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1 Introduction

These notes summarize the basic equations needed to understand the interaction of the electromagnetic
field with matter. We start with the microscopic Maxwell equations for the electric (E) and magnetic
(B) fields, here written in gaussian units:

∇E = 4πρ (1)

∇B = 0 (2)

∇ ∧E +
1

c

∂B

∂t
= 0 (3)

∇ ∧B − 1

c

∂E

∂t
=

4π

c
J (4)

Here ρ and J are the total charge and the current density, respectively, which obey a conservation
equation which follows from Eq.s 1 and 4

4π

c
∇J = −1

c

∂

∂t
∇E = −4π

c

∂ρ

∂t

namely
∂ρ

∂t
+ ∇J = 0

The above equations determine the field dynamics for given sources ρ and J , and must be supplemented
with an equation describing the charge dynamics, i. e. the Lorentz force (in a classical setting)

F i = qi

(
E(ri, t) +

vi
c
∧B(ri, t)

)
for each charge qi located at ri with speed vi.
The macroscopic Maxwell equations are obtained by performing suitable averages over microscopically
large but macroscopically small volumes of space to obtain fields which are experimentally measurable
(see Appendix A for a sketch of the derivation). In doing this, care has to be taken to include “higher
orders” of the microscopic density in order to define the observed fields. For instance, the macroscopic
density in a neutral system vanishes (as it is the average over volumes containing neutral molecules)
but the field is not necessarily zero (as the molecule may have a dipole and this might not average to
zero). The result is the set of equations

∇D = 4πρ (5)

∇B = 0 (6)

∇ ∧E +
1

c

∂B

∂t
= 0 (7)

∇ ∧H − 1

c

∂D

∂t
=

4π

c
J (8)
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where the auxiliary fieldsD andH (known as electric and magnetic displacements) contain the effects
of the higher order moments of the densities, and ρ and J are now the macroscopic charge and current
densities1. Note that H is also called magnetic field (H = B in vacuum) and then B is the magnetic
induction. These auxiliary fields are, to first order, given by

D ∼= E + 4πP

H ∼= B − 4πM

where P and M are the mean number of electric and magnetic dipoles per unit volume.
The equations are closed by the constitutive relations

D = D[E,B] H = H[E,B] J = J [E,B]

which are material specific and not necessarily simple.
In the simplest case, i. e. for static fields,

D = εE

H = µ−1B

are first order expressions involving the dielectric tensor ε and the magnetic permeability tensor µ. In
general the relations are neither local in time nor in space, e. g.,

Dα(r, t) =
∑
β

ˆ
d3r′dt′εαβ(r − r′, t− t′)Eβ(r′, t′)

where we have still assumed space and time translational invariance (homogeneous system in thermal
equilibrium).
Neglecting spatial non-locality, however, we can still write

D̃(r, ω) = ε̃(r, ω)Ẽ(r, ω)

for the Fourier-transforms

Ẽ(r, ω) =

+∞ˆ

−∞

E(r, t)eiωtdt, D̃(r, ω) =

+∞ˆ

−∞

D(r, t)eiωtdt

and

ε̃(r, ω) =

+∞ˆ

−∞

ε(r, t)eiωtdt

The static result is a special case (ω → 0) of the above equations.
1As in the previous, microscopic case they are related to each other by the continuity equation, ∂ρ/∂t+∇J = 0.
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εαβ(r, t) is a response function and must satisfy the causality condition, namely εαβ(r, t) ≡ 0 for t < 0,
which guarantees that the system responds only to the field in the past. This general requirement has
important consequence on the analytic properties of the Fourier transform ε̃(r, ω), see Appendix B for
an account.

2 Electromagnetic waves in dielectrics

Without external sources, in neutral dielectrics we can put ρ = 0 and J = 0 and obtain

∇D = 0

∇ ∧E +
1

c

∂B

∂t
= 0

∇ ∧H − 1

c

∂D

∂t
= 0

∇B = 0

Upon Fourier transforming in time, and noticing that

E(r, t) =
1

2π

+∞ˆ

−∞

E(r, ω)e−iωtdω ⇒ ∂E(r, t)

∂t
=

1

2π

+∞ˆ

−∞

E(r, ω)(−iω)e−iωtdω

we obtain
∇D̃ = 0

∇ ∧ Ẽ − iω

c
B̃ = 0

∇ ∧ H̃ +
iω

c
D̃ = 0

∇B̃ = 0

where we can now introduce D̃ = ε̃Ẽ and H̃ = µ̃−1B̃ to write

∇ ∧ B̃ +
iω

c
µ̃ε̃Ẽ = 0

∇ ∧ Ẽ − iω

c
B̃ = 0

Multiplying the above expressions for ∇∧ and assuming that µ̃ and ε̃ are uniform in space, we finally
arrive at2

2Remember that
∇∧ (∇∧ F ) = ∇(∇F )−∇2F

holds. Indeed, with the implicit sum convention on repeated indexes, (∇ ∧ (∇ ∧ F ))i = eijk∂j(∇ ∧ F )k =
eijk∂jeklm∂lFm = eijkeklm∂j∂lFm = (δilδjm − δimδjl)∂j∂lFm = ∂i(∂jFj)− ∂j∂jFi.
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∇2B̃ +
ω2

c2
µ̃ε̃B̃ = 0 (9)

∇2Ẽ +
ω2

c2
µ̃ε̃Ẽ = 0 (10)

These equations can be further simplified if ε̃ and µ̃ are simple scalars, as we assume is the case in the
following by writing ε̃ and µ̃ in their place.
Thus, each component of the electric and magnetic field satisfies a wave equation of the form

∇2u(r, ω) +
ω2

c2
µ̃ε̃u(r, ω) = 0

with µ̃ and ε̃ possibly ω-dependent. For each ω this is a standard eigenvalue problem

−∇2u(r, ω) = λ(ω)u(r, ω)

which has solutions
u(r, ω) ∝ eikr where k2 = λ(ω) =

ω2

c2
µ̃ε̃ =

ω2

v2

In the last term on the r.h.s. we have introduced v = v(ω) (or v = v(k)) which is the ω-dependent
speed of light in the medium, as we shall see below. We also introduce the generalized refraction index
η as

η2 = µ̃ε̃

in such a way
k =

ω

c
η

The general solution of the above wave-equation then reads as

u(r, t) =

ˆ
dω

2π
u(r, ω)e−iωt =

ˆ
dω

2π

[ˆ
d3k

(2π)3
u(k, ω)eikrδ(k − ω

c
η)

]
e−iωt

i.e., introducing k̂ = k/k,

u(r, t) =

ˆ
dk̂

ˆ
dωf(k̂, ω)eiω( ηc k̂r−t)

where it appears as a superposition of elementary waves

uk,ω(r, t) = eiω( ηc k̂r−t)

traveling at a speed v = c
η in direction k̂.

The same applies when the refraction index has an imaginary component (which can be the case, since
η2 = µ̃ε̃ and µ̃, ε̃ can be complex, being the Fourier transform of µ, ε). Writing η = η′ + iη′′, with η′

and η′′ real numbers,
uk,ω(r, t) = eiω

η′′
c k̂reiω( η

′
c k̂r−t)

5



Hence
η′ = Re

√
µ̃ε̃

is the frequency-dependent “traditional” refraction index n(ω) determining the phase velocity of the
waves in the medium (v ≡ c/n(ω)) and

η′′ = Im
√
µ̃ε̃

relates to the absorption coefficient κ(ω) of the medium3. Indeed, the “intensity” of the wave in the
medium decays in the k̂ direction as

|uk̂,ω(r, t)|2 = e−2ω η
′
c k̂r = e−κk̂r

i. e.
κ =

2ω

c
η′′

In most media µ̃ ≈ 1 and thus η2 ≈ ε̃. The relation between η and ε̃ is given schematically in Fig. 1
for two representative cases.
Notice also

ε′ = η′2 − η′′2

ε′′ = 2η′η′′

and for normal dispersion (η′′ ≪ η′), ε′ ≈ η′2 > 0 and η′′ ≈ ε′′

2
√
ε′

i. e.

κ ≈
ωε′′

c
√
ε′

3 Electromagnetic waves in conductors

Conductors differ from dielectrics by the possibility of sustaining a current when an electric field is
applied. The latter is almost always accurately described by Ohm’s law, which takes the form

Jα(r, t) =
∑
β

ˆ
d3r′
ˆ
dt′σαβ(r − r′, t− t′)Eβ(r′, t′)

if we include retardation effects and spatial non-locality. In the following, for simplicity, we neglect
spatial non-locality, consider isotropic media only (σij = δijσ), and write the Fourier transform as

J̃(r, ω) = σ̃(ω)Ẽ(r, ω)

3For notational convenience, here and in the following, we abandon the traditional use of α for the absorption
coefficient. The inverse κ−1 is also called attenuation length.
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η''/|ε|

η'/|ε|

≈

β
β/2

η''/|ε|

η'/|ε|

≈

η'/|ε|
β/2

Figure 1: Relation between η and ε̃ for weak (left panel) and strong (right) absorption

where σ̃(ω) is the frequency-dependent conductivity. The traditional conductivity, i. e. for static fields,
is recovered for ω → 0

lim
ω→0

σ̃(ω) = σ0 =

+∞ˆ

−∞

σ(t)dt ≡
∞̂

0

σ(t)dt

Note that for high frequencies there is no real distinction between dielectrics and conductors as J
describes in any case an oscillatory motion of the charges. This becomes more evident from the
Maxwell equations themselves, that read in this case as

∇D̃ = 4πρ̃

∇ ∧ Ẽ − iω

c
B̃ = 0

∇ ∧ H̃ +
iω

c
D̃ =

4π

c
J̃

∇B̃ = 0

where the frequency-dependent charge and current density have been introduced. Using Ohm’s law,
the third equation above can be re-arranged as (after introducing D̃ = ε̃Ẽ and B̃ = µ̃H̃)

∇ ∧ B̃ +
iω

c
µ̃

(
ε̃+

i4π

ω
σ̃

)
Ẽ = 0

which is identical to that found above for dielectrics

∇ ∧ B̃ +
iω

c
µ̃ε̃Ẽ = 0 (11)

7



provided we identify the total dielectric function as

ε̃tot(ω) = ε̃(ω) +
i4π

ω
σ̃(ω)

Since ε̃ is associated with “bound-charges” (it characterizes the polarization of these charges) the extra
term on the r.h.s. is the contribution of the “free charges”, which is singular for ω → 0 because
in that limit polarization of these charges becomes current generation. Apart from this singular
behavior, however, there is no real distinction for ω 6=0 between dielectrics and conductors. Only the
total dielectric function is relevant and the only difference between dielectrics and conductors is the
behavior for ω → 0 in that function: for conductors ε̃tot is singular at ω = 0 and the singularity is
related to the “direct-current” (DC) conductivity σ0.
Notice that Eq.(11), upon applying ∇∧ , reduces to a wave equation

∇2B̃ +
ω2

c2
µ̃ε̃totB̃ = 0

thanks to the condition ∇B̃ = 0, whereas the same manipulation on the second Maxwell equation
(after the introduction of D̃ = ε̃Ẽ and B̃ = µ̃H̃) gives

∇2Ẽ(ω) +
ω2

c2
µ̃ε̃totẼ = 4π

∇ρ̃

ε̃

However, continuity equation in the form

−iωρ̃(ω) + ∇J̃(ω) = 0

along with Ohm’s law gives4 (
ε̃(ω) +

i4π

ω
σ̃(ω)

)
ρ̃(ω) ≡ ε̃tot(ω)ρ̃(ω) = 0

Thus, unless ε̃tot(ω) = 0 (and this happens at the so-called plasmon frequency, see below) the above
equation becomes similar to the one given above, and wave propagation depends on the properties of
η(ω) =

√
µ̃ε̃tot.

Stated differently, for any frequency but the plasmon one no charge density oscillation is supported in
the system. This does not mean that charges are static, rather that the current density has to satisfy
∇J = 0. Such currents are called transverse for reasons made clear in Appendix E. For homogeneous
and isotropic systems the same has to hold for the electric field E if the Ohm’s law J = σE applies.
In other words, with the exception above, we can put ρ̃ = 0 in the Maxwell equations and keep only
the current term.

4This just means that the only Fourier transformable solution of the continuity equation in Ohmic systems is ρ ≡ 0.
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4 Boundary conditions

In the previous Sections we have considered wave propagation within either a dielectric or a conductor
without caring about how the electromagnetic field traverses the surface sample from e.g. the vacuum
to its bulk. To this end we consider here wave propagation across a flat surface5 separating two media
1 and 2 with refractive index ηi =

√
εiµi and ηt =

√
εtµt, respectively, and call n the surface normal

from medium 1 to medium 2.
Clearly, an incident wave with wavector ki will in general be splitted into a transmitted (or refractred)
wave with vector kt and a reflected wave with vector kr. Since scattering is elastic (i.e. kr = ki and
kt/ηt = ki/ηi = k0 ≡ ω/c) and parallel momentum is conserved (k‖i = k

‖
r = k

‖
t ) the following relations

exist between the incident θi = cos−1(nk̂i), the reflection θr = cos−1(−nk̂r) and the refraction angle
θt = cos−1(nk̂t) (Snell’s law)6

θr = θi ηt sin(θt) = ηi sin(θi)

To determine the intensity of the reflected and transmitted waves we need the relations between the
values of the vector fields right below the surface and those right above it. In other words, if a local
reference frame is chosen such as its z axis is aligned with the surface normal and the surface is at
z = 0, we would need the limiting vectors limz→0±F = F± for F = E,D,B,H. In general, if ∇F
is known to be continuous so is ∂Fz/∂z and hence necessarily F−z ≡ F+

z or equivalently F−n ≡ F+
n for

the component Fn = Fn along the surface normal. With the same token, if (∇ ∧ F )x,y are known to
be continuous so are ∂Fy/∂z and ∂Fx/∂z, hence F−t = F+

t , where F t is the component of F parallel
(tangent) to the surface. This argument can be applied to the magnetic field B only which satisfies
∇B ≡ 0 and gives

(B+ −B−)n = 0

For the other fields and/or different components we use Gauss (Stokes) integral theorem (which only
requires integrability of ∇F (∇∧F ) ) to a small volume (surface) element which crosses the boundary
between medium 1 and medium 2 (see Fig. 2), and consider the limit where the transverse dimension
δz vanishes. Then, equation (5) gives in general

(D+ −D−)n = 4πσ

5We assume that a macroscopic description holds and macroscopic averages can be taken on scales much larger than
the atomic one (this requires λ � a0 where λ is the wavelength of radiation and a0 is the Bohr radius). Hence the
surface can be considered flat at least on the atomic scale.

6These equations hold for arbitrary (complex) refractive indexes, hence complex angles. A complex angle arises in
lossy media and its physical meaning is not as immediate as a real angle. Thus, in lossy media, these equations are
best replaced by those for the (complex) components of the k vectors, k = kxex + kyey + kzez , using the standard
scalar product of a real vector space (e.g. putting k2 = (kxex + kyey + kzez)2 = k2x + k2y + k2z ∈ C). It thus follows,

for instance, (kt)z =
√

(εtµt − εiµi)k20 + (ki)2z for the components along the interface normal (z), or more simply

(kt)z = k0
√
εtµt − εiµi sin2(θi), where θi is the incidence angle, provided medium 1 is transparent. Notice that the

“real” angle θ̄ that the propagating wave makes with the normal is determined by k̄ = <(kx)ex + <(ky)ey + <(kz)ez ,
e.g. it holds cos(θ̄) = <(k)z/k̄ where k̄2 = k̄k̄.
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n

δz

Aδ

1

2

δz

1

2

aδt

Figure 2: The small volume and surface elements (left and right panel, respectively) used to determine
the boundary conditions for the normal and the parallel components of the fields, respectively. In the
left panel n is the outward normal of the elemental voloume in medium 2 and is also the surface normal
defined in the main text. In the right panel t is normal to the elemental surface and thus parallel to
the boundary.

where σ is the surface charge density (if any) which makes ρ discontinuos at the surface. Specifically,
if δQ = limδz→0Q is the charge contained in the volume when its height shrinks to zero, we have
σ = limδA→0δQ/δA where δA is the surface element parallel to the boundary7. With the same token,
since ∂B/∂t and ∂D/∂t are always finite, from Eq.s (7,8) we obtain

(E+ −E−) ∧ n = 0

and
(H+ −H−) ∧ n =

4π

c
K

respectively, whereK is the surface charge current (if any) which makes J discontinuos at the surface.
Similarly to above, if ĵ is the unit vector along J t = J − (Jn)n ≡ n ∧ (J ∧ n) and δI = limδz→0I is
the current through the infinitesimal surface element δaδzĵ when its height shrinks to zero, we have
K = limδa→0δI/δaĵ

8.
To summarize, at the boundary we have

(D+ −D−)n = 4πσ (B+ −B−)n = 0

(E+ −E−) ∧ n = 0 (H+ −H−) ∧ n = 4π
c K

where n is the surface normal and σ, K are surface densities defined by

σ(x) = limε→0

ˆ ε

−ε
ρ(x+ zn)dz, K(x) = limε→0

ˆ ε

−ε
J t(x+ zn)dz

for any x on the boundary.
In the most typical situation no surface density term appears9 and the D and B fields preserve their

7Such a term only appears if ρ takes locally the form ρ(x) ≈ σ(x, y)δ(z), with the above choice of coordinates, for x
close to the boundary.

