Hartree-Fock

Rocco Martinazzo
E-mail: rocco.martinazzo@unimi.it

Contents

1 Generalities 1
2 Expectation values 3
3 Variation of the orbitals 5

1 Generalities

Given a set of orthonormal spin-orbitals $\left\{\psi_{\mu}(\mathbf{x})\right\}_{\mu=1}^{N}$ (where $\mathbf{x}=(\mathbf{r}, \sigma)$ represents the spatial-spin coordinate of an electron)

$$
\int \psi_{\mu}^{*}(\mathbf{x}) \psi_{\nu}(\mathbf{x}) d^{4} \mathbf{x}=\delta_{\mu \nu}
$$

a Slater determinant can be defined as

$$
\Psi\left(\mathbf{x}_{1}, \ldots \mathbf{x}_{N}\right)=\left|\begin{array}{cccc}
\psi_{1}\left(\mathbf{x}_{1}\right) & \psi_{1}\left(\mathbf{x}_{2}\right) & \ldots & \psi_{1}\left(\mathbf{x}_{N}\right) \\
\psi_{2}\left(\mathbf{x}_{1}\right) & \psi_{2}\left(\mathbf{x}_{2}\right) & & \psi_{2}\left(\mathbf{x}_{N}\right) \\
\ldots & \ldots & & \\
\psi_{N}\left(\mathbf{x}_{1}\right) & \psi_{N}\left(\mathbf{x}_{2}\right) & \ldots & \psi_{N}\left(\mathbf{x}_{N}\right)
\end{array}\right|
$$

Alternatively, in abstract notation ${ }^{1}$, if $\{|\mu\rangle\}_{\mu=1}^{N}$ denotes the set of spinorbitals we write the orthonormalization condition as

$$
\langle\mu \mid \nu\rangle=\delta_{\mu \nu}
$$

[^0]and the Slater determinant as
\[

$$
\begin{gathered}
|\Psi\rangle=\frac{1}{\sqrt{N!}} \sum_{P \epsilon S_{N}} \epsilon_{P} P\{|1\rangle|2\rangle . .|N\rangle\} \\
=\sqrt{N!} A_{N}\{|1\rangle|2\rangle . .|N\rangle\}
\end{gathered}
$$
\]

Here P is a permutation operator $\left(P^{\dagger}=P^{-1}\right)$ and runs over the group S_{N} of permutations of the first N integers ${ }^{2}$

$$
\begin{aligned}
P= & \left(\begin{array}{cccc}
1 & 2 & . . & N \\
p_{1} & p_{2} & . . & p_{N}
\end{array}\right) \Longrightarrow \\
& P\{|1\rangle|2\rangle . .|N\rangle\}=\left\{\left|p_{1}\right\rangle\left|p_{2}\right\rangle . .\left|p_{N}\right\rangle\right\}
\end{aligned}
$$

The antisymmetrizer A_{N} introduced above has been defined according to

$$
A_{N}=\frac{1}{N!} \sum_{P \epsilon S_{N}} \epsilon_{P} P
$$

(i.e. as a linear combination of the P operators with coefficients given by the parity ϵ_{P}) and satisfies $A_{N}^{\dagger}=A_{N}=A_{N}^{2}$. Hence, A_{N} defined in this way is a projector.

The wavefunction is correctly normalized. Indeed, using the projection properties of A_{N} we obtain

$$
\begin{aligned}
\langle\Psi \mid \Psi\rangle & =N!\left\langle A_{N}(12 . . N) \mid A_{N}(12 . . N)\right\rangle= \\
& =N!\langle 12 . . N| A_{N}^{2}|12 . . N\rangle \\
& =N!\langle 12 . . N| A_{N}|12 . . N\rangle
\end{aligned}
$$

and

$$
N!\langle 12 . . N| A_{N}|12 . . N\rangle=N!\frac{1}{N!} \sum_{P \epsilon S_{N}} \epsilon_{P}\left\langle 12 . . N \mid p_{1} p_{2} . . p_{N}\right\rangle \equiv 1
$$

where in the last equality $\left\langle 12 . . N \mid p_{1} p_{2} . . p_{N}\right\rangle=\delta_{1 p_{1}} \delta_{2 p_{2}} . . \delta_{N p_{N}}$ has been used. More generally, for $|\Psi\rangle$ and $\left|\Psi^{\prime}\right\rangle$ defined as

$$
|\Psi\rangle=\sqrt{N!} A_{N}|\Phi\rangle \quad \text { and } \quad\left|\Psi^{\prime}\right\rangle=\sqrt{N!} A_{N}\left|\Phi^{\prime}\right\rangle
$$

