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1 Generalities

Given a set of orthonormal spin-orbitals {ψµ(x)}Nµ=1 (where x = (r, σ) rep-
resents the spatial-spin coordinate of an electron)

ˆ
ψ∗
µ(x)ψν(x)d

4x = δµν

a Slater determinant can be defined as

Ψ(x1, ..xN ) =

∣∣∣∣∣∣∣∣∣
ψ1(x1) ψ1(x2) ... ψ1(xN )
ψ2(x1) ψ2(x2) ψ2(xN )
... ...

ψN (x1) ψN (x2) ... ψN (xN )

∣∣∣∣∣∣∣∣∣
Alternatively, in abstract notation1, if {|µ⟩}Nµ=1 denotes the set of spin-
orbitals we write the orthonormalization condition as

⟨µ|ν⟩ = δµν

1In the following we consider a set of states which we label with a set of integers
|1⟩ , |2⟩ , .. |N⟩ rather than using the more cumbersome notation |ψ1⟩ , |ψ2⟩ , .. |ψN ⟩.
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and the Slater determinant as

|Ψ⟩ =
1√
N !

∑
PϵSN

ϵPP {|1⟩ |2⟩ .. |N⟩}

=
√
N !AN {|1⟩ |2⟩ .. |N⟩}

Here P is a permutation operator (P † = P−1) and runs over the group
SN of permutations of the first N integers2

P =

(
1 2 .. N
p1 p2 .. pN

)
=⇒

P {|1⟩ |2⟩ .. |N⟩} = {|p1⟩ |p2⟩ .. |pN ⟩}

The antisymmetrizer AN introduced above has been defined according to

AN =
1

N !

∑
PϵSN

ϵPP

(i.e. as a linear combination of the P operators with coefficients given by
the parity ϵP ) and satisfies A†

N = AN = A2
N . Hence, AN defined in this way

is a projector.
The wavefunction is correctly normalized. Indeed, using the projection

properties of AN we obtain

⟨Ψ |Ψ⟩ = N ! ⟨AN (12..N) |AN (12..N)⟩ =
= N !

〈
12..N

∣∣∣A2
N |12..N

〉
= N ! ⟨12..N |AN |12..N⟩

and

N ! ⟨12..N |AN |12..N⟩ = N !
1

N !

∑
PϵSN

ϵP ⟨12..N |p1p2..pN ⟩ ≡ 1

where in the last equality ⟨12..N | p1p2..pN ⟩ = δ1p1δ2p2 ..δNpN has been used.
More generally, for |Ψ⟩ and |Ψ′⟩ defined as

|Ψ⟩ =
√
N !AN |Φ⟩ and |Ψ′⟩ =

√
N !AN |Φ′⟩

2The notation for P means that 1 must be replaced by p1, 2 by p2 and so on. Thus
p1, p2..pN is the same set of integers on the first line, but possibly with a different order.
The whole set of P makes up a group, called the symmetric group - of order N - and
usually denoted as SN .
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we have
⟨Ψ|Ψ′⟩ = N ! ⟨Φ|AN |Φ′⟩ =

∑
PϵSN

ϵP ⟨Φ|P |Φ′⟩

This is actually a special case of a general result: for any operator O which
is symmetric under exchange of the electron labels it holds

[P,O] = [AN , O] = 0

hence
⟨Ψ|O|Ψ′⟩ =

∑
PϵS[N ]

ϵP ⟨Φ|OP |Φ′⟩

These formula replace the N !2 sum appearing in the scalar product between
two antisymmetrized vectors with a simpler N ! sum.

2 Expectation values

Let us now write down the expectation value of the Hamiltonian operator
on a Slater determinant

⟨Ψ |H|Ψ⟩ = EHF H =
N∑
i=1

hi +
1

2

N∑
j,i̸=j

gij = H(1) +H(2)

Here hi’s are monoelectronic operators, hi = ki + vi, and gij is the interelec-
tronic repulsion potential. Correspondingly, H(1) and H(2) are the one- and
two- electron terms of the Hamiltonian, respectively. Both H(1)and H(2) are
symmetric operators, hence〈

Ψ
∣∣∣H(i)|Ψ

〉
= N !

〈
AN (12..N)

∣∣∣H(i)|AN (12..N)
〉
=

= N !
〈
12..N

∣∣∣ANH
(i)AN |12..N

〉
=

= N !
〈
12..N

∣∣∣H(i)A2
N |12..N

〉
=

=
∑

PϵSN
ϵP
〈
12..N

∣∣∣H(i)|p1p2..pN
〉

Let us first consider the monoelectronic term and focus attention on the first
electron ∑

P∈SN
ϵP ⟨12..N |h1|p1p2..pN ⟩ =

=
∑

P∈SN
ϵP ⟨1 |h1|p1⟩ ⟨2 | p2⟩ .. ⟨N | pN ⟩ =

=
∑

P∈SN
ϵP ⟨1 |h1|p1⟩ δ2p2 ..δNpN = ⟨1|h|1⟩

3



In the last line the subscript 1 on h has been removed since it is dummy. By
the same token we have∑

