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Abstract

These notes focus on the main conceptual/theoretical steps needed
to make the Non-Equilibrium Green’s Function method suitable for in-
vestigating coherent ballistic transport on nanoscale devices or molecular
junctions. The rich physics of the topic (e.g. the connection with different
transport regimes, decoherence and dissipation, etc.) are well beyond the
aim of these notes and is described in several textbooks.
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1 The Green’s operator

The key quantity of interest is the following operator-valued function of the
complex argument λ, known as Green’s (or resolvent) operator

G(λ) = (λ−H)
−1

It is defined for any complex number for which (λ−H) is not singular, i.e. the
whole complex plane excluded the spectrum of H; this (open) domain is also
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the region of analyticity of the function. As for any function of H, G(λ) admits
a spectral representation,

G(λ) =

ˆ

σ

1

λ− E
p(E) dµ(E)

where the differential eigenprojector dP (E) := p(E)dµ(E) is a standard projec-
tor Pn when E = En ∈ σd is a discrete eigenvalue (and the integral is just a
sum), while it becomes

dP (E) =
∑
i

|E, i〉 〈E, i| dE

when E lies in the continuous spectrum σc. Here, {|E, i〉} are improper eigen-
vectors at energy E and i is a degeneracy index. The operator p(E) is a delta
distribution on the spectral measure µ,

p(E) ≡ δµ(E −H) =

 δ(E −H) E ∈ σc
Pn E = En ∈ σd
0 otherwise

that allows one to write any function of the operator H as a spectral integral
with respect to the measure µ

f(H) =

ˆ
σ

f(E)δµ(E −H)dµE

In the above expression, δ(E −H) is the density-of-states operator that is
defined, in analogy to ordinary functions of the operators H, as1

δ(E −H) =
∑
n

δ(E − En)Pn + χσc(E)
∑
i

|E, i〉 〈E, i| (1)

and is generally preferred over δµ(E − H) since it allows one to re-write the
spectral resolution as an ordinary integral over (any) set of energies containing
the whole spectrum

f(H) =

ˆ
f(E)δ(E −H)dE

For instance,

G(λ) =

ˆ
1

λ− E
δ(E −H)dE ≡

ˆ
σc

1

λ− E
δ(E −H)dE +

∑
α

1

λ− Eα
Pα (2)

The interesting properties of G(λ) are related to its analyticity, which ex-
tends above and below the real axes, where the continuous spectrum of H forms
a branch cut of the function and the discrete eigenvalues are first-order poles.
G(λ) makes thus a jump when crossing the continuous spectrum, as can be seen
by considering (see Fig.1)

1In general, χA is the characteristic function of the set A.
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Figure 1: The limiting process on the complex energy plane described in the
main text, here for λ = E ± iη.

lim
ε→0+

G(E ± iε) = G±(E) (3)

for E ∈ σc. Indeed, from Eq. 2

G+(E)−G−(E) =

ˆ
σc

(
1

E + iε− E′
− 1

E − iε− E′

)
δ(E′ −H)dE′

the term in brackets reads as

1

E + iε− E′
− 1

E − iε− E′
= − 2iε

(E − E′)2 + ε2

and, upon taking the limit ε→ 0+, gives

G+(E)−G−(E) = −2πiδ(E −H) (4)

where
δ(E − E′) = lim

ε→0+

1

π

ε

(E − E′)2 + ε2

has been used. Since G(λ)† = G(λ∗) we also have G+(E)† = G−(E) and thus2

G+(E)−G−(E) = G+(E)−G+(E)† = 2iImG+(E)

i.e.
ImG+(E) = −πδ(E −H) (5)

2The real and imaginary parts of an operator are defined with the help of the usual algebraic
expressions, once the adjoint is recognized to be a conjugation operation. Namely, ReA =
(A+A†)/2 and ImA = (A−A†)/2i.
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On the other hand, the real part of G+(E) is given by:

ReG+(E) = lim
ε→0+

ˆ
Re
[

1

E + iε− E′

]
δ(E′ −H)dE′

= lim
ε→0+

ˆ
E − E′

(E − E′)2 + ε2
δ(E −H)dE′

= P
ˆ

1

E − E′
δ(E −H)dE′ = GP (E)

where P stands for the principal value of the integral:

P
ˆ

f(E′)

E − E′
dE′ = lim

δ→0


E′−δˆ

f(E′)

E − E′
dE′ +

ˆ

E′+δ

f(E′)

E − E′
dE′


Of course,

ReG−(E) = ReG+(E)

and thus3

G±(E) = GP (E)∓ iπδ(E −H) (6)

G(λ) is connected to the evolution operator through analytic continuation
of the appropriate Fourier-Laplace transform. Specifically, for Imλ > 0 the
integral