8Similarly to above, such a term only appears if the intensity of the current density parallel to the boundary is of the
form Jt(x) ≈ K(x, y)δ(z).

9Notable exceptions are dielectric-conductor interfaces with a static distribution of charges. In such cases the electric
field must vanish in the conductor, and thus σ necessarily builds up to make non-vanishing the field outside the conductor.
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θ
t

E
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E
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E
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n

θ
i

θ
r

θ
t

E
i

E
r

E
t

n

Figure 3: The scattering plane, with the indicated electric fields Ei,Er and Et, for the P- an the S -
polarization cases (left and right panel, respectively). Also indicated the surface normal n and the
incident (θi), the reflection (θr) and the refraction angles (θt).

normal component while E and H preserve their parallel component. These are the relations we were
looking for to determine the intensity of the reflected and transmitted waves. To this end, let Ẽ, D̃, ..
be the components at frequency ω of an electromagnetic wave E,D, .. and consider isotropic media.
In either medium the fields of a uniform plane wave traveling in direction k̂ would satisfy

µωH̃ = ck ∧ Ẽ ωε̃totẼ = −ck ∧ H̃

where k = ω
c ηk̂ and ε̃tot is the total dieletric function introduced above10, or, equivalently,

µH̃ = ηk̂ ∧ Ẽ ηẼ = −µk̂ ∧ H̃

Because of the presence of the interface, though, both “right-” and “left-” moving components along z
appears for each field F

F (z) = F+(z) + F−(z) = F 0
+e

ikzz + F 0
−e
−ikzz

where kz is the z component of the k vector. These two components are useful to describe propagation
within each medium (F±(z+∆z) = F±(z)e±ikz∆z) but are unconvenient to match the fields across the
boundary. Hence, we need to seek two independent variables f1, f2 that replace F± and are continuos
across the separation surface. For a generic incident wave with vector ki we distinguish two cases,

10These are nothing that that the “rotor equations” in k-space. There is no need to consider the “divergence equations”
here since they are both contained in the above expressions, namely kH̃ = 0 and kẼ = 0. Stated differently (see
Appendix E), an electromagnetic wave has only transverse components, E = E⊥ and B = B⊥(Notice that trasverse
and parallel components below have nothing to do with the boundary, only with the k vector). In general, B ≡ B⊥
while E = E⊥+E‖, where the parallel component of the electric field is the only one that results from a charge density,
i.e. according to εkE‖ = −iρ(k) for a uniform medium in k−space. Notice that the charge density relates to the parallel
component of the current density,−i∂ρ/∂t+kJ‖ = 0. The transverse component J⊥, by definition, is solenoidal, i.e. its
flux vanishes for any closed surface and thus J⊥ cannot describe any change of the total charge contained in its interior.
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according to whether the electric field Ẽi is on the scattering plane (P polarization, from “parallel”) or
perpendicular to it (S polarization, from “senkrecht”, the German word for perpendicular), see Fig. 3,
left and right panel respectively. They are also called transverse magnetic (TM) and transverse electric
(TE), respectively, depending on which field is perpendicular to the surface normal. We consider first
the TE (or S ) case, and write E ≡ Ex̂ assuming that the scattering plane is yz. Since E is parallel
to the surface, E is continuos across the boundary, E1 = E2, and we choose E as the first component
of the “matching” vector, e1 = E. A second independent variable follows from the continuity of the
parallel component of H, which can be readily computed from the Maxwell’s equations,

µH = −i c
ω

(
∂E

∂z
ŷ − ∂E

∂y
ẑ

)
, H‖ = −i c

ωµ

∂E

∂z
ŷ

and is conveniently chosen as e2 = E′/µ where E′ is understood to be the z derivative of the electric
field. Hence the vector et = (E,E′/µ) is continuos across the surface and relates to the right- and left-
moving components through

e =

[
1 1

iµ−1kz −iµ−1kz

][
E+

E−

]
and viceversa

[
E+

E−

]
=

1

2

[
1 −i µkz
1 +i µkz

]
e

Now, for the configuration of Fig. 3 with ẑ ≡ n, the transmitted field in medium 2 is purely right
moving (i.e. moving along the positive z direction), Et = Etx̂ ≡ E+,2x̂ and at the boundary it holds[

E+

E−

]
1

=
1

2

[
1 −i µ1

kz,1

1 +i µ1

kz,1

]
e1 =

1

2

[
1 −i µ1

kz,1

1 +i µ1

kz,1

]
e2 ≡

1

2

[
1 + µ1

µ2

kz,2
kz,1

1− µ1

µ2

kz,2
kz,1

]
Et

It follows that the field amplitudes of the trasmitted and reflected waves are related to that of the
incident wave by

Et
Ei

=
2µ2kz,1

µ2kz,1 + µ1kz,2
≡ 2µtηi cos(θi)

µiηt cos(θi) + µtηi cos(θt)

Er
Ei

=
µ2kz,1 − µ1kz,2
µ2kz,1 + µ1kz,2

≡ µtηi cos(θi)− µiηt cos(θi)

µiηt cos(θi) + µtηi cos(θt)

which can also be written in terms of the incident angle only with the help of Snell’s law

ηt cos(θt) =

√
η2
t − η2

i sin2(θi)

Similarly for the TM (or P) case, where H ≡ Hx̂ and E‖ = i cωεH
′ŷ, H ′ being the z derivative of the

magnetic field. In this case ht =
(
H, ε−1H ′

)
is the appropriate “matching” vector,

h =

[
1 1

iε−1kz −iε−1kz

][
H+

H−

]
and viceversa

[
H+

H−

]
=

1

2

[
1 −i εkz
1 +i εkz

]
h
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relate h1, h2 to the right- and left- moving components H± of the magnetic field, and

Ht

Hi
=

2ε2kz,1
ε2kz,1 + ε1kz,2

≡ 2µ−1
t ηt cos(θi)

µ−1
t ηt cos(θi) + µ−1

i ηi cos(θt)

Hr

Hi
=
ε2kz,1 − ε1kz,2
ε2kz,1 + ε1kz,2

≡ µ−1
t ηt cos(θi)− µ−1

i ηi cos(θt)

µ−1
t ηt cos(θi) + µ−1

i ηi cos(θt)

are the appropriate transmission and reflection amplitude coefficients. The electric field amplitudes
then read as Ei = µiη

−1
i Hi, Er = µiη

−1
i Hr and Et = µtη

−1
t Ht, as it follows from E = µη−1k̂ ∧H

which hold separately for each component.
The above expressions allow us to write down the (power) transmission (T ) and reflection (R) coeffi-
cients which are defined by11

T = Re
(
µiηt cos θt
µtηi cos θi

)
|Et|2

|Ei|2
R =

|Er|2

|Ei|2

and satisfy R+ T = 1. In particular, at normal incidence we have

T = 4
ntni + κtκi

(nt + ni)2 + (κt + κi)2
R =

(nt − ni)2 + (κt − κi)2

(nt + ni)2 + (κt + κi)2

in terms of the real and imaginary parts of the refractive indexes, here written as ηi = ni + iκi and
ηt = nt + iκt .
The above expressions are rather general, provided we remember that they apply right at the boundary
between medium 1 and medium 2; if one of the two is absorbing (i.e. either κi or κr is not vanishing)
the measured intensity ratios differ from the ones predicted by the above expression because absorption
occurs in traveling from the boundary to the detector and/or from the source to the boundary. In the
simplest case, medium 1 is transparent with ni ≡ 1 (e.g. air) and the reflection coefficient reads

R =
(1− n)2 + κ2

(1 + n)2 + κ2
(12)

where now n, κ are the real and imaginary parts of the medium 2 under study. Furthermore, if medium
2 is only weakly absorbing (κ ≈ 0 and n ≈ 1) radiation can be collected after passing through a second
interface between medium 1 and 2; under such circumstances reflections at both interfaces is negligeble,
and the overall transmission coefficient just account for absorption in medium 2. More generally, one
has to take into account both interfaces, and possibly sum over all contributing paths with multiple
reflections; in such case, however, the result depends on whether such paths interfere with each other
(when the coherence length is larger than the sample dimension), or the probabilities just add up

11The ratio µiηi cos θt/µtηi cos θi appearing in the trasmission coefficient is a flux-related term that accounts for the
different speed that the wave has in the two media and for the fact that the flux has to be projected onto the normal of
the boundary surface.
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Figure 4: Contour map of the reflection coefficient at normal incidence (Eq. 12) on the complex ε-
plane given in a log-scale (colours change linearly from red to blue for R going from zero to one). Also
shown two typical paths undertaken by the dieletric function ε(ω) when increasing ω as indicated by
the arrows direction. Red curve is for a dielectric (just close to a resonance peak) and black curve for
a conductor. Parameters are the same as in the next Fig.s 5,6.

classically (when the coherence length is much smaller than the sample dimension)12.
The above expressions show how, e.g., reflection from a surface depends on the frequency-dependent
refractive index or total dieletric function ε̃tot, thereby determining how solid substances look like. The
dependence of ε̃tot on the frequency is clearly crucial for that, and Sections below give some general
properties for dielectrics and conductors. Here, we just exploit the consequences of such analysis and
report in Fig. 4, on a log-log scale, the behaviour of R at normal incidence on the complex ε-plane,
along with two typical “paths” of the functions ε(ω) when changing ω, one for a dielectric and one for
a conductor. As you can see from Fig. 4 the dielectric is mostly transparent, even close to a resonance
(absorption) peak, whereas a conductor reflects the vast majority of the radiation incident on it unless
the frequency takes a very large value (larger than the plasmon frequency mentioned in the previous
Section, which typically lies in the ultra-violet region).

5 Simple models

The main features of the dielectric function are easily understood in terms of a simple model of matter,
the Lorentz model, where a number of charges qi are harmonically bounded to some center (of opposite
charge if the matter has to be neutral) and forced by an external electric field. The equation for one

12In this respect, transmission through thin films can be safely handled as a coherent process and the above described
“propagation” and “matching” steps can be easily combined to describe the optical properties of arbitrarly layered
structures.
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such charge reads as (in one dimension)

mẍ(t) +mγẋ(t) +mω2
0x(t) = ζ(t) + eE(t) (13)

wherem is the mass, ω0 the frequency and e the charge. In this equation we have introduced a damping
coefficient γ which describes system relaxation to the equilibrium state, and a fluctuating force ζ(t)

which describes the environmental-induced fluctuations.
Since we are interested in the average behavior (of an ensemble of identical systems) Eq. 13 can be
rewritten in terms of 〈x〉 (note that 〈ζ(t)〉 = 0):

m 〈ẍ〉+mγ 〈ẋ〉+mω2
0 〈x〉 = eE

Upon Fourier transforming13

−mω2 〈x̃(ω)〉 − iωmγ 〈x̃(ω)〉+mω2
0 〈x̃(ω)〉 = eE

〈x̃(ω)〉 =
1

ω2
0 − ω2 − iωγ

eE

m

and the average polarization vector is obtained by introducing the number of dipoles per unit volume,
N , i. e. the number density of molecules

P̃ (ω) = Ne 〈x̃(ω)〉 =
Ne2

m

Ẽ(ω)

ω2
0 − ω2 − iωγ

If each molecules has Z electrons, and each oscillates with a characteristic frequency ωi and relaxation
γi

P̃ (ω) =
Ne2

me

Z∑
i

fiẼ(ω)

ω2
i − ω2 − iωγi

where fi is the number of electrons14 (oscillator strength) with the given set of ωi, γi parameters, and∑
i fi = Z. These relations define the electric susceptibility

χe(ω) =
Ne2

me

Z∑
i

fi
ω2
i − ω2 − iωγi

as N times the molecular polarizability

α̃mol(ω) =
e2

me

Z∑
i

fi
ω2
i − ω2 − iωγi

13This amounts to focus on the “stationary” solution only, i.e. the one prevailing after the transient (which does
depend on the detailed initial conditions) has decayed.

14This is not necessarily an integer.
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It relates to ε̃ through
ε̃(ω) = 1 + 4πχe(ω)

In deriving these equations we have implicitly assumed that the local fields are also the macroscopic
ones, i.e. we neglected the fields generated by the (induced) molecular dipoles on the one under
observation. This is reasonable in low density media, in condensed matter χe(ω) = Nα̃mol(ω) has to
be revised to account for the local fields generated by the polarized medium.
For conductors, one of the frequencies is zero and we exhibit separately this term to write

ε̃tot(ω) = 1 + 4π
Ne2

me

Z∑
i 6=0

fi
ω2
i − ω2 − iωγi

+ i
4π

ω

γ0

γ0 − iω
σ0

where
σ0 =

Ne2

me

f0

γ0

is the Drude’s DC conductivity for a metal with Nf0 electrons per unit volume, with an average
relaxation time τ = γ−1

0 , and
σ̃(ω) =

γ0σ0

γ0 − iω

is the Drude’s frequency-dependent conductivity.
Note that γi’s enter the above equations as a broadening factor, and this may be of secondary im-
portance for ωi > 0 (since the main interest in that case is in the position of the resonance) but is of
fundamental importance for ωi = 0 (since it determines the DC conductivity).

6 Dielectric polarization

Let us now focus on dielectrics (σ0 = 0). For ω → 0, ε̃tot(ω) → ε̃(0) = ε̃′(0) = 1 + 4πNα̃mol(0), i. e.
ε̃ becomes real at low frequencies and ε̃ ≈ 1 to a good approximation in low-density media (α̃mol(0)

is the static polarizability which is of the order of molecular volume, i. e. much smaller than the
volume available to each molecule, N−1); for ω � 0, ε̃(ω) differs from ε̃(0) only close to the resonant
frequencies and, in any case, for ω →∞

ε̃tot(ω) = 1− ω2
P

ω2

where ωP is given by

ω2
P = 4π

NZe2

me

and is known as plasmon frequency. At such high frequency, the behaviour of any system no longer
depends on its detailed structure, and the charges (either bound or free) behave in a universal way as
the matter were fully ionized.
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Figure 5: Typical behaviour of the real (left panel) and imaginary (right) parts of the dielectric
function. Data are for a model system resembling water vapour at a density n = 10−2 g cm−3 with
three resonant frequencies in the infrared region, ωi = 1960, 4049, 4048 cm−1 with a common relaxation
time γ−1 = 1 ps and oscillator strengths fi = 0.1, 0.02, 0.05, respectively.