P∈SN

ϵP ⟨12..N |hµ|p1p2..pN ⟩ = ⟨µ|h|µ⟩

Thus, we can write the one-electron Hamiltonian as

⟨Ψ|H(1)Ψ⟩ =
N∑

µ=1

⟨µ|h|µ⟩

Analogously ∑
P∈SN

ϵP ⟨12..N |g12|p1p2..pN ⟩ =
=
∑

P∈SN
ϵP ⟨12|g12|p1p2⟩ δ3p3δ4p4 ..δNpN =
= ⟨12|g|12⟩ − ⟨12|g|21⟩

i.e. in general

⟨Ψ|H(2)Ψ⟩ = 1

2

N∑
µ,ν (̸=µ)=1

(⟨µν|g|µν⟩ − ⟨µν|g|νµ⟩)

This can be rewritten in a simpler form by introducing an exchange oper-
ator π3

π |µν⟩ = |νµ⟩〈
Ψ
∣∣∣H(2)Ψ

〉
=

1

2

N∑
µ,ν (̸=µ)=1

⟨µν | g(1− π)|µν⟩

In conclusion, the expectation value of H (the Hartree-Fock energy) reads
as

⟨Ψ |HΨ⟩ =
N∑

µ=1

⟨µ |h|µ⟩+ 1

2

N∑
µ,ν( ̸=µ)=1

⟨µν | g(1− π)|µν⟩

Note that in the last term on the r.h.s. we can remove the restriction ν ̸= µ
since the term ν = µ does not contribuite to the sum.

3It can be readily shown that π = π† = π−1 = π2 and πg = gπ.
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3 Variation of the orbitals

Let us now apply the variational principle. In doing this, we take care of the
orthogonalization condition

⟨µ | ν⟩ = 1

which implies
⟨δµ | ν⟩+ ⟨µ | δν⟩ = 0

or, equivalently,
⟨δµ | ν⟩ = 0 µ ̸= ν
ℜ ⟨δµ|µ⟩ = 0 µ = ν

and focus on the (special class of) variations that satisfy4

⟨δµ|ν⟩ = 0 for any ν = 1, 2..N

From a geometrical point of view they satisfy |δµ⟩ ∈ {|ν⟩}⊥ν=1..N , i.e. they
are such that the |δµ⟩ is (arbitrarly) confined in the orthogonal complement
of the “occupied” orbital space5. Applying the variation of the orbital |µ⟩ we
obtain

0 = ⟨δΨ|HΨ⟩ = ⟨δµ|h|µ⟩+

+
1

2

N∑
ν( ̸=µ)=1

⟨δµν|g(1− π)|µν⟩+

+
1

2

N∑
ν( ̸=µ)=1

⟨νδµ|g(1− π)|νµ⟩ =

= ⟨δµ|h|µ⟩+
N∑

ν (̸=µ)=1

⟨δµν|g(1− π)|µν⟩ =

≡ ⟨δµ|h|µ⟩+
N∑
ν=1

⟨δµν|g(1− π)|µν⟩

4Variations of this kind are complex-linear, meaning they form a complex linear space,
something that is not possible under the more general condition ℜ⟨δµ|µ⟩ = 0). The
remaining variations add nothing, and complicate the analysis because they would require
application of the stationay condition in “full form”, in contrast to the “Dirac-Frenkel”
form ⟨δΨ|H|Ψ⟩ = 0.

5The symbol ⊥ denotes the orthogonal complement. Remember that the orthogonal
complement of a set of vector - however chosen - is the linear space spanned by the
vectors that are orthogonal to each vector of the given set. That is, {|1⟩ , |2⟩ , .. |m⟩}⊥ =
{|ψ⟩ such that ⟨µ|ψ⟩ = 0 for µ = 1,m}.
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where π |µµ⟩ = |µµ⟩ has been used in the last line. Thus,

⟨δΨ|HΨ⟩ = ⟨δµ|h+
N∑
ν=1

⟨ν|g(1− π)|µ⟩ |ν⟩ = ⟨δµ|f |µ⟩ = 0 (1)

where f is a mono-electronic, self -adjoint operator known as Fock operator

f = h+
N∑
ν=1

⟨ν | g(1− π)|ν⟩ (2)

Now, an equation of the form

⟨δµ |ϕ⟩ = 0

with |δµ⟩ arbitrary in {|µ⟩}⊥µ=1,..N implies |ϕ⟩ ∈ {|µ⟩}⊥⊥
µ=1,..N , i.e., in other

words,

f |µ⟩ =
N∑
ν=1

|ν⟩ ϵνµ

where ϵνµ = ⟨ν|f |µ⟩ is a hermitean matrix since f is self-adjoint.
The Fock operator depends on the kets |µ⟩ entering the Slater determi-

nant but, on inspecting of Eq.(2), it is clear that it is manifestly invariant
under unitary transformations of the orbitals. Thus, a unitary transforma-
tion in the occupied space can be performed to put the variational equations
above in “canonical” form

f |µ⟩ = ϵµ |µ⟩ (3)

Here, the solution orbitals and eigenvalues are known as canonical orbitals
and orbital energies.

