The role of phonons

Rocco Martinazzo

Dipartimento di Chimica Fisica ed Elettrochimica Università degli Studi, Milano, Italy

Dynamics of molecule-surface reactions Universiteit Leiden, Nov 24-25, 2011

"Active" role

CH₄ on Ir(111)

G. Henkelman and H. Jonsson, Phys. Rev. Lett. 86, 664 (2001)

CH₄ on Ni(100)

S. Nave and B. Jackson, *Phys. Rev. Lett.* **98**, 173003 (2007)

"Active" role

H adsorption on graphene(ite)

L. Jeloaica and V. Sidis, *Chem. Phys. Lett.* **300**, 157 (1999) X. Sha and B. Jackson, *Surf. Sci.* **496**, 318 (2002)

"Passive" role

Sticking of simple atoms

- Basics
 - Linear chain model
 - Scattering from real surfaces
- 2 Reduced dynamical models
 - Traditional models
 - System-bath models
- 3 Dynamics
 - The methods
 - Examples

- Basics
 - Linear chain model
 - Scattering from real surfaces
- Reduced dynamical models
 - Traditional models
 - System-bath models
- 3 Dynamics
 - The methods
 - Examples

- Basics
 - Linear chain model
 - Scattering from real surfaces
- Reduced dynamical models
 - Traditional models
 - System-bath models
- 3 Dynamics
 - The methods
 - Examples

- Basics
 - Linear chain model
 - Scattering from real surfaces
- 2 Reduced dynamical models
 - Traditional models
 - System-bath models
- 3 Dynamics
 - The methods
 - Examples

Scattering from a linear chain

.. a simple model:

z = height of the projectile, $u_i = x_n - x_n^0 = n$ -th atom displacement

$$H = \frac{p_z^2}{2m} + v_P(z - u_1) + \sum_{n=1}^{\infty} \left\{ \frac{p_n^2}{2M} + \frac{M\Omega^2}{2} (u_{n+1} - u_n)^2 \right\}$$

$$\dot{z} = \frac{\partial H}{\partial p_z}, \dot{p_z} = -\frac{\partial H}{\partial z}$$

$$\dot{u}_n = \frac{\partial H}{\partial p_n}, \, \dot{p}_n = -\frac{\partial H}{\partial u_n}$$

Scattering from a linear chain

Hamilton's equations read as

$$\begin{split} \ddot{m\ddot{z}} &= & -\frac{\partial v_{P}}{\partial z}(z-u_{1})\\ & ...\\ \ddot{M\ddot{u}}_{1} &= & +\frac{\partial v_{P}}{\partial z}(z-u_{1}) + M\Omega^{2}(u_{2}-u_{1})\\ & ...\\ \ddot{M\ddot{u}}_{n} &= & -M\Omega^{2}(2u_{n}-u_{n+1}-u_{n-1}) \end{split}$$

..yet too complex to be analytically solved..

Impulsive limit

"Fast" collision ($\tau \ll \Omega^{-1}$): the projectile leaves the chain unchanged except for an impulse on the outermost atom..

Binary collision..

.. Energy propagation

Energy propagation (outline)

Normal mode (phonon) transformation:

$$\begin{split} H^{chain} &= \sum_{n=1}^{\infty} \left\{ \frac{p_n^2}{2M} + \frac{M\Omega^2}{2} (u_{n+1} - u_n)^2 \right\} \\ X_k &= \sqrt{\frac{2}{\pi}} \sum_{n=1}^{\infty} \sin(nk) u_n \\ P_k &= \sqrt{\frac{2}{\pi}} \sum_{n=1}^{\infty} \sin(nk) p_n \\ & & \downarrow \\ H^{chain} &= \int_0^{\pi} \left\{ \frac{p_k^2}{2M} + \frac{M\omega(k)^2}{2} X_k^2 \right\} \\ \omega(k)^2 &= 4\Omega^2 \sin^2(k/2) \\ u_n &= \sqrt{\frac{2}{\pi}} \int_0^{\infty} \sin(kn) X_k dk \\ p_n &= \sqrt{\frac{2}{\pi}} \int_0^{\infty} \sin(kn) P_k dk \end{split}$$

Energy propagation (outline)

Normal modes are independent oscillators:

$$X_k(t) = X_k(0)cos(\omega(k)t) + \frac{P_k(0)}{M\omega(k)}sin(\omega(k)t)$$

$$u_n(0) \equiv 0$$
 $p_n(0) \equiv \delta_{1n}P$
 $\downarrow \downarrow$
 $X_k(0) = 0$ $P_k(0) = \sqrt{\frac{2}{\pi}}sin(k)P$
 $\downarrow \downarrow$

$$u_n(t) = rac{2P}{\pi M} \int_0^\infty rac{\sin(kn)\sin(k)\sin(\omega(k)t)}{\omega(k)} dk$$

Energy propagation (outline)

Normal modes are independent oscillators:

$$X_k(t) = X_k(0)cos(\omega(k)t) + \frac{P_k(0)}{M\omega(k)}sin(\omega(k)t)$$
 $u_n(0) \equiv 0 \qquad p_n(0) \equiv \delta_{1n}P$

$$X_k(0) = 0$$
 $P_k(0) = \sqrt{\frac{2}{\pi}} sin(k)P$

1

$$u_n(t) = rac{2P}{\pi M} \int_0^\infty rac{\sin(kn)\sin(k)\sin(\omega(k)t)}{\omega(k)} dk$$

Energy transfer occurs to the first chain atom only...

