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A simple model for a gas-phase chemical reaction
We consider here a simple model of chemical reaction, a one-dimensional model
system with Hamiltonian

H =
p2

2m
+ V (x)

describing the motion of a point mass on a reaction coordinate. The values of
the potential for x→ ±∞ sets the system energetics, in particular the reaction
energy ∆E = V+∞ − V−∞, and define the reagent and product Hamiltonians

H0
R =

p2

2m
+ V−∞ H0

P =
p2

2m
+ V+∞

(where V±∞ = limx→±∞ V (x) ) which are appropriate to describe the motion of
the free reagents and products, respectively. The configuration space is then par-
titioned into two asymptotic regions, the reagent (R) and product (P) regions,
and an interaction region between them. In Fig. 1 this is accomplished by
defining two “dividing surfaces”, x = xR and x = xP , such that V (xR) ≈ V−∞
and V (xP ) ≈ V+∞.

Fig. 1 also shows a typical energy profile, featuring two potential wells
and an energy barrier. The system energetics (i.e., V− = min{V−∞, V+∞} and
V+ = max{V−∞, V+∞}) determines the nature of the possible motions at a given
total energy E. Specifically, for E < V− (in Fig. 1, V− = V+∞ ) only confined
motions are possible and the spectrum is purely discrete. This follows of course
from the Schrödinger equation in the asymptotic regions(

− ~2

2m

d2

dx2

)
ψ(x) = (E − V∓∞)ψ(x) for x ∈ R,P

from which it is evident that the condition E − V∓∞ ≤ 0 allows evanescent
waves only. With the same token, when E ∈ [V−, V+] it is clear that the motion
is unbound in one direction only, and it is an (elastic) collision in the only
arrangement that is “open ” in this energy range (the product side, in Fig.
1). Any potential bound-state lying in this energy range is actually unbound,
and it is at most a quasi-bound state, i.e. a state that, if carefully prepared,
behaves like a true bound state for a while but in the long run it decays into
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Figure 1: Energy profile of the model chemical reaction considered in the main
text, showing the reagent and product regions (light blue and light red boxes)
and the interaction region. Also shown are the bound states of the system
(horizontal blue lines) and resonances (dotted horizontal lines), and the discrete
and continuous part of the energy spectrum.

the open channel. Reaction is only possible when E ≥ V+, a condition that
guarantees a non-negative kinetic energy in both the reagent and the product
side (T 0

R,P = E − V∓∞ ≥ 0).
Thus, the energy spectrum is continuous for E > V− but only for E > V+ it

is relevant for the reaction. The corresponding energy eigenstates are degenerate
and can be conveniently chosen to describe waves traveling to the right in the P
region (|E,→〉) and waves traveling to the left in theR region (|E,←〉). The first
represents a scattering event in which the system starts from the reagent side
and moves towards the product, producing both a product component (moving
to the right) and a reflected reagent component (moving to the left). As a result,
in the R side one finds both an incoming and an outgoing component, while
in the P side there is a purely outgoing wave. In other words, it holds1

〈x|E,→〉 ∝ exp

(
i

~
p−x

)
+R exp

(
− i
~
p−x

)
for x ∈ R

〈x|E,→〉 ∝ T exp

(
i

~
p+x

)
for x ∈ P

where R, T and amplitude coefficients and p± =
√

2m(E − V±∞) is the appro-
priate momentum for the product/reagent region. Similarly for |E,←〉, which
presents purely outgoing waves in the R region.

1The proportionality constant is here left unspecified. It may be set by enforcing nor-
malization of the vectors on the energy scale, 〈E|E′〉 = δ(E − E′), as implicitly assumed
below.
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In view of the above, we write the energy-based resolution of the identity in
the form

1 =
∑
n

εn |εn〉 〈εn|+
∫ V+

V−

|E〉 〈E| dE +
∑

i=→,←

∫ +∞

V+

|E, i〉 〈E, i| dE

keeping in mind that only the last term on the r.h.s. is relevant for a reactive
event. We expand on this issue in the following, where a time-dependent picture
of such event is established and the reaction probabilities are related to the time
evolution of the wavepacket.

Reaction probability
Let |Ψ0〉 be a state at t = 0 describing a collision process forming the reaction
product, i.e., a state localized in R with solely “rightward” momentum
components. Let ĥP = Θ(x̂ − xP ) be the product projection operator and
Pt[Ψ0] = 〈Ψt|ĥP |Ψt〉 the population of products at time t (the argument Ψ0

reminds us that it depends on the state chosen at time t = 0). Then

Ptf [Ψ0] = Pti [Ψ0] +

∫ tf

ti

〈Ψt|F |Ψt〉 dt

where

FP =
i

~
[H, ĥP ] =

i

2m~

(
p̂[p̂, ĥP ] + [p̂, ĥP ]p̂

)
≡ < (v̂δ(x̂− xP ))

v̂ = p̂/m being the velocity operator. With the above initial state we can
easily take the limit for ti → −∞ since the wavepacket moves “leftward” (i.e.,
it remains in the asymptotic region of the reagents) and thus

P∞[Ψ0] =

∫ +∞

−∞
〈Ψt|FP |Ψt〉 dt

is the appropriate expression for the reaction probability.
Let’s now express such probability in terms of separate energy contributions.