Note 1 As noticed above, the f operator depends on {|µ⟩}, i.e. the HF
equations are not simple linear equations. However, at convergence, f
is a well defined operator and the |µ⟩’s are its eigenvectors. A closer
look at f reveals that

f = k + v +
∑
ν

(⟨ν | g|ν⟩ − ⟨ν | gπ|ν⟩)

or, in coordinate representation6,

f̂ = k̂ + v(r) + vH(r)− v̂ex

6In the following the spin-orbtials are taken of the “spin-collinear” form, ψν(x) =
ϕν(r)θν(σ), where ϕ is the spatial component and θ its spin component. Hence, ϕν stands
for the spatial orbital of the ν-th one-electron state employed.

6



where k̂ = −1
2∇

2 is the kinetic energy, v(r) is the “external” potential
(e.g. the electrostatic potential nuclear generated by the nuclei), and
the remaining terms take the form

vH(r) =
∑
ν

⟨ν | g|ν⟩ =
ˆ

n(r′)

∥r− r′∥
d3r′ v̂ex =

∑
ν

⟨ν | gπ|ν⟩

Here
n(r) =

∑
ν

|ϕν(r)|2

is the electron density of the N electrons in the N HF orbitals, and
vH is the so-called Hartree potential, i.e. the potential felt by an
electron in the field of the nuclei and of an N−electron distribution
described by7 n(r). The term vex is a non-local exchange operator
whose matrix elementes in coordinate representation are of the form8

⟨x|vex|x′⟩ =
∑
ν

ψν(x)ψ
∗
ν(x

′)

∥r − r′∥

as can be seen by introducing the spectral representation of g

g =

ˆ
dx2dx3

|x2x3⟩ ⟨x2x3|
||r2 − r3||

and noticing that

⟨xν|x2x3⟩ ⟨x2x3|νx′⟩ = ⟨x|x2⟩ϕ∗ν(x3)ϕν(x2) ⟨x3|x′⟩

Note 2 Let f be the self-consistent field Fock operator and

{|µ⟩}Nµ=1 → occupied orbitals

{|n⟩}n>N → virtual orbitals

Clearly |n⟩ ∈ {|µ⟩}⊥µ=1,N . Let us put |n⟩ = |δµ⟩ in eq.(1). It follows

⟨δΨ |H|Ψ⟩ = 0, with |δΨ⟩ =
√
N !A |1, 2, ..n..N⟩

7Note that each electron feels all the N electrons, i.e. this Hartree potential contains
the so-called self -interaction. The latter cancels when the exchange term is taken into
account.

8Note, in contrast, that for a local operator v we have ⟨x|v|x′⟩ = v(x)δ(x− x′), where
for x = (r, σ) we have δ(x− x′) = δ(r− r′)δσσ′
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(with n in place of µ), i.e. singly excited configurations do not mix with
the HF one (Brillouin’s theorem)9.

Note 310 A Slater determinant is invariant under non-singular (but other-
wise arbitrary) linear transformation of vectors. That is, let∣∣µ′〉 =∑

µ

Tµ′µ |µ⟩ , detT ̸= 0

define a non-singular transformation and apply the multiplication rule
of determinants. It follows∣∣Ψ′〉 = ∣∣1′2′..N ′〉 = detT |12..N⟩

where the normalization factor detT (which is non null since T is non-
singular) is immaterial for physical purposes. From a geometrical point
of view, {|µ⟩}µ=1,N span an N -dimensional linear space and T is a
change of basis in this space. The (N -particle) HF vector depends on
the N-dimensional linear space only , i.e. it depends on the projector
ρ in this space. For orthogonal orbitals it reads as

ρ =
N∑

µ=1

|µ⟩ ⟨µ|

and satisfies of course
ρ2 = ρ = ρ†

This projector is the one-particle (HF) density operator. The above
comment suggests that densisty operators of whatever order, in the
HF approximation, depend on the 1-particle one only . This is indeed
the case, in that it can be shown that for any order p

ρ(p) = ρ⊗ ρ⊗ ρ..⊗ ρ︸ ︷︷ ︸ Ap

p times

where
Ap =

1

p!

∑
P∈Sp

ϵPP

9This is because we are imposing that the variation of the energy functional must be
null at first order.

10This is a somewhat advanced topic, and can be skipped at a first reading.
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For instance, for the second order (2-particle) density operator we have

ρ(2) =
1

2!
ρ⊗ ρ (1− π)

It follows that the HF equations can also be obtained by writing the
expectation value of H in terms of the one-particle density matrix ρ
and varying it under the normalization constraint

Trρ = N

and the projector properties

ρ2 = ρ = ρ†

This results in the equation

[f [ρ], ρ] = 0

which is equivalent to the HF equations given above. Here, we empha-
sized the functional dependence of f on ρ which makes the problem
self-consistent.
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