+∞ˆ

0

eiλte−iHtdt

is well defined (convergent)4 and reads as

+∞ˆ

0

eiλte−iHtdt =

+∞ˆ

0

ei(λ−H)tdt = −iG(λ)ei(λ−H)t
∣∣∣+∞
0

= iG(λ)

By the same token

−iG(λ)† =

+∞ˆ

0

eiλ
∗te+iHtdt =

0ˆ

−∞

e−iλ
∗t′e−iHt

′
dt′ = −iG(λ∗)

where now λ∗ lies in the lower half plane. Henceˆ
R

Θ(±t)eiλte−iHtdt = ±iG(λ) for λ ∈ C±

3This equation actually holds for any E ∈ R. If E ∈ R/σ the imaginary part vanishes and
G(E) is continuous across the real axis, G+(E) = G−(E) = GP (E). On the other hand, when
the limit is taken (from any direction) to E = En the function G(λ) diverges as (E−En)−1Pn
(see Eq.2), hence when approaching the discrete eigenvalue En the r.h.s. takes the form of a
proper projector times a delta function, δ(E − En)Pn, consistently with Eq.1.

4For large t the integrand goes as eiλte−iHt ∝ ei(iImλ)t = e−Imλt, i.e., it decays expo-
nentially in time, the faster the larger Imλ is.

4



Figure 2: Setup for a two-terminal junction. L,R are the left and right elec-
trodes, respectively, and C is the “conductor”.

where Θ(t) = 1 for t ≥ 0 and Θ(t) = 0 otherwise. In particular,

G±(E) = ∓i lim
ε→0+

ˆ +∞

−∞
Θ(±t)ei(E−H)te−ε|t|dt

and we obtain the previous result

G+(E)−G−(E) = −i
+∞ˆ

−∞

ei(E−H)tdt = −2πiδ(E −H)

These properties establish a connection between the energy eigenstates and the
dynamics, thus making G suitable for describing transport across a nanostruc-
ture.

2 Green’s operator for the (coupled) scattering region

We are interested in the setup of Fig. 2 where a left electrode L is connected
to a right electrode R through a scattering region, the conductor C. L and
R are infinite regions, but where electronic motion is non-interesting provided
it does not interfere with the motion in C. We thus seek expressions for the
interesting quantities in terms of operators pertaining to the region C only.
To this end, we first introduce the projection operators for the three regions,
satisfying

R2 = R = R† C2 = C = C† L2 = L = L†

RL = LC = RC = 0 R+ L+ C = 1

and consider
(λ−H)G(λ) = 1

in terms of the components in the above spaces. In doing this, we assume that
C is large enough that LHR = RHL = 0 and obtain, upon taking the matrix
elements between the space components,

 λ−HLL −HLC 0
−HCL λ−HCC −HCR

0 −HRC λ−HRR

 GLL(λ) GLC(λ) GLR(λ)
GCL(λ) GCC(λ) GCR(λ)
GRL(λ) GRC(λ) GRR(λ)

 =

 L 0 0
0 C 0
0 0 R


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We are interested in the set of equation of the middle-column G matrix

(λ−HLL)GLC(λ)−HLCGCC(λ) = 0
(λ−HCC)GCC(λ)−HCLGLC(λ)−HCRGRC(λ) = C

(λ−HRR)GRC(λ)−HRCGCC(λ) = 0

Solving for GLC (GRC) the first (the third) equation,

GLC(λ) = +gL(λ)HCLGCC(λ)

GRC(λ) = +gR(λ)HRCGCC(λ)

where gL(λ) and gR(λ) are the Green’s functions for the uncoupled left and
right electrodes,

gL(λ) = (λ−HLL)−1 and gR(λ) = (λ−HRR)−1,

we arrive at

[λ−HCC −HCLgL(λ)HLC −HCRgR(λ)HRC]GCC(λ) = C

Thus, the CC projection of the exact Green’s function is the Green’s function
of an effective Hamiltonian in C space:

(λ−Heff(λ))GCC(λ) = C (7)

where
Heff(λ) = HCC +HCL gL(λ)HLC +HCR gR(λ)HRC

In particular, for λ = E + iε, ε→ 0+, we write

Heff(E) = HCC + Σ+
L (E) + Σ+

R(E) (8)

where
Σ+
L (E) = HCL g

+
L (E)HLC Σ+

R(E) = HCR g
+
R (E)HRC (9)

are the so-called electrode self-energies. They play the role of traditional
energy-dependent optical potentials known in quantum scattering theory.