At intermediate frequencies the general behavior can be easily guessed from

ε̃′(ω) = 1 + 4π
Ne2

me

Z∑
i

fi(ω
2
i − ω2)

(ω2
i − ω2)2 + ω2γ2

i

ε̃′′(ω) = 4π
Ne2

me

Z∑
i

fiωγi
(ω2
i − ω2)2 + ω2γ2

i

and is illustrated in Fig.5. Notice that for “normal dispersion” (which occurs unless ε̃′′ is very high or
ε̃′ becomes negative) the absorption coefficient can be written as

κ(ω) ≈
1

n(ω)

ω

c
ε′′(ω) ≈

1

n(ω)

4πω

c
Nα̃′′mol(ω)

(where n(ω) ≈
√
ε′ is the refractive index) and becomes proportional to N , in agreement with Lambert-

Beer law. In this context, then, one also defines the molecular photoabsorption cross-section

σph(ω) ≡ κ(ω)/N

which reads in the non-dispersive limit (n(ω) ≈ 1) as

σph(ω) =
4πω

c
α̃′′mol(ω) (14)
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Notice that in the limit15 γi ≈ 0

κ(ω) ≈ 4π
Ne2

me

ω

c

∑
i

πδ(ω2
i − ω2)fi =

2π2Ne2

mec

∑
i

fiδ(ω − ωi)

and thus

σph(ω) =
2π2e2

mec

Z∑
i

fiδ(ω − ωi)

and

α̃′′mol(ω) =
πe2

2meω

Z∑
i

fiδ(ω − ωi) (15)

The above equations, though referring to a rather crude model of the matter, offer a number of
alternative possibilities to compute the optical properties of dielectrics.
In the low-density limit, for instance, each individual molecule contributes independently of the others
and one can directly follow the dipole moment µ of a single molecule in time and compute the frequency
dependent polarizability by Fourier transforming

µ(t)− µ0 =

ˆ ∞
−∞

αmol(t− t′)E(t′)dt′

Here, an arbitrary classical field16 is used (e.g. a kick E(t) = I0δ(t) –where −I0/|e| is the impulse
given to each electron– directly gives αmol(t) = ∆µ(t)/I0) and the molecular (electron) dynamics is
followed to extract µ(t), i.e. the time-dependent Schrödinger equation for the molecule in the external
field

i~
d |Ψ〉
dt

= (Hmol +Hint(t)) |Ψ〉

is solved to compute µ(t) = 〈Ψ(t)|µ|Ψ(t)〉 for a reasonably long time interval. Notice that the integral
above actually runs for t′ ≤ t since αmol(t) obeys causality, and µ0 is the dipole at any time before the
field has been switched on17. This approach is rather general, and goes well beyond the linear-response
regime used above to define αmol in terms of E.
Linear-response, when holds, provides simpler (“more practical”) approaches to the problem. For
instance, for a (closed) system initially in its ground-state, the problem (in the limit γ → 0) is
equivalently handled in ordinary perturbation theory to give

αmol(t) = Θ(t)
2

~
∑
n

| 〈φn|µ|φ0〉 |2sin(ωn0t) (16)

where µ is the dipole operator and ωn0 = (En − E0)/~ are the transition frequencies. To show this,
15We use ωγi/((ω2

i − ω2)2 + ω2γ2i ) ≈ πδ(ω2
i − ω2).

16This is semiclassical theory of the interaction between matter and radiation. Quantization of the electromagnetic
field is necessary for describing spontaneous emission processes.

17We assume that the system was initially in an equilibrium state, typically the ground-state (this is fine for the
electronic contribution which is the main contribution in the visible range).
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consider the system initially in its ground state, |Ψ(t)〉 = |Ψ0(t)〉 = e−iE0t/~ |Φ0〉 for t < 0, and a kick
Hint = −µI0δ(t) at time t = 0. The field E(t) = I0δ(t) is treated here in the dipole approximation,
which means that it is considered to be uniform over the molecular volume. It is clear that before
and after the kick the systems evolves under the unperturbed Hamiltonian Hmol, thus the problem
reduces to determining the state for t → 0+. This can be solved by writing the integral form of the
Schrödinger equation

i~ |Ψ(t)〉 = i~ |Ψ(0−)〉+

ˆ t

0−
H |Ψ(t′)〉 dt′

and taking the limit t→ 0+ after replacing Ψ(t) with the unperturbed solution Ψ0(t)

i~ |Ψ(0+)〉 = i~ |Φ0〉 − µI0 |Φ0〉

Hence, |Ψ(t)〉 = |Φ0〉 e−iE0t/~ + iI0/~
∑
n |Φn〉 〈Φn|µ|Φ0〉 e−iEnt/~ can be used to compute ∆µ (to first

order in I0) at any time t > 0, and αmol follows as given in Eq.(16) . On taking the Fourier transform
of the latter equation18,19,

α̃mol(ω) =
1

~
∑
n

| 〈Φn|µ|Φ0〉 |2 lim
ε→0

(
1

ω + ωn0 + iε
− 1

ω − ωn0 + iε

)
(17)

and for ω > 0

α̃′′mol(ω) =
π

~
∑
n

| 〈Φn|µ|Φ0〉 |2δ(ω − ωn)

On comparing with Eq.(15) we get the quantum-mechanical definition of the oscillator strength20

fn =
2meωn0

e2~
| 〈Φn|µ|Φ0〉 |2 (18)

Thus, one can solve the time-independent Schrödinger equation for the isolated molecule

Hmol |Φn〉 = En |Φn〉

and obtain the necessary transition frequencies ωn0 and transition moments µn0 = 〈Φn|µ|Φ0〉.
Eq. (16) analogously follows from the frequency-dependent polarizability obtained previously within
the classical model,

αmol(t) =
1

2π

ˆ ∞
−∞

[
e2

me

∑
i

fi
ω2
i − ω2 − iωγi

]
e−iωtdω

18The ε converging factor plays here the role of a damping coefficient which is present in real systems but seldom
considered in calculations.

19It also follows αmol(t) = 1
~ Im

(
eiE0t/~ 〈χ0|χt〉

)
where |χ0〉 = µ |Φ0〉 and |χt〉 = e−iHt/~ |χ0〉.

20It can be shown that, analogously to the classical case, the sum rule
∑
n fn = Z holds.
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Here, each term in the sum, as a function of a complex ω, has poles in the lower half plane21

ωi,± = −iγi
2
± Ωi where Ωi =

√
ω2
i −

γ2
i

4

and for t > 0 (t < 0) the integral can be evaluated by contour integration by closing the contour with
a large semicircle in the lower (upper) half plane. The result is

α(t) = Θ(t)
e2

me

∑
i

fi
Ωi
sin(Ωit)e

− γi2 t

which reduces to Eq.(16) in the limit γi → 0, provided Eq.(18) is used.
More generally, Eq.(17) represents a sort of equilibrium dipole-dipole correlation function, here eval-
uated for a non-degenerate ground-state at T = 0 K. This general result is best appreciated at the
classical level by going back to the original Langevin equation, Eq.(13). Indeed, it is clear that the
average response of the system to the external field is also the pointwise response to the fluctuating
force in the field-free situation, i.e.22

µ̃(ω) =
1

ω2
0 − ω2 − iωγ

|e|
me

ξ(ω)

This relates to the equilibrium spontaneous fluctuations of the dipole in the system, as can be seen
upon remembering that, according to the Wiener-Khinchine theorem, the square modules of above
expression relates to the Fourier transform of some autocorrelation function23, i.e.

C̃µ(ω) =

∣∣∣∣ 1

ω2
0 − ω2 − iωγ

∣∣∣∣2 e2

m2
e

C̃ξ(ω)

where Cµ(t) = 〈µ(t)µ(0)〉, Cξ(t) = 〈ξ(t)ξ(0)〉 and C̃’s are their Fourier transforms. Here the en-
vironmental fluctuations relate to the dissipative kernel24 through C̃ξ(ω) = 2mekBTγ

′ and thus we
obtain

ωC̃µ(ω)

2
=
e2kBT

me
Im
(

1

ω2
0 − ω2 − iωγ

)
21We work in the underdamped limit, γi/2 < ωi. This also excludes conductors, which have a pole for ω = 0.
22General (frequency-dependent) memory kernels can be accommodated as well.
23For a (real) stationary process ξ(t) a proper Fourier transform can be defined through ξT (ω) =

´+T
−T ξ(t)eiωtdt where

[−T,+T ] is a large but finite interval. Accordingly,

〈|ξT (ω)|2〉 =

ˆ +T

−T

ˆ +T

−T
〈ξ(t′)ξ(t′′)〉 eiω(t

′−t′′)dt′dt′′ ≈
ˆ +T

−T
dt

ˆ +∞

−∞
dτ 〈ξ(τ)ξ(0)〉 eiωτ = 2TC̃ξ(ω)

since Cξ(τ) = 〈ξ(τ)ξ(0)〉 ≡ 〈ξ(τ + t)ξ(t)〉 holds thanks to the stationarity condition. In deriving this equation we have
used (t′, t′′)→ (t, τ) = ((t′ + t′′)/2, t′ − t′′) and assumed that Cξ decays on a short time interval compared to T .

24This follows from the fact that, at equilibrium, fluctuating forces are balanced by dissipative ones (Fluctuation-
Dissipation theorem of the second kind). In practice, Cµ(0) = e2 〈x2〉 has to be consistent with the equilibrium condition,
meω2

0 〈x2〉 = kBT (equipartition law).
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For a number of (uncorrelated) oscillators, each with its own ωi and γi, we obtain

ωC̃µ(ω)

2
=
e2kBT

me

∑
i

Im
(

1

ω2
i − ω2 − iωγi

)
= kBT α̃

′′
mol(ω) (19)

for the autocorrelation function of the total dipole defined as µ =
∑
i exi. Upon rearranging we obtain

the imaginary (dissipative) part of the frequency dependent polarizability as

α̃′′mol(ω) =
ωC̃µ(ω)

2kBT
=

ω

2kBT

ˆ ∞
−∞
〈µ(t)µ(0)〉 eiωtdt ≡ ω

kBT

ˆ ∞
0

〈µ(t)µ(0)〉 cos(ωt)dt

which allows us to write α̃mol(z) for any complex frequency z in the upper half plane as (see Appendix
B)

α̃mol(z) =
1

π

ˆ
α̃′′mol(ω

′)

ω′ − z
dω′

Notice that for ω → 0 we have

α̃mol(0) = α̃′mol(0) =
1

2πkBT

ˆ +∞

−∞
C̃µ(ω′)dω′ ≡ 〈µ(0)2〉

kBT

consistently with equipartition, 〈µ2〉 = e2
∑
i 〈x2

i 〉 = e2/me

∑
i ω
−2
i kBT .

Thus, we can write the absorption coefficient as25

κ(ω) ≈
ωε′′(ω)

cn(ω)
=

2πω2N

3n(ω)c

1

kBT

ˆ ∞
∞
〈µ(t)µ(0)〉 eiωtdt

This formula can be used, in conjunction with classical, canonical molecular dynamics calculations, to
extract the “classical” contributions to the absorption coefficient, for instance those due to rotations of
permanent dipoles and low-frequency vibrations which can be treated at a classical level26.
To see that Eq.(17) represents indeed a sort of dipole autocorrelation function we notice that the
retarded “Green’s function” defined by

C>(t) =
i

~
Θ(t) 〈[µ(t), µ(0)]〉 = −2

~
Θ(t)Im 〈µ(t)µ(0)〉

is exactly the polarizability response

C>(t) = −2

~
Θ(t)Im 〈φ0|eiHt/~µe−iHt/~µ|φ0〉 = −2

~
Θ(t)Im

∑
n

ei(E0−En)t/~ 〈φ0|µ|φn〉 〈φn|µ|φ0〉

25The factor 3 in this expression arise from the replacement of the one-dimensional dipole µ with the dipole vector µ.
26Notice that the temperature enters here just because of the equilibrium condition, which in the Langevin model can

only be enforced by a relation between the dissipative and the fluctuating forces. From this perspective, Eq.(19) is best
written as

ωC̃µ(ω)

2
=
〈µ(0)2〉
α̃mol(0)

α̃′′mol(ω)
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=
2

~
Θ(t)

∑
n

sin(ωn0t)| 〈φn|µ|φ0〉 |2 ≡ αmol(t)

and the important imaginary part of its Fourier transform reads as

α̃′′mol(ω) = −2

~

ˆ ∞
0

Im 〈µ(t)µ(0)〉 sin(ωt)dt ≡ i

~

ˆ +∞

−∞
Im 〈µ(t)µ(0)〉 eiωtdt

Here, the complex-conjugation symmetry of the correlation function Cµµ(t) = 〈µ(t)µ(0)〉,

Cµµ(t)∗ = 〈µ(0)µ(t)〉 = 〈µ(−t)µ(0)〉 ≡ Cµµ(−t)

translates into symmetry properties of its the real and imaginary parts

ReCµµ(−t) = ReCµµ(t) ImCµµ(−t) = −ImCµµ(t)

and of their Fourier transforms

C̃µµ(ω) = C̃∗µµ(ω) = S(ω) +A(ω)

where

S(ω) =
C̃µµ(ω) + C̃µµ(−ω)

2
≡
ˆ +∞

−∞
ReCµµ(t)eiωtdt ≡ 2

ˆ ∞
0

ReCµµ(t)cos(ωt)dt

and

A(ω) =
C̃µµ(ω)− C̃µµ(−ω)

2
≡ i
ˆ +∞

−∞
ImCµµ(t)eiωtdt ≡ −2

ˆ ∞
0

ImCµµ(t)sin(ωt)dt

Hence, the general result

α̃′′mol(ω) =
A(ω)

~
(20)

expresses the dissipative part of the polarizability response in terms of the antisymmetric part of the
so-called spectral density (of the fluctuations) of the stochastic process27 µ(t).
The connection with the previous result, Eq.(19), obtained for the classical, damped Harmonic oscilla-
tor model, can be established with the help of the Kubo-Martin-Schwinger detailed-balance condition
on the canonical correlation function (see Appendix C), namely, for β−1 = kBT ,

C̃µµ(−ω) = C̃µµ(ω)e−β~ω

27The origin of the name becomes clear upon noticing that 〈µ2〉 = 1
2π

´+∞
−∞ C̃µµ(ω)dω, see also Footnote 23.
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or, equivalently28,

S(ω) = coth

(
β~ω

2

)
A(ω) (21)

Therefore, Eq.(20) can be written in terms of S(ω)

α̃′′mol(ω) =
1

~
th

(
β~ω

2

)
S(ω)

and in the classical limit (β~ω � 1) ~−1th
(
β~ω

2

)
≈ βω/2 we obtain Eq.(19)

α̃′′mol(ω) =
ωS(ω)

2kBT

upon noticing that S(ω)→ C̃cl(ω).

7 Conduction

As already mentioned in the previous section, conductors differ from dielectrics by the behaviour of
those charge carriers at ω = 0 that are free to move and hence able to sustain a current. In the Ohmic
limit, J̃(ω) = σ̃(ω)Ẽ(ω) holds, and the continuity equation can be “closed” with the help of the first
Maxwell equation to give (

ε̃(ω) +
i4π

ω
σ̃(ω)

)
ρ̃(ω) = 0

where ε̃(ω) accounts for the polarizabilities of the ion cores, and the second term is just the free carrier
contribution to the total dielectric constant. Thus, unless ε̃tot(ω) = 0, the only admissible solution
which is Fourier transformable is ρ(t) ≡ 0, as we have already seen above.
Solutions for given initial state densities29 ρ(0) decay exponentially in time, as is shown in the following

28This can be proved with a direct calculation in the case of a collection of (uncorrelated) harmonic oscillators of
coordinates {xk} and the “dipole” µ(t) =

∑
k qkxk(t). Indeed, with the help of the solution of the Heisenberg equation

of motion for the phonon annihilation operator of the k − th oscillator, ak(t) = ak(0)exp(−iωkt), we can write

〈µ(t)µ(0)〉 =
∑
k,l

qkql∆xk∆xl 〈(ak(t) + ak(t)†)(al(0) + al(0)†)〉 =
∑
k

q2k∆x2k

[
(〈a†kak〉+ 1)e−iωkt + 〈a†kak〉 e

iωkt
]

(here ∆x2k = 1/2mkωk) or, equivalently,

Cµµ(t) = ~
∑
k

q2k
2mkωk

{
(n̄k + 1)e−iωkt + n̄ke

iωkt
}

where n̄k = 〈a†kak〉 = (eβ~ωk − 1)−1 is the mean number of phonons in the k − th oscillator in thermal equilibrium.
Hence

A(ω) = ~
π

2

∑
k

q2k
mkωk

[δ(ω − ωk)− δ(ω + ωk)]

and

S(ω) = ~
π

2

∑
k

q2k
mkωk

coth

(
β~ωk

2

)
[δ(ω − ωk) + δ(ω + ωk)] ≡ coth

(
β~ω

2

)
A(ω)

29These have an accompanying electric field E(t) which solves the first Maxwell equation ∇E(t) = 4πρ(t), see below.
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where, for simplicity, we focus on the case ε̃ ≡ 1 (unpolarizable ion cores). We replace ρ(t) with the
function ρL(t) such that ρL(t) = 0 for t < 0 and ρL(0+) = ρ(0), and denote with ρ̃L its Fourier
transform. The continuity equation in the Ohmic medium then reads as

∂ρL
∂t

(t) + 4π

ˆ +∞

−∞
σ(t− t′)ρL(t′)dt′ = 0

where the integral over times actually runs for t′ ∈ [0, t], consistently with an initial state problem and
with causality of the conductivity kernel. Upon noticing that

