here the en-

vironmental fluctuations relate to the dissipative kernel?* through C'g (w) = 2mkpTv and thus we

wCy(w)  €e2kpT 1
; T Tm fm w2 —w? —jw
e 0 Y

obtain

21'We work in the underdamped limit, v; /2 < w;. This also excludes conductors, which have a pole for w = 0.

22General (frequency-dependent) memory kernels can be accommodated as well.

23For a (real) stationary process £(t) a proper Fourier transform can be defined through &7 (w) = j;: &(t)e'tdt where
[=T,+T] is a large but finite interval. Accordingly,

T T oo
(lEr(w))? /+ /+ )E(")) et ay e ~/ dt/+ (£(1)€(0)) €T = 2TC¢ (w)

since C¢(7) = (£(7)€(0)) = (&(7 +t)&(t)) holds thanks to the stationarity condition. In deriving this equation we have
used (t/,t") = (t,7) = ((t' +t"")/2,t' —t"") and assumed that C¢ decays on a short time interval compared to 7.

24This follows from the fact that, at equilibrium, fluctuating forces are balanced by dissipative ones (Fluctuation-
Dissipation theorem of the second kind). In practice, C,(0) = e? (22) has to be consistent with the equilibrium condition,
mew3 (x?) = kpT (equipartition law).
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For a number of (uncorrelated) oscillators, each with its own w; and ~;, we obtain

"‘Jéu (w)  e’kpT 1 _,
2 me 2;1“1 WP — 2 —dwy; = kBT a0 (w) (19)

for the autocorrelation function of the total dipole defined as =), ex;. Upon rearranging we obtain

the imaginary (dissipative) part of the frequency dependent polarizability as

) = ) = 2 [ oy e = L2 [ (u0n(0) costwrrar

which allows us to write d,y,e(2) for any complex frequency z in the upper half plane as (see Appendix
B)
1 ~ 1 /
dmol(z) = - / amfol (w )dw'

T w' —z

Notice that for w — 0 we have

+oo 9
%M®=%M®=%;f/ G (o)t = PO

— 00

consistently with equipartition, (u?) = €23, (x2) = €2/m. >, w; *kpT.

Thus, we can write the absorption coefficient as?®

_we'(w)  2mwN 1 /°°

This formula can be used, in conjunction with classical, canonical molecular dynamics calculations, to
extract the “classical” contributions to the absorption coefficient, for instance those due to rotations of
permanent dipoles and low-frequency vibrations which can be treated at a classical level®5.

To see that Eq.(17) represents indeed a sort of dipole autocorrelation function we notice that the

retarded “Green’s function” defined by
C~(t) =
is exactly the polarizability response

C7(1) =~ O (Gole™ e Ml go) = —2@(1)Tm 3 e E (ol uln) (9nuldo)

25The factor 3 in this expression arise from the replacement of the one-dimensional dipole p with the dipole vector .
26 Notice that the temperature enters here just because of the equilibrium condition, which in the Langevin model can
only be enforced by a relation between the dissipative and the fluctuating forces. From this perspective, Eq.(19) is best

written as ~
WCH(W) _ (N(0)2> ~ 11

(63
2 &mol (0) mol

(w)
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= 20(1) Y sin(wna)| (9ululdo) I* = (1)

and the important imaginary part of its Fourier transform reads as

i [t

@) = =2 [ (0} sinwnar = 1 [ Gutoyuo)

Here, the complex-conjugation symmetry of the correlation function C,,,(¢) = (u(t)u(0)),
translates into symmetry properties of its the real and imaginary parts
ReC\,(—t) = ReCyp(t) ImCy,(—t) = —ImC,,,(t)

and of their Fourier transforms

where

~ “+o0 (e
S(w) = = / ReC,,,(t)e™'dt = 2/ ReC,,,,(t)cos(wt)dt
0

—0o0

and

A(w) _ C,u/»b(w) - Cﬂ#(_‘*}) = i/+oo ImCW(t)ei“tdt =_9 /0Oo ImCW(t)sin(wt)dt

Hence, the general result

i) = 22 (20)
expresses the dissipative part of the polarizability response in terms of the antisymmetric part of the
so-called spectral density (of the fluctuations) of the stochastic process®” u(t).
The connection with the previous result, Eq.(19), obtained for the classical, damped Harmonic oscilla-
tor model, can be established with the help of the Kubo-Martin-Schwinger detailed-balance condition

on the canonical correlation function (see Appendix C), namely, for =% = kT,

éu (~w) = éu#(w)e_ﬁhw

27The origin of the name becomes clear upon noticing that (u?) = ﬁ fj;o éuu (w)dw, see also Footnote 23.
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or, equivalently?®

S(w) = coth (@) Aw) (21)

Therefore, Eq.(20) can be written in terms of S(w)
X Bhw
) = 3 (552 St0)

and in the classical limit (Bhw < 1) h~'th (5%) ~ Bw/2 we obtain Eq.(19)

wS(w)
2kpT

d;;,ol (w) =

upon noticing that S(w) — Ce(w).

7 Conduction

As already mentioned in the previous section, conductors differ from dielectrics by the behaviour of
those charge carriers at w = 0 that are free to move and hence able to sustain a current. In the Ohmic
limit, J(w) = &(w)E(w) holds, and the continuity equation can be “closed” with the help of the first

Maxwell equation to give
_ am ~
(e(w) + wa(w)) plw)=0

where é(w) accounts for the polarizabilities of the ion cores, and the second term is just the free carrier
contribution to the total dielectric constant. Thus, unless é(w) = 0, the only admissible solution
which is Fourier transformable is p(t) = 0, as we have already seen above.

Solutions for given initial state densities® p(0) decay exponentially in time, as is shown in the following

28This can be proved with a direct calculation in the case of a collection of (uncorrelated) harmonic oscillators of
coordinates {z}} and the “dipole” u(t) = >, qri(t). Indeed, with the help of the solution of the Heisenberg equation
of motion for the phonon annihilation operator of the k — th oscillator, ax(t) = ag(0)exp(—iwgt), we can write

(Ou0) = D arader Az {(ax(t) + ar(®))(@(0) + a0 Zqimk[ (afar) + e~ ™" + (afay) i+
k,l

(here Axi = 1/2mywy,) or, equivalently,
Cun(t) = ﬁZ
t

where 7, = (ajax) = (e#"“k — 1)~1 is the mean number of phonons in the k — th oscillator in thermal equilibrium.
Hence

nk-i-l)e_iwkt-f—ﬁkeiwkt}
2m Wk

p 2
Aw) = 123" T (50— ) = 5(w + )

o MkWk

and

MW

S =hT 3" i/ coth(ﬂ ‘”’“)[5( —wk)+5(w+wk)]_coth('8h )A()
k

29These have an accompanying electric field E(t) which solves the first Maxwell equation VE(t) = 47p(t), see below.
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where, for simplicity, we focus on the case € = 1 (unpolarizable ion cores). We replace p(t) with the
function pr(t) such that pp(t) = 0 for ¢ < 0 and p(07) = p(0), and denote with pr, its Fourier
transform. The continuity equation in the Ohmic medium then reads as

IpL

+oo
W(t) + 47r/ ot —t)pL(t)dt' =0

where the integral over times actually runs for ¢ € [0, ¢], consistently with an initial state problem and

with causality of the conductivity kernel. Upon noticing that

e iwt OPL iwt +oo - oo iwt 7, — o
™ = (t)dt = e pr (t)]g" — iw pr(t)e dt = —p(0) — iwpr (w)

— 00 — 00

we can take the Fourier transform of the above equation to obtain

=p(0) —iwpr (w) + 476 (w)pr(w) =0

and 0(0)
_ o ip
prlw) = w + idmo(w)
It follows 0 [+ .
P ! —iwt
t) = d
pill) 27 /_Oo w + 476 (w) N n

which provides the solution pr(¢). Note that for ¢ < 0 the integral vanishes (as it should do) since
the denominator is analytic and does not vanish in the upper half plane, thereby guaranteeing that no
pole of the integrand appears when using contour integration in the upper half plane°.

For t > 0 we specifically study the Lorentz-model expression of the conductivity

_ "o%o

a(z) = _
Yo — %

to get a realistic representation of p(t). The integral then reads as

it =2 § ey

where ) )
.70 2 70 2 70

=—4—=+0 Q=4 — = = - —

24 1 5 , TOo0Y0 4 wp 4

and we consider only the case®! Q2 > 0 or, equivalently, wp > 70/2. Contour integration in the lower

305(2) is analytic in the uhp and satisfies Red(2) > 0. It follows Im(w + 476 (w)) = Imw + 47Red (w) > 0.
31Notice that even for 22 < 0 the poles z4 are confined to the lhp.
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Figure 6: Typical behaviour of the real and imaginary parts of the dielectric function (absolute values
are given in the black and red curves of the upper left panel) and of the conductivity (lower left
panel, same color coding), along with the corresponding attenuation length (upper right), for a model
conductor. Data are given for a model system with a Wiegner-Sietz radius s = 1.0 A and relaxation
time y~! = 0.03 ps. The corresponding plasma resonant frequency is in the ultraviolet, Ap ~ 70 nm
and the Drude’s conductivity is o¢ ~ 21018 s~1. The lower right panel shows the behaviour of p(t)/p(0)
for the chosen set of parameters.

half plane then gives for ¢ > 0

_ 0
e t

pL(t) = p(0) S [rosin(Qt) + Qcos(Q4)] (22)
which shows that the initial density decays in time with a relaxation time 2+, ! while oscillating at a
frequency 2 =~ wp.

