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1 Introduction

In these notes we introduce the coherent states and show their main prop-
erties. The discussion is based on the results contained in the book of Craig
and Thirunamachandran [1] and various papers by Shalashilin and Child
[2, 3, 4, 5], who have developed a coherent-state based method for quan-
tum dynamics, the so-called Coupled Coherent States method. The method
has been successfully applied to a variety of problems [6, 7, 8, 9]. Relations
to semiclassical propagation and real-time path-integral dynamics have also
been discussed [10, 5]. More recent applications of coherent states can be
found in Ref.[11, 12, 13|.



2 Definition

Application of the Schwartz inequality to the basic coordinate-momentum
commutator relationship
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when xy and pg are the average position and momentum, respectively, gives
rise to the well-known Heisenberg uncertainty principle, since in that case

l(x — z0)¥|| = Az and analogously for Ap. The equality sign in the above
equation holds, if and only if,

(P —po) [¢) = alz — z0) [¢))

where « is a complex number (Reaw = 0) related to the coordinate spreading
of the state ((z — x0)¥|(p — po)Y) = Ax?a = ih/2. The above equation
may be rewritten in terms of Az and Ap (which are to be considered as
parameters satisfying the minimum uncertainty AzAp = h/2)
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or, introducing the annihilation operator
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The solution vectors of this eigenvalue equation define the set of coherent
states of coordinate width Az. The eigenvalues z map the complex plane
into the classical phase-space of the system, through the mean values of the
position and momentum observables,

2

<
<

also in the form

xg = 2AzRez and pg = 2ApIlmz

Explicit expressions for the coherent states can be obtained by integrating
the above equation in coordinate representation,

—'h@* .
‘ de 12Aa:2

to get the (normalized) function
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3 Basic properties

3.1 Relation to harmonic oscillators

The operator a defined above (with AzAp = //2) and its adjoint af can be
used to re-write the Harmonic Oscillator (HO) hamiltonian
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once x = 2AzxRea and p = 2Aplma have been inserted and Ax has been
related to the HO frequency using the virial theorem and the known ground-
state energy

hw
€= = 2(V), = mw?Az?
The well-known result is
hw 1
HHO = ?(aafr +a'a) = hw(a'a + 5)

where use has been made of
[a,a’] =1

The operators a,a’ allow one to readily obtain the eigenvalues and eigen-
vectors of this hamiltonian. Indeed, let |¢) be an eigenvector of H7© with
eigenvalue €. From the above commutation relation follows

HHO4T |€) = (e + hw)a |€)

that is, al|¢) is eigenvector of HHO with the eigenvalue (¢ + hw). With
the same token, using the adjoint of H#%at = (e + hw)al, it follows that
a |e) is eigenvector of HO with eigenvalue (e — hw). Now, since the energy
spectrum is bound from below,

2
the eigenvalues must have the form
1
en:hw(n+§) with n € N

and
al0)=0

where |0) is the eigenvector with n = 0 (i.e. eigenvalue hw/2). The last
equation determines the ground-state eigenvector of the HO hamiltonian
and identifies it as a coherent state with g = 0 and py = 0. Excited-state
eigenvectors can be obtained by repeated application of af,

[n) o< ()™ [0)



The proportionality constant follows from the normalization condition ap-
plied to
In+1) = Aal |n)

when the phase has been fixed such that
atln) =vn+1|n+1)

holds. Analogously,
aln) =+/nin—1)
Thus,
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The above expression for the complete set of eigenvectors of H”© can be
used to expand the coherent states in terms of HO eigenstates,

nzoln) (n|z) = Z [n) 0] 7 2)
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where the coefficient (0]z) may be fixed, apart from an irrelevant phase
factor, by the normalization condition
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This is the equation we were looking for. It expresses the generic coherent
state in terms of harmonic oscillators eigenstates and fixes its phase factor.
3.2 Creation operators for coherent states

Equation 2 may be rewritten by explicitly showing the creation of the n-th
state from the ground-state n = 0 (the ‘vacuum’ state), eq. 1. The result is
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2
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where the operator on the r.h.s. is a coherent-state creation operator from
the vacuum. This formula may also be written in another form upon noticing



that e*®|0) = |0), and choosing « in such a way to eliminate the normaliza-
tion factor. The following property

=ee e 2
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which holds whenever [A,[4, B]] = [B, [A, B]] = 0, is of interest.
Its proof is as follows. First let us show that when [A, [A, B]] =0

e MBeM = B+ \A, B

holds. Let be F(\) = e 2 Be; then F'()\) = e *M[A, Ble?M = [A, B] and
thus
F(\) = F(0) + F'(\)A = B + \[A, B]

With this formula at hand let us now consider F'(\) = e*e*? and its deriva-
tive,

F'(\) = AF\) +eMBe ME())
= (A4 MBe M F()) =
(A+ B+ AA,B)F()\)

Since the A integral of the first operator on the left of the r.h.s. commutes
with the operator itself, this equation may be integrated to give

FO\ = eA(A+B)+§[A,B}

The above property follows by using again the commutation relation between
A, B and their commutator.
Now, noting that [a,al] = 1, we have
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and, thus, the choice o = —z* allows to write

0) (5)

where the operator on the r.h.s is a (further) creation operator for coherent
states from the vacuum.