The self-energies have both a real and an imaginary part, which readily
follows from the real and imaginary part of g+L and g+R , namely

ReΣ+
L (E) = ∆L(E) = HCLg

P
L (E)HLC

ImΣ+
L (E) = −ΓL(E)

2
= HCL (−πδ(E −HLL))HLC

With these definitions we can re-write the effective Hamiltonian as

Heff(E) = HCC + ∆(E)− iΓ(E)

2
(10)
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Figure 3: Schematics for the iterative solution of the uncoupled left electrode
Green’s function.

with
∆(E) = ∆L(E) + ∆R(E)

and
Γ(E) = ΓL(E) + ΓR(E)

both self-adjoint operators.
Note that for any state in C it holds a positivity condition5

〈φC|ΓL(E)|φC〉 = 2π 〈φC|HCLδ(E −HLL)HLC|φC〉

= 2π 〈HLCφC|δ(E −HLL)|HLCφC〉 ≥ 0

which means that Γ is a semi-positive defined operator,

ΓL,R(E) ≥ 0

The problem of determining G+
CC(E) thus boils down to the problem of com-

puting the electrode self-energies and building up (and inverting) the effective
Hamiltonian Heff. It is obvious that the self-energies account for the motion in
the regions L, R in which we are not interested. Note, however, that gL (gR)
refers to HLL (HRR) i.e. to the dynamics in electrode L (R) when it is not
coupled to the scattering region (otherwise we would need GLL in place of gL).

3 Green’s operators for the uncoupled electrodes

The left (right) electrode regions are infinite themselves, and no real simplifi-
cation would occur if we could not compute the Green’s operators

g+L (E) = (E+ −HLL)−1

Fortunately, in the self-energy expression

Σ+
L (E) = HCL g

+
L (E)HLC

5More explicitly, introducing the electrode eigenvectors |Ei, L〉, 〈φC|ΓL(E)|φC〉 =
2π
∑
i 〈φC|HCL|Ei, L〉 〈Ei, L|HLC|φC〉 = 2π

∑
i | 〈Ei, L|HLC|φC〉 |2 ≥ 0

7



we only need those matrix elements 〈λ|g+L (E)|λ′〉 involving states |λ〉, |λ′〉 in
L which couple to states in C, i.e. for which 〈λ|HLC|φC〉 6= 0. This is the
key observation, which considerably simplifies the problem since reduces the
potentially infinite states in the electrode to just “a few”.

Suppose then that HLC is “short ranged” and consider the region L1 of L
which couples to C via HCL. L2, L3, ... are regions of similar size which make up
the remainder of the electrode’s space, see Fig.3. As before we could use the par-
titioning technique and solve for g11(λ), the L1L1 projection of the exact Green’s
function on the uncoupled electrode, in terms of the self-energy of the remainder,
Σ+

1 (λ). In turn, we would need the self-energies Σ+
2 (λ), Σ+

3 (λ),..Σ+
n (λ) (here the

nth term describes the motion in the uncoupled Ln+1 +Ln+2 + .. region) up to
some high order N where we can reasonably truncate the procedure.

Alternatively, we consider L1, L2 ... large enough to interact with the nearest
neighbors only, and write down the equation for g11(λ)
λ−H11 −V12 0 0 0
−V21 λ−H11 −V23 0 0

0 −V32 λ−H11 . . . 0
0 0 . . . . . . −VN−1N
0 0 0 −VNN−1 λ−HNN ..

.. ..





g11(λ)
g21(λ)
g31(λ)

...
gN1(λ)
..


=



L1

0
0
...
0
..


Upon truncating at the N th order, the N th equation reads as

−VNN−1gN−1,1(λ) + (λ−HNN )gN1(λ) = 0

and can be solved for gN,1,
gN1(λ) = (λ−HNN )−1VNN−1gN−1,1(λ)

Inserting this expression in the (N − 1)th equation we get rid of gN,1

−VN−2,1gN−2,1(λ)+
[
λ−

(
HN−1,N−1 − VN−1,N (λ−HNN )−1VN,N−1

)]
gN−1,1 = 0

and obtain gN−1,1

gN−1,1(λ) =
[
λ− (HN−1,N−1 − VN−1,N (λ−HNN )−1VN,N−1)

]−1
VN−2,1gN−2,1(λ)

which can be used similarly to above to eliminate gN−1,1.
Keeping reasoning in this way, we arrive at

g11(λ) = (λ−Heff
1 (λ))−1L1 (11)

where, for n = 1, 2, ..,

Heff
n (λ) = Hnn + Σn(λ)

Σn(λ) = Vnn+1(λ−Heff
n+1(λ))−1Vn+1n

(12)
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Truncation occurs when setting VNN+1 = 0, or equivalently Heff
N
∼= HNN .