Surface atom (S)
$$M, \mathbf{v}_S^i = \mathbf{0}$$

Projectile atom (P)

$$E = \frac{\mathbf{p}_P^2}{2m} + \frac{\mathbf{p}_S^2}{2M} \equiv \frac{\mathbf{p}^2}{2(M+m)} + \frac{\mathbf{p}^2}{2\mu} \equiv const$$

$$\mathbf{p} = \mu(\mathbf{v}_P - \mathbf{v}_S) \quad \frac{1}{\mu} = \frac{1}{m} + \frac{1}{M}$$

$$\mathbf{p} = \text{momentum of the relative motion}$$

$$\downarrow \downarrow$$

 $p_i = p_f$

 $P = mv_P + Mv_S \equiv const$

Energy transfer occurs to the first chain atom only..

$$\left\{ \begin{array}{ll} \boldsymbol{P} = & \boldsymbol{p}_P + \boldsymbol{p}_S \\ \\ \boldsymbol{p} = & \mu \left(\frac{\boldsymbol{p}_P}{m} - \frac{\boldsymbol{p}_S}{m} \right) \end{array} \right. \iff \left\{ \begin{array}{ll} \boldsymbol{p}_P = & \frac{m}{m+M} \boldsymbol{P} + \boldsymbol{p} \\ \\ \boldsymbol{p}_S = & \frac{M}{m+M} \boldsymbol{P} - \boldsymbol{p} \end{array} \right.$$

$$\left\{ \begin{array}{ll} \boldsymbol{p}_{P}^{i} = & \frac{m}{m+M}\boldsymbol{P} + \frac{M}{m+M}\boldsymbol{P} \equiv \boldsymbol{P} \\ \boldsymbol{p}_{S}^{i} = & \boldsymbol{0} \end{array} \right. \left. \left\{ \begin{array}{ll} \boldsymbol{p}_{P}^{f} = & \frac{m-M}{m+M}\boldsymbol{P} \\ \boldsymbol{p}_{S}^{f} = & \frac{2M}{m+M}\boldsymbol{P} \end{array} \right. \right.$$

Initial

Final

$$\delta\epsilon_{P}=\epsilon_{P}^{i}-\epsilon_{P}^{f}=$$
 energy transfer to the surface

$$\delta\epsilon_{P} \equiv \epsilon_{S}^{f} = \frac{1}{2M} \left(\frac{2M}{M+m} P \right)^{2} = \frac{4Mm}{(M+m)^{2}} \frac{P^{2}}{2m}$$

$$\epsilon_{P}^{f} = \frac{1}{2m} \left(\frac{m-M}{M+m} P \right)^{2} = \left(\frac{\alpha-1}{\alpha+1} \right)^{2} \frac{P^{2}}{2m}$$

$$\delta\epsilon_{P} = \frac{4\alpha}{(1+\alpha)^{2}} \epsilon_{P}^{i}$$

$$\epsilon_{P}^{f} = \left(\frac{1-\alpha}{1+\alpha} \right)^{2} \epsilon_{P}^{i}$$

$$\alpha = m/M = \text{mass ratio}$$

 $\epsilon_P^i = \text{collision energy}$

$\delta \epsilon_P$ is maximum for $\alpha \to 1$

α

Sticking in the impulsive limit

Sticking condition:

$$\epsilon_P^f = \epsilon_P^i - \delta \epsilon_P < 0$$

$$\delta\epsilon_P = rac{4lpha}{(1+lpha)^2} \left(\epsilon_P^i + rac{m{V_0}}{}
ight)$$

$$\epsilon_P^i < rac{4lpha}{(1-lpha)^2} rac{V_0}{0} \equiv \epsilon_{th}$$

 $\epsilon_{\it th} = {\it threshold energy for } {\it sticking}$

Sticking in the impulsive limit

Sticking condition:

$$\epsilon_P^f = \epsilon_P^i - \delta \epsilon_P < 0$$

$$\delta\epsilon_P = rac{4lpha}{(1+lpha)^2} \left(\epsilon_P^i + rac{m{V_0}}{}
ight)$$

$$\epsilon_P^i < rac{4lpha}{(1-lpha)^2}rac{ extsf{V}_0}{0} \equiv \epsilon_{th}$$

 $\epsilon_{th} = {
m threshold \ energy \ for} \ {
m sticking}$

Binary collisions at work

$$\delta \epsilon_P = f \epsilon_P^i + E_0, E_0$$
?

$$f = f(\alpha) = \frac{4\alpha}{(1+\alpha)^2}$$
?

H. F. Winters, H. Coufal, C. T. Rettner and D. S. Bethune, Phys. Rev. B, 41 (1990) 6240

Binary collisions at work

 E_0 is related to $R_g^+ + M \rightarrow R_g + M^+$

P undergoes multiple collisions with S atoms!!

H. F. Winters, H. Coufal, C. T. Rettner and D. S. Bethune, Phys. Rev. B, 41 (1990) 6240

Real surfaces are not linear chains; non-collinear collisions...

Surface atom (S)
$$M, \mathbf{v}_{S}^{i} = \mathbf{0}$$

Projectile atom (P)

$$P = m\mathbf{v}_P + M\mathbf{v}_S \equiv const$$
 $E = \frac{\mathbf{p}_P^2}{2m} + \frac{\mathbf{p}_S^2}{2M} \equiv \frac{\mathbf{p}^2}{2(M+m)} + \frac{\mathbf{p}^2}{2\mu} \equiv const$
 $\mathbf{p} = \mu(\mathbf{v}_P - \mathbf{v}_S) \quad \frac{1}{\mu} = \frac{1}{m} + \frac{1}{M}$
 $\mathbf{p} = \text{momentum of the relative motion}$
 $\downarrow \downarrow$
 $p_i = p_f$

Real surfaces are not linear chains: non-collinear collisions...