ˆ +∞

−∞
eiωt

∂ρL
∂t

(t)dt = eiωtρL(t)|+∞0+ − iω
ˆ +∞

−∞
ρL(t)eiωtdt ≡ −ρ(0)− iωρ̃L(ω)

we can take the Fourier transform of the above equation to obtain

−ρ(0)− iωρ̃L(ω) + 4πσ̃(ω)ρ̃L(ω) = 0

and
ρ̃L(ω) =

iρ(0)

ω + i4πσ̃(ω)

It follows
ρL(t) =

ρ(0)

2π

ˆ +∞

−∞

i

ω + i4πσ̃(ω)
e−iωtdω

which provides the solution ρL(t). Note that for t < 0 the integral vanishes (as it should do) since
the denominator is analytic and does not vanish in the upper half plane, thereby guaranteeing that no
pole of the integrand appears when using contour integration in the upper half plane30.
For t > 0 we specifically study the Lorentz-model expression of the conductivity

σ̃(z) =
γ0σ0

γ0 − iz

to get a realistic representation of ρ(t). The integral then reads as

ρL(t) =
ρ(0)

2π


−γ0 + iz

(z − z+)(z − z−)
e−iztdz

where
z± = −iγ0

2
± Ω, Ω2 = 4πσ0γ0 −

γ2
0

4
= ω2

P −
γ2

0

4

and we consider only the case31 Ω2 > 0 or, equivalently, ωP > γ0/2. Contour integration in the lower
30σ̃(z) is analytic in the uhp and satisfies Reσ̃(z) > 0. It follows Im(ω + i4πσ̃(ω)) = Imω + 4πReσ̃(ω) > 0.
31Notice that even for Ω2 < 0 the poles z± are confined to the lhp.
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Figure 6: Typical behaviour of the real and imaginary parts of the dielectric function (absolute values
are given in the black and red curves of the upper left panel) and of the conductivity (lower left
panel, same color coding), along with the corresponding attenuation length (upper right), for a model
conductor. Data are given for a model system with a Wiegner-Sietz radius rs = 1.0 Å and relaxation
time γ−1 = 0.03 ps. The corresponding plasma resonant frequency is in the ultraviolet, λP ≈ 70nm
and the Drude’s conductivity is σ0 ≈ 2 1018 s−1. The lower right panel shows the behaviour of ρ(t)/ρ(0)
for the chosen set of parameters.

half plane then gives for t > 0

ρL(t) = ρ(0)
e−

γ0
2 t

Ω
[γ0sin(Ωt) + Ωcos(Ωt)] (22)

which shows that the initial density decays in time with a relaxation time 2γ−1
0 while oscillating at a

frequency Ω ≈ ωP .
As is evident from the above discussion, the plasma frequency ωP plays a central role in studying
the optical properties of a conductor, which we now detail a bit more by focusing on the simple
Lorentz-Drude-model, namely on

ε̃tot(ω) = 1 +
i4πσ̃(ω)

ω
= 1 +

i

ω

ω2
P

γ0 − iω
≡ 1− ω2

P

γ2
0 + ω2

+ i
γ0

ω

ω2
P

γ2
0 + ω2

where ω2
P = 4πσ0γ0 has been used. The general behaviour of the relevant response functions is shown in

Fig.6 and the optical properties can be directly read off from the rightmost term of the last expression.
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It is evident that for any frequency but the smallest (in other words, for ω & γ0) we have, to a good
approximation,

ε̃tot(ω) ≈ 1− ω2
P

ω2

This means that ε̃tot(ω) is approximately real and ε̃tot(ω) < 0 (ε̃tot(ω) > 0) holds for ω < ωP (ω > ωP ).
Thus, a quick look at the wave equations Eq.s (9,10) reveals that wave propagation is only allowed
for ω > ωP : for ε̃tot(ω) < 0 the solutions decay exponentially within the conductor on a short length
scale, which increases when approaching ωP (see Fig.6). Specifically, we have

κ ≈ 2

c
Re
√
ω2
P − ω2 = 2

√
k2
P − k2 for γ0 � ω ≤ ωP

where k = 2π/λ and kP = 2π/λP have been introduced, with λP typically in the ultra-violet region,
λP ∼ 100nm. The behaviour of the system at the onset of propagation, i.e. exactly at the plasma
frequency, follows from Eq.(22) upon noticing that for γ0 � ωP (a condition which is well satisfied in
ordinary situations) this equation simplifies to

ρL(t) ≈ ρ(0)cos(ωP t)

This means that for a charge (“plasma”) oscillation to exist the accompanying electric field (i.e. that
solving ∇E = 4πρ) has to oscillate at the plasma frequency.
Microscopic models and exact results parallel those introduced above for dielectrics. The Lorentz
model of harmonically bound charges reduces -in the limit of vanishing frequency of the harmonic
oscillator- to the free-electron model by Drude, i.e.

mev̇(t) +meγev(t) = −|e|E(t) + ζ(t) (23)

where v = ẋ is the electron velocity, γe is the relaxation rate and E a uniform, possibly time-dependent
electric field. Neglecting a transient which decays on a microscopic time scale τe ∼ γ−1

e , the stationary
solution for the ensemble average

〈ṽ(ω)〉 = − 1

me

|e|
γe − iω

Ẽ(ω)

provides the Drude’s expression for the admittance

Ã(ω) =
1

me

|e|2

γe − iω

(and the electron mobility µ0 = limω→0 Ã(ω) = |e|2τe/me) which allows one to express the frequency-
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dependent conductivity as

σ̃(ω) = neÃ(ω) =
ne
me

|e|2

γe − iω
=

γeσ0

γe − iω

where ne is the number density of free electrons and σ0 = nee
2τe/me is the Drude’s DC conductivity.

The limitations of the Drude’s model are well-known, and can be traced back to the intrinsic quantum
behaviour of electrons32. Also, the nature of the scattering processes turned out be very different from
those originally envisaged by Drude, who identified in the collision with the ion cores the source of
momentum relaxation. In fact, ion cores -if periodically arranged- become transparent to propagation
of electron waves for all but few energy intervals: scattering only occurs because of disorder, e.g.
lattice vibrations, impurities and defects. Even at very low temperatures, conduction is limited by
impurities which can never be removed from real samples. However, the Drude model does capture
some important features of the electron dynamics which remain unaltered in the more sophisticated
approaches, what makes it still interesting nowadays.
In a static field and in samples much larger than the mean free path le = vτe, (where v is a typical
electron velocity), electrons undergo many collisions before being “probed” and, on average, acquire a
drift velocity33, vdrift = −|e|Eτe/me. This is much smaller than the typical magnitude of the electron
velocity, but oriented with the field, and drives the electrons against the “thermal” random motion in
the direction of the field. The motion is drift-diffusion and the regime is called diffusive. This has to
be distinguished from the ballistic motion observed on time scales . τe where electrons are accelerated
by the field.
The specific connection with diffusion is best appreciated at the classical level by noticing that, accord-
ing to Eq.(23), and similarly to the previous discussion on dipoles, the average response to the field
−|e|E(t) is also the pointwise response to the fluctuating force ζ(t) which is responsible for diffusion
and for thermal equilibrium,

ṽ(ω) =
1

me

ζ̃(ω)

γe − iω

On taking the square modulus of this expression and using the Wiener-Kinchine theorem, we obtain

C̃v(ω) =
1

m2
e

1

|γe − iω|2
C̃ζ(ω)

where C̃A(ω) is the Fourier transform of the autocorrelation function CA(t) = 〈A(t)A〉. Here, as usual,
32For instance, if the electron gas were classical one would have a contribution 3

2
kB per electron to the heat capacity,

which is not observed.
33A collision-limited velocity ṽ(ω) is attained for any frequency ω . γe, which signals that dissipative processes are

on.
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C̃ζ(ω) = 2meγekBT ensures the correct equilibrium condition, i.e. meCv(0) = kBT , and thus34

C̃v(ω) =
2kBT

me

γe
|γe − iω|2

=
2kBT

e2
ReÃ(ω)

or, equivalently35,

Ã(ω) =
e2

kBT

ˆ ∞
0

Cv(t)e
iωtdt

In the limit ω → 0,

µ0 =
e2

kBT

ˆ ∞
0

Cv(t)dt ≡
e2

kBT
D

where D is the diffusion coefficient,

D = lim
t→∞

〈(x(t)− x(0))2〉
2dt

≡ 1

d

ˆ ∞
0

〈v(t)v(0)〉 dt

here written in general for d spatial dimensions in terms of the d−dimensional position and velocity
vectors, x(t) and v(t), respectively.
The above discussion, being based on classical statistics, fails in describing the quantum electron “gas”
but provides some hints on how to correct such classical picture. In this perspective, the Drude’s
conductivity reads as

σ0 = e2 ne
kBT

D

where ρe = ne/kBT is the number of states per unit volume per unit energy available for diffusion. This
is the quantity suffering most of quantum restrictions, provided the diffusion coefficient is interpreted
quantum mechanically. Thus, we may heuristically replace this term with the appropriate density of
states.
The following simple argument, which has its roots in the semiclassical theory of electron dynamics,
provides the route to the exact result. For fields which vary on a length scale much larger than
the typical interatomic spacing, the band-structure picture holds locally on microscopically large but
macroscopically small volumes, and we can thus introduce a local electrochemical potential36

µ(x) = µe(x)− |e|φ(x)

where µe(x) is the chemical potential of the unperturbed band structure (i.e. referenced to the
field-free situation) and −|e|φ(x) is the energy shift of each electron level due to the presence of the
external field. This quantity describes the driving force for restoring equilibrium when non-equilibrium

34Analogous result holds in the non-Markovian case, γ = γ(ω), provided the correct fluctuation-dissipation relation of
the second kind is used, C̃ζ(ω) = 2mekBTReγ̃(ω).

35Remembering that A(t) = 1
2π

´+∞
−∞ Ã(ω)e−iωtdt is real and satisfies causality, it is not hard to check that A(t) =

e2

kBT
Θ(t)Cv(t).

36From a thermodynamic point of view, this is just the chemical potential describing the local equilibrium in the
presence of the field.
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conditions prevail, through the flux (in linear regime)

Je = −C∇µ

Here C is a constant which can be determined by noticing that formally, when φ(x) ≡ 0, J can only
be due to a concentration gradient,

Je(E = 0) = −C∇µe = −D∇ne

Hence,

C = D

(
∂ne
∂µ

)
E=0

where ∂ne/∂µ is the appropriate density of states for the diffusion process. For a degenerate electron
gas (the rather standard case!) at T = 0K(

∂ne
∂µ

)
eq

≡ ρe(εF )

where ρe(εF ) is the usual density of states at the Fermi level εF = µ. This is the main effect of
the Fermi statistics, which allows one to “probe” the electron levels when progressively increasing the
electron density at T = 0K. Then, in general, the charge current density reads as

J = +|e|D∇n+ e2DρeE

and the conductivity of a degenerate electron gas follows as

σ0 = e2Dρe(εF ) (24)

where D is the diffusion coefficient of the electrons at the Fermi level37,

D =
v2
F

dγe
=
v2
F τe
d

v2
F = 〈v2〉 being the root-mean-square (group) velocity of the electrons at the Fermi level. Eq.(24) is
also commonly re-written in terms of the mean-free-path le = vF τ

σ0 = e2ρe(εF )
vF le
d

37In the Markov approximation the equilibrium velocity autocorrelation function decays exponentially, 〈v(t)v(0)〉 =
〈v(t)v(0)〉 e−γet. Notice that the subscript e in γe and τe stand also for elastic scattering, which is the main scattering
mechanism limiting conduction.
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Here, in weakly disordered samples, le is inversely proportional to the defect concentration ni

1

le
= niσe

the constant of proportionality σe being essentially the (elastic) scattering cross section (length for
d = 2). Under such conditions, one can replace the density of states of the disordered sample with
that of the unperturbed system, and find for an isotropic system

ρe(εF )vF =
∂n

∂εF

1

~
∂εF
∂kF

=
1

~
∂n

∂kF

where

ne =
gvgs
V

k≤kF∑
k

1 =
gvgs
V∆k

ˆ
k≤kF

ddk =


gsgv
(2π)2πk

2
F for d = 2

gsgv
(2π)3

4
3πk

3
F for d = 3

Here, gs(≡ 2) and gv are the spin and valley degeneracies, and ∆k = (2π)d/V is the volume (area)
occupied by each k point upon application of the appropriate Born - von Karman boundary conditions
on the sample volume (area) V . For instance,

σ0 = gv
e2

h
kF le

is “universal” in 2D electron gas systems, i.e. it holds irrespective of the dispersion relation (provided
is isotropic).
Eq.(24) can also be written in a form which fully displays its quantum character (within the assumed
one-electron approximation). To this end, we explicitly introduce the quantum expression of the
relevant diffusion coefficient38

D = lim
t→∞

〈(x(t)− x(0))2〉F
2td

where the average has to be taken on the microcanonical ensemble at the Fermi level

〈(x(t)− x(0))2〉F =
tr
{
δ(εF −H)(x(t)− x(0))2

}
tr {δ(εF −H)}

and notice that39

tr {δ(εF −H)} = V ρe(εF )

38As above, operators with a time dependence are meant to be in the Heisenberg picture.
39tr {δ(εF −H)} = ∂

∂εF
tr {Θ(εF −H)} = (dN/dε)F where N(ε) is the total number of states at energy ≤ ε.
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to arrive at40

σ(εF ) =
e2

2V d
lim
t→∞

tr
{
δ(εF −H)(x(t)− x(0))2

}
t

(25)

This is transformed into the appropriate velocity autocorrelation function in the standard way, i.e.
re-writing the numerator above, upon using x(t)− x(0) =

´ t
0
v(t′)dt′, in the form

〈(x(t)− x(0))2〉 =

ˆ t

0

dt1

ˆ t

0

dt2 〈v(t1)v(t2)〉 ≈
ˆ t

0

dT

ˆ +∞

−∞
dτ 〈v(T +

τ

2
)v(T − τ

2
)〉 ≡ t

ˆ +∞

−∞
〈v(τ)v(0)〉 dτ

where
ˆ +∞

−∞
〈v(τ)v(0)〉 dτ =

ˆ ∞
0

〈v(τ)v(0)〉 dτ +

ˆ ∞
0

〈v(−τ)v(0)〉 dτ = 2Re
ˆ ∞

0

〈v(τ)v(0)〉 dτ

follows from Cv(t) = Cv(−t)∗. It follows,

σ(εF ) =
e2

V d

ˆ ∞
0

dttr
{
δ(εF −H)

[v(t),v(0)]+
2

}
=

e2

V d

ˆ ∞
0

dttr {δ(εF −H)Re(v(t),v(0))}

and since

tr {δ(εF −H)v(t)v(0)} = tr
{
δ(εF −H)e+ i

~Htve−
i
~Htv

}
= tr

{
δ(εF −H)ve+ i

~ (εF−H)tv
}

tr {δ(εF −H)v(0)v(t)} = tr
{
δ(εF −H)ve+ i

~Htve−
i
~Ht
}

= tr
{
δ(εF −H)ve−

i
~ (εF−H)tv

}
hold, after introducing the proper regularization (see also Appendix B)

ˆ +∞

0

dte±
i
~ (ε−H)t = ±i~G±(ε), i

(
G+(ε)−G−(ε)

)
= 2πδ(ε−H)

we finally arrive at

σ(εF ) =
π~e2

V d
tr {δ(εF −H)vδ(εF −H)v} (26)

in terms of the velocity operator in the Schrödinger picture. Also,

σ(εF ) =
πe2

V d

∑
i,f

〈εF f |v|εF i〉 〈εF i|v|εF f〉 =
πe2

V d

∑
i,f

| 〈εF f |v|εF i〉 |2

expresses the (zero-frequency) conductivity in terms of the eigenvectors of the (disordered) Hamiltonian
40At finite temperatures δ(εF − H) has to be replaced with −∂f(H)/∂ε where fβ(ε) is the Fermi-Dirac function at

temperature T = (kBβ)−1. This also gives

σβ =

ˆ
dε

(
−
∂fβ

∂ε

)
(ε)σT=0(ε)

where σT=0(ε) is the T = 0K conductivity of the system when the Fermi level is adjusted at the energy ε (provided
scattering mechanisms can be considered temperature- independent).
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at energy εF . Notice that if these eigenvectors represent bound states, i.e. if they localize within the
sample volume, the “on-shell” matrix elements of the velocity operator vanish, being v = i

~ [H,x]:
in this case the conductivity vanishes even if the states form a continuum, and one speaks about a
localization regime41.
The exact expression for the frequency-dependent conductivity tensor, in linear regime, can obtained
with the help of the general linear response theory. The theory is outlined in Appendix D (see also
Appendix E for the definitions of charge and current density operators), and gives, for a perturbation
of the form Hint = −a(t)A, an expression for the response

〈δB(t)〉 =

ˆ +∞

−∞
a(t′)χBA(t− t′)dt′

in the form
χBA(t) = Θ(t)

i

~
〈[B(t), A]〉 = Θ(t)βCK

BȦ
(t)

where the second equality, involving the Kubo correlation function CKBA(t), holds in canonical equilib-
rium. Of interest here is the special case B = Ȧ,

〈Ȧ(t)〉 =

ˆ +∞

−∞
a(t′)χȦA(t− t′)dt′, χȦA(t) =

d

dt
χAA(t) ≡ Θ(t)

i

~
[Ȧ(t), A] = Θ(t)βCK

ȦȦ
(t)

for the perturbation describing an electric field42,43

Ĥint =

ˆ
dr′φext(r′, t)n̂(r′)

here written in terms of the charge density operator. Linear response then gives

−〈∂n̂
∂t

(r, t)〉 =

ˆ
dr′
ˆ +∞

−∞
χδnδn(r, r′|t− t′)φext(r′, t)

where (in canonical equilibrium)

χδnδn(r, r′|t− t′) = Θ(t)

ˆ β

0

〈∂n̂
∂t

(r′,−i~τ)
∂n̂

∂t
(r, t)〉 dτ

41This is the celebrated absence of quantum diffusion in strongly disordered media, and arises because of the destructive
interference which dominates a multiple collision process when the scatterers are randomly arranged.