The above algorithm is completely general, and considerable simplifications
occur when Ln are periodic images of each other. Indeed in this case, upon
introducing the matrices H and V according to

Hnm = 〈χ(1)
n |H|χ(1)

m 〉

Vnm = 〈χ(1)
n |V |χ(2)

m 〉

where |χ(1)
m 〉 are basis vectors in cell 1 and |χ(2)

m 〉 = Ta |χ(1)
m 〉 are their periodic

images (Ta is the corresponding translation operator), one obtains the Green’s
functions of interest

gnm(λ) = 〈χ(1)
n |gL(λ)|χ(1)

m 〉

upon solving the exact algebraic equation[
λ− (H + Vg(λ)V†)

]
g(λ) = 1 (13)

which is free of truncation errors.

4 Scattering states

The Green’s function introduced above is the key-quantity for investigating
transport across the conductor. In fact, it easily allows the determination of
the scattering states, i.e. of those (improper) eigenvectors of the Hamiltonian
which describe the evolution of a “free” propagating state into (and out) of the
scattering region, as we now show.

According to general scattering theory, the eigenstate |Ei, L+〉 which evolves
from the freely propagating state |Ei, L〉 in the left electrode can be obtained
as the limiting vector which solves the equation

(λ−H) |ψλ〉 = (λ−HLL) |Ei, L〉 (14)

when λ = E + iε, ε → 0+. Notice that the above equation is well-defined and
has a single solution for Imλ 6= 0, since G(λ) = (λ − H)−1 exists above and
below the real axis,

|ψλ〉 = G(λ)(λ−H +H −HLL) |Ei, L〉 = [1 +G(λ)(H −HLL)] |Ei, L〉

i.e.,
|Ei, L+〉 = |Ei, L〉+G+(E)(H −HLL) |Ei, L〉

The advantage of using the above limiting process in defining the eigenstate
|Ei, L+〉 (compared to solving the eigenvalue equation) is that in that way one
explicitly introduces the desired boundary condition, namely |Ei, L+〉 → |Ei, L〉
when the interaction H −HLL is switched off.

In the above expression

L |Ei, L〉 = |Ei, L〉
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(H −HLL) |Ei, L〉 = HCL |Ei, L〉

(since HRL = 0), hence

|Ei, L+〉 = |Ei, L〉+G+(E)HCL |Ei, L〉

from which the components of |Ei, L+〉 in the R, C, and L spaces read as

|φR〉 := R |Ei, L+〉 = G+
RC(E)HCL |Ei, L〉

|φC〉 := C |Ei, L+〉 = G+
CC(E)HCL |Ei, L〉

|φL〉 := L |Ei, L+〉 = |Ei, L〉+G+
LC(E)HCL |Ei, L〉

The latter in particular contains both an “incident” (|Ei, L〉) and a “scattered”
term (second term on the r.h.s.).

Introducing the previously obtained expressions for the Green’s function in
the scattering region we obtain the components of the scattering state in terms
of the fundamental G+

CC Green’s function

|φR〉 = g+R (E)HRCG
+
CC(E)HCL |Ei, L〉 (15)

|φC〉 = G+
CC(E)HCL |Ei, L〉 (16)

|φL〉 = |Ei, L〉 + g+L (E)HLCG
+
CC(E)HCL |Ei, L〉 (17)

where
G+
CC(E) = lim

ε→0+

(
E + iε−Heff(E)

)−1
C

Heff(E) = HCC + ΣR(E) + ΣL(E)

Σ+
L (E) = HCLg

+
L (E)HLC

Σ+
R(E) = HCRg

+
R (E)HRC

It is obvious that, by construction, the vectors |Ei, L+〉 are eigenvectors
of the full Hamiltonian with energy E. It can also be verified by an explicit
calculation

(E −H) |Ei, L+〉 = (E −H) |Ei, L〉+ (E −H)G+(E)(H −HLL) |Ei, L〉
= (E −HLL) |Ei, L〉 = 0

where lim
ε→0+

(E − H)G+(E) = 1 has been used. The vectors |Ei, L+〉 contain
the basic information we need to describe the scattering process. They play the
same role that ordinary eigenvector play in bound state problems and can be
obtained through Eq.s 15-17, from GCC(E).

Computation of GCC(E) amounts to invert the operator (E−Heff) built with
the effective Hamiltonian Heff, for each (real) energy E of interest. Heff is no
longer self-adjoint, its eigenvalues are generally complex and its eigenvectors not
orthogonal, and this raises the question of whether a spectral representation can
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be written for such an operator. In the finite-dimensional case, if the operator is
diagonalizable, one finds the eigenvalues Ei, the eigenvectors |i〉 and their dual
elements 〈̄i| defined by the condition6 〈̄i|j〉 = δij , and then writes down

GCC(λ) =
∑
i

|i〉 〈̄i|
λ− Ei

Equations 15-17 then determine the projection of the scattering states onto the
R, C and L regions.