$$\left\{ \begin{array}{ll} \boldsymbol{P} = & \boldsymbol{p}_P + \boldsymbol{p}_S \\ \\ \boldsymbol{p} = & \mu \left(\frac{\boldsymbol{p}_P}{m} - \frac{\boldsymbol{p}_S}{m} \right) \end{array} \right. \iff \left\{ \begin{array}{ll} \boldsymbol{p}_P = & \frac{m}{m+M} \boldsymbol{P} + \boldsymbol{p} \\ \\ \boldsymbol{p}_S = & \frac{M}{m+M} \boldsymbol{P} - \boldsymbol{p} \end{array} \right.$$

$$\left\{ \begin{array}{ll} \boldsymbol{p}_{P}^{i} = & \frac{m}{m+M}\boldsymbol{P} + \frac{M}{m+M}\boldsymbol{P} \equiv \boldsymbol{P} \\ \boldsymbol{p}_{S}^{i} = & \boldsymbol{0} \end{array} \right. \quad \left\{ \begin{array}{ll} \boldsymbol{p}_{P}^{f} = & \frac{m}{m+M}\boldsymbol{P} + \boldsymbol{p}^{f} \\ \boldsymbol{p}_{S}^{f} = & \frac{M}{m+M}\boldsymbol{P} - \boldsymbol{p}^{f} \end{array} \right.$$

 χ = scattering angle in the c.o.m. reference system

 θ = scattering angle in the lab reference system

$\delta \epsilon_P$ in terms of χ

$$\delta\epsilon_{P} \equiv \epsilon_{S}^{f} = \frac{1}{2M} \left(\frac{M}{M+m} \mathbf{P} - \mathbf{p}_{f} \right)^{2} =$$

$$\frac{1}{2M} \left(\frac{M}{M+m} \right)^{2} P^{2} \left(\hat{\mathbf{n}}^{i} - \hat{\mathbf{n}}^{f} \right)^{2} =$$

$$\frac{mM}{(m+M)^{2}} \frac{P^{2}}{2m} \left(\hat{\mathbf{n}}^{i} - \hat{\mathbf{n}}^{f} \right)^{2}$$

$$\delta\epsilon_P = rac{4lpha}{(1+lpha)^2}\epsilon_P^i\sin^2(rac{\chi}{2})$$

 $\alpha = m/M = \text{mass ratio}$ $\epsilon_P^i = \text{collision energy}$

 $\delta \epsilon_P$ is maximum for back-scattering (in c.o.m.), i.e. $\chi = \pi$, ...

$$\delta \epsilon_P^{max} = 4\alpha/(1+\alpha)^2 \epsilon_P^i$$

ϵ_{P}^{f} in terms of χ

$$\begin{split} \epsilon_P^f &= \frac{{\boldsymbol p}_P^f}{2m} = \frac{1}{2m} \left(\frac{m}{M+m} {\boldsymbol P} + {\boldsymbol p}_f \right)^2 = \\ &= \frac{P^2}{2m} \frac{M^2 + m^2 + 2mM\cos\chi}{(m+M)^2} \end{split}$$

$$\epsilon_P^f = \frac{1 + \alpha^2 + 2\alpha \cos \chi}{(1 + \alpha)^2} \epsilon_P^i$$

 $\alpha = m/M = \text{mass ratio}$ $\epsilon_P^i = \text{collision energy}$

ϵ_{P}^{f} in terms of θ

$$\left(\mathbf{p}_{P}^{f} - \frac{m}{m+M}\mathbf{P}\right)^{2} = p^{f2}$$

$$p_{P}^{f} = \frac{m}{m+M}P\cos\theta + \frac{P}{M+m}\sqrt{M^{2} - m^{2}\sin^{2}\theta}$$

$$\epsilon_P^f = \frac{\left(\alpha\cos\theta + \sqrt{1 - \alpha^2\sin^2\theta}\right)^2}{(1 + \alpha)^2}\epsilon_P^i$$

$$\alpha = m/M = \text{mass ratio}$$

 $\epsilon_P^i = \text{collision energy}$

Note: For $\alpha > 1$ there exists a maximum scattering angle

$$\frac{m}{M+m}P\sin\theta_{max}=\frac{M}{M+m}P$$

$$\sin \theta_{max} = \frac{1}{\alpha}$$

which only depends on the mass ratio

Scattering in the binary limit

Scattering from a flat surface

H. F. Winters, H. Coufal, C. T. Rettner and D. S. Bethune, Phys. Rev. B, 41 (1990) 6240

Upon application of
$$\epsilon_P^f = \left(\alpha \cos \theta + \sqrt{1 - \alpha^2 \sin^2 \theta} \right)^2 / (1 + \alpha)^2 \epsilon_P^i$$

H. F. Winters, H. Coufal, C. T. Rettner and D. S. Bethune, Phys. Rev. B, 41 (1990) 6240

D. M. Goodstein, R. L. McEachern and B. H. Cooper, Phys. Rev. B, 39 (1989) 13129

III. Binary collision: surface temperature

Surface atoms are not at rest..

Surface atom (S) M,v

In the frame ~, $\tilde{\mathbf{v}}_{\mathcal{S}}^{i}=0$ and everything proceeds as before, with..

$$\mathbf{v}_{P}^{i} = \tilde{\mathbf{v}}_{P}^{i} + \mathbf{v}_{S}^{i}$$

$$\epsilon_{P}^{i} = \tilde{\epsilon}_{P}^{i} + \frac{1}{2}m\mathbf{v}_{S}^{i}2 + m\tilde{\mathbf{v}}_{P}^{i}\mathbf{v}_{S}^{i}$$

$$\epsilon_{P}^{f} = \tilde{\epsilon}_{P}^{f} + \frac{1}{2}m\mathbf{v}_{S}^{i}2 + m\tilde{\mathbf{v}}_{P}^{f}\mathbf{v}_{S}^{i}$$

$$\delta\epsilon_{P} = \delta\tilde{\epsilon}_{P} + (\tilde{\mathbf{p}}_{P}^{i} - \tilde{\mathbf{p}}_{P}^{f})\mathbf{v}_{S}^{i}$$

III. Binary collision: surface temperature

Surface atoms are not at rest...

