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“Active” role

CH4 on Ir(111)

G. Henkelman and H. Jonsson, Phys. Rev. Lett. 86, 664 (2001)

CH4 on Ni(100)

S. Nave and B. Jackson,
Phys. Rev. Lett. 98, 173003 (2007)
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“Active” role

H adsorption on graphene(ite)
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X. Sha and B. Jackson, Surf. Sci. 496, 318 (2002)
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“Passive” role

Sticking of simple atoms
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Scattering from a linear chain
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.. a simple model:
z = height of the projectile,

ui = xn − x0
n = n-th atom displacement

H =
p2

z

2m
+ vP(z − u1) +

∞X
n=1

(
p2

n

2M
+

MΩ2

2
(un+1 − un)

2

)

ż = ∂H
∂pz

, ṗz = − ∂H
∂z

u̇n = ∂H
∂pn

, ṗn = − ∂H
∂un
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Scattering from a linear chain
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Hamilton’s equations read as

mz̈ = − ∂vP
∂z (z − u1)

.. ..

Mü1 = + ∂vP
∂z (z − u1) + MΩ2(u2 − u1)

.. ..
Mün = −MΩ2(2un − un+1 − un−1)

..yet too complex to be
analytically solved..
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Impulsive limit

“Fast” collision (τ � Ω−1): the projectile leaves the chain
unchanged except for an impulse on the outermost atom..
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Binary collision..

.. Energy propagation
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Energy propagation (outline)

Normal mode (phonon) transformation:

Hchain =
P∞

n=1


p2

n
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Energy propagation (outline)

Normal modes are independent oscillators:

Xk (t) = Xk (0)cos(ω(k)t) + Pk (0)
Mω(k)

sin(ω(k)t)

un(0) ≡ 0 pn(0) ≡ δ1nP
⇓

Xk (0) = 0 Pk (0) =
q

2
π

sin(k)P

⇓

un(t) = 2P
πM

R∞
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dk
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Energy propagation (outline)

Normal modes are independent oscillators:

Xk (t) = Xk (0)cos(ω(k)t) + Pk (0)
Mω(k)

sin(ω(k)t)

un(0) ≡ 0 pn(0) ≡ δ1nP
⇓

Xk (0) = 0 Pk (0) =
q

2
π

sin(k)P

⇓

un(t) = 2P
πM

R∞
0

sin(kn)sin(k)sin(ω(k)t)
ω(k)

dk
020406080100
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Binary collisions

Energy transfer occurs to the first chain atom only..

m,vP
i

M, S
iv   = 0Surface atom (S)

Projectile atom (P)

P = mvP + MvS ≡ const

E =
p2

P
2m +

p2
S

2M ≡ P2

2(M+m)
+ p2

2µ
≡ const

p = µ(vP − vS) 1
µ

= 1
m + 1

M

p = momentum of the relative motion

⇓
pi = pf
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Binary collisions

Energy transfer occurs to the first chain atom only..

m
M+m

P

i
P

p

f
P

p

fp

M
M+m

P

P

pi

8><>:
P = pP + pS

p = µ
“ pP

m − pS
m

” ⇐⇒

8><>:
pP = m

m+M P + p

pS = M
m+M P − p

8><>:
pi

P = m
m+M P + M

m+M P ≡ P

pi
S = 0

8><>:
pf

P = m−M
m+M P

pf
S = 2M

m+M P

Initial Final



Basics Reduced dynamical models Dynamics

Binary collisions

δεP = εiP − εfP = energy transfer to the surface

m
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P
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f
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p

fp

M
M+m

P

P

pi

δεP ≡ εfS = 1
2M

“
2M

M+m P
”2

= 4Mm
(M+m)2

P2

2m

εfP = 1
2m

“
m−M
M+m P

”2
=

“
α−1
α+1

”2 P2

2m

δεP = 4α
(1+α)2 ε

i
P

εfP =
(

1−α
1+α

)2
εiP

α = m/M = mass ratio
εiP = collision energy
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Binary collisions