42We work in a gauge where E(r, t) = −∇φext(r, t). We are actually focusing on the parallel components of the
electric field and current density, and extract σ(ω) from these components. This is easier since E and B are linked to
each other through their transverse components only, and is legitimate as long as Ohm’s law J̃(ω) = σ(ω)Ẽ(ω) holds
for the overall (parallel plus transverse) vector fields. The above choice amounts to consider a purely transverse vector
potential, i.e. ∇A = 0 (Coulomb gauge), and identifies in φ and A the potentials responsible for the parallel and
perpendicular components of the field, respectively.

43In the following, to avoid confusion, we identify operators with a hat, see Appendix E.
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Using the continuity equation ∂n̂/∂t+ ∇Ĵ = 0 we obtain44

−∇β 〈Ĵβ(r, t)〉 =

ˆ
dr′
ˆ +∞

−∞
φext(r′, t′)Θ(t− t′)∇β∇′α

ˆ β

0

〈Ĵα(r′,−i~τ)Ĵβ(r, t− t′)〉 dτ

where the manipulation

φext(r, t)∇αĴα(r, t) = ∇α(φextĴα)(r, t)− Ĵα∇αφ
ext(r, t) = ∇α(φextĴα)(r, t) + ĴαEα(r, t)

makes the electric field explicit,

∇β 〈Ĵβ(r, t)〉 = ∇β

ˆ
dr′
ˆ +∞

−∞
dt′Θ(t− t′)

(ˆ β

0

〈Ĵα(r′,−i~τ)Ĵβ(r, t− t′)〉 dτ

)
Eext
α (r′, t′)

In writing this expression a surface integral has been neglected since it accounts for the charges leaving
the sample at its boundaries45 and thus the conductivity tensor follows as46

σβα(r, r′|t) = Θ(t)

ˆ β

0

〈Ĵα(r′,−i~τ)Ĵβ(r, t)〉 dτ (27)

This is known as Kubo-Nakano formula of conductivity and is best written in the energy representation,
on noticing that

〈Ĵα(r′,−i~τ)Ĵβ(r, t)〉 ≡
∑
nm

ρn 〈Ψn|Ĵα(r′)|Ψm〉 〈Ψm|Ĵβ(r)|Ψn〉 eτ(En−Em)e−
i
~ (En−Em)t

where |Ψn〉 are N−electron eigenstates with energies En and ρn = e−βEn/Z are the corresponding
thermal populations.
In the monoelectronic approximation47 |Ψn〉’s are determinants and 〈Ψn|Ĵα(r′)|Ψm〉 is non-vanishing
only if |Ψn〉 differs from |Ψm〉 by at most one single-particle state. Thus, if n0 = {i1i2..iN−1} is a
collection of N − 1 indexes and i, f /∈ n0

〈Ψn0i|Ĵα|Ψn0f 〉 = 〈φi|ĵα|φf 〉
44The sum is implicit on repeated greek indexes.
45In the static limit it reads as

−
∑
i

φi

ˆ
∂Vi

dS′
ˆ t
−∞

dt′
(ˆ β

0
〈Ĵα(r′,−i~τ)

∂n̂

∂t
(r, t− t′)〉 dτ

)
where φi are the potentials of the conductors to which the sample is contacted, and the integrals run over the contact
surfaces.

46Of course, the equality should hold to within a term of the form, ∇ ∧ F , but the homogeneous condition, J → 0
when E → 0, sets this term to zero.

47We keep on using the standard (first quantization) version of quantum mechanics. Second quantization simplify
things considerably.
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where |φi〉 are single-particle states and ĵα is the monoelectronic current operator

ĵα(r) = −|e|
2

[v̂α, δ(r − r̂)]+

On account of the permutation symmetry restrictions, the sum over states transforms according to

∑
n0

∑
i/∈n0

∑
f /∈n0

ρn0i {...} ≡
∑
i,f

f(εi) (1− f(εf )) {...}

where
f(ε) =

1

eβ(ε−µ) + 1

is the Fermi distribution function. Thus,

〈Ĵα(r′,−i~τ)Ĵβ(r, t)〉 =
∑
i,f

f(εi) (1− f(εf )) 〈φi|ĵα(r′)|φf 〉 〈φf |ĵβ(r)|φi〉 eτ(εi−εf )e−iωif t

where ωif are the transition frequencies. On integrating over τ and noticing that

f(εi) (1− f(εf ))
(
eβ(εi−εf ) − 1

)
≡ f(εf )− f(εi)

we can Fourier transform in time using

lim
ε→0+

ˆ ∞
0

e−εteiωte−iωif tdt = iP
(

1

ω − ωif

)
+ πδ(ω − ωif )

to arrive at (upon swapping i for f)

σ̃βα(r, r′|ω) =
∑
if

(
−∆f

∆ε

)
fi

〈φi|ĵβ(r)|φf 〉 〈φf |ĵα(r′)|φi〉
{
iP
(

1

ω − ωfi

)
+ πδ(ω − ωfi)

}

where (
∆f

∆ε

)
fi

:=
f(εf )− f(εi)

εf − εi
=

(
∆f

∆ε

)
if

In homogeneous systems σ̃βα(r, r′|ω) is actually a function of r−r′, which we write simply as σ̄βα(r−
r′|ω). Its spatial Fourier transform,

σ̄βα(q|ω) =

ˆ
drσ̄βα(r|ω)e−iqr

enters the linear response result

〈J̃β(q, ω)〉 = σ̄βα(q|ω)Ẽα(q, ω)
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and is related to σ̃βα(r, r′|ω) by a double spatial transform

σ̄βα(q|ω) ≈ 1

V

ˆ
dr1

ˆ
dr2e

−iq(r1−r2)σ̃βα(r1, r2|ω)

Here the dependence on r1, r2 only occurs in the current density

ˆ
drĵα(r)e−iqr ≡ −|e|

2
[v̂α, e

−iqr̂]+

therefore, in the long-wavelength limit (i.e. for spatially uniform fields), ĵα(q)→ −|e|v̂α and

σ̄βα(0|ω) =
e2

V

∑
if

(
−∆f

∆ε

)
fi

〈φi|v̂β |φf 〉 〈φf |v̂α|φi〉
{
iP
(

1

ω − ωfi

)
+ πδ(ω − ωfi)

}

The randomly disordered system can be considered isotropic, σ̄βα(0|ω) = δαβ σ̄(0|ω), where

σ̄(0|ω) =
e2

V d

∑
if

(
−∆f

∆ε

)
fi

| 〈φi|v̂α|φf 〉 |2
{
iP
(

1

ω − ωfi

)
+ πδ(ω − ωfi)

}

and, in particular,

Reσ̄(0|ω) =
πe2

V d

∑
if

(
−∆f

∆ε

)
fi

| 〈φi|v̂|φf 〉 |2δ(ω − ωfi) (28)

Thanks to causality, this expression is sufficient to reproduce the whole frequency dependent conduc-
tivity in the q = 0 limit, and in the monoelectronic approximation, and is known as Kubo-Greenwood
formula of conductivity. It can be converted to a previous expression, Eq.(26), by replacing the free
sums over i, f with integrals over energies ε, ε′ and sums over degeneracy indexes i, f (∆ε ≡ ε′ − ε)

Reσ̄(0|ω) =
πe2

V d

ˆ
dε

ˆ
dε′
(
−∆f

∆ε

)∑
if

| 〈εi|v̂|ε′f〉 |2δ(ω − ∆ε

~
)

where ∑
if

| 〈εi|v̂|ε′f〉 |2 ≡ tr {v̂δ(ε−H)v̂δ(ε′ −H)}

Thus, in the limit of vanishing frequency, we recover the previous result,

Reσ̄(0|0) =
π~e2

V d

ˆ
dε

(
−∂f
∂ε

)
tr {v̂δ(ε−H)v̂δ(ε−H)}

or, equivalently,

Reσ̄(0|0) =

ˆ
dε

(
−∂f
∂ε

)
σT=0K(ε)

where
σT=0K(ε) =

π~e2

V d
tr {v̂δ(ε−H)v̂δ(ε−H)}
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is the limiting conductivity at zero temperature when the Fermi level is set to ε, limT→0 Reσ̄(0|0),
since limT→0

(
−∂f∂ε

)
= δ(ε− εF ) holds with εF = limT→0 µ.

It is worth noticing at this point that Eq.(28) is very general, and describes the conductivity at both
small and high frequencies (i.e. from the DC/AC “domain” up to the optical region and more), provided
the appropriate Hamiltonian including disorder is considered. However, disorder is only relevant at
low frequencies ω . τe, where τe is the disorder-related relaxation time. At high frequencies (ω � τe)
relaxation processes are negligeble on the time scale of the electron dynamics ∼ ω−1, and thus the
conductivity is best evaluated with the much simpler disorder-free Hamiltonian,

(ω � τe) σ̄βα(0|ω) ≈ σ̄0
βα(0|ω) = i

2e2

(2π)d

∑
if

limη→0+

ˆ
BZ

ddk

(
−∆f

∆ε

)
fi

〈ki|v̂β |kf〉 〈kf |v̂α|ki〉
ω − ωfi(k) + iη

where the sum over initial and final states has been written explicitly in terms of Bloch vectors and
band index, and the translational symmetry has been used to simplify matrix elements,

〈ki|v̂β |k′f〉 = δkk′ 〈ki|v̂β |kf〉

prior to the usual replacement
∑

k → V/(2π)d
´
BZ

dk which introduces the integral over the Brillouin
zone (the factor of 2 comes from the fact that the original sum was also over the spin projections).
Here it is worth exhibiting separately the diagonal term i = f

i
2e2

(2π)d

∑
n

limη→0+

1

ω + iη

ˆ
BZ

ddk

(
−∂f
∂ε

(εn(k))

)
〈kn|v̂β |kn〉 〈kn|v̂α|kn〉

which is non-vanishing for conductors only thanks to the term −∂f(ε)/∂ε ≈ δ(ε − µ) . In particular,
the T = 0 K limit of the real part of this contribution reads as

Reσ̄Dβα(0|ω) = πD0
βαδ(ω) (29)

where D0 is termed Drude weight and is given by

D0
βα = e2ρ(εF ) 〈vβvα〉εF

with ρ(ε) = 2
´
BZ

ddk/(2π)dδ(ε(k)− ε) the density of states per unit volume and 〈..〉εF an average over
the Fermi surface. Most often D0

αβ = δαβD
0 where

D0 =
e2ρ(εF )v2

F

d

On comparing with Eq.(24) D0 ≡ σ0γe as in the Drude model48, and is a measure of the number
density of electrons available at the Fermi level weighted by their average speed v2

F := 〈v2〉εF ; of

48For σ(ω) = σ0γe/(γe − iω) and D0 = σ0γe ≡ Ne2/me we have Reσ(ω) = σ0γ2e/(γ
2
e + ω2)→ πD0δ(ω) for γe → 0.
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course, the δ-peak appearing in Eq.(29) (in place of a Lorentzian of width ∼ γe) arises from the use of
a disorder-free Hamiltonian which cannot describe electron scattering.
We thus see that

Reσ̄0
βα(0|ω) = πD0

βαδ(ω) + Reσ̄optβα (0|ω)

where

Reσ̄optβα (0|ω) =
e2

(2π)d−1ω

i6=f∑
if

ˆ
BZ

ddk(f(εi(k))− f(εf (k))) 〈ki|v̂β |kf〉 〈kf |v̂α|ki〉 δ(ω − ωfi(k))

is the genuine optical conductivity containing inter-band transitions only, and therefore

Reσ̄βα(0|ω) ≈ σDCγ
2
e

γ2
e + ω2

+ Reσ̄optβα (0|ω)

with σDC and γe computed with the full Halmitonian H including disorder,

(T = 0K) σDC =
π~e2

V d
tr {v̂δ(εF −H)v̂δ(εF −H)} , γe =

D0

σDC

at the expense of neglecting the possible effect of disorder on the low energy inter-band transitions,
which is surely a good approximation if the onset of such transitions ω0 is such that ω0 & γe.

37



8 Appendix A: Averages of microscopic densities and fields

We sketch in this Appendix the derivation of the macroscopic Maxwell equations from the microscopic
ones, focusing on the simplest case of Eq.1. We start introducing a suitable averaging function f(r)

peaked at the origin, which is small ranged on a macroscopic scale but extends (smoothly) on a
microscopically large volume containing many molecules. The average of the microscopic quantity
F (r, t) is then defined according to

Fmacro(r, t) = 〈F (r, t)〉 =

ˆ
d3r′f(r′)F (r − r′, t) =

ˆ
d3r′f(r − r′)F (r′, t)

provided f is normalized to 1. It follows ∂Fmacro/∂xi = 〈∂F (r, t)/∂xi〉 and similarly ∂Fmacro/∂t =

〈∂F (r, t)/∂t〉.
With this definition, averaging Eq.1 gives ∇Emacro = 4πρmacro where ρmacro(r, t) is the average of
the molecular and the free charge density,

ρmicro(r, t) =
∑
i

ρmoli (r, t) +
∑
i

qiδ(r − ri(t))

For the i−th molecule at position Ri the contribution of its density to the average in r can be obtained
upon noticing that ρmoli (r′, t) is strongly peaked around r′ = Ri

〈ρmoli (r, t)〉 =

ˆ
d3r′f(r−r′)ρmoli (r′, t) ≈

ˆ
d3r′f(r−Ri)ρ

mol
i (r′, t)−

ˆ
d3r′∇f(r−Ri)ρ

mol
i (r′, t)(r′−Ri)

i.e.,
〈ρmoli (r, t)〉 ≈ f(r −Ri)q

mol
i −∇f(r −Ri)p

mol
i

where
qmoli =

ˆ
d3r′ρmoli (r′, t)

is the molecular charge (if any) and

pmoli =

ˆ
d3r′ρmoli (r′, t)(r′ −Ri)

its dipole (with origin in Ri). Thus, from a different perspective, the first term is the average of a
point charge density ρpointi (r, t) = qmoli δ(r − Ri(t)) (similar to the contribution of the free-charges)
and the second term is (minus) the gradient of the average of a dipole density

pi(r, t) = pmoli (t)δ(r −Ri(t))

As a result
ρmacro(r, t) = ρ(r, t)−∇P (r, t)
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where now ρ(r, t) is the number density of molecular and free charges at r, P (r, t) is the number
density of dipoles, and

∇ (E(r, t) + 4πP (r, t)) = 4πρ(r, t)

Notice that ρ(r, t) is usually termed the “free” charge density, even though it contains both charges
which are “free” to move (qi above) and ion cores which are essentially fixed in space (e.g. in an alkali
metal qi’s are the free-electron charges and qmoli ’s are alkaline ions which sit on the lattice positions).
This result is rather general and can be specialized to the cases of interest: in a dieletric there are no
free charges and ρ(r, t) describes the external charges deposited onto the molecules ρ(r, t) ≡ ρpointi (r, t)

whereas in a conductor, as mentioned above, it accounts for both the conduction electron density and
the ion-core densities, ρ(r, t) = ρcond(r, t) + ρion(r, t), where the latter is quasi-static, i.e. ρ̃(r, ω) ≈
ρ̃cond(r, ω) for ω > 0, though an ionic contribution ρ̃ion(r, ω) may appear at frequencies resonant with
the lattice vibrations.
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9 Appendix B: Analytic properties of response functions

Spectral representation of analytic functions in the uhp

Let f(z) be an analytic function in the upper half plane such that |f(z)| → 0 as |z| → ∞. Cauchy’s
representation theorem reads as

f(z) =
1

2πi

ˆ +∞

−∞

f+(x)

x− z
dx ≡ 1

2πi

ˆ +∞

−∞
dxf+(x)

{
1

x− z
± 1

x− z∗

}
where f+(x) = limε→0+ f(x + iε) (x ∈ R) and the second term on the rightmost hand side has been
added since it is analytic in the uhp and thus does not affect the value of the integral. Hence

f(z) =
1

πi

ˆ +∞

−∞
f+(z)Re

{
1

x− z

}
dx =

1

π

ˆ +∞

−∞
f+(z)Im

{
1

x− z

}
dx

and, upon taking the real and imaginary parts of these expressions,

f(z) =
1

π

ˆ +∞

−∞

Imf+(x)

x− z
dx =

1

πi

ˆ +∞

−∞

Ref+(x)

x− z
dx

We call these expressions the spectral representations of f(z): they give f for any z in the uhp in terms
of its limiting real or imaginary parts on the real axis. Notice that for z = x + iε and ε → 0+ the
integral can be easily computed using the formal identity

1

x′ − z
→ P

1

x′ − x
+ iπδ(x− x′)

(where P denotes the Cauchy principal value of the integral) and gives

f+(x) =
1

π
P
ˆ +∞

−∞

Imf+(x′)

x′ − x
dx′ + iImf+(x) =

1

πi
P
ˆ +∞

−∞

Ref+(x′)

x′ − x
dx′ + Ref+(x)

i.e.
Ref+(x) =

1

π
P
ˆ +∞

−∞

Imf+(x′)

x′ − x
dx′ and Imf+(x) = − 1

π
P
ˆ +∞

−∞

Ref+(x′)

x′ − x
dx′

which are the celebrated Kramers-Kronig relations.