Surface atom (S)

Μ,**ν**_S

For collinear collisions

$$\tilde{\boldsymbol{p}}_P^i - \tilde{\boldsymbol{p}}_P^f = \frac{2Mm}{M+m}(v_P^i - v_S^i)$$

$$\delta \tilde{\epsilon}_P = \frac{4\alpha}{(1+\alpha)^2} \frac{m}{2} (v_P^i - v_S^i)^2$$

Upon averaging $(\langle v_P^i v_S^i \rangle = 0)$..

$$\delta\epsilon_P = \frac{4\alpha}{(1+\alpha)^2} (\epsilon_P^i - \langle \epsilon_S^i \rangle)$$

$$\langle \epsilon_S^i \rangle \sim k_B T$$

Summary

- Energy transfer is primarly controlled by the mass-ratio $\alpha = \frac{m}{M}$
- Energy transfer is most efficient for back-scattering
- The binary collision model works fine at high energies, provided multiple collisions are included

Outline

- Basics
 - Linear chain model
 - Scattering from real surfaces
- Reduced dynamical models
 - Traditional models
 - System-bath models
- 3 Dynamics
 - The methods
 - Examples

The need of...

In the impulsive limit $\tau \ll \Omega^{-1}$

- Dynamics is classical (at least for the projectile..)
- Dynamics is decoupled

What about the case $E_{coll} \leq \hbar \Omega$?

- Classical or quantum?
- How to handle infinite numbers of particles?
- ⇒ Dynamics of (approximate) dynamical models with a limited number of DOFs

The need of...

Surface atoms may play just a passive role

- Energy dissipation is the main (surface) dynamical issue
- No interest for the dynamics of surface atoms
- Molecular DOFs as accurate as possible (main system)

or an active role

- Some surface atoms must be included in the main system (primary atoms)
- Dissipation is likely of secondary importance..
- Thermal activation of primary atoms may be important

The need of...

Typically, for scattering processes...

Surface atoms are passive in non-activated processes

- Energy dissipation is the main (surface) dynamical issue
- No interest for the dynamics of surface atoms
- Molecular DOFs as accurate as possible (main system)

and active in activated processes

- Some surface atoms must be included in the main system (primary atoms)
- Dissipation is likely of secondary importance..
- Thermal activation of primary atoms may be important

Reduced dynamical models

Cluster approach

OK for classical systems with a known lattice potential, but..

- How sampling the equilibrium position of S atoms?
- How large the cluster should be?
- ⇒ Open system

Thermal contacts with a reservoir at T_s

- guarantee *E* dissipation
- provide E fluctuations
- ⇒ Possible as long as we are not interested in the whole lattice dynamics

Secondary atoms (z)

Secondary (edge) atoms are in contact with a reservoir at T_s

$$M\ddot{z} = F(\mathbf{x}, \mathbf{y}, \mathbf{z}) - M\gamma \dot{z} + \xi(t)$$

- F is the deterministic force
- $F_d = -M\gamma \dot{z}$ is the dissipative force
- $\xi(t)$ is the fluctuating force

Where is T_s ?

For F = 0, on the long run the system attains equilibrium

Dissipation ← Fluctuation

$$\langle \xi(t)\xi(0)\rangle = 2Mk_B T_s \gamma \delta(t)$$

Secondary atoms (z)

Secondary atoms (z)

Equations of motion...

$$m\ddot{x} = -\frac{\partial V}{\partial x}(x, y, z)$$

$$M\ddot{y} = -\frac{\partial V}{\partial y}(x, y, z)$$

$$M\ddot{z} = -\frac{\partial V}{\partial z}(x, y, z) - M\gamma\dot{z} + \xi$$

..do not conserve Energy

Secondary atoms (z)

Equations of motion.

- The method can be exact
- the larger is the primary atom zone the better is
- Where to get γ ?

Classical particle on a quantum surface

- Particle's trajectory
 ⇒ F(t) on surface
 atoms
- Surface is a collection of HOs subjected to F(t)

..surface dynamics can be solved!

$$H(t) = \frac{p^2}{2M} + \frac{M\omega_0^2q^2}{2} - qF(t)$$
 $H(t) |\psi_t\rangle = i\hbar \frac{d}{dt} |\psi_t\rangle$

Analytically solvable to give

• Eigenvalues: $\epsilon_n(t) = \hbar\omega_0(n+\frac{1}{2}) - \frac{f^2(t)}{\hbar\omega_0}$

Transition amplitudes:

$$\phi_{n\to m}(-\infty, +\infty)$$

$$f(t) = \sqrt{\frac{\hbar}{2M\omega_0}}F(t)$$

$$\phi_{n\to m}^{\infty} = \langle m|U_{l}(-\infty, +\infty)|n\rangle$$

$$\phi_{0\to m}^{\infty} = \left(-\tfrac{i}{\hbar}\right)^m \tfrac{\tilde{\mathbf{f}}(\omega_0)^m}{\sqrt{m!}} e^{-\tfrac{|\tilde{\mathbf{f}}(\omega_0)|^2}{2\hbar^2}}$$

$$\tilde{f}(\omega) = \int_{-\infty}^{+\infty} e^{i\omega t} f(t) dt$$

Ground-state excitation probability:

$$P_{0\to m}^{\infty} = \left| \frac{\tilde{f}(\omega_0)}{\hbar} \right|^{2m} \frac{e^{-\frac{|\tilde{f}(\omega_0)|^2}{\hbar^2}}}{m!}$$

$$P_{0\rightarrow n}^{\infty} \equiv P_n = \frac{\alpha^n}{n!} e^{-\alpha}$$

Poisson distribution

•
$$\langle \mathbf{n} \rangle = \alpha = \frac{|\tilde{\mathbf{f}}(\omega_0)|^2}{\hbar^2}$$

•
$$\langle n^2 \rangle \equiv \alpha$$

• For large $n P_n$ tends to a Gaussian

$$p(\epsilon) = \sum_{n=0}^{\infty} \delta(\epsilon - n\hbar\omega_0) P_{0\rightarrow n}$$

