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1 Introduction

In these notes we introduce the coherent states and show their main prop-
erties. The discussion is based on the results contained in the book of Craig
and Thirunamachandran [1] and various papers by Shalashilin and Child
[2, 3, 4, 5], who have developed a coherent-state based method for quan-
tum dynamics, the so-called Coupled Coherent States method. The method
has been successfully applied to a variety of problems [6, 7, 8, 9]. Relations
to semiclassical propagation and real-time path-integral dynamics have also
been discussed [10, 5]. More recent applications of coherent states can be
found in Ref.[11, 12, 13].
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2 De�nition

Application of the Schwartz inequality to the basic coordinate-momentum
commutator relationship

i~ = 〈ψ| [x− x0, p− p0] |ψ〉 = 2iIm 〈(x− x0)ψ|(p− p0)ψ〉

~
2

= Im 〈(x− x0)ψ|(p− p0)ψ〉

≤ | 〈(x− x0)ψ|(p− p0)ψ〉 |
≤ ‖(x− x0)ψ‖ ‖(p− p0)ψ‖

when x0 and p0 are the average position and momentum, respectively, gives
rise to the well-known Heisenberg uncertainty principle, since in that case
‖(x− x0)ψ‖ = ∆x and analogously for ∆p. The equality sign in the above
equation holds, if and only if,

(p− p0) |ψ〉 = α(x− x0) |ψ〉

where α is a complex number (Reα = 0) related to the coordinate spreading
of the state 〈(x− x0)ψ|(p− p0)ψ〉 = ∆x2α = i~/2. The above equation
may be rewritten in terms of ∆x and ∆p (which are to be considered as
parameters satisfying the minimum uncertainty ∆x∆p = ~/2){

x

2∆x
+ i

p

2∆p

}
|ψ〉 =

{
x0

2∆x
+ i

p0

2∆p

}
|ψ〉

or, introducing the annihilation operator

a =
{

x

2∆x
+ i

p

2∆p

}
also in the form

(a− z) |ψ〉 = 0

The solution vectors of this eigenvalue equation de�ne the set of coherent
states of coordinate width ∆x. The eigenvalues z map the complex plane
into the classical phase-space of the system, through the mean values of the
position and momentum observables,

x0 = 2∆xRez and p0 = 2∆pImz

Explicit expressions for the coherent states can be obtained by integrating
the above equation in coordinate representation,

−i~dψ
dx

=
{
i

~
2∆x2

(x− x0) + p0

}
ψ

to get the (normalized) function

ψ(x) =
(

1
2π∆x2

)1/4

e−
(x−x0)2

4∆x2 +i
p0(x−x0)

~
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3 Basic properties

3.1 Relation to harmonic oscillators

The operator a de�ned above (with ∆x∆p = ~/2) and its adjoint a† can be
used to re-write the Harmonic Oscillator (HO) hamiltonian

HHO =
p2

2m
+
mω2x2

2

once x = 2∆xRea and p = 2∆pIma have been inserted and ∆x has been
related to the HO frequency using the virial theorem and the known ground-
state energy

ε0 =
~ω
2

= 2 〈V 〉0 = mω2∆x2

The well-known result is

HHO =
~ω
2

(aa† + a†a) = ~ω(a†a+
1
2

)

where use has been made of
[a, a†] = 1

The operators a, a† allow one to readily obtain the eigenvalues and eigen-
vectors of this hamiltonian. Indeed, let |ε〉 be an eigenvector of HHO with
eigenvalue ε. From the above commutation relation follows

HHOa† |ε〉 = (ε+ ~ω)a† |ε〉

that is, a† |ε〉 is eigenvector of HHO with the eigenvalue (ε + ~ω). With
the same token, using the adjoint of HHOa† = (ε + ~ω)a†, it follows that
a |ε〉 is eigenvector of HHO with eigenvalue (ε− ~ω). Now, since the energy
spectrum is bound from below,〈

HHO
〉
≥ ~ω

2

the eigenvalues must have the form

εn = ~ω(n+
1
2

) with n ∈ N

and
a |0〉 = 0

where |0〉 is the eigenvector with n = 0 (i.e. eigenvalue ~ω/2). The last
equation determines the ground-state eigenvector of the HO hamiltonian
and identi�es it as a coherent state with x0 = 0 and p0 = 0. Excited-state
eigenvectors can be obtained by repeated application of a†,

|n〉 ∝ (a†)n |0〉
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The proportionality constant follows from the normalization condition ap-
plied to

|n+ 1〉 = λa† |n〉

when the phase has been �xed such that

a† |n〉 =
√
n+ 1 |n+ 1〉

holds. Analogously,
a |n〉 =

√
n |n− 1〉

Thus,

|n〉 =
(a†)n√
n!
|0〉 (1)