δεP is maximum for α→ 1

δεmax
P = εiP
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Sticking in the impulsive limit
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Kinetic energy used for collisionV0

εi
P

Sticking condition:
εfP = εiP − δεP < 0

δεP = 4α
(1+α)2

(
εiP + V0

)
εiP <

4α
(1−α)2 V0 ≡ εth

εth = threshold energy for
sticking
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Sticking in the impulsive limit
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εth = threshold energy for
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Binary collisions at work

δεP = f εiP + E0, E0? f = f (α) = 4α
(1+α)2 ?

H. F. Winters, H. Coufal, C. T. Rettner and D. S. Bethune, Phys. Rev. B, 41 (1990) 6240
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Binary collisions at work

0E = 12−20 eV

E0 is related to R+
g + M → Rg + M+

Xe

Ar

 (α)f
0.02    0.20     0.66
He       Ar        Xe

0.08    0.55     0.96
α

P undergoes multiple collisions with S
atoms!!

H. F. Winters, H. Coufal, C. T. Rettner and D. S. Bethune, Phys. Rev. B, 41 (1990) 6240
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II. Binary collisions: beyond back-scattering

Real surfaces are not linear chains: non-collinear collisions..

m,v

M,

P

S
i

i

v   = 0Surface atom (S)

Projectile atom (P)

P = mvP + MvS ≡ const

E =
p2

P
2m +

p2
S

2M ≡ P2

2(M+m)
+ p2

2µ
≡ const

p = µ(vP − vS) 1
µ

= 1
m + 1

M

p = momentum of the relative motion

⇓
pi = pf
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II. Binary collisions: beyond back-scattering

Real surfaces are not linear chains: non-collinear collisions..

m
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P

P

pi

f
P

p

χ

θ

8><>:
P = pP + pS

p = µ
“ pP

m − pS
m

” ⇐⇒

8><>:
pP = m

m+M P + p

pS = M
m+M P − p

8><>:
pi

P = m
m+M P + M

m+M P ≡ P

pi
S = 0

8><>:
pf

P = m
m+M P + pf

pf
S = M

m+M P − pf

χ = scattering angle in the c.o.m. reference system

θ = scattering angle in the lab reference system
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II. Binary collisions: beyond back-scattering

δεP in terms of χ
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f
P

p
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θ

δεP ≡ εfS = 1
2M

“
M

M+m P − pf
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=

1
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P2
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P2
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“
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δεP = 4α
(1+α)2 ε

i
P sin2(χ2 )

α = m/M = mass ratio
εiP = collision energy



Basics Reduced dynamical models Dynamics

II. Binary collisions: beyond back-scattering

δεP is maximum for back-scattering (in c.o.m.), i.e. χ = π, ..

δεmax
P = 4α/(1 + α)2εiP

α < 1

f
P

p

fp

χ

θ

i
P

p

α > 1

f
P

p

i
P

p

fp

χ
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II. Binary collisions: beyond back-scattering

εfP in terms of χ
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(1+α)2 εiP

α = m/M = mass ratio
εiP = collision energy
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II. Binary collisions: beyond back-scattering

εfP in terms of θ
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“
pf
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pf
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m+M P cos θ + P
M+m

p
M2 − m2sin2θ

εfP =
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”2

(1+α)2 εiP

α = m/M = mass ratio
εiP = collision energy
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II. Binary collisions: beyond back-scattering

Note: For α > 1 there exists a maximum scattering angle

i
P

p f
P

p

fp

θ

χ
m

M+m P sin θmax = M
M+m P

sin θmax = 1
α

which only depends on the mass ratio
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II. Binary collisions: beyond back-scattering

Scattering in the binary limit

3Θ

θ

θ

θ2

3

1

Final energies increase with Θ

Scattering from a flat surface

p
⊥

Specular

E transferred to S

E transferred from S

Final energies decrease with

Θ

Θ

p
||
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II. Binary collisions: beyond back-scattering