Probability density that the HO gains energy ϵ

≡ E-transfer probability density

•
$$I(\omega) = \int_{-\infty}^{+\infty} e^{i\omega t} F(t) dt$$

•
$$\delta \epsilon_{av} = \int \epsilon p(\epsilon) = \alpha \hbar \omega_0 \equiv \frac{|I(\omega_0)|^2}{2M}$$

•
$$\sigma_{\epsilon}^2 = \frac{|I(\omega_0)|^2}{2M}\hbar\omega_0$$

$$p(\epsilon) = \sum_{n=0}^{\infty} \delta(\epsilon - n\hbar\omega_0) P_{0\rightarrow n}$$

In the impulsive limit..

$$F(t)pprox I_0\delta(t-ar{t})$$
 $|I(\omega)|=I_0$ is the impulse $\delta\epsilon_{av}pprox rac{f_0^2}{2M}$
 $I_0=rac{2m}{M+m}P\Rightarrow\delta\epsilon_{av}pprox rac{4(m/M)}{(1+m/M)^2}\epsilon_P^i$

$$p(\epsilon) = \sum_{n=0}^{\infty} \delta(\epsilon - n\hbar\omega_0) P_{0\rightarrow n}$$

For P to attain the impulsive limit

$$au \ll \omega_0^{-1}$$
 $\delta \epsilon_{av} \gg \hbar \omega_0$ $\alpha \gg 1$

Classical limit for the HO, too!

$$H(t) = \sum_{k} \frac{p_{k}^{2}}{2} + \frac{\omega_{k}^{2} q_{k}^{2}}{2} - x_{0} F(t)$$
$$x_{0} = \sum_{k} u_{k} q_{k}$$

sum of independent HO Hamiltonian

- u_k: coupling coefficients
- $p_k(\epsilon)$: p-density for the k-th HO to gain ϵ
- $P(\epsilon)$: p-density for the surface to gain ϵ

 ϵ_k : independent random variables

$$\epsilon = \sum_{k} \epsilon_{k}$$

 $\{p_{k}(\epsilon_{k})\}_{k} \Rightarrow P(\epsilon)$

$$P(\epsilon) = rac{1}{2\pi} \int_{-\infty}^{+\infty} d au e^{-i au\epsilon + \sum_k (e^{i\hbar\omega_k} - 1)rac{u_k^2}{2\hbar\omega_k}|I(\omega_k)|^2}$$

density of phonon modes "in x_0 ":

$$\rho(\epsilon) = \sum_{k} |u_{k}|^{2} \delta(\epsilon - \epsilon_{k})$$

H on Cu. Adapted from: G. R. Darling and S. Holloway, *Rep. Prog. Phys.*, **58** (1995) 1595

$$\sum_{k}(e^{i\hbar\omega_{k}}-1)rac{u_{k}^{2}}{2\hbar\omega_{k}}|I(\omega_{k})|^{2}\equiv \int (e^{i\hbar\omega}-1)P_{1}(\epsilon)$$

One-phonon probability density:

$$P_1(\epsilon) = \frac{|I(\epsilon/\hbar)|^2}{2\epsilon} \rho(\epsilon)$$

For small
$$I(\omega)$$
 ($\delta \epsilon_{av} \ll \hbar \Delta_{ph}$)

$$(\epsilon > 0) P(\epsilon) \approx P_1(\epsilon)$$

H on Cu. Adapted from: G. R. Darling and S. Holloway, *Rep. Prog. Phys.*, **58** (1995) 1595

For small
$$I(\omega)$$
 $(\delta \epsilon_{av} \ll \hbar \Delta_{ph})$
 $(\epsilon \approx 0) P(\epsilon) \approx \delta(\epsilon) P^{el}$

Elastic probability:

$$P^{el} \equiv e^{-\sum_k rac{u_k^2}{2\hbar\omega_k}|I(\omega_k)|^2} := e^{-2W} \ (|I(\omega)| pprox I_0) \ 2W pprox rac{|I_0|^2\langle x_0^2
angle}{\hbar^2}$$

Elastic scattering for

- light species
- \bullet low T_s

Surface Oscillator Model

To include a single active phonon mode, *e.g.*

$$H = \frac{P_z^2}{2m} + \frac{p_r^2}{2\mu} + V(r, z)$$

$$H = \frac{\rho_z^2}{2m} + \frac{\rho_r^2}{2\mu} + \frac{\rho_q^2}{2M} + \frac{M\Omega^2 q^2}{2} + V(r, z - q)$$

From nD to (n+1)D model

Surface Oscillator Model

Effect of surface temperature on $S_{\nu}(E)$, *e.g.*

$$egin{aligned} S_{
u}(E) &\Rightarrow S_{
u}(E,n) \ && \ \downarrow \ S_{
u}(E,T_s) = \sum_n S_{
u}(E,n) P_n(T_s) \ &P_n(T_s) = rac{e^{-rac{\epsilon_n}{k_B T_s}}}{\sum_m e^{-rac{\epsilon_m}{k_B T_s}}} \end{aligned}$$

Surface Oscillator Model

What about the Ω dependence?

- $\Omega \to \infty$: rigid surface model
- Ω → 0: surface mass model

Actually, results are almost insesitive to Ω , provided Ω is not too large...