As is evident from the above discussion, the plasma frequency wp plays a central role in studying
the optical properties of a conductor, which we now detail a bit more by focusing on the simple
Lorentz-Drude-model, namely on

w, w? Yo wh

7
—14 L S 70
+w’yof’iw V2 + w? w yE + w?

- 14mo(w
Etot(OJ) =1 + A

where w? = 4707 has been used. The general behaviour of the relevant response functions is shown in

Fig.6 and the optical properties can be directly read off from the rightmost term of the last expression.
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It is evident that for any frequency but the smallest (in other words, for w 2 79) we have, to a good

approximation,

This means that €., (w) is approximately real and €;¢(w) < 0 (€01 (w) > 0) holds for w < wp (w > wp).
Thus, a quick look at the wave equations Eq.s (9,10) reveals that wave propagation is only allowed
for w > wp: for &4t(w) < 0 the solutions decay exponentially within the conductor on a short length

scale, which increases when approaching wp (see Fig.6). Specifically, we have

2
ﬁsze\/w%—w2:2\/k%,—k2 for 79 K w < wp
c

where k = 27/ and kp = 27/Ap have been introduced, with Ap typically in the ultra-violet region,
Ap ~ 100mnm. The behaviour of the system at the onset of propagation, i.e. exactly at the plasma
frequency, follows from Eq.(22) upon noticing that for vy < wp (a condition which is well satisfied in

ordinary situations) this equation simplifies to
pL(t) ~ p(0)cos(wpt)

This means that for a charge (“plasma”) oscillation to exist the accompanying electric field (i.e. that
solving VE = 4mp) has to oscillate at the plasma frequency.

Microscopic models and exact results parallel those introduced above for dielectrics. The Lorentz
model of harmonically bound charges reduces -in the limit of vanishing frequency of the harmonic

oscillator- to the free-electron model by Drude, i.e.
me(t) + mevev(t) = —lel E(t) +¢(¢) (23)

where v = 7 is the electron velocity, ~. is the relaxation rate and E a uniform, possibly time-dependent
electric field. Neglecting a transient which decays on a microscopic time scale 7. ~ ;! , the stationary

solution for the ensemble average

1 el -

- _ P
(0(w) = o Bw)
provides the Drude’s expression for the admittance
- 1 2
Aw) = =1
Me Ve — W

(and the electron mobility 1o = limy,_,0 A(w) = |e|*7./m.) which allows one to express the frequency-
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dependent conductivity as

N 2
5(w) = neA(w) = Ne le| _ _Te%0

Me We_iw er_iw

where n. is the number density of free electrons and oy = n.e?7. /me is the Drude’s DC conductivity.
The limitations of the Drude’s model are well-known, and can be traced back to the intrinsic quantum
behaviour of electrons3?. Also, the nature of the scattering processes turned out be very different from
those originally envisaged by Drude, who identified in the collision with the ion cores the source of
momentum relaxation. In fact, ion cores -if periodically arranged- become transparent to propagation
of electron waves for all but few energy intervals: scattering only occurs because of disorder, e.g.
lattice vibrations, impurities and defects. Even at very low temperatures, conduction is limited by
impurities which can never be removed from real samples. However, the Drude model does capture
some important features of the electron dynamics which remain unaltered in the more sophisticated
approaches, what makes it still interesting nowadays.
In a static field and in samples much larger than the mean free path l. = vt., (where v is a typical
electron velocity), electrons undergo many collisions before being “probed” and, on average, acquire a
drift velocity>3, va,; = —|e|ETe/me. This is much smaller than the typical magnitude of the electron
velocity, but oriented with the field, and drives the electrons against the “thermal” random motion in
the direction of the field. The motion is drift-diffusion and the regime is called diffusive. This has to
be distinguished from the ballistic motion observed on time scales < 7. where electrons are accelerated
by the field.
The specific connection with diffusion is best appreciated at the classical level by noticing that, accord-
ing to Eq.(23), and similarly to the previous discussion on dipoles, the average response to the field
—le|E(t) is also the pointwise response to the fluctuating force {(¢) which is responsible for diffusion
and for thermal equilibrium, .
1 w
o) = mivf (— 2w

On taking the square modulus of this expression and using the Wiener-Kinchine theorem, we obtain

Colw) == — 1w

mig Ve — iw|? ¢

where C4(w) is the Fourier transform of the autocorrelation function C4(t) = (A(t)A). Here, as usual,

32For instance, if the electron gas were classical one would have a contribution %kB per electron to the heat capacity,
which is not observed.

33 A collision-limited velocity ¥(w) is attained for any frequency w < 7, which signals that dissipative processes are
on.
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C¢(w) = 2mery.kpT ensures the correct equilibrium condition, i.e. m.C,(0) = kgT, and thus®*

Me Ve — tw|? e2

or, equivalently3®,

2 o0
Aw) = k"’BT /0 C,(t)e™tdt

In the limit w — 0,

N A
— ) t t =
bo =17 / (it =

where D is the diffusion coefficient,

(=) —=(0)%) _ 1 [
D= lim —————*- = — v(t)v(0)) dt
Jim S 1) wowo)
here written in general for d spatial dimensions in terms of the d—dimensional position and velocity
vectors, x(t) and v(t), respectively.

The above discussion, being based on classical statistics, fails in describing the quantum electron “gas”
but provides some hints on how to correct such classical picture. In this perspective, the Drude’s

conductivity reads as
= 62 ne
kT

g0

where p. = n./kpT is the number of states per unit volume per unit energy available for diffusion. This
is the quantity suffering most of quantum restrictions, provided the diffusion coefficient is interpreted
quantum mechanically. Thus, we may heuristically replace this term with the appropriate density of
states.

The following simple argument, which has its roots in the semiclassical theory of electron dynamics,
provides the route to the exact result. For fields which vary on a length scale much larger than
the typical interatomic spacing, the band-structure picture holds locally on microscopically large but

macroscopically small volumes, and we can thus introduce a local electrochemical potential®®

(@) = pe(x) — le|o(x)

where p.(x) is the chemical potential of the unperturbed band structure (i.e. referenced to the
field-free situation) and —|e|¢(x) is the energy shift of each electron level due to the presence of the

external field. This quantity describes the driving force for restoring equilibrium when non-equilibrium

34 Analogous result holds in the non-Markovian case, v = v(w), provided the correct fluctuation-dissipation relation of
the second kind is used, C¢(w) = 2mckpTRe(w).

35Remembering that A(t) = i fj_;): A(w)e~™tdt is real and satisfies causality, it is not hard to check that A(t) =

2
o7 O Cu(t).

SFrom a thermodynamic point of view, this is just the chemical potential describing the local equilibrium in the
presence of the field.
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conditions prevail, through the flux (in linear regime)
J.=-CVyu

Here C is a constant which can be determined by noticing that formally, when ¢(x) = 0, J can only

be due to a concentration gradient,

J(E=0)=-CVu,=—-DVn,

c—D (5715)
o ) go

where On./Ou is the appropriate density of states for the diffusion process. For a degenerate electron
gas (the rather standard case!) at T = 0K

(%f)eq = peler)

where p.(er) is the usual density of states at the Fermi level ez = p. This is the main effect of

Hence,

the Fermi statistics, which allows one to “probe” the electron levels when progressively increasing the

electron density at T'= 0 K. Then, in general, the charge current density reads as
J = +|e|DVn + e*Dp E
and the conductivity of a degenerate electron gas follows as
o0 = €?Dpe(er) (24)

where D is the diffusion coefficient of the electrons at the Fermi level®7,

2 2
UV - VrTe

T dv.  d

v% = (v?) being the root-mean-square (group) velocity of the electrons at the Fermi level. Eq.(24) is

also commonly re-written in terms of the mean-free-path l. = vpT

UFle

d

37In the Markov approximation the equilibrium velocity autocorrelation function decays exponentially, (v(t)v(0)) =
(v(t)v(0)) e~ 7et. Notice that the subscript e in 7. and 7. stand also for elastic scattering, which is the main scattering
mechanism limiting conduction.

oo = erS(GF)
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Here, in weakly disordered samples, [, is inversely proportional to the defect concentration n;