5 Self-consistency

So far we have assumed that the Hamiltonian is given and focused on how
to express the quantities of interest in terms of the Green’s function of the
scattering region only. However H is at most a mean field Hamiltonian, i.e.
an effective mono-electronic operator which has to be self-consistent with its
solutions.

Consider first the equilibrium situation, where the same chemical potential
µ applies to the R, L and C regions (µR = µL = µC = µ). The equilibrium
condition is easily established by looking at the density of states and populating
them up to the Fermi level (chemical potential). In other words, the one-electron
density matrix (operator) γ of the central region C has to read as

γ =

ˆ
dEδ(E −Heff)fβ(E − µ)

where fβ(ε) is the Fermi-Dirac occupation function

fβ(ε) =
1

1 + eβε

and δ(E−Heff) is the density-of-states operator of the scattering region. Then,
according to Eq.5,

γ = − 1

π
Im

+∞ˆ

−∞

G+
CC(E)fβ(E − µ)dE

which is usually evaluated by exploiting the analytic properties of GCC(λ) (along
with the meromorphic character of fβ(ε)), namely by replacing the path along

6If |i〉 is eigenvector of Heff with eigenvalue Ei then the vector |̄i〉 must be eigenvector of
(Heff)† with eigenvalue E∗i . Indeed, if H

eff is diagonalizable there exists a set of eigenvectors
spanning the whole space and the identity operator can be written as 1 =

∑
j |j〉 〈j̄|. Using

this completeness relation we can write 〈̄i|Heff =
∑
j 〈̄i|Heff|j〉 〈j̄| =

∑
j Ejδij 〈j̄| = Ei 〈̄i|,

and take the adjoint of this expression. The last equation shows that 〈̄i| is a left eigenvector
of Heff.

11



the real axis with an equivalent path on the upper half plane, where GCC(λ) is
free of singularities. Notice that µ is fixed by the normalization condition

Trγ = N

where N is the number of electrons in the scattering region, what amounts to
assume that polarization of charges occurs within the scattering region.

We can explicitly write down the density-of-states operator in terms of the
effective Hamiltonian Heff by using

ImGCC(λ) = Im
[
GCC(λ)(λ∗ −Heff †)G†CC(λ)

]
=

= GCC(λ)Im
(
λ∗ −Heff †)G†CC(λ) = GCC(λ)

(
Imλ∗ − Γ(λ)

2

)
G†CC(λ)

and taking the limit λ = E + iε, ε→ 0+

δ(E −Heff) =
1

2π
G+
CC(E)Γ(E)G−CC(E)− 1

π
lim
ε→0+

εGCC(E + iε)GCC(E − iε)

Here the second term on the r.h.s. is really relevant only when Γ(E) vanishes,
as it happens, e.g., for an isolated conductor (see also the Note at the end of
this document). With this exception in mind we shall use

δ(E −Heff) =
1

2π
G+
CC(E)Γ(E)G−CC(E) (18)

in any other circumstances. Taking further into account that Γ(E) has contri-
butions from both the left and right electrodes, we end up with

γ = γL + γR

where

γL =
1

2π

ˆ
dEfβ(E − µ)G+

CC(E)ΓL(E)G−CC(E) =

ˆ
dEfβ(E − µ)G+

CC(E)HCLδ(E −HLL)HLCG
−
CC(E)

and similarly for R. In particular, the charge density at x in the scattering
region reads as

ρ(x) = ρL(x) + ρR(x)

where

ρL(x) =

ˆ
dEfβ(E − µ) 〈x|G+

CC(E)HCLδ(E −HLL)HLCG
−
CC(E)|x〉

is the contribution of electrons from the left electrode and similarly for ρR(x).
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More precisely, with the help of the scattering states introduced above we
can write down the contribution (to the density operator) of those states which
evolved from the left electrode

δL(E −Heff) :=
∑
i

C |Ei, L+〉 〈Ei, L+|C =

=
∑
i

G+
CC(E)HCL |Ei, L〉 〈Ei, L|HLCG

−
CC(E) =

≡ G+
CC(E)HCLδ(E −HLL)HLCG

−
CC(E)

and similarly for the right-electrode contribution δR(E −Heff). Equivalently,

δL(E −Heff) =
1

2π
G+
CC(E)ΓL(E)G−CC(E) (19)

and

δR(E −Heff) =
1

2π
G+
CC(E)ΓR(E)G−CC(E) (20)

in close analogy with Eq. 18.
This observation is crucial to investigate the case in which the system is in a

non-equilibrium state, that is when µR − µL = ∆µ 6= 0. In this case, indeed,
it is reasonable to define the non-equilibrium density matrix as

γ = γL + γR

γL =

ˆ
dEfβ(E − µL)δL(E −Heff)