Upon application of εf
P =

“
α cos θ +

p
1− α2 sin2 θ

”2
/(1 + α)2εi

P

H. F. Winters, H. Coufal, C. T. Rettner and D. S. Bethune, Phys. Rev. B, 41 (1990) 6240
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II. Binary collisions: beyond back-scattering

Xe

Ar

Upon application of εf
P =

“
α cos θ +

p
1− α2 sin2 θ

”2
/(1 + α)2εi

P

H. F. Winters, H. Coufal, C. T. Rettner and D. S. Bethune, Phys. Rev. B, 41 (1990) 6240
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II. Binary collisions: beyond back-scattering

D. M. Goodstein, R. L. McEachern and B. H. Cooper, Phys. Rev. B, 39 (1989) 13129
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II. Binary collisions: beyond back-scattering

Θ

θ

θ

Θ

θ

θ

Θ

Direct IndirectFocusing

D. M. Goodstein, R. L. McEachern and B. H. Cooper, Phys. Rev. B, 39 (1989) 13129
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III. Binary collision: surface temperature

Surface atoms are not at rest..

M, S
i

Surface atom (S)

Projectile atom (P)

v

m,vP
i

In the frame ˜ , ṽ i
S = 0

and everything proceeds as before, with..

v i
P = ṽ i

P + v i
S

εiP = ε̃iP + 1
2 mv i

S2 + mṽ i
Pv i

S

εfP = ε̃fP + 1
2 mv i

S2 + mṽ f
Pv i

S

δεP = δε̃P + (p̃i
P − p̃f

P)v i
S
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III. Binary collision: surface temperature

Surface atoms are not at rest..

M, S
i

Surface atom (S)

Projectile atom (P)

v

m,vP
i

For collinear collisions

p̃i
P − p̃f

P = 2Mm
M+m (v i

P − v i
S)

δε̃P = 4α
(1+α)2

m
2 (v i

P − v i
S)2

Upon averaging (〈v i
Pv i

S〉 = 0)..

δεP = 4α
(1+α)2 (εiP − 〈εiS〉)

〈εiS〉 ∼ kBT
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Summary

Energy transfer is primarly controlled by the mass-ratio
α = m

M

Energy transfer is most efficient for back-scattering
The binary collision model works fine at high energies,
provided multiple collisions are included
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Outline

1 Basics
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The need of..

In the impulsive limit τ � Ω−1

Dynamics is classical (at least for the projectile..)
Dynamics is decoupled

What about the case Ecoll ≤ ~Ω?
Classical or quantum?
How to handle infinite numbers of particles?

⇒ Dynamics of (approximate) dynamical models with a limited
number of DOFs
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The need of..

Typically for scattering processes..

Surface atoms may play just a passive role
Energy dissipation is the main (surface) dynamical issue

No interest for the dynamics of surface atoms

Molecular DOFs as accurate as possible (main system)

or an active role
Some surface atoms must be included in the main system (primary atoms)

Dissipation is likely of secondary importance..

Thermal activation of primary atoms may be important
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The need of..

Typically, for scattering processes..

Surface atoms are passive in non-activated processes
Energy dissipation is the main (surface) dynamical issue

No interest for the dynamics of surface atoms

Molecular DOFs as accurate as possible (main system)

and active in activated processes
Some surface atoms must be included in the main system (primary atoms)

Dissipation is likely of secondary importance..

Thermal activation of primary atoms may be important
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Reduced dynamical models

Surface Oscillator 
and related models

Systembath models

Langevin approach

Small quantum

Small quantum + Quantum

Classical + Classical

Classical + Quantum

Forced Oscillator Model
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Langevin

Cluster approach

OK for classical systems with a
known lattice potential, but..

How sampling the equilibrium
position of S atoms?
How large the cluster should
be?

