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1 Generalities

Given a set of orthonormal spin-orbitals {wu(x)}fj:l (where x = (r,0) rep-
resents the spatial-spin coordinate of an electron)

[ v, atx =,
a Slater determinant can be defined as

Yi(x1)  Yi(x2) .. Pi(xn)
Yo(x1)  a(x2) P2(xN)

U(x1,.XN) =
Yn(x1) Yn(x2) o Yn(xn)

Alternatively, in abstract notation!, if {\m}ﬁ;l denotes the set of spin-
orbitals we write the orthonormalization condition as

<M’V> = 5,Lw

In the following we consider a set of states which we label with a set of integers
[1),]2),..|N) rather than using the more cumbersome notation |11) , |1)2) , .. [N ).



and the Slater determinant as
1
V) = —= > erP{|1)[2)..[N)}
Nt PeSn
= VNIAy{[1) [2) .. IN)}
Here P is a permutation operator (PJr = P~1) and runs over the group
Sx of permutations of the first N integers?

o < 1 2 .. N >:>
p1r p2 .. DN
P{[1)12) .[N)} = {lp1) |p2) - Ipn)}

The antisymmetrizer Ay introduced above has been defined according to

(i.e. as a linear combination of the P operators with coefficients given by
the parity ep) and satisfies Al = A N = A%V. Hence, Ay defined in this way
is a projector.

The wavefunction is correctly normalized. Indeed, using the projection
properties of Ay we obtain

(W] w)

NI {An(12.N) | Ay (12..N)) =
= NI(12.N| A} 12.N)
= NI(12.N| Ay|12..N)

and

1
N!'(12..N | Ax|12..N) = N > ep(12.Npips.pn) =1
" PeSn

where in the last equality (12..N | p1p2..pN) = 1p, 02p,--ONp,y has been used.
More generally, for |¥) and |¥’) defined as

|¥) = VNIAN|®) and |¥') = VNIAy |®)

2The notation for P means that 1 must be replaced by pi, 2 by p2 and so on. Thus
p1,p2..pN is the same set of integers on the first line, but possibly with a different order.
The whole set of P makes up a group, called the symmetric group - of order N- and
usually denoted as Sy.



we have
(U|W') = NU(Q[AN|®') = D ep (D|P|P)
PeSpn
This is actually a special case of a general result: for any operator O which
is symmetric under exchange of the electron labels it holds

[P,0] = [An, 0] = 0

hence
(WO|¥')y = Y ep(®|OP|P)
P(-:S[N]

These formula replace the N!? sum appearing in the scalar product between
two antisymmetrized vectors with a simpler N! sum.

2 Expectation values

Let us now write down the expectation value of the Hamiltonian operator
on a Slater determinant

N N
1
(U|H|V) = Eyp H:Zhi+§ Z i —g» 4 g®
i=1 Jiii
Here h;’s are monoelectronic operators, h; = k; + v;, and g;; is the interelec-
tronic repulsion potential. Correspondingly, H) and H® are the one- and
two- electron terms of the Hamiltonian, respectively. Both H Wand H® are

symmetric operators, hence

(| HOW) = NI(Ay(12.N) | HO|AN(12.N)) =
= N1{12.N ) ANHOD Ay|12.N) =

= N1 (12.N | HO A3 [12.N) =
=D pesy €P <12..N ‘ H® |p1p2..pN>

Let us first consider the monoelectronic term and focus attention on the first
electron
>pesy €P (12.N [ hi|pip2..pn) =
= Y pesy €p (1| halp1) (2| p2) .. (N | pn) =
= ZPESN ep (1] hi|p1) 02py--ONpy = (1|n|1)



In the last line the subscript 1 on A has been removed since it is dummy. By
the same token we have

> ep (12.N|hulpipa..pn) = (ulh|w)
PeSy

Thus, we can write the one-electron Hamiltonian as

(w|HM Z (ul ]2
pn=1

Analogously

> pesy €P (12..N|gi2|p1p2..pn) =
=Y pesy €P (12|912|p1D2) 63p30ap,--ONpy =
= (12|g|12) — (12[g[21)

i.e. in general

1 N
(WH) = 3 (uvlgluv) — (pvlglvw)
pov(#Fp)=1

This can be rewritten in a simpler form by introducing an exchange oper-
ator 73

T |pv) = |vw)

N
1
(w|HOw) =2 > (gt —m)w)
pov(#Fp)=1
In conclusion, the expectation value of H (the Hartree-Fock energy) reads

as
N N

(W HY) =3 (el + 5 G g1 )

p=1 o (Fp)=1
Note that in the last term on the r.h.s. we can remove the restriction v # p
since the term v = u does not contribuite to the sum.

+ -1

31t can be readily shown that 7 = 7' = 77! = 7% and 7g = gr.



3 Variation of the orbitals

Let us now apply the variational principle. In doing this, we take care of the
orthogonalization condition

(wlv)=1
which implies
(6p1|v) + (] 6v) = 0
or, equivalently,
Gulv)=0  p#v
R (Splpu) =0 p=v

and focus on the (special class of) variations that satisfy*
(Oulv) =0 for any v=1,2.N

From a geometrical point of view they satisfy |du) € {\V)}lle._N, ie. they
are such that the |du) is (arbitrarly) confined in the orthogonal complement
of the “occupied” orbital space®. Applying the variation of the orbital |u) we
obtain

0= (0W[|HWY) = (dplhlp) +
N

1
t5 2 (owrlg(l—m)|uw) +
v(#p)=1
1 N
+5 2 Wonlg(l—m)lvp) =
v(#p)=1
N
= (Oulhlw)y + Y (Ourlg(l —m)|uv) =
v(#p)=1
N
= (Gulhle) + 3 (Suvlg(1 — m)|w)
v=1

4Variations of this kind are complex-linear, meaning they form a complez linear space,
something that is not possible under the more general condition ® (6u|u) = 0). The
remaining variations add nothing, and complicate the analysis because they would require
application of the stationay condition in “full form”, in contrast to the “Dirac-Frenkel”
form (§U|H|¥) = 0.