[^1]we have
$$
\left\langle\Psi \mid \Psi^{\prime}\right\rangle=N!\langle\Phi| A_{N}\left|\Phi^{\prime}\right\rangle=\sum_{P \epsilon S_{N}} \epsilon_{P}\langle\Phi| P\left|\Phi^{\prime}\right\rangle
$$

This is actually a special case of a general result: for any operator O which is symmetric under exchange of the electron labels it holds

$$
[P, O]=\left[A_{N}, O\right]=0
$$

hence

$$
\langle\Psi| O\left|\Psi^{\prime}\right\rangle=\sum_{P \in \mathcal{S}_{[N]}} \epsilon_{P}\langle\Phi| O P\left|\Phi^{\prime}\right\rangle
$$

These formula replace the $N!^{2}$ sum appearing in the scalar product between two antisymmetrized vectors with a simpler N ! sum.

2 Expectation values

Let us now write down the expectation value of the Hamiltonian operator on a Slater determinant

$$
\langle\Psi| H|\Psi\rangle=E_{H F} \quad H=\sum_{i=1}^{N} h_{i}+\frac{1}{2} \sum_{j, i \neq j}^{N} g_{i j}=H^{(1)}+H^{(2)}
$$

Here h_{i} 's are monoelectronic operators, $h_{i}=k_{i}+v_{i}$, and $g_{i j}$ is the interelectronic repulsion potential. Correspondingly, $H^{(1)}$ and $H^{(2)}$ are the one- and two- electron terms of the Hamiltonian, respectively. Both $H^{(1)}$ and $H^{(2)}$ are symmetric operators, hence

$$
\begin{array}{r}
\langle\Psi| H^{(i)}|\Psi\rangle= \\
=N!\left\langle A_{N}(12 . . N)\right| H^{(i)}\left|A_{N}(12 . . N)\right\rangle= \\
=N!\langle 12 . . N| A_{N} H^{(i)} A_{N}|12 . . N\rangle= \\
=N!\langle 12 . . N| H^{(i)} A_{N}^{2}|12 . . N\rangle= \\
= \\
\sum_{P \epsilon S_{N}} \epsilon_{P}\langle 12 . . N| H^{(i)}\left|p_{1} p_{2} . . p_{N}\right\rangle
\end{array}
$$

Let us first consider the monoelectronic term and focus attention on the first electron

$$
\begin{gathered}
\sum_{P \in S_{N}} \epsilon_{P}\langle 12 . . N| h_{1}\left|p_{1} p_{2} . . p_{N}\right\rangle= \\
=\sum_{P \in S_{N}} \epsilon_{P}\langle 1| h_{1}\left|p_{1}\right\rangle\left\langle 2 \mid p_{2}\right\rangle . .\left\langle N \mid p_{N}\right\rangle= \\
=\sum_{P \in S_{N}} \epsilon_{P}\langle 1| h_{1}\left|p_{1}\right\rangle \delta_{2 p_{2} . .} . \delta_{N p_{N}}=\langle 1| h|1\rangle
\end{gathered}
$$

In the last line the subscript 1 on h has been removed since it is dummy. By the same token we have

$$
\sum_{P \in S_{N}} \epsilon_{P}\langle 12 . . N| h_{\mu}\left|p_{1} p_{2} . . p_{N}\right\rangle=\langle\mu| h|\mu\rangle
$$

Thus, we can write the one-electron Hamiltonian as

$$
\left\langle\Psi \mid H^{(1)} \Psi\right\rangle=\sum_{\mu=1}^{N}\langle\mu| h|\mu\rangle
$$

Analogously

$$
\begin{gathered}
\sum_{P \in S_{N}} \epsilon_{P}\langle 12 . . N| g_{12}\left|p_{1} p_{2} . . p_{N}\right\rangle= \\
=\sum_{P \in S_{N}} \epsilon_{P}\langle 12| g_{12}\left|p_{1} p_{2}\right\rangle \delta_{3 p_{3}} \delta_{4 p_{4}} . . \delta_{N p_{N}}= \\
=\langle 12| g|12\rangle-\langle 12| g|21\rangle
\end{gathered}
$$

i.e. in general

$$
\left\langle\Psi \mid H^{(2)} \Psi\right\rangle=\frac{1}{2} \sum_{\mu, \nu(\neq \mu)=1}^{N}(\langle\mu \nu| g|\mu \nu\rangle-\langle\mu \nu| g|\nu \mu\rangle)
$$