Spectral representation of response functions

We define a response function a function of the form

χ(t) = Θ(t)g(t)
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where g is a real function, and Θ is the usual Heaviside function, Θ(t) = 1 for t ≥ 0 and Θ = 0

otherwise. The Fourier transform
χ̃(ω) =

ˆ +∞

−∞
χ(t)eiωtdt

can be “analytically continued” in the upper half plane through49

χ̃c(z) =

ˆ +∞

−∞
χ(t)eiztdt

since the integrand is well-behaved for t → ∞ for any z with Imz > 0. This also defines the Fourier
transform for those functions that do not admit a proper transform. According to the previous results,
the function admits the two spectral representations

χ̃c(z) =
1

π

ˆ +∞

−∞

Imχ̃(ω)

ω − z
dω =

1

πi

ˆ +∞

−∞

Reχ̃(ω)

ω − z
dω

now in terms of the real and imaginary parts of Fourier transform above. Here the necessary real or
imaginary parts are given by

Reχ̃(ω) =

ˆ +∞

0

g(t)cos(ωt)dt =
1

2

ˆ +∞

−∞
gS(t)eiωtdt =

g̃S(ω)

2

Imχ̃(ω) =

ˆ +∞

0

g(t)sin(ωt)dt = − i
2

ˆ +∞

−∞
gA(t)eiωtdt = −i g̃A(ω)

2

where gS , gA are the symmetric, antisymmetric extensions of g for negative times, i.e. for t < 0

gS(t) = g(−t) and gA(t) = −g(−t). It also follows50

Reχ̃(ω) = Reχ̃(−ω)

Imχ̃(ω) = −Imχ̃(−ω)

which allow further simplifications in the above spectral representations, namely

χ̃c(z) =
1

π

ˆ +∞

−∞

Imχ̃(ω)

ω − z
dω ≡ 2

π

ˆ ∞
0

ωImχ̃(ω)

ω2 − z2
dω

or
χ̃c(z) =

1

πi

ˆ +∞

−∞

Reχ̃(ω)

ω − z
dω ≡ 2

πi

ˆ ∞
0

zReχ̃(ω)

ω2 − z2
dω

49This is not a true analytic continuation since the Fourier transform is defined on the real axis only, i.e. it does not
make sense to talk about analyticity in this case. However, the procedure is close to an analytic continuation, in the
sense that χ̃c(z) is analytic in the uhp and χ̃+

c (ω) = lim χ̃c(ω + iε) = χ̃(ω) .
50This is a consequence of the fact that χ is real.
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Extensions

For a function f(z) which is analytic in the uhp, the spectral representation given above is also well
defined in the lower half plane. Thus, we are led to consider the function

fe(z) =
1

π

ˆ +∞

−∞

Imf+(x)

x− z
dx

which is analytic in the whole complex plane but the real axis. This can be considered an “extension”
of the original f(z). It is not an analytic continuation, since

lim
ε→0+

fe(x± iε) =
1

π
P
ˆ +∞

−∞

Imf+(x′)

x′ − x
dx′ ± iImf+(x)

i.e.
f+
e (x)− f−e (x) = 2iImf+(x)

which show that the function is not even continuous when crossing the real axis, on the support of
Imf+. The real axis represents indeed a branch cut for this function, and the limiting value of Imf
(or Ref) on this cut (e.g. from above) is sufficient to reconstruct the function on the whole complex
plane. Notice also that the above expression is the limiting case of the conjugation property

fe(z
∗) = fe(z)

∗

which can also be read directly from the definition of fe.
All these results hold in particular for the response function defined above, and the extension reads as

χ̃e(z) =
1

π

ˆ +∞

−∞

Imχ̃(ω)

ω − z
dω

Notice that χ̃e(z) gives back the Fourier transform χ̃(ω) when z approaches the real axis from above,
whereas limε→0+ χ̃e(ω − iε) = χ̃−e (ω) ≡ χ̃(ω)∗.

Sum rules

As above, let f(z) be an analytic function in the upper half plane such that |f(z)| → 0 as |z| → ∞.
In particular, suppose that f(z) ≈ Cn/z

n as |z| → ∞, where n ≥ 1 is an integer and Cn is a constant.
Applying Cauchy theorem on the real axis supplemented with a large semicircle in the uhp,

‰
f(z)dz = 0 =

ˆ +∞

−∞
f+(x)dx+ lim

R→∞

ˆ
ΓR

Cn
zn
dz ≡

ˆ +∞

−∞
f+(x)dx+ lim

R→∞

iCn
Rn−1

fn
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where f+(x) = limε→0+ f(x+ iε), ΓR is the semicircle {z|z = Reiθ, θ ∈ [0, π]} and fn = δn,1π + i(1−
δn,1) 1−(−)n−1

n−1 . If n > 1 the second integral on the r.h.s vanishes and we obtain

ˆ +∞

−∞
dxf+(x) = 0

The same holds for the functions fm(z) = zmf(z) for m = 1, 2, ..n− 2, i.e.

ˆ +∞

−∞
dxxmf+(x) = 0 for m ≤ n− 2

On the other hand, for m = n− 1, fn−1(z) ≈ Cn/z at infinity and we get

ˆ +∞

−∞
dxxn−1f+(x) = −iπCn

or, more generally,
i

π

ˆ +∞

−∞
dxxmf+(x) =

{
0 m = 0, 1, ..n− 2

Cn m = n− 1

This allows us to compute a number of “moments” of the limiting function f+(x) by just looking at
the asymptotic behaviour of f(z).
For instance, for the dielectric function given in the main text the high-frequency limit reads as
ε̃(ω) − 1 ≈ −ω2

P /ω
2 (independently of the model), where ωP is the plasmon frequency. Thus n = 2,

Cn = −ω2
P and the above relation reads as

i

π

ˆ +∞

−∞
dωω [ε̃(ω)− 1] = −ω2

P

or equivalently
2

π

ˆ +∞

0

dωωIm [ε̃(ω)− 1] = ω2
P

In the low-density, non-dispersive limit, for the Lorentz model discussed in the main text we get

−i
ˆ +∞

−∞
dωωα̃mol(ω) ≡

ˆ +∞

−∞
dωωα̃′′mol(ω) =

πZe2

me

i.e. ˆ ∞
0

dωσph(ω) =
2π2Ze2

mec
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10 Appendix C: Autocorrelation functions

Let us consider an isolated system and an observable A. The equilibrium autocorrelation function of
the observable A is defined as

CA(t) = 〈A(t)A(0)〉 = tr (ρA(t)A(0))

where ρ is the (equilibrium) system density operator, tr is the trace operation and A(t) is the
Heisenberg-picture operator corresponding to the observable A, namely A(t) = e

i
~HtAse

− i
~Ht where

As is the usual Schrödinger-picture operator and H is the system Hamiltonian. Notice that when
the system is part of a larger systems, the very existence of a Heisenberg picture requires the cor-
relation function above to be defined on the whole, isolated system for which a Hamiltonian can be
introduced51.
In general, CA above is not real, and its real and imaginary parts read as

ReCA(t) = 〈Re (A(t)A(0))〉 =
〈[A(t), A(0)]+〉

2
≡ 〈Re (A(0)A(t))〉

ImCA(t) = 〈Im (A(t)A(0))〉 =
〈[A(t), A(0)]〉

2i
≡ −〈Im (A(0)A(t))〉

As we shall see below, thanks to the equilibrium condition these properties translate into interesting
symmetry properties of the corresponding Fourier transforms.

Symmetry properties

Since the system is assumed to be in equilibrium, ρ ≡ ρ(H), A(t) can be regarded as a stationary
stochastic process. In practice,

CA(t) ≡ 〈A(t+ τ)A(τ)〉

holds for any τ , as can be directly proved using the definition above,

tr (ρA(t+ τ)A(τ)) = tr
(
ρe+ i

~HτA(t)e−
i
~Hτe+ i

~HτA(0)e−
i
~Hτ

)
=

tr
(
e+ i

~HτρA(t)e−
i
~Hτe+ i

~HτA(0)e−
i
~Hτ

)
≡ tr (ρA(t)A(0))

where use has been made of the equilibrium condition [ρ, f(H)] = 0 (for any function of H) and of the
cyclic property of the trace. In particular, for τ = −t we have

CA(t) ≡ 〈A(0)A(−t)〉
51The knowledge of the reduced density operator at any time t is not enough to compute the correlation function.

In classical statistics, this would amount to know the probability density function at a single time t, P1(x, t), while the
correlation above requires the joint probability density function P2(x1, t1;x2, t2).
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and hence
ReCA(t) = ReCA(−t)

ImCA(t) = −ImCA(−t)

or equivalently,
CA(t)∗ = CA(−t)

It follows that the Fourier transform

C̃A(ω) =

ˆ +∞

−∞
CA(t)eiωtdt

is real
C̃∗A(ω) =

ˆ +∞

−∞
C∗A(t)e−iωtdt =

ˆ +∞

−∞
CA(−t)e−iωtdt ≡ C̃A(ω)

and the Fourier transforms of its real and imaginary parts are just the symmetric and antisymmetric
parts of C̃A(ω),

C̃A(ω) =

ˆ +∞

−∞
(ReCA(t) + iImCA(t))eiωtdt = S(ω) +A(ω)

where
S(ω) =

ˆ +∞

−∞
ReCA(t)eiωtdt ≡

ˆ +∞

−∞
ReCA(t)cos(ωt)dt = S(−ω)

A(ω) = i

ˆ +∞

−∞
ImCA(t)eiωtdt ≡ −

ˆ +∞

−∞
ImCA(t)sin(ωt)dt = −A(−ω)

Detailed balance

The autocorrelation function of the observable A of a system in canonical equilibrium has an additional
symmetry which is not evident from the previous results, but directly follows from the exponential
form of the canonical statistical operator52,

CA(t) =
1

Z
tr
(
e−βHe

i
~HtAe−

i
~HtA

)
=

1

Z
tr
(
Ae−βHe

i
~HtAe−

i
~HteβHe−βH

)
=

1

Z
tr
(
Ae

i
~H(t+i~β)Ae−

i
~H(t+iβ)e−βH

)
≡ 〈A(0)A(t+ i~β)〉

52Apart from normalization, the canonical statistical operator is the evolution operator of the imaginary-time
Schrödinger equation, i.e. the solution of Hρ = i~dρ/dt for t = −i~β and initial condition ρ(0) = 1.
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where β = 1/kBT and Z is the canonical partition function, Z = tr(e−βH). Taking the complex
conjugate, we get the Kubo-Martin-Schwinger relation,

CA(t)∗ = 〈A(t− i~β)A(0)〉

which allows to write the (real!) Fourier transform C̃A(ω) in the equivalent form

C̃A(ω) =

ˆ +∞

−∞
C∗A(t)e−iωtdt =

ˆ +∞

−∞
〈A(t− i~β)A(0)〉 e−iωtdt

to be compared with

C̃A(−ω) =

ˆ +∞

−∞
〈A(t)A(0)〉 e−iωtdt

This suggests to study the contour integral

−T β−ih +T β−ih

τRe

τIm

+T−T

Figure 7: Contour path used to prove the detailed balance condition.


〈A(τ)A(0)〉 e−iωτdτ

where the path is the rectangle shown in figure 7. The function is analytic on its interior, since in the
energy representation it reads as

〈A(τ)A(0)〉 =
1

Z

∑
nm

| 〈φn|A|φm〉 |2e−βEne
i
~ τ(En−Em)

where for Imτ ≤ 0 diverging terms En > Em only appear for Imτ < −~β (the exponent indeed goes
as ∝ exp

{
1
~ [(−(~β + Imτ)En + ImτEm]

}
). Thus, assuming that53

〈A(±T − ix)A(0)〉 → 0 for T →∞, x ∈ (0, ~β)

53This is usually not satisfied in finite systems. In some instances, however, the contributions of the paths ±T − iτ
cancel, see e.g. the case of the harmonic oscillator mentioned in the main text.
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we obtain

C̃A(−ω) =

ˆ +∞

−∞
〈A(t)A(0)〉 e−iωtdt =

ˆ +∞−i~β

−∞−i~β
〈A(τ)A(0)〉 e−iωτdτ

= e−~βω
ˆ +∞

−∞
〈A(τ)A(0)〉 e−iωτdτ = e−~βωC̃A(ω)

Accordingly,

S(ω) ≡ 1 + e−~βω

2
C̃A(ω), A(ω) ≡ 1− e−~βω

2
C̃A(ω)

and
S(ω) = coth

(
β~ω

2

)
A(ω)

which shows that knowledge of A(ω) is sufficient to reconstruct the Fourier transform of the correlation
function, C̃A(ω).