⇒ Open system
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Langevin

Ts

Ts

Thermal contacts with a reservoir
at Ts

guarantee E dissipation
provide E fluctuations

⇒ Possible as long as we are not
interested in the whole lattice
dynamics
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Langevin

Primary 
atoms (y)

(x)

Secondary atoms (z)

Secondary (edge) atoms are in
contact with a reservoir at Ts

Mz̈ = F (x,y, z)−Mγż + ξ(t)

F is the deterministic force
Fd = −Mγż is the dissipative
force
ξ(t) is the fluctuating force
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Langevin

Primary 
atoms (y)

(x)

Secondary atoms (z)

Where is Ts?

For F = 0, on the long run the
system attains equilibrium

Dissipation ⇐⇒ Fluctuation

⇓
limt→∞ 〈v(t)2〉 = kBTs/M

⇓

〈ξ(t)ξ(0)〉 = 2MkBTsγδ(t)
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Langevin

Primary 
atoms (y)

(x)

Secondary atoms (z)

Equations of motion..

mẍ = −∂V
∂x (x , y , z)

Mÿ = −∂V
∂y (x , y , z)

Mz̈ = −∂V
∂z (x , y , z)−Mγż + ξ

..do not conserve Energy
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Langevin

Primary 
atoms (y)

(x)

Secondary atoms (z)

Equations of motion..

The method can be exact
the larger is the primary atom
zone the better is
Where to get γ ?
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Forced Oscillator Model

F(t)

CM

QM

Classical particle on a
quantum surface

Particle’s trajectory
⇒ F (t) on surface
atoms
Surface is a collection
of HOs subjected to
F (t)

..surface dynamics can be
solved!
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Forced Oscillator Model

F(t)

CM

QM

H(t) = p2

2M +
Mω2

0q2

2 − qF (t)

H(t) |ψt〉 = i~ d
dt |ψt〉

Analytically solvable to give

Eigenvalues:
εn(t) = ~ω0(n+ 1

2)− f 2(t)
~ω0

Transition amplitudes:
φn→m(−∞,+∞)

f (t) =
q

~
2Mω0

F (t)
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Forced Oscillator Model
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t
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t)

-2 -1 0 1 2
ω
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|I(
ω

)|2

ω0

φ∞n→m = 〈m|UI(−∞,+∞)|n〉

φ∞0→m =
“
− i

~

”m f̃ (ω0)m
√

m!
e−

|f̃ (ω0)|2

2~2

f̃ (ω) =
R +∞
−∞ eiωt f (t)dt

Ground-state excitation probability:

P∞0→m =
˛̨̨

f̃ (ω0)
~

˛̨̨2m
e
−

|f̃ (ω0)|2

~2

m!
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Forced Oscillator Model

0.0
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P n

0 10 20 30 40 50
n

α = 0.01

α = 0.1

α = 1

α = 10
α = 20

α = 30

Quantum

Classical
P∞

0→n ≡ Pn = αn

n! e−α

Poisson distribution

〈n〉 = α = |̃f (ω0)|2
~2

〈n2〉 ≡ α

For large n Pn tends to a
Gaussian
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Forced Oscillator Model

0 5 10 15 20 25 30
ε / ω

0.0

0.5

1.0

1.5

2.0

p(
ε)

α = 10

p(ε) =
∑∞

n=0 δ(ε− n~ω0)P0→n

Probability density that the HO
gains energy ε
≡ E-transfer probability density

I(ω) =
∫ +∞
−∞ eiωtF (t)dt

δεav =
∫
εp(ε) = α~ω0 ≡

|I(ω0)|2
2M

σ2
ε = |I(ω0)|2

2M ~ω0
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Forced Oscillator Model

0 5 10 15 20 25 30
ε / ω

0.0

0.5

1.0

1.5

2.0

p(
ε)

α = 10

p(ε) =
∑∞

n=0 δ(ε− n~ω0)P0→n

In the impulsive limit..