1

E =MN;i0¢
the constant of proportionality o. being essentially the (elastic) scattering cross section (length for
d = 2). Under such conditions, one can replace the density of states of the disordered sample with
that of the unperturbed system, and find for an isotropic system

on 1 Oep 1 Oon

Pe(er)Vr = 5 Bk~ Ok

where

oL k% ford=2

909 o gug
e =y Zk l_VAk/k<dek

s 3mkd  ford=3

Here, gs(= 2) and g, are the spin and valley degeneracies, and Ak = (2mr)?/V is the volume (area)
occupied by each k point upon application of the appropriate Born - von Karman boundary conditions
on the sample volume (area) V. For instance,

2

e
gg = gvﬁkFle

is “universal” in 2D electron gas systems, i.e. it holds irrespective of the dispersion relation (provided
is isotropic).
Eq.(24) can also be written in a form which fully displays its quantum character (within the assumed

one-electron approximation). To this end, we explicitly introduce the quantum expression of the

t38
o {(@() - 2(0)?)
D= Jim a

relevant diffusion coefficien

where the average has to be taken on the microcanonical ensemble at the Fermi level

_tr {d(er — H)(2(t) — 2(0))?}
tr{0(er — H)}

((2(t) — 2(0)*)p

and notice that?°
tr{d(er — H)} = Vpe(er)

38 As above, operators with a time dependence are meant to be in the Heisenberg picture.

39%r {5(ep — H)} = B?F tr{O(ep — H)} = (dN/de) r where N(e) is the total number of states at energy < e.
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to arrive at*°
et ot {6(er — H)(x(t) — x(0))*}
o(er) = 5y lim ” (25)

This is transformed into the appropriate velocity autocorrelation function in the standard way, i.e.

re-writing the numerator above, upon using x(t) — z(0) = fg v(t')dt’, in the form

t t t +oo T T “+oo
<(ac(t)—cc(0))2>:/0 dtl/o dts <v(t1)v(t2)>%/0 dT[ dr (o(T + D)o(T ~ 1)) Et/ (w(r)v(0)) dr

where

follows from C,(t) = C,(—t)*. It follows,

e? [ v(t),v e? [
oler) = W/o dttr{5(ep - H)[(t)’Q(O)]JF} = m/o dttr {d(er — H)Re(v(t),v(0))}

and since
tr{d(er — H)v(t)v(0)} = tr {5(6F - H)e+%Htve_%HtU} =tr {6(6F - H)ve+%(€F_H)tv}

tr{d(er — H)v(0)v(t)} = tr {6(6F - H)ve+%HtUe_%Ht} =tr {(5(6F - H)'ue_%(eF_H)tv}

hold, after introducing the proper regularization (see also Appendix B)
+oo i
/ dteH I = LinGE(6), i (GH(e) — G (e)) = 2nd(c — H)
0

we finally arrive at
mwhe?
olep) = Wtr {6(er — H)vd(ep — H)v} (26)

in terms of the velocity operator in the Schréodinger picture. Also,

7'('62

7T€2
oler) = Vd Zf: (er flvleri) (erilv|er f) = va Xf: | (er flvlepi) |?

expresses the (zero-frequency) conductivity in terms of the eigenvectors of the (disordered) Hamiltonian

40At finite temperatures §(ep — H) has to be replaced with —9f(H)/de where fg(e) is the Fermi-Dirac function at
temperature 7' = (kgB)~'. This also gives

73 = [[de (<22 @ar-afo

where or—g(¢) is the T = 0K conductivity of the system when the Fermi level is adjusted at the energy e (provided
scattering mechanisms can be considered temperature- independent).
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at energy ep. Notice that if these eigenvectors represent bound states, i.e. if they localize within the
sample volume, the “on-shell” matrix elements of the velocity operator vanish, being v = %[H ,x):
in this case the conductivity vanishes even if the states form a continuum, and one speaks about a
localization regime*!.

The exact expression for the frequency-dependent conductivity tensor, in linear regime, can obtained
with the help of the general linear response theory. The theory is outlined in Appendix D (see also
Appendix E for the definitions of charge and current density operators), and gives, for a perturbation

of the form H;,; = —a(t)A, an expression for the response

(6B(t)) = /ﬂo a(t)xpa(t —t)dt

— 00

in the form
xa(t) = (1) (B, A) = OM)BC (1)

where the second equality, involving the Kubo correlation function Ck ,(t), holds in canonical equilib-

rium. Of interest here is the special case B = A,

. “+o00 1 .
) = [ alt it = O i) = Grxan(t) = B FA®, 4] = 8(05CK, (0

— 00

for the perturbation describing an electric field*2:43

Hipe = / dr' ot (v )i (r")

here written in terms of the charge density operator. Linear response then gives

A oo
() = [ [ xsusntrrle =00

ot oo
where (in canonical equilibrium)

! / / .
Xnn’ﬂt t _@t/ T, —th "7t dr
55( | ) ()0 <9t( )9t( )>

41This is the celebrated absence of quantum diffusion in strongly disordered media, and arises because of the destructive
interference which dominates a multiple collision process when the scatterers are randomly arranged.

42We work in a gauge where E(r,t) = —V¢°®(r,t). We are actually focusing on the parallel components of the
electric field and current density, and extract o(w) from these components. This is easier since E and B are linked to
each other through their transverse components only, and is legitimate as long as Ohm'’s law J(w) = o(w)E(w) holds
for the overall (parallel plus transverse) vector fields. The above choice amounts to consider a purely transverse vector
potential, i.e. VA = 0 (Coulomb gauge), and identifies in ¢ and A the potentials responsible for the parallel and
perpendicular components of the field, respectively.

431n the following, to avoid confusion, we identify operators with a hat, see Appendix E.
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Using the continuity equation 0n/dt + VJ = 0 we obtain*!

. +oo B .
—Vs(Js(r,t)) = /dr’/ (e O (t — t’)ng’a/ (Jo(r',—ihT) I g(r,t —t')) dr
—00 0
where the manipulation
P (P, )V ad o (1, 1) = Vo (0 T ) (r,t) — TaVad®™ (1,1) = Vo (¢ T o) (7, t) + J o Eo(r, t)

makes the electric field explicit,
. oo 5 .
v, (J,g(r,t)>:V5/dr’/ Aot — 1) / (Folr! il T ot — ) dr | B (o, ¢)
—00 0

In writing this expression a surface integral has been neglected since it accounts for the charges leaving

the sample at its boundaries*® and thus the conductivity tensor follows as*6

5 .
o5 (r,'[) = (1) /O (Fo(r!,—il) T (r, 1)) dr (27)

This is known as Kubo-Nakano formula of conductivity and is best written in the energy representation,

on noticing that

(Ta(r',=ih7)T5(r,0)) = D po (Wl Ta (1) W) (Wi | T (1) [0y €7 Fn )i (Bn =)t

where |U,,) are N—electron eigenstates with energies E, and p, = e #F»/Z are the corresponding
thermal populations.

In the monoelectronic approzimation®” |¥,)’s are determinants and (¥,,|J o (/)| ¥,,) is non-vanishing
only if |¥,,) differs from |¥,,) by at most one single-particle state. Thus, if ng = {i1i2..iy—1} is a

collection of N — 1 indexes and 14, f ¢ ng

<q’nui|ja|\1}nof> = <¢1‘5a|¢f>

44The sum is implicit on repeated greek indexes.
45Tn the static limit it reads as

. ) ot ) B . 5 )
,zi:m/awds ./7oodt (/0 (Talr',—itr) 2 (r,tft)>d7')

where ¢; are the potentials of the conductors to which the sample is contacted, and the integrals run over the contact
surfaces.

460f course, the equality should hold to within a term of the form, V A F, but the homogeneous condition, J — 0
when E — 0, sets this term to zero.

4TWe keep on using the standard (first quantization) version of quantum mechanics. Second quantization simplify
things considerably.
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where |¢;) are single-particle states and j’a is the monoelectronic current operator

lel

Far) = = [oa, 60 = )]+

On account of the permutation symmetry restrictions, the sum over states transforms according to

20D praided= Zfez (1= fle) ()

no i¢ng fé&no

where

is the Fermi distribution function. Thus,
(Ja(r!,—ih7) T 5(r, 1) Zf (€0) (1= f(e£) (6ilda(r)|d) (D5ld 5(r)| ) (7 e e P st

where w; ¢ are the transition frequencies. On integrating over 7 and noticing that

Fle) (U= Fleg)) (770 = 1) = f(ep) = f(e2)

we can Fourier transform in time using

oo
lim e~ el wist gy — P <

e—0t Jo

1
W — Wif

> + m(w — wif)

to arrive at (upon swapping ¢ for f)

710 = 3 (<52 (013oion) @100 {0 () + it - ero

if
(&) - flen=ste) (1)
Ae ) ¢ €F — € Ae )

In homogeneous systems g, (7, 7’|w) is actually a function of r — 7/, which we write simply as G, (7 —

where

r'|w). Its spatial Fourier transform,

G 5(qle) = / dr 50 (r|w)e "

enters the linear response result

<jﬁ(Q7 w)> = 6ﬁa(q‘w)E~‘a(Q7 W)
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and is related to g4 (r, 7'|w) by a double spatial transform

T8a(qlw) ~ /drl/drge iq(ri— ”2)05&(7“1,1“2|w)