Fluctuations

The Fourier transform C̃A(ω) is a sort of spectral weight of the fluctuations of the observable A at
equilibrium, since

C(0) ≡ 〈A2〉 =
1

2π

ˆ +∞

−∞
C̃A(ω)dω

A closer connection can be established similarly to the classical case (Wiener-Kinchine theorem for
stationary stochastic processes). To see this, let us consider the following operator

Ã(ω) =

ˆ +∞

−∞
A(t)eiωtdt

(the Fourier transform of the “stationary process” A(t)) and the equilibrium average

〈Ã(ω)Ã†(ω′)〉 =

ˆ +∞

−∞

ˆ +∞

−∞
〈A(t1)A(t2)〉 eiωt1e−iω

′t2dt1dt2

Here 〈A(t1)A(t2)〉 = CA(t1 − t2) depends on the time difference only, and thus with the change of
variables (

t1

t2

)
→

(
t

τ

)
=

(
(t1 + t2) /2

t1 − t2

)
we can write

〈Ã(ω)Ã†(ω′)〉 =

ˆ +∞

−∞

ˆ +∞

−∞
CA(τ)eiω(t+τ/2)e−iω

′(t−τ/2)dtdτ
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= 2πδ(ω − ω′)
ˆ +∞

−∞
CA(τ)ei(ω+ω′)τ/2dτ ≡ 2πδ(ω − ω′)C̃A(ω)

More precisely, the Fourier transform given above is in general ill-defined, and thus we introduce a
long but finite time interval [−T,+T ] and put

ÃT (ω) =

ˆ +T

−T
A(t)eiωtdt ≡

ˆ +∞

−∞
AT (t)eiωtdt

where AT (t) = A(t) if t ∈ [−T,+T ] and AT (t) = 0 otherwise. In this way the above relation holds to
a good approximation

〈ÃT (ω)Ã†T (ω′)〉 ≈ 2
sin ((ω − ω′)T )

ω − ω′
C̃A(ω)

(provided the autocorrelation function CA(t) decays on a time-scale much shorter than T ) and we can
write down an explicit expression for ω = ω′

〈ÃT (ω)Ã†T (ω)〉 ≈ 2TC̃A(ω)

When ÃT (ω) is easily available (e.g. by Fourier analysis of the equation of motion) this expression
provides an easy route to compute C̃A(ω) and hence CA(t).
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11 Appendix D: General linear response theory

We consider here the main results of linear response theory, which relates the response of a system
in equilibrium to a (weak) external perturbation, by generalizing the approach given in the main
text. We then suppose that an equilibrium ensemble has been isolated from its environment with
minor disturbance, and that the system state can be represented by a density operator which is some
function of the system Hamiltonian54 H, ρeq = f(H). External forces of the form Hint = −a(t)A are
then turned on at some time t0 and we look at the system state at some time t > t0. If the interaction
is weak enough, it is reasonable to expect that, to leading order,

δρ(t) = ρ(t)− ρeq ≈
ˆ +∞

−∞
a(t′)gA(t− t′)dt′

where gA is some operator-valued function of the observable A, as well as of the time delay55. Thus,
we can focus on the “kick” a(t) = δ(t) and get direct access to gA(t) and to any average of interest.
Starting from the Liouville-von Neumann equation

∂ρ

∂t
= − i

~
[H, ρ] = − i

~
[H +Hint(t), ρ]

in integral form

ρ(t) = ρeq − i

~

ˆ t

0

[H +Hint(t
′), ρ(t′)]dt

we use first-order perturbation theory and replace ρ on the r.h.s. with its unperturbed value ρ(t) ≡ ρeq.
In the limit t→ 0+, we thus obtain

ρ(0+) ≈ ρeq − i

~

ˆ 0+

0

[H +Hint(t
′), ρeq]dt = ρeq +

i

~
[A, ρeq]

This provides the initial state right after the kick, which then propagates in time according to the free
evolution propagator, i.e.

ρ(t) ≈ ρeq +
i

~
e−

i
~Ht[A, ρeq]e

i
~Ht = ρeq +

i

~
[A(−t), ρeq]

where now A(t) is the Heisenberg-picture A operator. Hence, for t > 0

δρ(t) ≈ +
i

~
[A(−t), ρeq] ≡ gA(t) (30)

54This is just to emphasize that the system needs to be isolated. For relaxation effects to be (implicitly) taken into
account in the following analysis, H must actually include both the proper “system” and the “reservoir”.

55Because of the equilibrium condition, gA can only depend on the time difference. Of course, in addition, it satisfies
causality.
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and, more generally,

δρ(t) ≈ i

~

ˆ t

−∞
a(t′)[A(t′ − t), ρeq]dt′

Therefore, we can write for a generic observable B

δB(t) = 〈Bδρ(t)〉 =
i

~

ˆ t

−∞
a(t′)tr (B[A(t′ − t), ρeq]) dt′

where, on cycling under the trace operation and using the invariance under time translations,

tr (B[A(τ), ρeq]) = tr (BA(τ)ρeq −BρeqA(τ)) = tr (ρeq(BA(τ)−A(τ)B))

= tr (ρeq[B,A(τ)]) = tr (ρeq[B(−τ), A])

i.e.
δB(t) =

ˆ +∞

−∞
a(t′)χBA(t− t′)dt′

with
χBA(t) := Θ(t)

i

~
〈[B(t), A]〉 (31)

Here, the averaged commutator entering the response function above can be further re-written in term
of the correlation function CBA(t) = 〈B(t)A〉 as

〈[B(t), A]〉 = 〈B(t)A〉 − 〈(B(t)A)†〉 = 2iIm 〈B(t)A〉 = 2iImCBA(t)

hence
χBA(t) := −Θ(t)

2

~
ImCBA(t)

is explicitly real. We have already considered in the main text the case B = A, where the symmetries
of the autocorrelation functions help simplifying things. In the general case, simplifications are possible
only under special conditions.

Time reversal

We suppose here the system is invariant under time-reversal, i.e. that [T,H] = 0 holds for the
the antiunitary time-reversal operator T . We further assume that both A and B have well defined
signatures, T †AT = τAA and similarly for B, with τA,B = ±1. Let then be {|Φn〉}n a system energy
eigenbasis; since [T,H] = 0, the time-reversed basis T |Φn〉 = |ΦTn 〉 is an equivalent energy eigenbasis,
and thus

CBA(t) ≡
∑
n

ρn 〈TΦn|B(t)A|TΦn〉 =
∑
n

ρn 〈Φn|T †B(t)AT |Φn〉
∗

=
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∑
n

ρn 〈Φn|T †B(t)TT †AT |Φn〉
∗

= τAτB
∑
n

ρn 〈Φn|B(−t)A|Φn〉∗ ≡ τAτBCBA(−t)∗

where ρn are the eigenvalues (natural populations) of the equilibrium density operator5657. We distin-
guish two cases according to whether τAτB = τ = ±1, since

ReCBA(t) = τReCBA(−t) ImCBA(t) = −τ ImCBA(−t)

For the Fourier transform of the correlation function, C̃BA(ω), we have

C̃BA(ω)∗ = τ

ˆ +∞

−∞
CBA(−t)e−iωtdt ≡ τC̃BA(ω)

which shows that C̃BA(ω) is pure real (imaginary) for τ = 1(τ = −1).
Similarly, we consider the response function χBA(t) and its Fourier transform χ̃BA(ω) focusing on its
real or imaginary part, as convenient. For τ = 1

Imχ̃BA(ω) = −2

~

ˆ ∞
0

ImCBA(t)sin(ωt)dt =
i

~

ˆ +∞

−∞
ImCBA(t)eiωtdt =

A(ω)

~

where A(ω) is the antisymmetric part of C̃BA(ω),

A(ω) =
C̃BA(ω)− C̃BA(−ω)

2

Conversely, for τ = −1,

Reχ̃BA(ω) = −2

~

ˆ ∞
0

ImCBA(t)cos(ωt)dt = −1

~

ˆ +∞

−∞
ImCBA(t)eiωtdt =

iS(ω)

~

where S(ω) is the symmetric part of C̃BA(ω),

S(ω) =
C̃BA(ω) + C̃BA(−ω)

2

Thus,

Im
(
i(1−τ)/2χ̃BA(ω)

)
=
i(1−τ)/2

~
C̃BA(ω) + (−)τ C̃BA(−ω)

2

56Care is needed in handling the trace operation with the antiunitary operator. For instance, TA |φ〉 =
T
(∑

n |Φn〉 〈Φn|A|φ〉
)

=
∑
n 〈Φn|A|φ〉

∗ T |Φn〉 shows that, in general, tr(TA) 6= tr(AT ).
57For B = A we re-obtain the previous result CA(t) = CA(−t)∗, which holds irrespective of the time-reversal symmetry.
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Canonical equilibrium

As already seen for the autocorrelation functions, the case of canonical equilibrium deserves special
attention. Suppose that ρeq ≡ e−βH/Z(β) and consider the real function

ξ(t) =
i

~
〈[B(t), A]〉

Noticing that tr(e−βH [B(t), A]) ≡ tr([A, e−βH ]B(t)) and defining F (β) = [A, e−βH ] we can write a
differential equation for F (β)

dF

dβ
= −[A,He−βH ] = −[A,H]e−βH −HF (β)

which can be solved for the initial condition F (0) = 0 in the form

F (β) = e−βH
ˆ β

0

eτH [H,A]e−τHdτ

where [H,A] ≡ −i~Ȧ and
eτHȦe−τH ≡ Ȧ(−i~τ)

Thus

ξ(t) =
i

~Z(β)
tr

(
e−βH

ˆ β

0

−i~Ȧ(−i~τ)B(t)dτ

)
≡
ˆ β

0

〈Ȧ(−i~τ)B(t)〉 dτ

and finally

χBA(t) = Θ(t)

ˆ β

0

〈Ȧ(−i~τ)B(t)〉 dτ

or, equivalently,

χBA(t) = Θ(t)

ˆ β

0

〈ȦB(t+ i~τ)〉 dτ = Θ(t)

ˆ β

0

〈Ȧ(−t− i~τ)B〉 dt

In the above expressions the quantity

CK
BȦ

(t) =
1

β

ˆ β

0

〈Ȧ(−i~τ)B(t)〉 dτ =
1

β

ˆ β

0

〈eτHȦe−τHB(t)〉 dτ

is also known as Kubo canonical correlation function of the observables Ȧ and B, and with this
definition

ImCBA(t) = −~β
2
CK
BȦ

(t) ≡ ~β
2

d

dt
CKBA(t) (32)

and
χBA(t) ≡ Θ(t)βCK

BȦ
(t) = −Θ(t)β

d

dt
CKBA(t) (33)
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Hence,

χ̃BA(ω) = β

ˆ ∞
0

CK
BȦ

(t)eiωtdt = −β
ˆ ∞

0

dCKBA
dt

(t)eiωtdt

In general, the real function CKBA(t) relates to the symmetric part of CBA(t), i.e. to CSBA(t) =

ReCBA(t), as can be easily seen in the energy representation, since

CKBA(t) =
1

β

∑
nm

(ρm − ρn)AnmBmn
eiωmnt

~ωmn

and
CSBA(t) =

1

2

∑
nm

(ρm + ρn)AnmBmne
iωmnt

where ρn = e−βEn/Z are the thermal occupation probabilities and ωmn = (Em − En)/~ are the
transition frequencies. On Fourier transforming and using

ρn − ρm =
ρn − ρm
ρn + ρm

(ρn + ρm) = th

(
~βωmn

2

)
(ρn + ρm)

we arrive at
C̃SBA(ω) =

β~ω
2
coth

(
β~ω

2

)
C̃KBA(ω)

With the same token, introducing the antisymmetric part of CBA(t), namely CABA(t) = iImCBA(t),
and using Eq.(32) we obtain

C̃ABA(ω) =
β~ω

2
C̃KBA(ω)

and thus
C̃ABA(ω) = th

(
β~ω

2

)
C̃SBA(ω)

Usually, one writes the correlation functions in terms of the function

JBA(ω) =
1

~
C̃ABA(ω)

which is also known as spectral density, namely

C̃KBA(ω) =
2

βω
JBA(ω)

C̃SBA(ω) = ~coth
(
β~ω

2

)
JBA(ω)

C̃BA(ω) = ~
[
coth

(
β~ω

2

)
+ 1

]
JBA(ω) =

2~
1− e−β~ω

JBA(ω)
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Notice that in the classical limit (β → 0) C̃SBA(ω) ≈ C̃KBA(ω) and C̃ABA(ω) ≈ 0 or, in other words,
CKBA(t) ≈ CSBA(t) ≈ CBA(t) as it also follows from a direct calculation,

lim
β→0

CKBA(t) = 〈A(0)B(t)〉

In the above expressions CSBA(t) and CABA(t) refer to the symmetry with respect to the exchange
of operators and, in general, should not be confused with the inverse Fourier transforms of S(ω)

and A(ω) introduced above. However, in the presence of time-inversion symmetry, if A and B have
definite signatures, for τ = 1 CSBA(t) = ReCBA(t) and CABA(t) = iImCBA(t) are also symmetric and
antisymmetric under time inversion58, respectively, and thus

(τ = 1) C̃SBA(ω) = S(ω), C̃ABA(ω) = A(ω)

Conversely,
(τ = −1) C̃ABA(ω) = S(ω), C̃SBA(ω) = A(ω)

Fluctuation-dissipation

The relations between response and correlation functions shown above provide similar links between the
corresponding Fourier transforms, which enable one to express the susceptibility in terms of the spectral
properties of the fluctuations. Since the imaginary part of the susceptibility is related to dissipation,
this establishes a link between two physical phenomena: the fluctuation-dissipation theorem.
To derive it, we first need an expression for the average energy gain/loss of the system subjected to
the external perturbation Hint = −a(t)A, i.e.

dH

dt
=
i

~
[H − aA,H] ≡ i

~
[H − aA, aA] ≡ a(t)

dA

dt

(where the Heisenberg derivative is based on the Hisenberg picture of the total system) from which
the instantaneous power absorbed by the system follows as

dW

dt
= a(t) 〈dA

dt
〉

For instance, for a harmonic field a(t) = acos(ωt) in linear regime we have

〈A(t)〉 − 〈A〉eq = a

ˆ +∞

−∞
Re(eiωt

′
χAA(t− t′))dt′ ≡ aRe

{
e−iωtχ̃AA(ω)

}
58In the case B = A the relations ReCAA(t) =ReCAA(−t) and ImCAA(t) =-ImCAA(−t) hold irrespective of time-

reversal symmetry. They follow directly from the stationarity condition.
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and the power averaged over a period reads as

dW

dt
=̄a2Re

{
−iωχ̃AA(ω)e−iωtcos(ωt)

}
≡ 1

2
a2ωImχ̃AA(ω)

where we have used cos2(ωt) = 1/2 and sin(ωt)cos(ωt) = 0. More generally, the total power absorbed
by the system is given by

W =

ˆ +∞

−∞
a(t)

d 〈A〉
dt

=
1

2π

ˆ +∞

−∞
ã(ω)∗(−iω) 〈Ã(ω)〉 dω

where
〈Ã(ω)〉 = ã(ω)χ̃AA(ω)

and thus
W =

1

2π

ˆ +∞

−∞
|ã(ω)|2(−iω)χ̃AA(ω)dω ≡ 1

2π

ˆ +∞

−∞
|ã(ω)|2ωImχ̃AA(ω)dω

In the last equality, we have used the fact that only the antisymmetric component of χ̃AA(ω) gives a
non-vanishing contribution to the integral, since |ã(ω)|2 ≡ a(ω)a(−ω) is an even function of ω. Thus,
we see in general that the imaginary part of χ̃AA(ω) is responsible for dissipation. Thermodynamic
arguments59 also suggest that

ωImχ̃AA(ω) ≥ 0

We have already looked at this dissipative part of the susceptibility,

Imχ̃AA(ω) =
A(ω)

~
≡ JAA(ω)

where A(ω) is the antisymmetric component of χ̃AA(ω), which reduces to CAAA(ω) irrespective of
time-reversal symmetry. For systems in canonical equilibrium, we can equivalently write

Imχ̃AA(ω) =
βω

2
C̃KAA(ω) =

1

~
th

(
β~ω

2

)
C̃SAA(ω) (34)

an expression now explicitly involving “ordinary” correlation functions. In the classical limit β → 0,

Imχ̃AA(ω) =
ω

2kBT

ˆ ∞
−∞
〈A(t)A(0)〉 eiωtdt =

ω

kBT

ˆ ∞
0

〈A(t)A(0)〉 cos(ωt)dt

Notice also that, in general,

χ̃BA(ω) = −β
ˆ ∞

0

eiωt
d

dt
CKBA(t)dt = −βCKBA(0)− iβω

ˆ ∞
0

eiωtCKBA(t)dt

59For infinite (i.e. dissipative) systems, the same equilibrium conditions prevail for t → ±∞, where a(t) → 0. Thus,
energy can only be absorbed by the system, for arbitrary choices of a(t).
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and thus
χ̃BA(0) = −βCKBA(0)

is purely real provided, for ω → 0, C̃KBA(ω) converges to a finite value.
Finally, we derive an alternative expression of the above fluctuation-dissipation relation which may be
useful in some circumstances. To this end, we notice that

d 〈A〉
dt

(t) = 〈Ȧ(t)〉 =

ˆ +∞

−∞
a(t′)

dχAA
dt

(t− t′)dt′

where
χȦA(t) =

dχAA
dt

= δ(t)βCK
AȦ

(t) + Θ(t)βCK
ȦȦ

(t) ≡ Θ(t)βCK
ȦȦ

(t)

since βCK
AȦ

(0) = − 2
~ ImCAA(0) ≡ 0. Hence, on Fourier transforming,

−iωχ̃AA(ω) = β

ˆ ∞
0

CK
ȦȦ

(t)eiωtdt

and, in particular,

Reχ̃ȦA(ω) = ωImχ̃AA(ω) = β

ˆ ∞
0

CK
ȦȦ

(t)cos(ωt)dt

In the classical limit CK
ȦȦ

(t)→ 〈Ȧ(t)Ȧ(0)〉, and these equations read as

−iωχ̃AA(ω) = β

ˆ ∞
0

〈Ȧ(t)Ȧ(0)〉 eiωtdt

Reχ̃ȦA(ω) = β

ˆ ∞
0

〈Ȧ(t)Ȧ(0)〉 cos(ωt)dt

For instance, for Hint = −xF (t), where F (t) is a (uniform) external force and x the position operator,
A ≡ x, Ȧ = v and

〈ṽ(ω)〉 = F (ω)µ(ω)

where µ(ω) ≡ χ̃vx(ω) is the admittance,

µ(ω) = β

ˆ ∞
0

CKvv(t)e
iωtdt

For ω → 0 µ(0) = Reµ(0) = µ0 is the mobility60,

µ0 = β

ˆ ∞
0

CKvv(t)dt = βD

In the classical limit, the coefficient D reduces to the diffusion coefficient, D =
´∞

0
〈v(t)v(0)〉 dt.