F (t) ≈ I0δ(t − t̄)
|I(ω)| = I0 is the impulse

δεav ≈ I2
0

2M

I0 = 2m
M+m P ⇒ δεav ≈ 4(m/M)

(1+m/M)2 ε
i
P



Basics Reduced dynamical models Dynamics

Forced Oscillator Model

0 5 10 15 20 25 30
ε / ω

0.0

0.5

1.0

1.5

2.0

p(
ε)

α = 10
p(ε) =

∑∞
n=0 δ(ε− n~ω0)P0→n

For P to attain the impulsive limit
τ � ω−1

0

δεav � ~ω0

α� 1
Classical limit for the HO, too!
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Forced Oscillator Model

x0 F(t)

CM

QM

H(t) =
∑

k
p2

k
2 +

ω2
k q2

k
2 −x0F (t)

x0 =
∑

k ukqk

sum of independent HO
Hamiltonian

uk : coupling
coefficients
pk (ε): p-density for the
k − th HO to gain ε
P(ε): p-density for the
surface to gain ε
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Forced Oscillator Model

εk : independent random variables
ε =

∑
k εk

{pk (εk )}k ⇒ P(ε)

P(ε) = 1
2π

∫ +∞
−∞ dτe−iτε+

P
k (ei~ωk−1)

u2
k

2~ωk
|I(ωk )|2

density of phonon modes “in x0”:

ρ(ε) =
∑

k |uk |2δ(ε− εk )
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Forced Oscillator Model
P(

   
)ε

E  = 0.5 eVi

E  = 2.0 eVi

0.0 0.1 0.2 0.3
0.0

0.1

0.2

0.3

0.4

0.5

ε / eV

m = 1 amu
    = 30 meVphε

M = 63 amu

H on Cu. Adapted from:
G. R. Darling and S. Holloway, Rep. Prog. Phys., 58
(1995) 1595

∑
k (ei~ωk − 1)

u2
k

2~ωk
|I(ωk )|2 ≡∫

(ei~ω − 1)P1(ε)

One-phonon probability density:
P1(ε) = |I(ε/~)|2

2ε ρ(ε)

For small I(ω) (δεav � ~∆ph)

(ε > 0) P(ε) ≈ P1(ε)
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Forced Oscillator Model
P(

   
)ε

E  = 0.5 eVi

E  = 2.0 eVi

0.0 0.1 0.2 0.3
0.0

0.1

0.2

0.3

0.4

0.5

ε / eV

m = 1 amu
    = 30 meVphε

M = 63 amu

H on Cu. Adapted from:
G. R. Darling and S. Holloway, Rep. Prog. Phys., 58
(1995) 1595

For small I(ω) (δεav � ~∆ph)

(ε ≈ 0) P(ε) ≈ δ(ε)Pel

Elastic probability:

Pel ≡ e−
P

k
u2
k

2~ωk
|I(ωk )|2

:= e−2W

(|I(ω)| ≈ I0) 2W ≈ |I0|2〈x2
0 〉

~2

Elastic scattering for
light species
low Ts
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Surface Oscillator Model

q

z

r

M, Ω

To include a single active
phonon mode, e.g.

H =
P2

z
2m +

p2
r

2µ
+ V (r , z)

⇓

H =
P2

z
2m +

p2
r

2µ
+

p2
q

2M + MΩ2q2

2 + V (r , z − q)

From nD to (n + 1)D model
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Surface Oscillator Model

q

z

r

M, Ω

Effect of surface temperature
on Sν(E), e.g.

Sν(E) ⇒ Sν(E ,n)

⇓
Sν(E ,Ts) =

∑
n Sν(E ,n)Pn(Ts)

Pn(Ts) = e
− εn

kBTsP
m e
− εm

kBTs
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Surface Oscillator Model

q

z

r

M, Ω

What about the Ω dependence?