Surface Mass Model

$\Omega=$ 0: recoil effect may be enough

$$H = rac{
ho_{z}^{2}}{2m} + rac{
ho_{r}^{2}}{2\mu} + rac{
ho_{q}^{2}}{2M} + V(r, z - q)$$
 $\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad H = rac{
ho_{z}'^{2}}{2\mu_{S}} + rac{
ho_{r}^{2}}{2\mu} + V(r, z')$
 $S_{
u}(E) \Rightarrow S_{
u}(E_{rel})$

$$E_{rel} = \frac{1}{2} \mu_S v'^2 = E_{rel}(E, E_q) \ v' = v_z - v_q$$

$$S_{\nu}(E, T_s) = \int S_{\nu}(E_{rel}) P(v_q) dv_q$$

A simple model ...

$$H = rac{p^2}{2M} + V(z) + \sum_k \left\{ rac{p_k^2}{2} + rac{\omega_k^2}{2} \left(x_k - rac{c_k z}{\omega_k^2}
ight)^2
ight\}$$

$$H \equiv H^{\text{sys}} + \Delta V(z) + H^{\text{int}} + H^{\text{bath}}$$

 $H^{\text{sys}} = \frac{p^2}{2M} + V(z)$: system Hamiltonian (with z = 0 equilibrium position)

$$\Delta V(z) = \frac{1}{2} \left(\sum_k \frac{c_k^2}{\omega_k^2} \right) z^2$$
: "renormalization" potential

$$H^{\text{int}} = -\sum_{k} c_{k} x_{k} z$$
: interaction term

$$H^{\text{bath}} = \sum_{k} \frac{p_k^2}{2} + \frac{\omega_k^2}{2} x_k^2$$
: "bath" Hamiltonian

Classical (or Heisenberg quantum) equations of motions

$$\ddot{z} = -\frac{\partial V}{\partial z} - \frac{\partial \Delta V}{\partial z} + \sum_{k} c_{k} x_{k}$$
$$\ddot{x}_{k} = -\omega_{k}^{2} x_{k} + c_{k} z$$

 $F_{\mathrm{ren}}^{\mathrm{env}} = \sum_k c_k x_k$: force exterted by the bath on the system $c_k z$: "external" force felt by the k-th mode

 \Rightarrow Each k - th HO is a forced Harmonic oscillator

Formally solving for $x_k(t)$...

$$x_{k}(t) = x(t_{0})\cos(\omega_{k}t) + \frac{\dot{x}_{k}(t_{0})}{\omega_{k}}\sin(\omega_{k}t) + \int_{t_{0}}^{+\infty} \Theta(t - t') \frac{\sin(\omega_{k}(t - t'))}{\omega_{k}} c_{k}z(t') dt'$$

$$\downarrow \downarrow$$

"free solution"

"response"

 $x_k^0(t)$: free solution of the HO with initial conditions $x_k(t_0)$, $\dot{x}_k(t_0)$

 $\delta x_k(t)$: response of the HO to the external perturbation

(FLUCTUATION)

(DISSIPATION)

$$F_{\text{ren}}^{\text{env}} = \sum_{k} c_k x_k^0(t) - M \delta \Omega^2 z + \sum_{k} c_k^2 \int_{t_0}^{+\infty} \Theta(t - t') \frac{\sin(\omega_k (t - t'))}{\omega_k} z(t') dt'$$

Free evolution of the bath

Response of the bath to the z-motion

Upon rearranging (integration by parts)

$$F^{
m env}=rac{\xi(t)}{\Delta}-M\int_{t_0}^{+\infty}\gamma(t-t')\dot{z}(t')\,dt'$$

where

$$\begin{split} M\kappa(t) &= \sum_{k} \frac{c_{k}^{2}}{\omega_{k}^{2}} \cos(\omega_{k} t) \\ \gamma(t) &= \Theta(t)\kappa(t) \\ \xi(t) &= \sum_{k} \left\{ \left[x_{k}(t_{0}) - \frac{c_{k}}{\omega_{k}^{2}} z(t_{0}) \right] \cos(\omega_{k} t) + \frac{\dot{x}_{k}(t_{0})}{\omega_{k}} \sin(\omega_{k} t) \right\} c_{k} \end{split}$$

$$F^{
m env} = rac{\xi(t)}{L} - M \int_{t_0}^{+\infty} \gamma(t-t') \dot{z}(t') dt'$$

- $\gamma(t)$ is a proper dissipative kernel (with memory)
- $\xi(t)$ is a "random" force, with $\{x_k(t_0), \dot{x}_k(t_0)\}$ to be extracted from the equilibrium distribution at time t_0

$$F^{
m env} = rac{\xi(t)}{\Delta} - M \int_{t_0}^{+\infty} \gamma(t-t') \dot{z}(t') dt'$$

$$\rho(x_{1}, x_{2}, \dots p_{1}, p_{2}, \dots) = \frac{1}{Z} e^{-\beta H_{z_{0}}^{\text{env}}}$$

$$H_{z_{0}}^{\text{env}} = \sum_{k} \left\{ \frac{p_{k}^{2}}{2} + \frac{\omega_{k}^{2}}{2} \left(x_{k} - \frac{c_{k} z(t_{0})}{\omega_{k}^{2}} \right)^{2} \right\}$$

$$< \xi(t) >= 0$$

$$< \xi(t)\xi(0) >= \frac{k_{B}T}{M} \kappa(t)$$

Conversely, for a given GLE with memory kernel $\gamma(t)$,

$$\gamma(t) \longrightarrow \tilde{\gamma}(\omega) = \int_{-\infty}^{+\infty} e^{i\omega t} \gamma(t) dt$$

$$J(\omega) = M \omega \tilde{\gamma}'(\omega)$$

$$k = 1, \dots N \qquad \omega_k = k \Delta \omega \qquad c_k = \sqrt{\frac{2\omega_k \Delta \omega J(\omega_k)}{\pi}}$$

provides a <u>discretized</u> model which is equivalent to the GLE in the limit $N \to \infty$

System-bath models

System-bath models

$$H = \frac{p^2}{2M} + V(z) + \sum_{k} \left\{ \frac{p_k^2}{2} + \frac{\omega_k^2}{2} \left(x_k - \frac{c_k z}{\omega_k^2} \right)^2 \right\}$$

- st dissipative dynamics for $t < \mathcal{T}_{
 m rec} = rac{2\pi}{\Delta \omega}$
- the bath can be obtained from small amplitude expansion of the exact Hamiltonian..
- * or used to model phenomenological $J(\omega)$
- the Hamiltonian can be quantized to describe quantum dissipation

Summary

- Reduced models are necessary for many reasons
- Choice of the model requires physical insight into the process, e.g.
- does the surface play an active or passive role?
- is dynamics classical or quantum?