To this end, we notice that when |Ψ0〉 is localized well inside the reagent region
it does not overlap with either the bound states |εn〉 or the unbound states
|E〉 with energy E < V+. Furthermore, since it contains purely right-moving
components in the reagent region, it holds to a good approximation

|Ψ0〉 =
∑
i

∫ +∞

V+

dE |E, i〉 〈E, i|Ψ0〉 ≈
∫ +∞

V+

dE |E,→〉 〈E,→ |Ψ0〉

It follows2, at any time,

|Ψt〉 =

∫
dEe−

i
~Et |E,→〉 〈E,→ |Ψ0〉

2Here and below, we omit the energy range, assuming that it is always that part of the
continuous spectrum that is relevant for the reaction.
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and thus

P∞[Ψ0] =

∫
dE

∫
dE′

∫ +∞

−∞
dte+ i

~ (E′−E)t 〈Ψ0|E′,→〉 〈E′,→ |FP |E,→〉 〈E,→ |Ψ0〉

Integrating over time, upon noticing that it holds∫ +∞

−∞
dte+ i

~ (E′−E)t = 2π~δ(E′ − E)

we get

P∞[Ψ0] =

∫
dEP (E)| 〈E,→ |Ψ0〉 |2

where
P (E) = 2π~ 〈E,→ |FP |E,→〉

is the energy-resolved reaction probability.
Exercise. Compute the reaction probability in the trivial case where V = 0,

i.e., H ≡ H0 = H0
R = H0

P .

Time-to-energy mapping
The energy eigenstates can be obtained either by solving the time independent
Schrödinger equation at energy E (for a range of energies) or by the appropriate
time-to-energy mapping of the dynamics (for all times). We follow the
second route, that closely resembles the physical “collisional” process described
above. Let Φ+

E(x) = 〈x|E,→〉 be the coordinate representation of the required
energy eigenstate. According to the flux expression above,

P (E) =
2π~2

m
=
[(

Φ+
E(xP )

)∗ ∂Φ+
E

∂x
(xP )

]
one only needs the value of Φ+

E and its spatial derivative at the position xP of the
flux-dividing surface (line in our 1D example). For our evolving wavepacket
we have (see above)

Ψt(x) =

∫
dEe−

i
~EtΦ+

E(x) 〈E,→ |Ψ0〉

and
∂Ψt(x)

∂x
=

∫
dEe−

i
~Et ∂Φ+

E(x)

∂x
〈E,→ |Ψ0〉

and thus, upon Fourier transforming,

Φ+
E(x) =

1

2π~ 〈E,→ |Ψ0〉

∫ +∞

−∞
e+ i

~EtΨt(x)dt
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and similarly for its (spatial) derivative. Notice that here, in the product region
(e.g., for x = xP ), it holds Ψt(x) ≡ 0 for t ≤ 0 by construction, hence the integral
above effectively runs over positive times only, i.e. it only requires propagating
the wavepacket forward in time, a rather reasonable result. Hence3,

P (E) =
1

mg(E)
=
[(
ξ+
E (xP )

)∗ ∂ξ+
E

∂x
(xP )

]
where

ξ+
E (x) =

∫ +∞

0

e+ i
~EtΨt(x)dt

∂ξ+
E (x)

∂x
=

∫ +∞

0

e+ i
~Et ∂Ψt(x)

∂x
dt

and
g(E) = 2π| 〈E,→ |Ψ0〉 |2

are energy weights.
Assuming that we are able to follow the wavepacket Ψt(x) for sufficiently

long times t that the contributions of Ψt(xP ) (and its spatial derivative) to the
integrals above become negligible, there remains only to determine g(E), a mea-
sure of the overlap of the initial wavepacket with the desired energy eigenstate.

To this end, we recall once again that our initial wavepacket Ψ0(x) is lo-
calized in the asymptotic region of the reagents, where the appropriate energy
eigenstates takes the form

Φ+
E(x) ≈ N

(
exp

(
i

~
px

)
+R exp

(
− i
~
px

))
= Φin(x) + Φrefl(x)

where N is a normalization constant, p =
√

2m(E − V−∞) and R is an am-
plitude coefficient (the reflection amplitude). In short, it contains both an
incoming and an outgoing component but, by construction, only the first
overlaps with our initial wavepacket, and this is the precisely the same state
that describes a free incoming particle . That is, for our purposes, it holds to
a very good approximation