Here the dependence on 71, r5 only occurs in the current density
~ . e A
[ariamiemior = Eligy, eior,

therefore, in the long-wavelength limit (i.e. for spatially uniform fields), jo(q) — —|e|oo and

n0) = 5 3 (<52) | @loalon) ostoalon {iP (2 ) 4 it - wro)

The randomly disordered system can be considered isotropic, gq(0lw) = 0,37 (0|w), where

(0f) = de( ar) Hodeulon P {ie (=50 ) + mot o )

and, in particular,

2 A
Re(01s) — 7 (—Af)f‘ (611610 5) 6 — 070

(28)

Thanks to causality, this expression is sufficient to reproduce the whole frequency dependent conduc-

tivity in the ¢ = 0 limit, and in the monoelectronic approximation, and is known as Kubo-Greenwood

formula of conductivity. It can be converted to a previous expression, Eq.(26), by replacing the free

sums over ¢, f with integrals over energies €, ¢’ and sums over degeneracy indexes i, f (Ae =€ —¢)

Rea(0l) = 7o [ ac [ da(_)zmwk 2500 - 29

> |(eilole f) |* = tr {96(e — H)od(e' — H)}
if

where

Thus, in the limit of vanishing frequency, we recover the previous result,

Re&(0[0) = ”522/d6< gf>tr{vc5(e— H)d(e — H)}

ca(010) = [ ae (-5 ) aroncc)

mhe?
Vd

or, equivalently,

where

or—ok(€) = tr{0d(e — H)vd(e — H)}
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is the limiting conductivity at zero temperature when the Fermi level is set to ¢, limp_,o Rea(0]0),
since lim_,q (—%) = (e — ep) holds with ep = limp_q p.

It is worth noticing at this point that Eq.(28) is very general, and describes the conductivity at both
small and high frequencies (i.e. from the DC/AC “domain” up to the optical region and more), provided
the appropriate Hamiltonian including disorder is considered. However, disorder is only relevant at
low frequencies w < 7, where 7, is the disorder-related relaxation time. At high frequencies (w > 7.)
relaxation processes are negligeble on the time scale of the electron dynamics ~ w™!, and thus the

conductivity is best evaluated with the much simpler disorder-free Hamiltonian,

_Af> (kilog|kf) (kflva|ki)
fi

2¢?
o ~ 79 =j—— E li d
(3> 7e) TpalOlw) = T5a(0f) =1 (2m)d if oot /BZ Tk Ae w —wyi(k) +in

where the sum over initial and final states has been written explicitly in terms of Bloch vectors and

band index, and the translational symmetry has been used to simplify matrix elements,
(kilvg|K'f) = onrs (Kilog|k f)

prior to the usual replacement », — V/(27)? [}, , dk which introduces the integral over the Brillouin
zone (the factor of 2 comes from the fact that the original sum was also over the spin projections).

Here it is worth exhibiting separately the diagonal term i = f

. 2 2 . 1 8f . R
Z# ;hmn—ﬂﬁm /BZ dk (—&(Gn(k))> <kn|v5|kn> (kn|y|kn)

which is non-vanishing for conductors only thanks to the term —df(e)/0e = §(e — ) . In particular,

the T'= 0 K limit of the real part of this contribution reads as

Re&é)a(0|w) = ngad(w) (29)
where DY is termed Drude weight and is given by

Djo = €p(er) (vpva),,

with p(e) = 2 [, d’k/(2m)5(e(k) —€) the density of states per unit volume and (..)
the Fermi surface. Most often DY 5 = daD° where

¢, all average over
F

DO — €2p(€F)’U%‘

d

On comparing with Eq.(24) D° = (7, as in the Drude model?®, and is a measure of the number

density of electrons available at the Fermi level weighted by their average speed v% := <'U2>5F; of

48For o(w) = 0o7e/ (Ve — iw) and D° = gove = Ne?/me we have Reo(w) = 00v2 /(72 + w?) — 7D (w) for e — 0.
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course, the d-peak appearing in Eq.(29) (in place of a Lorentzian of width ~ ~,) arises from the use of
a disorder-free Hamiltonian which cannot describe electron scattering.
We thus see that

Red}, (0lw) = 7DY, 6(w) + Reégit(mw)

where
o2 i£f
Rer 2 (01) = Fpmyemrs 2 [ 7(600) = Fler00) (il o) 8 = o5a(k)

is the genuine optical conductivity containing inter-band transitions only, and therefore

2
ODCYe
¢+ w?

Redga (0lw) ~ + Re&%ﬁt(mw)

with op¢ and . computed with the full Halmitonian H including disorder,

2 O
thl tr{od(ep — H)0d(ep — H)}, e = =

(TZOK) OpCc = -
opcC

at the expense of neglecting the possible effect of disorder on the low energy inter-band transitions,

which is surely a good approximation if the onset of such transitions wg is such that wg 2 7e.
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8 Appendix A: Averages of microscopic densities and fields

We sketch in this Appendix the derivation of the macroscopic Maxwell equations from the microscopic
ones, focusing on the simplest case of Eq.1. We start introducing a suitable averaging function f(r)
peaked at the origin, which is small ranged on a macroscopic scale but extends (smoothly) on a
microscopically large volume containing many molecules. The average of the microscopic quantity
F(r,t) is then defined according to

Fracro(r,t) = (F(r,t)) = /d?’r/f(r')F(r —7r't) = /d3r/f(r —7r\F(r' t)

provided f is normalized to 1. It follows OFacr0/0z; = (OF (v, t)/0x;) and similarly 0F,,qcro/0t =
(OF (r,t)/0t).
With this definition, averaging Eq.1 gives VE acro = 4T Pmacro Where pmacro(T,t) is the average of

the molecular and the free charge density,
Pmicro(Tst) = Z P;ml (r, 1) + Z qi6(r — (1))

For the i —th molecule at position R; the contribution of its density to the average in r can be obtained

mol
%

upon noticing that p7°'(r’,t) is strongly peaked around r’ = R;

el o) = [ @ s & [ @ se-Rpr e o [ @R w0 - R)

i.€.,

<p;n0l(’l“,t)> ~ f(r _ Ri)q;‘m()l _ Vf(’l“ _ Ri)p;n()l

where
qlmol — /dBT/p;nOl('l”/,t)

is the molecular charge (if any) and
mol __ 3 ../ _moly/../ /
o = [ 6 - R

its dipole (with origin in R;). Thus, from a different perspective, the first term is the average of a

point charge density p?°""*(r,t) = ¢7°'5(r — R;(t)) (similar to the contribution of the free-charges)

%

and the second term is (minus) the gradient of the average of a dipole density

p(r,t) = p"* (H)3(r — Ry(t))

As a result
pmacro(r7 t) = p(T, t) - VP(T7 t)
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where now p(r,t) is the number density of molecular and free charges at r, P(r,t) is the number
density of dipoles, and
V (E(r,t) + 4nP(r,t)) = 4mp(r,t)

Notice that p(r,t) is usually termed the “free” charge density, even though it contains both charges

which are “free” to move (g; above) and ion cores which are essentially fixed in space (e.g. in an alkali

metal ¢;’s are the free-electron charges and ¢/*°"’

mot’s are alkaline ions which sit on the lattice positions).

This result is rather general and can be specialized to the cases of interest: in a dieletric there are no
free charges and p(r, t) describes the external charges deposited onto the molecules p(r,t) = pP°" (r, t)
whereas in a conductor, as mentioned above, it accounts for both the conduction electron density and
the ion-core densities, p(r,t) = p"d(r,t) 4+ p*°"(r,t), where the latter is quasi-static, i.e. p(r,w) ~
~cond ~ion

P (r,w) for w > 0, though an ionic contribution 5*°"(r,w) may appear at frequencies resonant with

the lattice vibrations.
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9 Appendix B: Analytic properties of response functions

Spectral representation of analytic functions in the uhp

Let f(2) be an analytic function in the upper half plane such that |f(z)] — 0 as |z| — oo. Cauchy’s

representation theorem reads as

_ 1 +°°f+(x) B 1 +o00 1 1
f(z)—%/ x—zdm:%/ dmf+(x){x—zi:c—z*}

— 00 — 0o

where f*(z) = lim, g+ f(z + i€) (z € R) and the second term on the rightmost hand side has been

added since it is analytic in the uhp and thus does not affect the value of the integral. Hence

f(z);/i:of*(z)Re{xiz}dx i/;ooer(z)Im{xiz}dx

and, upon taking the real and imaginary parts of these expressions,

oL [, L,

T o xT—2 T ) o T—Z

We call these expressions the spectral representations of f(z): they give f for any z in the uhp in terms
of its limiting real or imaginary parts on the real axis. Notice that for 2 = x + ie and ¢ — 07 the

integral can be easily computed using the formal identity

1
—P +imd(z — )
-z ¥ —x

(where P denotes the Cauchy principal value of the integral) and gives

fHz) = 1p /+oo Mdm’ +ilmft(z) = %P /+<><> wdm’ + Ref™ ()

T J o -z T S
i.e. ) T ) T
Ref'(z) = fP/ m/fi(x)dx’ and Imf*(x) = —fP/ e{“i(z)dx,
T J_o T —= T J_o T —z

which are the celebrated Kramers-Kronig relations.