γR =

ˆ
dEfβ(E − µR)δR(E −Heff)

where µR and µL are now external parameters, typically expressed as

µL/R = µ± ∆µ

2

where µ = (µL + µR)/2 is the equilibrium chemical potential, and ∆µ relates
to the “macroscopic” bias7

∆µ = −|e|Vbias
Thus, the non-equilibrium charge ρ(x) (in the scattering region) which is used
to build the effective Hamiltonian has to be consistent with the density matrix
defined above, namely

ρ(x) = 〈x|γ|x〉 = 〈x|γL|x〉+ 〈x|γR|x〉
7Contrary to a common believe, a voltage probe always measures a difference in the chem-

ical potential and only occasionally (i.e., in the absence of a density gradient) this reduces to
a difference in electrostatic potential.
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This defines a self-consistent procedure which is of paramount importance to
correctly describe screening effects within the scattering region. At self-
consistency, Heff (for a given ∆µ) is the effective Hamiltonian whose eigen-
vectors contain the scattering information needed to describe transport across
the scattering region (for the given ∆µ).

6 Transmission probability and current

Having defined an effective Hamiltonian for a given non-equilibrium condition,
we are in a position of computing the relevant scattering information. We are
interested in the probability that an an electron coming from the left electrode
ends up in the right electrode, what is known as transmission probability.
According to general scattering theory this probability is the expectation value
of a product-region flux operator F which, in our case, reads as:

FR = i [H,R] = i(HR−RH) = i (HCR −HRC)

on account of the property HLR = HRL = 0. The probability that an electron
in the state |Ei, L〉 “evolves” into the right electrode is then given by

Pi = 2π 〈Ei, L+ |FR|Ei, L+〉

where |Ei, L + 〉 is the scattering eigenstate “evolved” from |Ei, L〉 .The total
(or cumulative) transmission probability from left to right,

NR←L(E) = 2π
∑
i

〈Ei, L+ |FR|Ei, L+〉 ≡ −4π
∑
i

Im 〈Ei, L+ |HCR|Ei, L+〉

takes a simple form once

R |Ei, L+〉 = g+R(E)HRCG
+
CC(E)HCL |Ei, L〉

C |Ei, L+〉 = G+
CC(E)HCL |Ei, L〉

are introduced in the above expression and the sum is replaced by an appropriate
trace operation. The trace is conveniently taken over the states in the scattering
region, e.g., with the help of a basis |ξk〉 in C

NR←L(E) = −4π
∑
i,k

Im [〈Ei, L+ |ξk〉 〈ξk|HCR|Ei, L+〉]

= −4π
∑
i,k

Im [〈ξk|HCR|Ei, L+〉 〈Ei, L+ |ξk〉]

= −4πIm [Tr (HCR |Ei, L+〉 〈Ei, L+|C)]

= −4πIm

[
Tr

(
HCRg

+
R (E)HRCG

+
CC(E)HCL

∑
i

|Ei, L+〉 〈Ei, L+|HLCG
−
CC(E)

)]
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= −4πIm
[
Tr
(
HCRg

+
R (E)HRCG

+
CC(E)HCLδ(E −HLL)HLCG

−
CC(E)

)]
Introducing

ΓL(E) = 2πHCLδ(E −HLL)HLC

(see Eq. 9) we arrive at

NR←L(E) = −2Im
[
Tr
(
HCRg

+
R (E)HRCG

+
CC(E)ΓL(E)G−CC(E)

)]
The imaginary part is easily computed upon noticing that

Tr
(
HCRg

+
R (E)HRCG

+
CC(E)ΓL(E)G−CC(E)

)†
=

= Tr
(
G+
CC(E)ΓL(E)G−CC(E)HCRg

−
R (E)HRC

)
= Tr

(
HCRg

−
R (E)HRCG

+
CC(E)ΓL(E)G−CC(E)

)
holds thanks to the invariance under cyclic permutation of the trace operation.
It reads as

NR←L(E) = Tr
[
HCR

(
−2Img−R (E)

)
HRCG

+
CC(E)ΓL(E)G−CC(E)

]
where −2Img−R (E) = 2πδ(E −HRR). It follows

NR←L(E) = Tr
[
ΓR(E)G+

CC(E)ΓL(E)G−CC(E)
]

(21)

upon introducing ΓR(E) = 2πHCRδ(E −HRR)HRC. Likewise,

NL←R(E) = Tr
[
ΓL(E)G+

CC(E)ΓR(E)G−CC(E)
]

(22)

These expressions take a suggestive form when the three rightmost operators
on the r.h.s. are recognized to be the density of left/right incoming states (see
Eq.20),

NR←L(E) = 2πTr
[
ΓR(E)δL(E −Heff)

]
NL←R(E) = 2πTr

[
ΓL(E)δR(E −Heff)

]
In this form the cumulative transmission probability has the structure of a
Fermi’s golden rule expression, even though no perturbative approximations
have been introduced.