This can be rewritten in a simpler form by introducing an exchange operator π^{3}

$$
\begin{gathered}
\pi|\mu \nu\rangle=|\nu \mu\rangle \\
\left\langle\Psi \mid H^{(2)} \Psi\right\rangle=\frac{1}{2} \sum_{\mu, \nu(\neq \mu)=1}^{N}\langle\mu \nu| g(1-\pi)|\mu \nu\rangle
\end{gathered}
$$

In conclusion, the expectation value of H (the Hartree-Fock energy) reads as

$$
\langle\Psi \mid H \Psi\rangle=\sum_{\mu=1}^{N}\langle\mu| h|\mu\rangle+\frac{1}{2} \sum_{\mu, \nu(\neq \mu)=1}^{N}\langle\mu \nu| g(1-\pi)|\mu \nu\rangle
$$

Note that in the last term on the r.h.s. we can remove the restriction $\nu \neq \mu$ since the term $\nu=\mu$ does not contribuite to the sum.

[^2]
3 Variation of the orbitals

Let us now apply the variational principle. In doing this, we take care of the orthogonalization condition

$$
\langle\mu \mid \nu\rangle=1
$$

which implies

$$
\langle\delta \mu \mid \nu\rangle+\langle\mu \mid \delta \nu\rangle=0
$$

or, equivalently,

$$
\begin{array}{ll}
\langle\delta \mu \mid \nu\rangle=0 & \mu \neq \nu \\
\Re\langle\delta \mu \mid \mu\rangle=0 & \mu=\nu
\end{array}
$$

and focus on the (special class of) variations that satisfy ${ }^{4}$

$$
\langle\delta \mu \mid \nu\rangle=0 \text { for any } \nu=1,2 . . N
$$

From a geometrical point of view they satisfy $|\delta \mu\rangle \in\{|\nu\rangle\}_{\nu=1 . . N}^{\perp}$, i.e. they are such that the $|\delta \mu\rangle$ is (arbitrarly) confined in the orthogonal complement of the "occupied" orbital space ${ }^{5}$. Applying the variation of the orbital $|\mu\rangle$ we obtain

$$
\begin{aligned}
0=\langle\delta \Psi \mid H \Psi\rangle= & \langle\delta \mu| h|\mu\rangle+ \\
& +\frac{1}{2} \sum_{\nu(\neq \mu)=1}^{N}\langle\delta \mu \nu| g(1-\pi)|\mu \nu\rangle+ \\
& +\frac{1}{2} \sum_{\nu(\neq \mu)=1}^{N}\langle\nu \delta \mu| g(1-\pi)|\nu \mu\rangle= \\
= & \langle\delta \mu| h|\mu\rangle+\sum_{\nu(\neq \mu)=1}^{N}\langle\delta \mu \nu| g(1-\pi)|\mu \nu\rangle= \\
\equiv & \langle\delta \mu| h|\mu\rangle+\sum_{\nu=1}^{N}\langle\delta \mu \nu| g(1-\pi)|\mu \nu\rangle
\end{aligned}
$$

[^3]where $\pi|\mu \mu\rangle=|\mu \mu\rangle$ has been used in the last line. Thus,
\[

$$
\begin{equation*}
\langle\delta \Psi \mid H \Psi\rangle=\langle\delta \mu| h+\sum_{\nu=1}^{N}\langle\nu| g(1-\pi)|\mu\rangle|\nu\rangle=\langle\delta \mu| f|\mu\rangle=0 \tag{1}
\end{equation*}
$$

\]

where f is a mono-electronic, self-adjoint operator known as Fock operator

$$
\begin{equation*}
f=h+\sum_{\nu=1}^{N}\langle\nu| g(1-\pi)|\nu\rangle \tag{2}
\end{equation*}
$$

Now, an equation of the form

$$
\langle\delta \mu \mid \phi\rangle=0
$$

with $|\delta \mu\rangle$ arbitrary in $\{|\mu\rangle\}_{\mu=1, . . N}^{\perp}$ implies $|\phi\rangle \in\{|\mu\rangle\}_{\mu=1, . . N}^{\perp \perp}$, i.e., in other words,

$$
f|\mu\rangle=\sum_{\nu=1}^{N}|\nu\rangle \epsilon_{\nu \mu}
$$

where $\epsilon_{\nu \mu}=\langle\nu| f|\mu\rangle$ is a hermitean matrix since f is self-adjoint.
The Fock operator depends on the kets $|\mu\rangle$ entering the Slater determinant but, on inspecting of Eq.(2), it is clear that it is manifestly invariant under unitary transformations of the orbitals. Thus, a unitary transformation in the occupied space can be performed to put the variational equations above in "canonical" form

$$
\begin{equation*}
f|\mu\rangle=\epsilon_{\mu}|\mu\rangle \tag{3}
\end{equation*}
$$

Here, the solution orbitals and eigenvalues are known as canonical orbitals and orbital energies.