〈E,→ |Ψ0〉 ≈ 〈E0,→ |Ψ0〉

where |E0,→〉 is a free-particle right-moving state with kinetic energy E0 =
E − V−∞ (normalized on the energy scale). One can further write this overlap
in terms of the amplitude of the momentum wavefunction, since

|E0, i〉 = N(E) |pE〉

whereN(E) is the appropriate normalization constant and pE = ±
√

2m(E − V−∞)
for i =→,← respectively. Since it holds∑

i

∫ +∞

0

dE0 |E0, i〉 〈E0, i| =
∫ +∞

−∞
dp |p〉 〈p|

3We factor out the mass because, though not evident from the model considered here, this
is the mass appropriate for the relative motion of the reaction products.
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and dE0 = pE

m dpE we have

∑
i

∫ +∞

0

dE |E0, i〉 〈E0, i| ≡
∫ +∞

−∞
dp

p

m
N2(E) |p〉 〈p|

from which it follows N2 ≡ m/p = 1
vE

where vE is the particle velocity at energy
E. Hence,

〈E0,→ |Ψ0〉 =
1
√
vE

Ψ0(pE)

and

g(E) =
2π

|vE |
|Ψ0(pE)|2

where pE = +
√

2m(E − V−∞).
Exercise. Let be Ψ0(x) = N exp

(
− (x−x0)2

4∆x2

)
exp

(
i
~p0x

)
where N is a nor-

malization constant and x0, p0 and ∆x are parameters. Find the normalization
constant and show that x0 = 〈Ψ0|x̂|Ψ0〉 and ∆x2 = 〈Ψ0|(x̂− x0)2|Ψ0〉.

Exercise. For the wavefunction above shows that p0 = 〈Ψ0|p̂|Ψ0〉 and that
∆p0 =

√
〈Ψ0|(p̂− p0)2|Ψ0〉 satisfies ∆p = ~/2∆x.

Exercise. For |Ψ0〉 above find the momentum space wavefunction, Ψ0(p).

Absorbing potentials
Numerical implementation (“simulation”) of the scattering dynamics described
above requires, among other things, that the particle is “confined” in a region
of finite dimension, as set, for instance, by the extension of the grid used to
represent the wavefunction in real space. This implies that such confinement
region needs to be augmented with two further regions where an absorbing
potential (a negative imaginary potential) absorbs the wavepacket and prevents
its unphysical behavior at the grid edges. Without such a trick the evaluation of
the flux would be spoiled by, e.g., that part of the wavepacket that gets reflected
at the grid edge. Absorbing potentials can be “optimized” to minimize both
reflection (typical of the low-energy components) and transmission (typical of
high-energy components), and thus effectively implement the open boundary
conditions that are required to describe a scattering process.

In practice, one introduces two non-negative potential terms WR and WP

for the reagent and the product regions and uses the (no longer self-adjoint)
Hamiltonian

H̄ = H − iWR − iWP

where Wi ≡ 0 in the interaction region. For instance, with reference to Fig. 1,
one uses the light boxes to define two finite regions where Wi > 0, small enough
to guarantee a reasonably small grid length, but large enough to guarantee good
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absorption properties4. In this way, the dynamics is unaltered as long as the
wavepacket moves in the interaction region and gets modified only when the
wavepacket enters the asymptotic regions, where its outgoing components are
removed from the grid.

The use of absorbing potentials offers an alternative way to compute the
energy-resolved reaction probabilities

P (E) = 2π~ 〈Φ+
E |FP |Φ+

E〉 |Φ
+
E〉 ≈

1

2π~ 〈E,→ |Ψ0〉

∫ +∞

0

e+ i
~ (E−H̄)t |Ψ0〉 dt

where we have replaced H with H̄ and set the lower limit of the integration to
t = 0 since the energy eigenstates are only needed in the product region where
F localizes. It follows

P (E) =
1

2π~| 〈E,→ |Ψ0〉 |2

∫ +∞

0

∫ +∞

0

〈Ψ̃t|FP |Ψ̃t′〉 dtdt′

where |Ψ̃t〉 = e+ i
~ (E−H̄)t |Ψ0〉. Notice that it holds(

d

dt′
+
d

dt

)
〈Ψ̃t|ĥP |Ψ̃t′〉 = 〈Ψ̃t|FP |Ψ̃t′〉 −

2

~
〈Ψ̃t|WP |Ψ̃t′〉

since [Wi, ĥP ] = 0 and WiĥP = δiRWP . On the other hand, it also holds∫ ∞
0

dt

∫ ∞
0

dt′
(
d

dt′
+
d

dt

)
〈Ψ̃t|ĥP |Ψ̃t′〉 =

∫ ∞
0

dt 〈Ψ̃t|ĥP |Ψ̃t′〉 |t
′=∞
t′=0 +

+

∫ ∞
0

dt′ 〈Ψ̃t|ĥP |Ψ̃t′〉 |t=∞t=0 ≡ 0

since the wavepackets vanish on the long run and have zero amplitude in the
product region P at t = 0. Hence,

P (E) =
1

2π~| 〈E,→ |Ψ0〉 |2
2

~

∫ +∞

0

∫ +∞

0

e
i
~E(t′−t) 〈Ψt|WP |Ψt′〉 dtdt′

which shows that the reaction probability can also be obtained from a correlation
function involving only the wavefunction in the (product) absorbing potential
region.

4One needs also to ensure that the initial wavepacket is not affected by the absorbing
potential. This can be accomplished by either setting WR = 0 in a narrow region x < xR
that it is used to accommodate Ψ0(x) or by “switching on” WR after Ψ0 has moved from the
reagent region.
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