Important simplifications arise when the Hamiltonian H is invariant under
time-reversal (i.e. in absence of magnetic fields). In this case, the probability
for the reverse process satisfies

NL←R(E) = NR←L(E)

Indeed, introducing the (anti-unitary) time-reversal operator8 T

NL←R(E) = Tr
[
ΓR(E)G−CC(E)ΓL(E)G+

CC(E)
]

= Tr
[
T †TΓR(E)G−CC(E)ΓL(E)G+

CC(E)
]

= Tr
[
T †ΓR(E)G+

CC(E)ΓL(E)G−CC(E)T
]

= N∗R←L(E) = NR←L(E)

8Such operator works similarly to a unitary operator, T †T = TT † = 1. The difference
with a unitary operator is in its anti-linear property, T (λ |ψ〉) = λ∗T |ψ〉 . This implies that
〈φ|Tψ〉 = 〈T †φ|ψ〉∗ must hold if the ket and the bra positions have to be anti-linear.
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Here we have used

TGCC(λ) = TC(λ−H)−1C = C(λ∗ −H)−1CT = GCC(λ∗)T

and
Tr(T †AT ) ≡

∑
i

〈Tξi|A|Tξi〉∗ =
∑
i

〈ξi|A|ξi〉∗ = Tr(A)∗

as can be seen with the help of a basis of definite parity9, e.g. |Tξi〉 = |ξi〉.
Thus, under such circumstances, we can unambiguously refer to the cumulative
transmission probability

N(E) = Tr
(
ΓR(E)G+

CC(E)ΓL(E)G−CC(E)
)

(23)

The electric current across the conductor can be computed with the help
of the above results. The current L→ R carried by the state |Ei, L〉 is given by

dIi,L = −|e|nL(E)Pi(E)vi(E)
dk

2π

where nL(E) is the occupation probability of the state (≡ fβ(E − µL)), Pi(E)
is the above transmission probability, vi(E) = ∂E/∂k is electron velocity in this
state and dk/2π is the number of electrons per unit length and per spin with k
in the interval (k, k + dk), so that

nL(E)× dk

2π
× vi(E) = ji(E)

is the (number) current density of electrons from band i (In general, j(k) =
dDk/(2π)Dv(k)n(εi(k)) is the corresponding current density in D dimensions.
Notice that in 1D current density and current coincide). Upon summing over
i and noticing that vi(E)dk = dE irrespective of the dispersion relation (along
the transport direction)

dIL = −|e|
h
nL(E)NR←L(E)dE

9The argument applies for “spinless” electronic systems (or even-numbered many electron
system), where T 2 = 1 holds in addition to unitarity. For anti-linear operators this condition
does not constraint the eigenvalues of T , which in fact can be any number on the unit circle
(contrarily to what happens for linear operators, for which idempotency implies that the
possible eigenvalues are only ±1). In fact, from T |ξ〉 = t |ξ〉 it follows T 2 |ξ〉 = |t|2 |ξ〉 = |ξ〉,
i.e. |t| = 1 but this is already a consequence of unitarity (just notice that ||Tξ||2 = |t|2 ||ξ||2,
where ||Tξ||2 = 〈ξ|T †Tξ〉∗ ≡ ||ξ||2). As a matter of fact, an arbitrary phase-rotation of the
vector |ξ〉 produces an eigenvector with a phase-rotated eigenvalue, T

(
eiφ |ξ〉

)
= e−iφt |ξ〉 =

te−i2φ
(
eiφ |ξ〉

)
. Hence, upon setting t = ei2φ, we can always define an eigenvector with

eigenvalue 1, e−iφT |ξ〉 = T
(
eiφ |ξ〉

)
=
(
eiφ |ξ〉

)
. For odd-numbered electron systems, on the

other hand, T 2 = −1 prevents the existence of T -eigenvectors since T 2 |ξ〉 = |t|2 |ξ〉 = − |ξ〉
(with |t| = 1) implies |ξ〉 = 0. This is at the origin of the Kramers degeneracy. In this case, the
trace mentioned in the text is conveniently taken on a Kramers-paired basis, and the result is
the same.
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Hence, the total current from left to right reads as

I = −|e|
h

+∞ˆ

−∞

dE
[
fβ(E − µL)NR←L(E)− fβ(E − µR)NL←R(E)

]
on accounts of those electrons that starting from the right electrode ends up to
the left one. Under time-reversal invariance the above expression simplifies to