Note 1 As noticed above, the f operator depends on $\{|\mu\rangle\}$, i.e. the HF equations are not simple linear equations. However, at convergence, f is a well defined operator and the $|\mu\rangle$'s are its eigenvectors. A closer look at f reveals that

$$
f=k+v+\sum_{\nu}(\langle\nu| g|\nu\rangle-\langle\nu| g \pi|\nu\rangle)
$$

or, in coordinate representation ${ }^{6}$,

$$
\hat{f}=\hat{k}+v(\mathbf{r})+v_{H}(\mathbf{r})-\hat{v}_{\mathrm{ex}}
$$

[^4]where $\hat{k}=-\frac{1}{2} \nabla^{2}$ is the kinetic energy, $v(\mathbf{r})$ is the "external" potential (e.g. the electrostatic potential nuclear generated by the nuclei), and the remaining terms take the form
$$
v_{H}(\mathbf{r})=\sum_{\nu}\langle\nu| g|\nu\rangle=\int \frac{n\left(\mathbf{r}^{\prime}\right)}{\left\|\mathbf{r}-\mathbf{r}^{\prime}\right\|} d^{3} \mathbf{r}^{\prime} \quad \hat{v}_{\mathrm{ex}}=\sum_{\nu}\langle\nu| g \pi|\nu\rangle
$$

Here

$$
n(\mathbf{r})=\sum_{\nu}\left|\phi_{\nu}(\mathbf{r})\right|^{2}
$$

is the electron density of the N electrons in the N HF orbitals, and v_{H} is the so-called Hartree potential, i.e. the potential felt by an electron in the field of the nuclei and of an N-electron distribution described by ${ }^{7} n(\boldsymbol{r})$. The term $v_{e x}$ is a non-local exchange operator whose matrix elementes in coordinate representation are of the form ${ }^{8}$

$$
\langle\mathbf{x}| v_{e x}\left|\mathbf{x}^{\prime}\right\rangle=\sum_{\nu} \frac{\psi_{\nu}(\mathbf{x}) \psi_{\nu}^{*}\left(\mathbf{x}^{\prime}\right)}{\left\|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right\|}
$$

as can be seen by introducing the spectral representation of g

$$
g=\int d \mathbf{x}_{2} d \mathbf{x}_{3} \frac{\left|\mathbf{x}_{2} \mathbf{x}_{3}\right\rangle\left\langle\mathbf{x}_{2} \mathbf{x}_{3}\right|}{\left\|\mathbf{r}_{2}-\mathbf{r}_{3}\right\|}
$$

and noticing that

$$
\left\langle\mathbf{x} \nu \mid \mathbf{x}_{2} \mathbf{x}_{3}\right\rangle\left\langle\mathbf{x}_{2} \mathbf{x}_{3} \mid \nu \mathbf{x}^{\prime}\right\rangle=\left\langle\mathbf{x} \mid \mathbf{x}_{2}\right\rangle \phi_{\nu}^{*}\left(\mathbf{x}_{3}\right) \phi_{\nu}\left(\mathbf{x}_{2}\right)\left\langle\mathbf{x}_{3} \mid \mathbf{x}^{\prime}\right\rangle
$$

Note 2 Let \bar{f} be the self-consistent field Fock operator and

$$
\begin{gathered}
\{|\mu\rangle\}_{\mu=1}^{N} \rightarrow \text { occupied orbitals } \\
\{|n\rangle\}_{n>N} \rightarrow \text { virtual orbitals }
\end{gathered}
$$

Clearly $|n\rangle \in\{|\mu\rangle\}_{\mu=1, N}^{\perp}$. Let us put $|n\rangle=|\delta \mu\rangle$ in eq.(1). It follows

$$
\langle\delta \Psi| H|\Psi\rangle=0, \text { with }|\delta \Psi\rangle=\sqrt{N!} A|1,2, . . n . . N\rangle
$$

[^5](with n in place of μ), i.e. singly excited configurations do not mix with the HF one (Brillouin's theorem) ${ }^{9}$.