The above expression for the complete set of eigenvectors of HHO can be
used to expand the coherent states in terms of HO eigenstates,

|z〉 =
∞∑
n=0

|n〉 〈n|z〉 =
∞∑
n=0

|n〉 〈0| a
n

√
n!
|z〉

= 〈0|z〉
∞∑
n=0

zn√
n!
|n〉

where the coe�cient 〈0|z〉 may be �xed, apart from an irrelevant phase
factor, by the normalization condition

| 〈z|z〉 |2 = | 〈0|z〉 |2
∞∑
n=0

z2n

n!
= | 〈0|z〉 |2e−|z|2 = 1

i.e.

|z〉 = e−
|z|2

2

∞∑
n=0

zn√
n!
|n〉 (2)

This is the equation we were looking for. It expresses the generic coherent
state in terms of harmonic oscillators eigenstates and �xes its phase factor.

3.2 Creation operators for coherent states

Equation 2 may be rewritten by explicitly showing the creation of the n-th
state from the ground-state n = 0 (the `vacuum' state), eq. 1. The result is

|z〉 = e−
|z|2

2 eza
† |0〉 (3)

where the operator on the r.h.s. is a coherent-state creation operator from
the vacuum. This formula may also be written in another form upon noticing
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that eαa |0〉 = |0〉, and choosing α in such a way to eliminate the normaliza-
tion factor. The following property

eA+B = eAeBe−
1
2
[A,B] (4)

which holds whenever [A, [A,B]] = [B, [A,B]] = 0, is of interest.
Its proof is as follows. First let us show that when [A, [A,B]] = 0

e−λABeλA = B + λ[A,B]

holds. Let be F (λ) = e−λABeλA; then F ′(λ) = e−λA[A,B]eλA ≡ [A,B] and
thus

F (λ) ≡ F (0) + F ′(λ)λ = B + λ[A,B]

With this formula at hand let us now consider F (λ) = eλAeλB and its deriva-
tive,

F ′(λ) = AF (λ) + eλABe−λAF (λ)
= (A+ eλABe−λA)F (λ) =
(A+B + λ[A,B])F (λ)

Since the λ integral of the �rst operator on the left of the r.h.s. commutes
with the operator itself, this equation may be integrated to give

F (λ) = eλ(A+B)+λ2

2
[A,B]

The above property follows by using again the commutation relation between
A, B and their commutator.

Now, noting that [a, a†] = 1, we have

eza
†
eαa = eza

†+αae−
zα
2

and, thus, the choice α = −z∗ allows to write

|z〉 = eza
†−z∗a |0〉 (5)

where the operator on the r.h.s is a (further) creation operator for coherent
states from the vacuum.

The above equations may be generalized for creation operators out from
arbitrary coherent states. Indeed, application of Eq. 3 allows us to write

eλa
† |z〉 = e−

|z|2
2 e(λ+z)a† |0〉 = e

|λ+z|2−|z|2
2 |λ+ z〉

or

e−
|λ|2

2 eλa
† |z〉 = eRe(λ

∗z) |λ+ z〉 (6)
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This equation tells us that coherent states may be generated starting with ar-
bitrary coherent states upon application of an appropriate creation operator.
Changing the notation, it is not hard to show that

|z〉 = eiIm(α∗z)e−
|z−α|2

2 e(z−α)(a−α)† |α〉 (7)

which generalizes eq. 3 to arbitrary starting vectors. The interpretation of
this formula is simple: it arises from an α translation in the complex plane,
and |α〉 is the vacuum state of the operator (a− α).

3.3 Completeness relation

The set of coherent states of a given width is non-orthogonal. The generic
overlap matrix element follows directly from eq. 2

〈z|z′〉 = e−
|z|2

2 e−
|z′|2

2

∞∑
n=0

z′n(z∗)n

n!
= ez

∗z′− |z|
2

2
− |z
′|2
2 (8)

and satis�es
| 〈z|z′〉 |2 = e−|z−z

′|2 (9)

However, the set is complete and forms what it is called a tight frame.
The proof is as follows. Let us consider the following integral (operator)

1
π

∫
d2z |z〉 〈z| = 1

π

∞∑
n,m

|n〉 〈m|√
n!m!

∫
e−|z|

2
zn(z∗)md2z

where eq. 2 has been used. The integrals on the r.h.s. are standard∫ 2π

0
ei(n−m)θdθ = 2πδnm and

∫ ∞
0

e−r
2
r2n+1dr =

n!
2

once the polar coordinates have been introduced, and therefore we get

1
π

∫
d2z |z〉 〈z| = 1 (10)

where the completeness property of the HO eigenstates has been used.
Note that in the above derivation we haven't used any speci�c property

of the HO states other than orthogonality and completeness; it follows that
the same relation holds for any set de�ned by eq. 2 in terms of a complete1,
orthonormal set {|n〉}. The above equation 2, therefore, maps hilbert spaces
into classical phase-spaces.