Outline

- Basics
 - Linear chain model
 - Scattering from real surfaces
- Reduced dynamical models
 - Traditional models
 - System-bath models
- 3 Dynamics
 - The methods
 - Examples

Secondary atoms (z)

Straightforward ... just integrate

$$m\ddot{x}_i = F_X(\mathbf{x}, \mathbf{y}, \mathbf{z})$$
 $M\ddot{y}_i = F_Y(\mathbf{x}, \mathbf{y}, \mathbf{z})$
 $M\ddot{z}_i = F_Z(\mathbf{x}, \mathbf{y}, \mathbf{z}) - M\gamma\dot{z}_i + \varepsilon_i$

where

$$F_q = -\frac{\partial U}{\partial q} (\mathbf{x} \mathbf{y} \mathbf{z}) \quad q = x_i, y_i, z_i$$

U: many-body potential including

- molecule-surface interaction
- lattice potential

 γ , ξ : Langevin terms,"consistent" with the lattice

Secondary atoms (z)

- Periodic Boundary Conditions || to the surface
- Minimum Image Convention
- ξ_i is a Gaussian random variable
- $\xi_i(t + \Delta t)$ is statistically independent from $\xi_i(t)$

Secondary atoms (z)

Sampling intial conditions

Molecule:
$$(v, j, m_j) \rightarrow \{r, p_r, \theta, j, \phi, j_z\}$$

$$Z_{cm}$$
 "large", X_{cm} , Y_{cm}

$$V_{x cm}$$
, $V_{v cm}$, $V_{z cm}$

Surface:

$$egin{aligned} T_{s} &
ightarrow \{q_{i},v_{i}\}_{i=1}^{N} \ p(v_{i}) & = \left(rac{Meta}{2\pi}
ight)^{1/2} \mathrm{e}^{-etarac{Mv_{i}^{2}}{2}} \ p(q_{1},.q_{i},..) & = rac{\mathrm{e}^{-eta V(q_{1},q_{2},...,q_{N})}}{\int \mathrm{e}^{-eta V} d^{N}\mathbf{q}} \end{aligned}$$

Secondary atoms (z)

How to get $p(\ldots q_i \ldots)$?

- Set $T_{kin} = \langle \frac{1}{2}Mv_i^2 \rangle = 2T_S$, i.e. sample v_i for $T = 2T_S$
- Find $\{\bar{q}_i\}$, equilibrium configuration
- Start Langevin dynamics at temperature T_S

The system quicky relaxes towards the equilibrium state at T_S

$$\implies$$
 Extract $\{q_i\}_1, \{q_i\}_2, \dots$

0.2

Quantum dynamics (small systems)

x/a.

$$H\psi = i\hbar \frac{\partial \psi}{\partial t}$$

- Represent $\psi(x), \psi(x) \rightarrow \psi_i$
- Represent operators $O, O \rightarrow O_{i,j}$
- Evolve $\psi, \psi_i(t=0) \rightarrow \psi_i(t)$
- Analyze $\psi(t) \to P(E)$ at all times

Multi Configurational Time-Dependent Hartree

$$\Psi(x_1, x_2, ..., x_N) = \sum_{i_1, i_2, ... i_N} c_{i_1, i_2, ... i_N} \phi_{i_1}^{(1)}(x_1) \phi_{i_2}^{(2)}(x_2) ... \phi_{i_N}^{(N)}(x_N)$$

- $c_{i_1,i_2,...i_N} = c_{i_1,i_2,...i_N}(t)$ are time-evolving amplitudes for the configurations
- $\phi_i^{(k)}(x) = \phi_i^{(k)}(x,t)$ are time-evolving single-particle functions
- $\langle \phi_i^{(k)} | \phi_i^{(k)} \rangle = \delta_{ij}$ for any k = 1, ..N

Equations of motion?

Dirac Frenkel variational principle

$$\langle \delta \Psi | i\hbar \partial_t - H | \Psi \rangle = 0$$

•
$$i\hbar \dot{C} = HC$$

•
$$i\hbar(1-P^k)\frac{d}{dt}|m^{(k)}\rangle = (1-P^k)\sum_{j,l=1}^{n_k} \left[\left(\rho^{(k)}\right)^{-1}\right]_{mj} H_{jl}^{(k)}|l^{(k)}\rangle$$

where

$$H_{IJ} = \langle \Phi_{I} | H | \Phi_{J} \rangle | | \Phi_{I} \rangle = | \phi_{i_{1}}^{1} \rangle \dots | \phi_{i_{N}}^{N} \rangle$$

$$P_{k} = \sum_{j=1}^{n_{k}} | j^{(k)} \rangle \langle j^{(k)} | | j^{(k)} \rangle \equiv | \phi_{j}^{(k)} \rangle$$

$$H_{jl}^{(k)} = \langle \Psi_{j}^{(k)} | H | \Psi_{l}^{(k)} \rangle , \quad | \Psi_{j}^{(k)} \rangle = \mathbf{a}_{j}^{(k)} | \Psi \rangle$$

$$\rho_{jm}^{(k)} = \langle \Psi_{j}^{(k)} | \Psi_{m}^{(k)} \rangle$$

Close-Coupling Wave Packet

$$\Psi(..,x_i,..,z_i,..) = \sum_{\mathbf{n}} \psi_{\mathbf{n}}(x_1,x_2,..)\phi_{n_1}^{(1)}(z_1)\phi_{n_2}^{(2)}(z_2)\dots\phi_{n_N}^{(N)}(z_N)$$