60Note that for µ0 = −i limω→ ωχ̃xx(ω) to be non-vanishing C̃Kxx(ω) has to diverge in the limit ω → 0.
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12 Appendix E: Charge and current density in quantum me-

chanics

We focus here on the definition and the main properties of charge and current densities as appropriate
in the standard (“first quantization”) framework of quantum mechanics. In this Section only, to avoid
confusion, we explicitly identify operators with the help of a hat61.

Charge density

Given a system of charges qi we define the charge density operator at r as

n̂(r) =
∑
i

qiδ(r − r̂i)

where r̂i is the position operator of the i − th charge. By definition, this operator is diagonal in any
particle position operator, and its average value gives the usual charge density in terms of diagonal
matrix elements of 1-particle density matrices,

〈n̂(r)〉 =
∑
i

qitr (ρ̂δ(r − r̂i)) =
∑
i

qi

ˆ
Πjdrj 〈r1..ri..rN |ρ̂δ(r − ri)|r1..ri..rN 〉

∑
i

qi

ˆ
Πj 6=idrj 〈r1..r..rN |ρ̂|r1..r..rN 〉 =

∑
i

qi 〈r|ρ̂(i)|r〉

where ρ̂(i) is the i− th 1-particle reduced density operator

ρ̂(i) = trj 6=iρ̂

the trace being taken over all degrees of freedom but the i − th. The characteristic charge density
operator (function) is defined as

Ĝ(k) =

ˆ
eikrn̂(r)dr

and allows us to introduce the charge moment operators µ̂m as the coefficients of the power series
expansion

Ĝ(k) =
∑
m=0

(ik)m

m!
µ̂m

i.e.
µ̂m =

ˆ
rmn̂(r)dr

61Functions of operators do not necessitate of such symbol if their argument(s) are correctly identified.
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Explicitly, the 0− th moment is the unit operator times the total charge of the system,

µ̂0 =

ˆ
n̂(r)dr ≡ 1̂

∑
i

qi

the first moment is the usual dipole moment

µ̂1 =

ˆ
rn̂(r)dr

and so on.
The charge density operator allows us to express in a very simple way the interaction energy of the
system with any electric potential φ(r, t) since

V̂ =
∑
i

qiφ(r̂i, t) =
∑
i

qi

ˆ
drδ(r − r̂i)φ(r, t) ≡

ˆ
drn̂(r)φ(r, t)

In this form n̂(r) becomes the system operator conjugate to the electric potential at r.

Current density

To define the current density operator Ĵ(r, t) we look at the dynamics of the above system of charges
under the action of the generic electromagnetic Hamiltonian

Ĥ =
∑
i

(
p̂i −

qi
c A(r̂i, t)

)2
2mi

+
∑
i

qiφ(r̂i, t)

Here A(r, t) and φ(r, t) are, respectively, the vector and scalar potentials of the electromagnetic field,

B = ∇ ∧A E = −∇φ− 1

c

∂A

∂t

and the i− th term between brackets represents the velocity of the i− th particle62,

v̂i,α =
i

~
[Ĥ, x̂i,α] ≡ i

2mi~

[(
p̂i −

qi
c
A(r̂i, t)

)2

, x̂i,α

]
=

=
i

2mi~

{(
p̂i −

qi
c
A(r̂i, t)

)
[p̂i, x̂i,α] + [p̂i, x̂i,α]

(
p̂i −

qi
c
A(r̂i, t)

)}
=

1

mi

(
p̂i −

qi
c
A(r̂i, t)

)
α

=
1

mi
Π̂i,α

where [p̂i, x̂i,α] = −i~eα has been used, eα being the unit vector along the α cartesian axis.
This Hamiltonian gives back the quantum-mechanical expression of the Lorentz force, as can be seen

62Greek indexes α, β, .. are used to denote cartesian components, which are named as the corresponding vectors
appearing in bold. An exception is the position vector r, whose cartesian components are xα.
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by computing the “force” felt by the i− th particle,

d(miv̂i,α)

dt
=
dΠ̂i,α

dt
= −qi

c

∂Aα
∂t

(r̂i, t) +
i

~

{
1

2mi

[
Π̂i,

[
Π̂i, Π̂i,α

]]
+

+ qi

[
φ(r̂i, t), Π̂i,α

]}
where [

φ(r̂i, t), Π̂i,α

]
= [φ(r̂i, t), p̂i,α] = i~

∂φ

∂xi,α
(r̂i, t)

and [
Π̂i,β , Π̂i,α

]
= −qi

c
([Aβ(r̂i, t), p̂i,α] + [p̂i,β , Aα(r̂i, t)]) = −i~qi

c

(
∂Aβ
∂xα

(r̂i, t)−
∂Aα
∂xβ

(r̂i, t)

)
In the last expression63, (

∂Aβ
∂xα

(r, t)− ∂Aα
∂xβ

(r, t)

)
= eαβγBγ(ri, t)

and thus it follows

dΠ̂i,α

dt
= qi

(
∂φ

∂xi,α
(r̂i, t)−

1

c

∂Aα
∂t

(r̂i, t)

)
+
qi
c
eαβγ

[v̂i,β , Bγ(r̂i, t)]+
2

i.e.
dΠ̂α

dt
= qiE(r̂i, t) +

qi
c
v̂i ∧B(r̂i, t)

provided the vector product is defined on a symmetrized product of operators, Aα ◦Bβ = 1
2 [Aα, Bβ ]+.

To define the current density operator we compute the (Heisenberg) time-derivative of the charge
density operator, here written as partial derivative on account of the spatial dependence of such
operator,

∂n̂

∂t
(r) =

i

~
∑
i

mi

2
[v̂2
i , n̂(r)] ≡ i

2~
∑
i

(v̂i[p̂i, n̂] + [p̂i, n̂]v̂i)

where mi[v̂i, n̂] = [p̂i, n̂] has been used, and

[p̂i, n̂] = −i~∇in̂(r) ≡ +i~qi∇δ(r − r̂i)

Hence
∂n̂

∂t
(r) = −1

2
∇
∑
i

qi (v̂iδ(r − r̂i) + δ(r − r̂i)v̂i)

63We use the implicit sum convention on repeated indexes, and introduce the Ricci-Levi-Civita tensor, eαβγ = −eβαγ =
−eαγβ = eβγα = .. , e123 = 1.
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suggests the correct definition of current density operator64

Ĵ(r) =
1

2

∑
i

qi[v̂i, δ(r − r̂i)]+

satisfying the continuity equation
∂n̂

∂t
+ ∇Ĵ = 0

Notice that
Ĵ(r) ≡ 1

2

∑
i

qi
mi

[p̂i, δ(r − r̂i)]+ −
∑
i

q2
i

mic
δ(r − r̂i)A(r̂i, t)

where
Ĵp(r) =

1

2

∑
i

qi
mi

[p̂i, δ(r − r̂i)]+

is known as paramagnetic current density and

Ĵd(r) = −
∑
i

q2
i

mic
δ(r − r̂i)A(r̂i, t)

as diamagnetic current density65.

Density form of the electromagnetic Hamiltonian

With the help of the above definitions we can re-write the electromagnetic Hamiltonian in a form
involving explicitly the charge and current densities. To this end we notice that upon squaring the
velocity terms

Ĥ =
∑
i

p̂2
i

2mi
−
∑
i

qi
2mic

(
p̂iÂi + p̂iÂi

)
+
∑
i

q2
i

2mic2
Â

2

i +

ˆ
drn̂(r)φ(r, t)

where we have introduced for short Âi = A(r̂i, t), and used the previous result on the electric potential.
Here, on introducing

Âi =

ˆ
drδ(r − r̂i)A(r, t)

in the second sum we get

∑
i

qi
2mic

[p̂i, Âi]+ =

ˆ
dr
∑
i

qi
2mic

[p̂i, δ(r − r̂i)]+A(r, t) ≡ 1

c

ˆ
drĴp(r, t)A(r, t) +

∑
i

q2
i

mic2
Â

2

i

64Notice that we could arrive at the same result if the chain rule of derivatives were applied in its symmetrized form
on the Heisenberg derivative,

∂n̂

∂t
(r, t) =

∑
i

qi
∂δ(r − r̂i)

∂t
=

1

2

∑
i

qi

[
dr̂i

dt
, δ(r − r̂i)

]
+

65For equal charges qi = q and mi = m, this term also reads as Ĵd(r) = − q
mc

n̂(r)A(r, t).
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where ∑
i

q2
i

mic2
Â

2

i = −1

c

ˆ
drĴd(r)A(r, t)

hence

Ĥ =
∑
i

p̂2
i

2mi
− 1

c

ˆ
drĴp(r, t)A(r, t) +

1

2c

ˆ
drĴd(r)A(r, t) +

ˆ
drn̂(r)φ(r, t)

To connect with the results given in the main text, we notice that in the presence of an external electric
potential only (A(r, t) ≡ 0 and φ(r, t) = φ0(r, t) + φext(r, t)) the previous Hamiltonian reduces to

Ĥ = Ĥ0 +

ˆ
drn̂(r)φext(r, t)

and
〈δn̂(r, t)〉 =

ˆ
dr′dt′χnn(r, r′|t− t′)φext(r′, t′)

where
χnn(r, r′|t) = −Θ(t)

i

~
〈[n̂(r, t), n̂(r′)]〉

is the appropriate response function. For the dipole

〈δµ̂(t)〉 =

ˆ
drr 〈δn̂(r, t)〉 =

ˆ
dr

ˆ
dr′dt′rχnn(r, r′|t− t′)φext(r′, t′)

and in the dipole approximation, φext(r, t) = −rE(t), we obtain

ααβ(t) = −
ˆ
dr

ˆ
dr′χnn(r, r′|t)xαx′β = Θ(t)

i

~

ˆ
dr

ˆ
dr′ 〈[n̂(r, t), n̂(r′)]〉xαx′β

= Θ(t)
i

~
〈[µ̂α(t), µ̂β(0)]〉

Gauge invariance

The Hamiltonian formulation used above requires the introduction of the electromagnetic potentials
from which the physical fields can be derived according to

B = ∇ ∧A E = −∇φ− 1

c

∂A

∂t

It is not hard to check that the gauge transformation

Tf

(
A

φ

)
=

(
A′

φ′

)
:=

(
A+ ∇f

φ− 1
c
∂f
∂t

)
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for an arbitrary function f(r, t), leaves the fields invariant, and thus the question arises of how this
affects the system Hamiltonian and wavefunctions.
To this end, we focus on a single charge system and work, for simplicity, in the Schrödinger represen-
tation, assuming that ψ(x, t) is a solution of the evolution equation

i~
∂ψ

∂t
= Ĥψ

for some initial condition ψ(x, 0) = ψ0(x), where

Ĥ =

(
p̂− q

cA(r̂, t)
)2

2m
+ qφ(r̂, t)

We then introduce
ψ′(x, t) = e

i
~χ(x,t)ψ(x, t)

and notice that, on the one hand,(
i~
∂

∂t
+
∂χ

∂t

)
ψ′(x, t) = e

i
~χ(x,t)i~

∂ψ(x, t)

∂t

and, on the other hand,(
p̂− qi

c
A(r̂, t)−∇χ

)
ψ′(x, t) = e

i
~χ(x,t)

(
p̂− qi

c
A(r̂, t)

)
ψ(x, t)

(
p̂− qi

c
A(r̂, t)−∇χ

)2

ψ′(x, t) = e
i
~χ(x,t)

(
p̂− qi

c
A(r̂, t)

)2

ψ(x, t)

Then, multiplying the Schrödinger equation above by e
i
~χ(x,t), we obtain

i~
∂ψ′(x, t)

∂t
=

{(
p̂− q

cA(r̂, t)−∇χ(r̂, t)
)2

2m
+ qφ(r̂, t)− ∂χ

∂t
(r̂, t)

}
ψ′(x, t)

and with the choice χ = qf/c we can write the Schrödinger equation in the new gauge

i~
∂ψ′(x, t)

∂t
=

{(
p̂− q

cA
′(r̂, t)

)2
2m

+ qφ′(r̂, t)

}
ψ′(x, t)

This shows that there exists a unitary transformation of the state vectors accompanying the gauge
transformation of the electromagnetic potential, namely

T̂f =

ˆ
dx |x〉 e i~

q
c f(x,t) 〈x|
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More generally, for a number of charges

T̂f =

ˆ
dx1dx2..dxN |x1x2..xN 〉 e

i
~
∑
i
qi
c f(xi,t) 〈x1x2..xN |

or, equivalently,
T̂f = e

i
~c
´
drn̂(r)f(r,t)

Unique potentials

The previous discussion concerning the electromagnetic potentials can be considerably simplified if
the electromagnetic field is considered in the light of the Helmholtz decomposition of vector fields. To
this end, we notice that for an arbitrary (smooth) vector field F (r) (the temporal dependence is here
irrelevant) a unique decomposition

F (r) = F⊥(r) + F ‖(r)

is possible such that ∇F⊥ = 0 and ∇ ∧ F ‖ = 0. The components F ‖(r), F⊥(r) are called parallel
and transverse components for reasons which become clear when Fourier transforming the field

F̃ (k) =

ˆ
dre−ikrF (r)

and defining
F ‖(r) =

ˆ
dkeikrk̂k̂

t
F̃ (k), F⊥(r) =

ˆ
dkeikr

(
1− k̂k̂

t
)
F̃ (k)

where k̂ is the unit vector in direction k. With these definitions, it is easy to check that the differential
properties above are indeed satisfied and thus

F ‖(r) = ∇ψ, F⊥(r) = ∇ ∧Ψ(r)

for some appropriate potentials ψ(r), Ψ(r).
In this perspective, it is worth re-considering Maxwell’s equations, Eq.s(1-4), in terms of the (spatially)
Fourier transformed fields,

kẼ‖ = 4πρ̃ k ∧ Ẽ⊥ + 1
c
∂B̃⊥
∂t = 0

kB̃‖ = 0 k ∧ B̃⊥ − 1
c
∂Ẽ⊥
∂t = 4π

c J̃⊥

A further equation can be obtained for the parallel component of the density current,

−1

c

∂Ẽ‖

∂t
=

4π

c
J̃‖

64



which is nothing that a form of continuity equation, once is noticed that Ẽ‖ is determined by ρ̃,

∂ρ̃

∂t
+ kJ̃‖ = 0

We thus see that Maxwell’s equations are of two kinds. The equations for the parallel components are
simplest and define a unique scalar potential according to

E‖ = −∇φ (35)

which can be determined by solving the Poisson equation

∇E ≡∇E‖ = −∇2φ = 4πρ (36)

The equations for the transverse components represent a single equation for a transverse vector po-
tential A⊥ defined as

B⊥ = ∇ ∧A⊥ (37)

since the first

k ∧

(
Ẽ⊥ +

1

c

∂Ã⊥
∂t

)
= 0

implies

E⊥ = −1

c

∂A⊥
∂t

(38)

and the second reduces to
−∇2A⊥ +

1

c2
∂2A⊥
∂t2

=
4π

c
J⊥ (39)

Eq.s (36,39) uniquely define the potentials φ, A⊥ in terms of the given (independent) sources ρ and
J⊥, and the fields are given by Eq.s (38,35,37), along with, of course, B‖ = 0.
In this perspective, the gauge transformation introduced in the previous paragraph uses just the degree
of freedom which is left in the parallel component of the ordinary vector potential A, A‖ → A‖+∇f ,
and which must be counterbalanced with an additional scalar potential, φ→ φ− 1

c
∂f
∂t , if

E‖ = −1

c

∂A‖

∂t
−∇φ

has to hold.
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