Spectral representation of response functions

We define a response function a function of the form
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where ¢ is a real function, and © is the usual Heaviside function, ©(¢) = 1 for ¢t > 0 and © = 0

otherwise. The Fourier transform oo
W= [ e

— 00

can be “analytically continued” in the upper half plane through®?

+oo )
Xc(2) :/ x(t)e* dt

—o0

since the integrand is well-behaved for ¢ — oo for any z with Imz > 0. This also defines the Fourier

transform for those functions that do not admit a proper transform. According to the previous results,

the function admits the two spectral representations

i), L[ R

XC(Z):f dw ;
T e W—2 T ey W—2Z

now in terms of the real and imaginary parts of Fourier transform above. Here the necessary real or

imaginary parts are given by

oo +o0 w
Rex(w) = /0 g(t)cos(wt)dt = %/_ gs(t)e“tdt = gST()

+oo . +oo
Imy(w) = / g(t)sin(wt)dt = —% / gat)e™'dt = —i==)
0 —00

where gg, ga are the symmetric, antisymmetric extensions of g for negative times, i.e. for ¢t < 0

gs(t) = g(—t) and ga(t) = —g(—t). It also follows™®
Rex(w) = Rex(—w)
I (w) = —Tmg(~w)

which allow further simplifications in the above spectral representations, namely

+oo = e} =
l/ Imx(w)dw _ z/ wImx(w)dw
0

Xel2) = TS w—2 T w? — 22
o 1 [** Rey 2 [ 2Rey
Xe(2) = *./ Rex(@) 4, = f./ = ;X(WQ) dew
T e w—2z Sy w?—z

49This is not a true analytic continuation since the Fourier transform is defined on the real axis only, i.e. it does not
make sense to talk about analyticity in this case. However, the procedure is close to an analytic continuation, in the

sense that %.(z) is analytic in the uhp and ¥J (w) = lim ¥ (w + i€) = (W) .
50This is a consequence of the fact that x is real.
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Extensions

For a function f(z) which is analytic in the uhp, the spectral representation given above is also well

defined in the lower half plane. Thus, we are led to consider the function

1 /+°° Imf*(x)

™ r—z

fe(z) =
— o0
which is analytic in the whole complex plane but the real axis. This can be considered an “extension”

of the original f(z). It is not an analytic continuation, since

lim fe(x & ie) = %P /Ho 7 (@) o +ilmf* (z)

e—0+ e T -7

i.e.

f (@) = fo (z) = 2ilm f " (x)

which show that the function is not even continuous when crossing the real axis, on the support of
Imf*. The real axis represents indeed a branch cut for this function, and the limiting value of Imf
(or Ref) on this cut (e.g. from above) is sufficient to reconstruct the function on the whole complex

plane. Notice also that the above expression is the limiting case of the conjugation property

fe(z7) = fe(2)”

which can also be read directly from the definition of f..
All these results hold in particular for the response function defined above, and the extension reads as
1 (1% Img
Telz) = = / de
71' w—z

— 00
Notice that X.(z) gives back the Fourier transform x(w) when z approaches the real axis from above,
whereas lim, g+ Xe(w — 7€) = X2 (w) = X(w)*.

Sum rules

As above, let f(z) be an analytic function in the upper half plane such that |f(z)| — 0 as |z| — oo.
In particular, suppose that f(z) = C,, /2™ as |z| — oo, where n > 1 is an integer and C,, is a constant.

Applying Cauchy theorem on the real axis supplemented with a large semicircle in the uhp,

too —+ . On Foo + . Z.C'IL
f(z)dz=0= fT(z)dz + lim —dz = fT(z)de + lim ——f,
oo R—oo R 1

R—o0 T'r zn o
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where f+(x) = lim._,g+ f(z + i€), ['p is the semicircle {z|z = Re?,0 € [0, 7]} and f,, = 017 + (1 —

5n,1)%. If n > 1 the second integral on the r.h.s vanishes and we obtain
—+oo
/ deft(z)=0

The same holds for the functions f,,(z) = 2™ f(z) for m =1,2,.n — 2, i.e.
“+oo
/ dea™ft(z) =0 for m<n—2
On the other hand, for m =n — 1, f,_1(2) &~ C,/z at infinity and we get

“+o0
/ dea" 1 (x) = —inC,

— 0o

or, more generally,

T J_so Ch m=n-—1

I 0 =0,1,.n—2
i/ dxxmf"'(x):{ m ,1,..m

This allows us to compute a number of “moments” of the limiting function f¥(x) by just looking at
the asymptotic behaviour of f(z).

For instance, for the dielectric function given in the main text the high-frequency limit reads as
é(w) — 1 ~ —w? /w? (independently of the model), where wp is the plasmon frequency. Thus n = 2,

C, = —w% and the above relation reads as

7 e -1 =

T J -0

or equivalently

2

+oo
7/ dwwIm [6(w) — 1] = W%
T Jo

In the low-density, non-dispersive limit, for the Lorentz model discussed in the main text we get

+o00 +o0 2
Z
_i/ Adww e (w) E/ dwwaly, (W) = e

—o0 —o0 Me

i.e.

o) 2 2Z 2
/ dwopn(w) = e
0

MeC
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10 Appendix C: Autocorrelation functions

Let us consider an isolated system and an observable A. The equilibrium autocorrelation function of
the observable A is defined as

Ca(t) = (A(1)A(0)) = tr (pA(t)A(0))

where p is the (equilibrium) system density operator, tr is the trace operation and A(¢) is the
Heisenberg-picture operator corresponding to the observable A, namely A(t) = enHt A e~ 7 Ht where
A, is the usual Schrédinger-picture operator and H is the system Hamiltonian. Notice that when
the system is part of a larger systems, the very existence of a Heisenberg picture requires the cor-
relation function above to be defined on the whole, isolated system for which a Hamiltonian can be
introduced®!.

In general, C4 above is not real, and its real and imaginary parts read as

ReCs (1) = (Re (A1) A(0))) = 22O — (go (a0)a))

tmCa(t) = (tm (A0 A©) = AOAOD — iny (a0 40)

As we shall see below, thanks to the equilibrium condition these properties translate into interesting

symmetry properties of the corresponding Fourier transforms.

Symmetry properties

Since the system is assumed to be in equilibrium, p = p(H), A(t) can be regarded as a stationary

stochastic process. In practice,
Ca(t) = (At +7)A(7))

holds for any 7, as can be directly proved using the definition above,

tr (pA(t+1)A(T)) = tr(pe+%HTA(t)e_%H76+%HTA(O)6_%HT):

tr (e+%HTpA(t)e_%HTe"’%HTA(O)e_%HT) = tr (pA(t)A(0))

where use has been made of the equilibrium condition [p, f(H)] = 0 (for any function of H) and of the

cyclic property of the trace. In particular, for 7 = —t we have

Ca(t) = (A(0)A(=1))

51The knowledge of the reduced density operator at any time t is not enough to compute the correlation function.
In classical statistics, this would amount to know the probability density function at a single time ¢, P;(x,t), while the
correlation above requires the joint probability density function Ps(z1,t1;22,t2).

44



and hence

ReCa () = ReCla(—t)
ImCy (t) = 7ImCA(7t)

or equivalently,

Ca(t)" = Cy(—1)

It follows that the Fourier transform

~ +OO .
CA(OJ) = CA(t)(ZMtdt
is real i oo ' oo | i
G (w) = / Cietdt = | Ca(—t)e=tdt = G (w)

and the Fourier transforms of its real and imaginary parts are just the symmetric and antisymmetric

parts of Cp(w), .
Calw) = / (ReCla(t) + iTmCa (1)) dt = S(w) + A(w)

where Too +00
S(w) = / ReC4(t)e™tdt = / ReCy (t)cos(wt)dt = S(—w)
+o0 ) +oo
Aw) = z/ ImCa(t)e™'dt = —/ ImCy(t)sin(wt)dt = —A(—w)

Detailed balance

The autocorrelation function of the observable A of a system in canonical equilibrium has an additional
symmetry which is not evident from the previous results, but directly follows from the exponential
form of the canonical statistical operator®?,

Ca(t) = Etr (efﬁHeﬁHtAefﬁHt/Q = Etr (AeiﬂHeﬁHtAefﬁHteﬁH675H>

= %tr (AQ%H(tJriﬁﬁ)Ae*%H(tHB)efﬁH) = (A(0)A(t + ihB))

52 Apart from normalization, the canonical statistical operator is the evolution operator of the imaginary-time
Schrodinger equation, i.e. the solution of Hp = ihdp/dt for t = —ihS and initial condition p(0) = 1.
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where 3 = 1/kpT and Z is the canonical partition function, Z = tr(e ). Taking the complex

conjugate, we get the Kubo-Martin-Schwinger relation,
Ca(t)” = (At — ihB)A(0))

which allows to write the (real!) Fourier transform C 4 (w) in the equivalent form
Ca(w) = Ch(t)e ™tdt = / (A(t — ihB)A(0)) e~ “dt

— 00 — 00

to be compared with

This suggests to study the contour integral

Imt

Ret

-T-iB +T-13

Figure 7: Contour path used to prove the detailed balance condition.