- ψ_n(x₁, x₂, ..) are time-evolving channel wavepackets (e.g. molecular WPs)
- $\phi_n^{(k)}(x)$ are stationary single-particle functions (e.g. HOs eigenstates)

$$i\hbar \frac{\partial \psi_{\mathbf{n}}}{\partial t}(x_{1}, x_{2}, ..) = \sum_{\mathbf{m}} H_{\mathbf{nm}}(x_{1}, x_{2}, ..) \psi_{\mathbf{m}}(x_{1}, x_{2}, ..)$$
$$H_{\mathbf{nm}}(x_{1}, x_{2}, ..) = \langle \phi_{n_{1}}^{(1)} \phi_{n_{2}}^{(2)} \dots \phi_{n_{N}}^{(N)} | H | \phi_{m_{1}}^{(1)} \phi_{m_{2}}^{(2)} \dots \phi_{m_{N}}^{(N)} \rangle$$

Time-Dependent Self-Consistent Field

$$\Psi(x_1, x_2, ..., x_N) = c_t \phi^{(1)}(x_1) \phi^{(2)}(x_2) \dots \phi^{(N)}(x_N)$$

- $c(t) = e^{-iS(t)}$ phase-factor
- $\phi^{(k)}(x) = \phi^{(k)}(x, t)$ are time-evolving single-particle functions..
- ..one spf for each DOF

$$i\hbar \frac{\partial \phi^{(i)}}{\partial t}(x_i) = H^{(i)}(x_i)\phi^{(i)}(x_i)$$

$$H^{(i)}(x_i) = \langle \dots \phi^{(i-1)}\phi^{(i+1)\dots}|H|\dots\phi^{(i-1)}\phi^{(i+1)\dots}\rangle$$

$$\Rightarrow i - th \text{ mean-field}$$

Quantum-classical dynamics (large systems)

Time-Dependent Self-Consistent Field with Gaussians

$$\Psi(..,x_i,..,z_i..) = \psi(..,x_i,..)\phi^{(1)}(z_1)...\phi^{(N)}(z_N)$$

• $\phi^{(k)}(x) = g^{(k)}(x,t)$ are Gaussian wavepackets centered in $\{z_k(t), p_k(t)\}$

$$i\hbar \frac{\partial \psi}{\partial t}(..,x_i,..) = H(t)\psi(..,x_i,..)$$

H(t) is the quantum Hamiltonian averaged over the classical DOFs

 $\{z_k(t), p_k(t)\}$ evolve classically on a mean-field Hamiltonian

Langevin

R. Martinazzo, S. Assoni, G. Marinoni, G.F. Tantardini, J. Chem. Phys., 120 (2004) 8761

- H atom on H adsorbed on Ni(100)
- Classical dynamics with a 9x9x11 slab
- Thermal contacts with a reservoir at T_s = 120 - 300K
- Eley-Rideal H₂ formation vs.
 Hot-atom species

Langevin

Thermal shock-wave

Hot species

R. Martinazzo, S. Assoni, G. Marinoni, G.F. Tantardini, J. Chem. Phys., 120 (2004) 8761

Surface Oscillator Model

- Minimal model for dissociative sticking of diatomics (z, r, q)
- 3D Quantum dynamics with wave packets
- Recoil effects in surface dissociation

Surface Oscillator Model

M. Hand and J. Harris, J. Chem. Phys., 92 (1990) 7610

M. Dohle and P. Saalfrank, Surf. Sci., 95 (1997) 373

Surface and Mass Oscillator Models

- Results do not depend on Ω
- The shift is mainly due to the $E \rightarrow E_{rel}$ transformation

For *q* initially at rest

$$p=rac{M}{M+m}P$$
 $E_{rel}=rac{p^2}{2\mu}=Erac{M}{M+m}$

M. Dohle and P. Saalfrank, Surf. Sci., 95 (1997) 373

Modified SO Model

M. Dohle and P. Saalfrank, Surf. Sci., 95 (1997) 373

Quantum dynamics: approximate methods

- Different models and different methods
- Failure of the mean-field approximations
- Classical can be better than mixed quantum/classical

T. Klamroth and P. Saalfrank, J. Chem. Phys., **112** (2000) 10571

Quantum dynamics: approximate methods

T. Klamroth and P. Saalfrank, J. Chem. Phys., 112 (2000) 10571

- Accurate rigid-surface PES
- Coupling to the lattice phonons leads to a system-bath-like Hamiltonian
- Full quantum dynamics with CCWP and other methods
- One-phonon approximation works fine

B. Lepetit, D. Lemoine, Z. Medina and B. Jackson, *J. Chem. Phys.*, **134** (2011) 114705

The adopted CCWP correctly handles PES corrugation

$$\Psi(\mathbf{r}, q_1, q_2, .., t) =
\sum_{i,n} c_{i,n}(t)\phi_i(\mathbf{r})\Phi_n(q_1, q_2, .., q_N)
H_{3D}\phi_i = \epsilon_i\phi_i
|\Phi_n\rangle = |0_1, 0_2, ... 0_{n-1}1_n0_{n+1}...0_N\rangle$$

⇒ Selective adsorption resonances

$$H = \frac{p^2}{2M} + V(s) + \sum_k \left\{ \frac{p_k^2}{2} + \frac{\omega_k^2}{2} \left(x_k - \frac{c_k f(s)}{\omega_k^2} \right)^2 \right\}$$

- $f(s) = \frac{1 e^{-\alpha s}}{\alpha} \rightarrow s$ for $s \rightarrow 0$
- $V(s) = D_e e^{-\alpha s} (e^{-\alpha s} 2),$ with $D_e = 1.55 eV$
- \bullet $M=m_H$
- Several J(ω)s

Vibrational relaxation

 $\rho_t(s|s)$

Sticking

 $\rho_t(s|s)$

Vibrational relaxation

$$\langle a_{\omega}^{\dagger} a_{\omega} \rangle_{t}$$

Sticking

$$\langle \pmb{a}_{\omega}^{\dagger}\pmb{a}_{\omega}
angle_{t}$$

Summary

- Surface atoms may be directly involved in activated process, i.e. their motion exponentially influences the rates
- Surface atoms are responsible for energy dissipation
- Approximations are always needed, no recipe works for any situation

Acknowledgements

Thank you for your attention!