The above equations may be generalized for creation operators out from
arbitrary coherent states. Indeed, application of Eq. 3 allows us to write
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This equation tells us that coherent states may be generated starting with ar-
bitrary coherent states upon application of an appropriate creation operator.
Changing the notation, it is not hard to show that

lz—a|?
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which generalizes eq. 3 to arbitrary starting vectors. The interpretation of
this formula is simple: it arises from an « translation in the complex plane,
and |«) is the vacuum state of the operator (a — ).

3.3 Completeness relation

The set of coherent states of a given width is non-orthogonal. The generic
overlap matrix element follows directly from eq. 2
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However, the set is complete and forms what it is called a #ight frame.
The proof is as follows. Let us consider the following integral (operator)
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where eq. 2 has been used. The integrals on the r.h.s. are standard
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once the polar coordinates have been introduced, and therefore we get

1/d2zyz> (2 =1 (10)
w
where the completeness property of the HO eigenstates has been used.

Note that in the above derivation we haven’t used any specific property
of the HO states other than orthogonality and completeness; it follows that
the same relation holds for any set defined by eq. 2 in terms of a complete!,
orthonormal set {|n)}. The above equation 2, therefore, maps hilbert spaces
into classical phase-spaces.

!More generally, if the original set is not complete “1” has to replaced with the appro-
priate projection operator.



3.4 Derivatives

The creation operator for coherent state used in eq. 3 may be employed to
get explicit expressions for the derivatives of an arbitrary coherent state with
respect to a parameter A upon which z may depend. Let then be z = z(\),
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where |g—§> has not to be confused with the coherent state corresponding to
the complex number dz/d\ (actually, d|z) /d\ is not a coherent state). In
particular, for 2’ = z, eq. 12 becomes

dz dz
z|—=<) =ilm [ ——2*
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Analogously, one may obtain explicit expressions for higher derivatives and
overlap matrix elements between derivatives and coherent states. For exam-

ple,
H&)_-I 2z, 2 (%) dzdZ
e TR et A dX dA

Note that in the above manipulation it is not straightforward to employ
the creation operator for coherent states used in eq. 5. The reason is that
the derivative of A(z) = zal —2*a, i.e. A'(2) = 2'a’ —2*a, does not commute
with A itself ( [A, A'] = 2ilm(z2"*) ) and thus the theorem of the derivative
of a compound function cannot be applied to f(A4) = exp(A). Indeed, from
the definition of f'(A)

=eMA —[A4, A2

where use has been made of eq. 4.

4 Time-evolution

4.1 Harmonic oscillator

The discussion of section 3.1 suggests that coherent states of width Ax have
a simple time-evolution under under the action of the harmonic oscillator



hamiltonian with frequency w = h/2mAx?. Indeed, using eq. 2,
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Thus, under the action of the HO hamiltonian a coherent state remains
coherent and its representative point z moves in the complex plane just
like the classical coordinates and momenta move classically in phase-space
(2 = —iwz means © = p/m and p = —mw?z). Note that the average energy
of the system in a coherent state |z) is given by

mw?rd  hw
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that is, it is function of the modulus of the complex number z.

4.2 Shifted harmonic oscillator
Let us now consider the hamiltonian with a general ‘coupling’ linear in a and
al,
1
H = hw(a'a + 5) — (B%a + Bal)

Putting 8 = Aw, we get
1
H = hw(bTb + )~ 162

where the operator b = a — A has been introduced. Addition of a general
linear term to an HO hamiltonian gives rise to another HO hamiltonian (as
it should be) with shifted creation/annihilation operators, bf and b. The
‘vacuum’ state of the operator b is the coherent state vector |[A). It may be
used to obtain the eigenvectors of H,

T\n

ny) = i

Hna) = huo(na + ) — |61

where the subscript A remember us that they refer to the ‘shifted” HO hamil-
tonian, Hy = hw(b’b+ 3). The time-evolution of a coherent state |2o) under



the action of the above hamiltonian may thus be obtained by using the gen-
eral creation operator defined in eq. 7 to write

2
|z0) = B O R C |A)

and the spectral representation of the hamiltonian. After some manipula-
tions, the result can be put in the form

iy e Ry iim(M (2i—20))
e 'Rt =e 2T R e 120 |Zt>

where z; = A + (20 — A)e” ™! or, equivalently,
2:’15 = —iw(zt — )\)
Therefore, the coherent state remains coherent and its representative point
moves ‘classically’ in the complex plane.
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