7§ (A(T)A(0)) e~ dr

where the path is the rectangle shown in figure 7. The function is analytic on its interior, since in the

energy representation it reads as

i

(A(T)A(O)> = %Z | <¢n|A|¢m> |26_ﬂE"ehT(E"_Em)

where for Im7 < 0 diverging terms E,, > E,, only appear for Imr < —hf (the exponent indeed goes
as o exp {3 [(—(hB + Im7) E,, + Im7E,;] }). Thus, assuming that®?

(A(ET —ix)A(0)) — 0 for T — oo,z € (0,h3)

53This is usually not satisfied in finite systems. In some instances, however, the contributions of the paths +7" — it
cancel, see e.g. the case of the harmonic oscillator mentioned in the main text.

46



we obtain

~ +oo ) +oo—ihfB ,
Ca-w) = [ awa)yea= [ amao)e s

—o0 —oo—1ihf

=M / A Q) e = ey

— 00

Accordingly,

and .
S(w) = coth <B2) A(w)
which shows that knowledge of A(w) is sufficient to reconstruct the Fourier transform of the correlation

function, Ca(w).

Fluctuations

The Fourier transform C4(w) is a sort of spectral weight of the fluctuations of the observable A at
equilibrium, since
L[t

C(0) = (A% = Ca(w)dw

=5 N

A closer connection can be established similarly to the classical case (Wiener-Kinchine theorem for

stationary stochastic processes). To see this, let us consider the following operator

+oo

Alw) = / A(t)e™tdt

— 00

(the Fourier transform of the “stationary process” A(t)) and the equilibrium average

N o0 —+o0 ) .,
(A(w)Af () = [ [ (A(t1)A(ts)) et e t2dt, dt,

Here (A(t1)A(t2)) = Ca(t1 — t2) depends on the time difference only, and thus with the change of
t1 = t _ (tl + t2) /2
t2 T tl - t2

~ +OO +OO . .
(Aw)AT(W) = / Ca(r)e /D e =T/ gty

variables

we can write
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+oo B
=278 (w — W) C (1)@ 207 = 976 (w — W) Ca(w)

— 00

More precisely, the Fourier transform given above is in general ill-defined, and thus we introduce a

long but finite time interval [T, +7] and put

~ +T . +Oo .

Ar(w) = / A(t)e™tdt = / Ap(t)e™tdt
=T —00

where Ar(t) = A(t) if t € [-T,+T] and Ar(t) = 0 otherwise. In this way the above relation holds to

a good approximation

~ sin ((w—w")T)

(Ap(w) AL (W) ~ 2 Ca(w)

w—w
(provided the autocorrelation function C4(t) decays on a time-scale much shorter than T') and we can

write down an explicit expression for w = w’
(Ap ()AL (W) ~ 2TCa(w)

When Az (w) is easily available (e.g. by Fourier analysis of the equation of motion) this expression

provides an easy route to compute C4(w) and hence Ca(t).
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11 Appendix D: General linear response theory

We consider here the main results of linear response theory, which relates the response of a system
in equilibrium to a (weak) external perturbation, by generalizing the approach given in the main
text. We then suppose that an equilibrium ensemble has been isolated from its environment with
minor disturbance, and that the system state can be represented by a density operator which is some
function of the system Hamiltonian® H, p°? = f(H). External forces of the form H;,; = —a(t)A are
then turned on at some time ¢y and we look at the system state at some time ¢ > ty. If the interaction

is weak enough, it is reasonable to expect that, to leading order,

+oo
o(0) = p6) ~ = [ agalt—t)ar
— 00
where g4 is some operator-valued function of the observable A, as well as of the time delay®®. Thus,
we can focus on the “kick” a(t) = §(¢) and get direct access to ga(t) and to any average of interest.

Starting from the Liouville-von Neumann equation

in integral form
Lot
p(t) = p — %/ [H + Hine(t), p(t')]dt
0

we use first-order perturbation theory and replace p on the r.h.s. with its unperturbed value p(t) = p®?.
In the limit ¢ — 0", we thus obtain

ot .

) )
pO07) & g1 — = [ [H + Hina(£), p"dt = 1 + 2[4,
0

This provides the initial state right after the kick, which then propagates in time according to the free

evolution propagator, i.e.

i

p(t) ~ p°l 4 ﬁe_ﬁHt[A,peq]eﬁHt =p*l+ =

[A(=1), p]

where now A(t) is the Heisenberg-picture A operator. Hence, for ¢ > 0

p(t) -+ A1), ] = g (1) (30)

54This is just to emphasize that the system needs to be isolated. For relaxation effects to be (implicitly) taken into
account in the following analysis, H must actually include both the proper “system” and the “reservoir”.

55Because of the equilibrium condition, g4 can only depend on the time difference. Of course, in addition, it satisfies
causality.
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and, more generally,

Therefore, we can write for a generic observable B

5B(1) = (Bo(1)) = 1 / alt')tr (BIA(Y' — t), p°)) ¥

where, on cycling under the trace operation and using the invariance under time translations,

tr (BIA(7), p°))

tr (BA(T)p™" — Bp (7)) = tr (o°(BA(7) - A(7)B)
— tr (p[B, A(7)]) = tr (o[ B(~), A))

i.e.

with
xpa(t) == O(t) ([B(t), A]) (31)

Here, the averaged commutator entering the response function above can be further re-written in term
of the correlation function Cpa(t) = (B(t)A) as

(B(1), A]) = (B()A) — {(B()A)') = 2iTm (B(t)A) = 2ImCpa(t)

hence

xBa(t) == f®(t)%ImC’BA(t)

is explicitly real. We have already considered in the main text the case B = A, where the symmetries
of the autocorrelation functions help simplifying things. In the general case, simplifications are possible

only under special conditions.

Time reversal

We suppose here the system is invariant under time-reversal, i.e. that [T, H] = 0 holds for the
the antiunitary time-reversal operator 7. We further assume that both A and B have well defined
signatures, TTAT = 74 A and similarly for B, with 74 5 = +1. Let then be {|®,)}, a system energy
eigenbasis; since [T, H] = 0, the time-reversed basis T |®,,) = |®1) is an equivalent energy eigenbasis,
and thus

Cpa(t) = Y pu{TPa|BOAITR,) =) pu (Pu|T'BHAT|®,)" =
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> o (BulTTBOTTIAT|®,)" = 7475 Y po (Pu| B(—1)A|@,)* = 7aT5CHA(—1)"

where p,, are the eigenvalues (natural populations) of the equilibrium density operator®657. We distin-

guish two cases according to whether T47p = 7 = £1, since
ReCpa(t) = TReCpa(—t) ImCpa(t) = —7ImCpa(—t)

For the Fourier transform of the correlation function, C Ba(w), we have

~ +Oo . ~
CBA(w)* :T/ CBA(*t)eiwtthTCBA(w)
which shows that C'g4(w) is pure real (imaginary) for 7 = 1(1 = —1).

Similarly, we consider the response function xpa(t) and its Fourier transform xpa(w) focusing on its

real or imaginary part, as convenient. For 7 =1

2 [e%s} - “+o00 )
Imyxpa(w) = _ﬁ/ ImCpa(t)sin(wt)dt = %/ ImCpa(t)e™tdt = %w)
0 —oo

where A(w) is the antisymmetric part of Cpa(w),

_ C’BA(w) —C'BA(—(U)
2

Aw)
Conversely, for 7 = —1,

2 [ 1 [t , j
Rexpa(w) = —ﬁ/ ImCpa(t)cos(wt)dt = fﬁ/ ImCpa(t)e™tdt = iSw)
0

—0o0

where S(w) is the symmetric part of Cpa(w),

S(w) = éBA(W) +QGBA(_W)

Thus,

i1/ Cpa(w) + (=)"Cpa(-w)
h 2
56Care is needed in handling the trace operation with the antiunitary operator. For instance, TA|p) =

T (3, |®n) (Pn|Ald)) =3, (Pn|Al)* T |®y) shows that, in general, tr(T'A) # tr(AT).
5"For B = A we re-obtain the previous result C 4 (t) = Cz(—t)*, which holds irrespective of the time-reversal symmetry.