1More generally, if the original set is not complete �1� has to replaced with the appro-

priate projection operator.
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3.4 Derivatives

The creation operator for coherent state used in eq. 3 may be employed to
get explicit expressions for the derivatives of an arbitrary coherent state with
respect to a parameter λ upon which z may depend. Let then be z = z(λ),

d

dλ
|z〉 =

(
−1

2
d|z|2

dλ
+
dz

dλ
a†
)
e−
|z|2

2
+za† |0〉

=
(
−1

2
d|z|2

dλ
+
dz

dλ
a†
)
|z〉 (11)

It follows

〈z′|dz
dλ
〉 =

(
−1

2
d|z|2

dλ
+
dz

dλ
z′∗
)
〈z′|z〉 (12)

where | dzdλ〉 has not to be confused with the coherent state corresponding to
the complex number dz/dλ (actually, d |z〉 /dλ is not a coherent state). In
particular, for z′ = z, eq. 12 becomes

〈z|dz
dλ
〉 = iIm

(
dz

dλ
z∗
)

Analogously, one may obtain explicit expressions for higher derivatives and
overlap matrix elements between derivatives and coherent states. For exam-
ple,

〈z|d
2z

dλ2
〉 = iIm

(
d2z

dλ2
z∗
)
− Im2

(
dz

dλ
z∗
)
− dz

dλ

dz∗

dλ

Note that in the above manipulation it is not straightforward to employ
the creation operator for coherent states used in eq. 5. The reason is that
the derivative of A(z) = za†−z∗a, i.e. A′(z) = z′a†−z′∗a, does not commute
with A itself ( [A,A′] = 2iIm(zz′∗) ) and thus the theorem of the derivative
of a compound function cannot be applied to f(A) = exp(A). Indeed, from
the de�nition of f ′(A)

f ′(A) = limh→0
eA+A′h − eA

h

= limh→0
eAeA

′he−
h
2
[A,A′] − eA

h

= eA(A′ − [A,A′]/2)

where use has been made of eq. 4.

4 Time-evolution

4.1 Harmonic oscillator

The discussion of section 3.1 suggests that coherent states of width ∆x have
a simple time-evolution under under the action of the harmonic oscillator
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hamiltonian with frequency ω = ~/2m∆x2. Indeed, using eq. 2,

e−
HHO

~ t |z0〉 = e−
HHO

~ te−
|z0|

2

2

∞∑
n=0

zn0√
n!
|n〉

= e−
|z0|

2

2

∞∑
n=0

zn0√
n!
e−i(n+ 1

2
)ωt |n〉

i.e. with zt = z0e
−iωt,

e−
HHO

~ t |z0〉 = e−
i
2
ωt |zt〉

Thus, under the action of the HO hamiltonian a coherent state remains
coherent and its representative point z moves in the complex plane just
like the classical coordinates and momenta move classically in phase-space
(ż = −iωz means ẋ = p/m and ṗ = −mω2x). Note that the average energy
of the system in a coherent state |z〉 is given by

〈
HHO

〉
= ~ω(|z|2 +

1
2

) =
p2
0

2m
+
mω2x2

0

2
+

~ω
2

that is, it is function of the modulus of the complex number z.

4.2 Shifted harmonic oscillator

Let us now consider the hamiltonian with a general `coupling' linear in a and
a†,

H = ~ω(a†a+
1
2

)− (β∗a+ βa†)

Putting β = ~ωλ, we get

H = ~ω(b†b+
1
2

)− |β|2

where the operator b = a − λ has been introduced. Addition of a general
linear term to an HO hamiltonian gives rise to another HO hamiltonian (as
it should be) with shifted creation/annihilation operators, b† and b. The
`vacuum' state of the operator b is the coherent state vector |λ〉. It may be
used to obtain the eigenvectors of H,

|nλ〉 =
(b†)n√
n!
|λ〉

H |nλ〉 = ~ω(nλ +
1
2

)− |β|2

where the subscript λ remember us that they refer to the `shifted' HO hamil-
tonian, Hλ = ~ω(b†b+ 1

2). The time-evolution of a coherent state |z0〉 under
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the action of the above hamiltonian may thus be obtained by using the gen-
eral creation operator de�ned in eq. 7 to write

|z0〉 = eiIm(λ∗z0)e−
|z0−λ|

2

2 e(z0−λ)b† |λ〉

and the spectral representation of the hamiltonian. After some manipula-
tions, the result can be put in the form

e−i
H
~ t = e−i(

ω
2
+
|β|2

~ )te−iIm(λ∗(zt−z0)) |zt〉

where zt = λ+ (z0 − λ)e−iωt or, equivalently,

żt = −iω(zt − λ)

Therefore, the coherent state remains coherent and its representative point
moves `classically' in the complex plane.
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