Note 3^{10} A Slater determinant is invariant under non-singular (but otherwise arbitrary) linear transformation of vectors. That is, let

$$
\left|\mu^{\prime}\right\rangle=\sum_{\mu} T_{\mu^{\prime} \mu}|\mu\rangle, \operatorname{det} T \neq 0
$$

define a non-singular transformation and apply the multiplication rule of determinants. It follows

$$
\left|\Psi^{\prime}\right\rangle=\left|1^{\prime} 2^{\prime} . . N^{\prime}\right\rangle=\operatorname{det} T|12 . . N\rangle
$$

where the normalization factor $\operatorname{det} T$ (which is non null since T is nonsingular) is immaterial for physical purposes. From a geometrical point of view, $\{|\mu\rangle\}_{\mu=1, N}$ span an N-dimensional linear space and T is a change of basis in this space. The (N-particle) HF vector depends on the N-dimensional linear space only, i.e. it depends on the projector ρ in this space. For orthogonal orbitals it reads as

$$
\rho=\sum_{\mu=1}^{N}|\mu\rangle\langle\mu|
$$

and satisfies of course

$$
\rho^{2}=\rho=\rho^{\dagger}
$$

This projector is the one-particle (HF) density operator. The above comment suggests that densisty operators of whatever order, in the HF approximation, depend on the 1-particle one only. This is indeed the case, in that it can be shown that for any order p

$$
\rho^{(p)}=\underbrace{\rho \otimes \rho \otimes \rho . . \otimes \rho}_{p \text { times }} A_{p}
$$

where

$$
A_{p}=\frac{1}{p!} \sum_{P \in S_{p}} \epsilon_{P} P
$$

[^6]For instance, for the second order (2-particle) density operator we have

$$
\rho^{(2)}=\frac{1}{2!} \rho \otimes \rho(1-\pi)
$$

It follows that the HF equations can also be obtained by writing the expectation value of H in terms of the one-particle density matrix ρ and varying it under the normalization constraint

$$
\operatorname{Tr} \rho=N
$$

and the projector properties

$$
\rho^{2}=\rho=\rho^{\dagger}
$$

This results in the equation

$$
[f[\rho], \rho]=0
$$

which is equivalent to the HF equations given above. Here, we emphasized the functional dependence of f on ρ which makes the problem self-consistent.

[^0]: ${ }^{1}$ In the following we consider a set of states which we label with a set of integers $|1\rangle,|2\rangle, . .|N\rangle$ rather than using the more cumbersome notation $\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle, . .\left|\psi_{N}\right\rangle$.

[^1]: ${ }^{2}$ The notation for P means that 1 must be replaced by $p_{1}, 2$ by p_{2} and so on. Thus $p_{1}, p_{2} . . p_{N}$ is the same set of integers on the first line, but possibly with a different order. The whole set of P makes up a group, called the symmetric group - of order N - and usually denoted as S_{N}.

[^2]: ${ }^{3} \mathrm{It}$ can be readily shown that $\pi=\pi^{\dagger}=\pi^{-1}=\pi^{2}$ and $\pi g=g \pi$.

[^3]: ${ }^{4}$ Variations of this kind are complex-linear, meaning they form a complex linear space, something that is not possible under the more general condition $\Re\langle\delta \mu \mid \mu\rangle=0$). The remaining variations add nothing, and complicate the analysis because they would require application of the stationay condition in "full form", in contrast to the "Dirac-Frenkel" form $\langle\delta \Psi| H|\Psi\rangle=0$.
 ${ }^{5}$ The symbol \perp denotes the orthogonal complement. Remember that the orthogonal complement of a set of vector - however chosen - is the linear space spanned by the vectors that are orthogonal to each vector of the given set. That is, $\{|1\rangle,|2\rangle, . .|m\rangle\}^{\perp}=$ $\{|\psi\rangle$ such that $\langle\mu \mid \psi\rangle=0$ for $\mu=1, m\}$.

[^4]: ${ }^{6}$ In the following the spin-orbtials are taken of the "spin-collinear" form, $\psi_{\nu}(\mathbf{x})=$ $\phi_{\nu}(\mathbf{r}) \theta_{\nu}(\sigma)$, where ϕ is the spatial component and θ its spin component. Hence, ϕ_{ν} stands for the spatial orbital of the ν-th one-electron state employed.

[^5]: ${ }^{7}$ Note that each electron feels all the N electrons, i.e. this Hartree potential contains the so-called self-interaction. The latter cancels when the exchange term is taken into account.
 ${ }^{8}$ Note, in contrast, that for a local operator v we have $\langle\mathbf{x}| v\left|\mathbf{x}^{\prime}\right\rangle=v(\mathbf{x}) \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)$, where for $\mathbf{x}=(\mathbf{r}, \sigma)$ we have $\delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)=\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \delta_{\sigma \sigma^{\prime}}$

[^6]: ${ }^{9}$ This is because we are imposing that the variation of the energy functional must be null at first order.
 ${ }^{10}$ This is a somewhat advanced topic, and can be skipped at a first reading.