Im (i(l_T)/Q)ZBA(w)) _
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Canonical equilibrium

As already seen for the autocorrelation functions, the case of canonical equilibrium deserves special

attention. Suppose that p®? = e~ /Z(3) and consider the real function

Noticing that tr(e P7[B(t), A]) = tr([A, e PH]|B(t)) and defining F(B8) = [A,e "H] we can write a
differential equation for F'(3)

dF

B —[A,He PH] = —_[A, Hle PH — HF(p)

which can be solved for the initial condition F'(0) = 0 in the form
B
F(B) = e*'BH/ e™H, Ale™™Hdr
0

where [H, A] = —ihA and
e Ae=™M = A(—ihr)

Thus ' 5 5
£(t) = h%mtr (MH /0 —mA(—mT)B(t)dT> = /0 (A(—ih7)B(t)) dr

and finally
B,
Xealt) =0(0) [ (A(=ihr)B(o) dr
0
or, equivalently,

s 8
X5A(t) = O(t) /0 (AB(t + ihr)) dr = O(t) /0 (A(~t — ihr)B) dt

In the above expressions the quantity

B
B/ —ihT)B(t)) dr = %/ (eTH Ae~™H B(t)) dr
0

is also known as Kubo canonical correlation function of the observables A and B, and with this

definition " W8 d
mCpa(t) = —2 0%, (1) = "2 Lot (32)
and J
XBalt) = OBCE, (1) = ~O()-CEA(1) (33)
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Hence,
XBA(LU) = /B/OO CK(t)elwtdt — _ﬁ/oo %(t)elwtdt
, BA ; It

In general, the real function C%,(t) relates to the symmetric part of Cpa(t), i.e. to CF,(t) =

ReCpa(t), as can be easily seen in the energy representation, since

eiwmnt

1
CgA(t) = B Z(Pm - Pn)Antmn T

and

1 )
CgA(t) = 5 Z(pm + pn)Antmnezwmnt

nm

where p, = e #Fn/Z are the thermal occupation probabilities and wy,, = (E,, — E,)/h are the

transition frequencies. On Fourier transforming and using

hﬁwmn

2

Pn — Pm
Pn — Pm = (pn+pm):th<
Pn + Pm

) (pn + pm)

we arrive at . .
C’gA(w) = %coth (52) C’gA(w)

With the same token, introducing the antisymmetric part of Cpa(t), namely Cg,(t) = ilmCpa(t),
and using Eq.(32) we obtain

and thus

Catw) = th (752) 5

Usually, one writes the correlation functions in terms of the function
L ~a
Jpa(w) = ﬁCBA(w)

which is also known as spectral density, namely

CE () = —Tpaw)

Bw
C$ 4 (w) = heoth <ﬁ727,w) Jpa(w)

Cpa(w) =h [cath (BZM) + 1} Jpa(w) = %JBA(W)
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Notice that in the classical limit (3 — 0) CF,(w) ~ CK,(w) and C#A,(w) ~ 0 or, in other words,
CE,(t) ~ CF,(t) =~ Cpal(t) as it also follows from a direct calculation,

lim CE4(t) = (A(0)B(t)

B—0
In the above expressions C% ,(t) and Cﬁ 4 (t) refer to the symmetry with respect to the exchange
of operators and, in general, should not be confused with the inverse Fourier transforms of S(w)
and A(w) introduced above. However, in the presence of time-inversion symmetry, if A and B have
definite signatures, for 7 = 1 C% ,(t) = ReCpa(t) and Ch,(t) = ilmCpa(t) are also symmetric and
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antisymmetric under time inversion®®, respectively, and thus

(r=1) CHalw)=5(w), Chalw) = Aw)

Conversely,
(r=-1) Cfalw) =5w), Cia(w) = Alw)

Fluctuation-dissipation

The relations between response and correlation functions shown above provide similar links between the
corresponding Fourier transforms, which enable one to express the susceptibility in terms of the spectral
properties of the fluctuations. Since the imaginary part of the susceptibility is related to dissipation,
this establishes a link between two physical phenomena: the fluctuation-dissipation theorem.
To derive it, we first need an expression for the average energy gain/loss of the system subjected to
the external perturbation H;,; = —a(t)A, i.e.
dH i i dA
— = —[H —aA,H| = —|H — aA,aA] = a(t)—
(where the Heisenberg derivative is based on the Hisenberg picture of the total system) from which
the instantaneous power absorbed by the system follows as
aw dA
— =a(t) (=)
dt dt

For instance, for a harmonic field a(t) = acos(wt) in linear regime we have
+oo

(At)) = (A)eq = a/ Re(e™" xaa(t —1)dt’ = aRe {e™" {aa(w)}

— 00

581n the case B = A the relations ReC44(t) =ReCaa(—t) and ImC 4 (t) =-ImCa4(—t) hold irrespective of time-
reversal symmetry. They follow directly from the stationarity condition.
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and the power averaged over a period reads as

dﬂiaQRe {—iwf{AA (w)e—i“tcos(wt)} =

7 a*wImy 44 (w)

N |

where we have used cos?(wt) = 1/2 and sin(wt)cos(wt) = 0. More generally, the total power absorbed

by the system is given by

where
(Aw)) = d(w)¥aa(w)
and thus . oo ) oo
=5 |a(w)|*(—iw)Xaa(w)dw = |a(w)|*wImy a4 (w)dw
T ) o 2 J_

In the last equality, we have used the fact that only the antisymmetric component of X 44 (w) gives a
non-vanishing contribution to the integral, since |a(w)|? = a(w)a(—w) is an even function of w. Thus,
we see in general that the imaginary part of Ya4(w) is responsible for dissipation. Thermodynamic
arguments59 also suggest that

wlmy 44 (w) >0
We have already looked at this dissipative part of the susceptibility,

Imyaa(w) = %w) = Jaa(w)

where A(w) is the antisymmetric component of Yaa(w), which reduces to C4,(w) irrespective of

time-reversal symmetry. For systems in canonical equilibrium, we can equivalently write

tnfan(e) = 5 Catw) = pon (52) Cate) (59

an expression now explicitly involving “ordinary” correlation functions. In the classical limit 5 — 0,

> _ w > wt _ w >
Imyaa(w) = ShpT [m (A(t)A(0)) e™*dt T (A(t)A(0)) cos(wt)dt
Notice also that, in general,
W) = =0 [ e SO0 = ~6CK\0) ~ i [ Ot
0

59For infinite (i.e. dissipative) systems, the same equilibrium conditions prevail for ¢ — 4oc0, where a(t) — 0. Thus,
energy can only be absorbed by the system, for arbitrary choices of a(t).
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and thus
XBA(0) = —BCE4(0)

is purely real provided, for w — 0, C’g 4 (w) converges to a finite value.
Finally, we derive an alternative expression of the above fluctuation-dissipation relation which may be

useful in some circumstances. To this end, we notice that

dA)y o [T dxaa N,
TR0 = o) = [ ae) e yar
where J
XAA
Xia(t) = P 5(t)BCfA(t) + 9(15)505{,4@) = @(t)BCfA(t)
since ﬁC’fA(O) = —2ImCx4(0) = 0. Hence, on Fourier transforming,
—iwxaa(w 5/ Jerdt
and, in particular,
RexX j4(w) = wImy aa(w 5/ C Jeos(wt)dt

In the classical limit Cfi(A (t) — (A(t)A(0)), and these equations read as

—iwxaa(w) =0 / ) e™tdt
Rex j4(w ﬂ/ )) cos(wt)dt
For instance, for H;,; = —xF(t), where F(t) is a (uniform) external force and x the position operator,

A=z, A=vand

where p(w) = Xz (w) is the admittance,

/ zwtdt

For w — 0 11(0) = Rep(0) = po is the mobility®°
wo=5 [ chioa = op

In the classical limit, the coefficient D reduces to the diffusion coefficient, D = [ (v(¢)v(0)) dt.

60Note that for pg = —ilim,—y wXzz(w) to be non-vanishing C *.(w) has to diverge in the limit w — 0.
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12 Appendix E: Charge and current density in quantum me-

chanics

We focus here on the definition and the main properties of charge and current densities as appropriate
in the standard (“first quantization”) framework of quantum mechanics. In this Section only, to avoid

confusion, we explicitly identify operators with the help of a hat?.

Charge density

Given a system of charges g; we define the charge density operator at r as
r)= Zqié(r —7)
i

where 7; is the position operator of the ¢ — th charge. By definition, this operator is diagonal in any
particle position operator, and its average value gives the usual charge density in terms of diagonal

matrix elements of 1-particle density matrices,
Zqitr (po(r —73)) Zq,/H drj (ri.7r;.rN|pd(r —ri)|ri.ri.ry)
i

Zqi/H#idrj (ri.r.ry|plry.rory) = Zq rpD|r)

where p() is the i — th 1-particle reduced density operator
ﬁ(i) — tI‘j#iﬁ

the trace being taken over all degrees of freedom but the ¢ — th. The characteristic charge density

operator (function) is defined as
G(k) = / R (r)dr

and allows us to introduce the charge moment operators ft,, as the coefficients of the power series

expansion

=y 05,

m!

i.€.