5The symbol L denotes the orthogonal complement. Remember that the orthogonal
complement of a set of vector - however chosen - is the linear space spanned by the
vectors that are orthogonal to each vector of the given set. That is, {|1),2),..|m)}* =

{|%) such that (u|yp) = 0for p=1,m}.



where 7 |pp) = |pp) has been used in the last line. Thus,

N
(GW[HY) = (dulh+ Y (Vg —m)|u) [v) = (Opl flu) = 0 (1)

v=1

where f is a mono-electronic, self-adjoint operator known as Fock operator

N
f=h+ (wlg(l-mw) (2)
v=1
Now, an equation of the form

(op| o) =0

with [0u) arbitrary in {’m}t:l,--N implies |¢) € {‘m}t:ll,--N’ i.e., in other
words,

N
Fluy =" 1) o
v=1

where €,, = (v|f|p) is a hermitean matrix since f is self-adjoint.

The Fock operator depends on the kets |u) entering the Slater determi-
nant but, on inspecting of Eq.(2), it is clear that it is manifestly invariant
under unitary transformations of the orbitals. Thus, a unitary transforma-
tion in the occupied space can be performed to put the variational equations
above in “canonical” form

Flu) = eulm) (3)

Here, the solution orbitals and eigenvalues are known as canonical orbitals
and orbital energies.

Note 1 As noticed above, the f operator depends on {|u)}, i.e. the HF
equations are not simple linear equations. However, at convergence, f
is a well defined operator and the |u)’s are its eigenvectors. A closer
look at f reveals that

f=k+v+Y (wlglv) = (v]gnlv))

or, in coordinate representation®,

f: k+ v(r) + vg(r) — Vex

5In the following the spin-orbtials are taken of the “spin-collinear” form, 1, (x) =
¢ (r)0, (o), where ¢ is the spatial component and 6 its spin component. Hence, ¢, stands
for the spatial orbital of the v-th one-electron state employed.



where k = —fVQ is the kinetic energy, v(r) is the “external” potential
(e.g. the electrostatlc potential nuclear generated by the nuclei), and
the remaining terms take the form

o) =3 (v glv) = /H ,Hd*””@exzzwwgw\w

v

Here

- Z ‘(bl/(r) ?

is the electron density of the NV electrons in the N HF orbitals, and
vy is the so-called Hartree potential, i.e. the potential felt by an
electron in the field of the nuclei and of an N —electron distribution
described by” n(r). The term v, is a non-local exchange operator
whose matrix elementes in coordinate representation are of the form®

Py (x) 9y (x)
(X|Vez|X)
“ EV: IIT' 'H
as can be seen by introducing the spectral representation of g

g= / e X2X8) (X2 |
||[r2 — r3]|

and noticing that
(xv[x2x3) (Xox3|vx) = (x|x2) ¢} (x3) P (x2) (x3]x")
Note 2 Let f be the self-consistent field Fock operator and

{|u>} _,; — occupied orbitals

{In)},~n — virtual orbitals
Clearly |n) € {|F‘>};J[:1,N' Let us put [n) = [6u) in eq.(1). It follows

(60 | H|T) = 0, with [60) = VNIA|L,2, .n..N)

"Note that each electron feels all the N electrons, i.e. this Hartree potential contains
the so-called self -interaction. The latter cancels when the exchange term is taken into
account.

8Note, in contrast, that for a local operator v we have (x|v|x’) = v(x)§(x — x'), where
for x = (r,0) we have 6(x —x') = 6(r — '), 0



(with n in place of p), i.e. singly excited configurations do not mix with
the HF one (Brillouin’s theorem)®.

Note 30 A Slater determinant is invariant under non-singular (but other-
wise arbitrary) linear transformation of vectors. That is, let

‘,U/> = ZT,LL',LL 1), detT # 0
m

define a non-singular transformation and apply the multiplication rule
of determinants. It follows

W) = [1'2..N") = detT |12..N)

where the normalization factor det7" (which is non null since 7" is non-
singular) is immaterial for physical purposes. From a geometrical point
of view, {|u)},_; y span an N-dimensional linear space and T is a
change of basis in this space. The (N-particle) HF vector depends on
the N-dimensional linear space only, i.e. it depends on the projector
p in this space. For orthogonal orbitals it reads as

N
p=> |yl
pn=1

and satisfies of course

pP=p=p

This projector is the one-particle (HF) density operator. The above
comment suggests that densisty operators of whatever order, in the
HF approximation, depend on the 1-particle one only. This is indeed
the case, in that it can be shown that for any order p

PP = p@p@p.@p A
—_—

ptimes

where

%ZepP

A4, =
P pes,

9This is because we are imposing that the variation of the energy functional must be
null at first order.
10This is a somewhat advanced topic, and can be skipped at a first reading.



For instance, for the second order (2-particle) density operator we have

o)

1
=5rer (I—m)
It follows that the HF equations can also be obtained by writing the
expectation value of H in terms of the one-particle density matrix p
and varying it under the normalization constraint

Trp=N
and the projector properties
pP=p=p
This results in the equation
[flel, Pl =0

which is equivalent to the HF equations given above. Here, we empha-
sized the functional dependence of f on p which makes the problem
self-consistent.