I = −|e|
h

+∞ˆ

−∞

dEN(E)(fβ(E − µL)− fβ(E − µR))

which provides the characteristic I-V function (here, −|e|V ≡ (µL − µR) ).
In linear regime, that is for small bias δµ = µL − µR, and at temperatures

well below the Fermi temperatures of the electrodes, the Fermi factor is well
peaked around the average chemical potential µ = (µL + µR)/2,

fβ(E − µL)− fβ(E − µR) ≈ −df
β

dε
(E − µ)δµ ≈ δ(E − µ)δµ

and the above expression simplifies further to

δI =
|e|2

h
N(µ)δV = G(µ)δV

where δµ = −|e|δV has been used and the (zero bias) conductance (with
the Fermi level positioned at µ)

G(µ) =
|e|2

h
N(µ)

has been introduced. Thus, we can interpret N(E) as the zero-bias conductance
(in units of the quantum of conductance |e|2/h) when the Fermi level is
located at energy E, provided we disregard the effect that any gate potential
may have on the effective Hamiltonian used to compute N(E).

Alternatively, but always assuming that N(E) does not depend on the bias,
we can consider the differential conductance dI/dV

dI

dV
= −|e| dI

d(∆µ)

=
|e|2

2

+∞ˆ

−∞

dEN(E)
d

d(∆µ)

[
fβ
(
E −

(
µ+

∆µ

2

))
− fβ

(
E −

(
µ− ∆µ

2

))]

= −|e|
2

2

+∞ˆ

−∞

dEN(E)
1

2

[
dfβ

dε
(E − µL)− dfβ

dε
(E − µR)

]
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where dfβ

dε (E − µ) ≈ −δ(E − µ) and thus

dI

dV
∼=
|e|2

2

N(µL) +N(µR)

2

This expression obviously reduces to the previous result when the conductance
is taken at zero bias (µL = µR = µ) but it also shows that, under the hypoth-
esis mentioned above, dI/dV > 0 must hold. Hence the negative differential
resistance which is observed in some circumstances can only be due to the de-
pendence of N(E) on the applied bias.

7 Note
The careful reader may have noticed that naively applying the commutation
relation entering in the flux definition one gets the absurd result that Pi(E) = 0.
Indeed we know that for stationary states

−i 〈En|FR|En〉 = 〈En|HR−RH|En〉 = En 〈En|R|En〉 − En 〈En|R|En〉 = 0

The point is that care is needed in computing matrix elements of operators
between improper states.
Specifically, the probability is actually the result of the following limiting process

Pi(E) = lim
ε→0+

2π 〈ψi,LE+iε|FR|ψ
i,L
E+iε〉 = 2πi lim

ε→0+
〈ψi,LE+iε|HR−RH|ψ

i,L
E+iε〉

where |ψi,Lλ 〉 solves the equation

(λ−H) |ψi,Lλ 〉 = (λ−HLL) |Ei, L〉

i.e.
H |ψi,LE+iε〉 = (E + iε) |ψi,LE+iε〉 − iε |Ei, L〉

It follows (we write |ψi,LE +〉 for |ψi,LE+iε〉)

〈ψi,LE + |HR−RH|ψi,LE +〉 = (E − iε) 〈ψi,LE + |R|ψi,LE +〉+ iε 〈Ei, L|R|ψi,LE +〉−

−(E + iε) 〈ψi,LE + |R|ψi,LE +〉+ iε 〈ψi,LE + |R|Ei, L〉

Here
iε 〈Ei, L|R|ψi,LE +〉 = iε 〈ψi,LE + |R|Ei, L〉 = 0

and thus we are left with

〈ψi,LE + |HR−RH|ψi,LE +〉 = −2iε 〈ψi,LE + |R|ψi,LE +〉

that is,
Pi(E) = 4π lim

ε→0+
ε 〈ψi,LE + |R|ψi,LE +〉
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The limit is of course null only if 〈ψi,LE + |R|ψi,LE +〉 remains finite for ε → 0,
which is not the case here. To see this we notice that the r.h.s is just the square
modulus of the R projection of the improper state, and we explicitly have

〈ψi,LE + |R|ψi,LE +〉 = 〈Ei, L|HLCG
−
CC(E)HCRg

−
R (E)g+R (E)HRCG

+
CC(E)HCL|Ei, L〉

where

g−R (E)g+R (E) =
1

E + iε−HRR

1

E − iε−HRR
=

1

(E −HRR)2 + ε2

or equivalently
lim
ε→0+

εg−R (E)g+R (E) = πδ(E −HRR)

This gives back the previous result

Pi(E) = 4π2Tr
[
G−CC(E)HCRδ(E −HRR)HRCG

+
CC(E)HCL |Ei, L〉 〈Ei, L|HLC

]
here already written as a trace over states of the scattering region. Upon sum-
ming over i and introducing ΓR(E) and ΓL(E) as usual, one then obtains the
above expression, Eq.21, for the cumulative transmission probability.
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