,, = /rmﬁ(r)dr

61Functions of operators do not necessitate of such symbol if their argument(s) are correctly identified.
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Explicitly, the 0 — th moment is the unit operator times the total charge of the system,
frg = /ﬁ(r)dr = iZQi
i
the first moment is the usual dipole moment
[y = / ri(r)dr

and so on.
The charge density operator allows us to express in a very simple way the interaction energy of the

system with any electric potential ¢(r,t) since

V= qu(% Z%/dﬂ r—1)o(r,t) = /drﬁ(r)q“)(r,t)

In this form 7(7) becomes the system operator conjugate to the electric potential at 7.

Current density

To define the current density operator J (r,t) we look at the dynamics of the above system of charges

under the action of the generic electromagnetic Hamiltonian

~ ,— & (%)
H= Z (pz CleT + qu¢ Tt

Here A(r,t) and ¢(r,t) are, respectively, the vector and scalar potentials of the electromagnetic field,

10A
B=VAA Ez—V(Z)—fa—
c Ot

and the i — th term between brackets represents the velocity of the i — th particle®?

R i[ff sl [ < % A t))Q R
Vi = T, Tia] = i T i y Liya| =
’ h ’ 2m;h p c ’
= (b T AGLD) i ia) + o] (b~ LAGLD) )
2m;h L ' ’ 'ooe
1 ik a 1 .
== (p—LAG.0) =T,
m; c a m;
where [p;, Z; o] = —ifie, has been used, e, being the unit vector along the o cartesian axis.

This Hamiltonian gives back the quantum-mechanical expression of the Lorentz force, as can be seen

62Greek indexes a, f3,.. are used to denote cartesian components, which are named as the corresponding vectors
appearing in bold. An exception is the position vector r, whose cartesian components are zq.
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by computing the “force” felt by the ¢ — th particle,

) B = %)+ { o [0 [ )]+ [0

where

. a N . L 00
000 80] = [0072.0). ] = ihg =)

and

2 A q; . ~ ~ N . qi (0Ags . 0A, .
115,10 = = (57500l + s A8 = =it (G2 000) = 522 510

In the last expression®3,

(aAﬂ( 4y Ha

. r,t) — 925 (r,t)) = eapyBy(7i,t)

and thus it follows

dT; ( ¢
=4qi\ 57—

. 10A, . 4 [0i,8, By(Ti,1)]

c ot ¢ Ceb 2
i.e. )
dII,,
dt

C

provided the vector product is defined on a symmetrized product of operators, A, o Bg = %[Aa, Bgl+.
To define the current density operator we compute the (Heisenberg) time-derivative of the charge
density operator, here written as partial derivative on account of the spatial dependence of such
operator,
8ﬁ 7 mi..o . . ~A A ~ A ATA
E(T) =% i 7[1’2‘,”(7‘)] =57 ; (0i[P;, 7] + [Py, 1]0:)

where m;[0;, 7] = [p;, 7] has been used, and

Hence
on 1 . . A
—(r)=-=-V E qi (0;6(r — 7)) + 6(r — 7;)0;)
ot 2 .
1
63We use the implicit sum convention on repeated indexes, and introduce the Ricci-Levi-Civita tensor, €aBy = —€Bay =
—Canp = €Bya = .-, €123 = 1.
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suggests the correct definition of current density operator®
1 . N
=3 > @il 6(r — i)+
i

satisfying the continuity equation

on
n +VJ=0
Notice that )
~ q?,
30 = 53 Lppy e — il — 3 D gr — 7)Ao t)

where

as diamagnetic current density®®

Density form of the electromagnetic Hamiltonian

With the help of the above definitions we can re-write the electromagnetic Hamiltonian in a form
involving explicitly the charge and current densities. To this end we notice that upon squaring the

velocity terms

1:7; _;27(2@ (i’iAﬁi’iAi) ZQm s A+ /dm r1)

where we have introduced for short Ai = A(#;,t), and used the previous result on the electric potential.

Here, on introducing
A; = [ dré(r — ) A(r,t)

in the second sum we get

Zchp“ +—/dr

64Notice that we could arrive at the same result if the chain rule of derivatives were applied in its symmetrized form
on the Heisenberg derivative,

mc2

[ ,o(r — )]+Art—f/er (r,t)A rt+z

0= S PET = O |Gt |

65For equal charges q; = q and m; = m, this term also reads as Jg(r) = —La(r)A(r,t).
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where

> — CQA = —%/dr:]d(r)A(r,t)

hence

2m; ¢

=Y i _f/er (r, )A(r,t)+%/drjd(r)A(r,t)+/drﬁ(r)¢(r,t)

To connect with the results given in the main text, we notice that in the presence of an external electric
potential only (A(r,t) =0 and ¢(r,t) = ¢o(r,t) + ¢***(r,t)) the previous Hamiltonian reduces to

H=Hy+ / dri(r) ¢ (r, t)
and
(6n(r,t)) = /dr'dt’xm(r,r'|t — ")t (v )

where

([A(r, 1), a(r)])

St .

Xnn<r> 7‘/|t) = _@(t)

is the appropriate response function. For the dipole
= /dr'r (on(r,t)) = /dr/d'r’dt’rxnn(r,r’|t—t’)qbe“(r’,t’)

and in the dipole approzimation, ¢*t(r,t) = —rE(t), we obtain

aap(t /dr/d'r Xnn (7, 7' |t) 0y = (t)%/dr/dr’([ﬁ(r,t),ﬁ(r’)]>:ra:cf3

=0 )h ([a(t), A (0)])

Gauge invariance

The Hamiltonian formulation used above requires the introduction of the electromagnetic potentials

from which the physical fields can be derived according to

10A

It is not hard to check that the gauge transformation

oA A A+ VS
"\ o o ) \s-1u
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for an arbitrary function f(r,t), leaves the fields invariant, and thus the question arises of how this
affects the system Hamiltonian and wavefunctions.
To this end, we focus on a single charge system and work, for simplicity, in the Schrédinger represen-

tation, assuming that ¢ (x,t) is a solution of the evolution equation

We then introduce

and notice that, on the one hand,

N QWY _ ix() 00 (@)
(Zhat—i— at)z/)(sc,t)—e ih 5

and, on the other hand,

(p— LA - Vx) (@) = X0 (p— LA(@.1)) u(a,1)

Then, multiplying the Schrédinger equation above by e%X(w’t), we obtain

(@, 1) _ { (b~ 2A(#. 1) — Vx(7.1)"
ot 2m

+qo (P, t) — (’f‘,t)} W(wﬂf)

and with the choice x = ¢f/c we can write the Schrodinger equation in the new gauge

O @1) _ { (p— 24'(.1)"

- ol q<z>'<f~,t)} V(@)

This shows that there exists a unitary transformation of the state vectors accompanying the gauge

transformation of the electromagnetic potential, namely
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More generally, for a number of charges
Tf = /dwldmg..dwN |z1To..TN) e Lo Ef(@it) (T122.. N

or, equivalently,

Tf _ €ﬁj dri(r) f(r,t)

Unique potentials

The previous discussion concerning the electromagnetic potentials can be considerably simplified if
the electromagnetic field is considered in the light of the Helmholtz decomposition of vector fields. To
this end, we notice that for an arbitrary (smooth) vector field F(r) (the temporal dependence is here

irrelevant) a unique decomposition
F('r‘) = FJ_(T) + FH(T‘)

is possible such that VF | = 0 and V A Fj = 0. The components F(r), F(r) are called parallel

and transverse components for reasons which become clear when Fourier transforming the field

F(k) = /dre_ik’”F(r)

and defining
Fy(r) = / dke* k' F(k), F.(r)= / ke (1 —I%I%t) F(k)

where k is the unit vector in direction k. With these definitions, it is easy to check that the differential

properties above are indeed satisfied and thus
Fy(r)=Vy, Fi(r)=VA¥(r)

for some appropriate potentials ¥(r), ¥(r).
In this perspective, it is worth re-considering Maxwell’s equations, Eq.s(1-4), in terms of the (spatially)

Fourier transformed fields,

kE| = dnp kAE, +12BL ¢

C

kBHIO k/\B —%aaEtL:%er_

A further equation can be obtained for the parallel component of the density current,

16E” _ 47 ~

c Ot c
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which is nothing that a form of continuity equation, once is noticed that E | is determined by p,

ap

o +kJH =0

We thus see that Maxwell’s equations are of two kinds. The equations for the parallel components are

simplest and define a unique scalar potential according to
E =-V¢ (35)

which can be determined by solving the Poisson equation
VE=VE|=-V?)=4np (36)

The equations for the transverse components represent a single equation for a transverse vector po-
tential A defined as
B, =VANA, (37)

since the first

ot
implies
and the second reduces to 1 24, A
—-V2A,| + 2 or ?JJ_ (39)

Eq.s (36,39) uniquely define the potentials ¢, A, in terms of the given (independent) sources p and

J 1, and the fields are given by Eq.s (38,35,37), along with, of course, B =0.

In this perspective, the gauge transformation introduced in the previous paragraph uses just the degree

of freedom which is left in the parallel component of the ordinary vector potential A, A — A+ Vf,
10f

and which must be counterbalanced with an additional scalar potential, ¢ — ¢ — < 5, if

EBy=-C= —V°

has to hold.
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