Ω →∞: rigid surface
model
Ω → 0: surface mass
model

Actually, results are almost
insesitive to Ω,
provided Ω is not too large...
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Surface Mass Model

q

z

r

M

Ω = 0: recoil effect may be
enough

H =
P2

z
2m +

p2
r

2µ
+

p2
q

2M + V (r , z − q)

⇓
H =

P′2z
2µS

+
p2

r
2µ

+ V (r , z′)

Sν(E) ⇒ Sν(Erel)

⇓

Erel = 1
2µSv ′2 = Erel (E ,Eq) v ′ = vz − vq

Sν(E ,Ts) =
∫

Sν(Erel)P(vq)dvq
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System-bath models

A simple model ...

H =
p2

2M
+ V (z) +

∑
k

p2
k

2
+
ω2

k
2

(
xk −

ckz
ω2

k

)2


H ≡ H sys + ∆V (z) + H int + H bath

H sys = p2

2M + V (z) : system Hamiltonian (with z = 0 equilibrium position)

∆V (z) = 1
2

„P
k

c2
k

ω2
k

«
z2 : "renormalization" potential

H int = −
P

k ck xk z : interaction term

H bath =
P

k
p2

k
2 +

ω2
k

2 x2
k : "bath " Hamiltonian
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System-bath models

Classical (or Heisenberg quantum) equations of motions

z̈ = −∂V
∂z

− ∂∆V
∂z

+
∑

k

ckxk

ẍk = −ω2
k xk + ckz

F env
ren =

∑
k ckxk : force exterted by the bath on the system

ckz : "external" force felt by the k-th mode

⇒ Each k − th HO is a forced Harmonic oscillator
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System-bath models

Formally solving for xk (t) . . .

xk (t) = x(t0) cos(ωk t) +
ẋk (t0)
ωk

sin(ωk t) +

Z +∞

t0
Θ(t − t ′)

sin(ωk (t − t ′))
ωk

ck z(t ′) dt ′

⇓ ⇓
"free solution" "response"

x0
k (t) : free solution of the HO with initial conditions

xk (t0), ẋk (t0)

δxk (t) : response of the HO to the external perturbation
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System-bath models

(FLUCTUATION) (DISSIPATION)

F env
ren =

∑
k

ck x0
k (t)−MδΩ2z +

∑
k

c2
k

∫ +∞

t0
Θ(t − t ′)

sin(ωk (t − t ′))
ωk

z(t ′) dt ′

⇓ ⇓
Free evolution of the bath Response of the bath

to the z-motion
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System-bath models

Upon rearranging (integration by parts)

F env = ξ(t)−M
∫ +∞

t0
γ(t − t ′)ż(t ′) dt ′

where

M κ(t) =
∑

k

c2
k

ω2
k

cos(ωk t)

γ(t) = Θ(t)κ(t)

ξ(t) =
∑

k

{[
xk (t0)−

ck

ω2
k

z(t0)
]

cos(ωk t) +
ẋk (t0)
ωk

sin(ωk t)
}

ck
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System-bath models

F s

v

F env F env
ξ γ

v
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System-bath models

F env = ξ(t)−M
∫ +∞

t0
γ(t − t ′)ż(t ′) dt ′

γ(t) is a proper dissipative kernel (with memory)

ξ(t) is a "random" force, with {xk (t0), ẋk (t0)} to be extracted
from the equilibrium distribution at time t0
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System-bath models

F env = ξ(t)−M
∫ +∞

t0
γ(t − t ′)ż(t ′) dt ′

ρ(x1, x2, . . . p1,p2, . . . ) =
1
Z

e−βH env
z0

H env
z0

=
∑

k

p2
k

2
+
ω2

k
2

(
xk −

ckz(t0)
ω2

k

)2


< ξ(t) >= 0

< ξ(t)ξ(0) >=
kBT
M

κ(t)



Basics Reduced dynamical models Dynamics

System-bath models

Conversely, for a given GLE with memory kernel γ(t),

γ(t) −→ γ̃(ω) =

∫ +∞

−∞
eiωtγ(t) dt

J(ω) = M ωγ̃′(ω)

k = 1, . . .N ωk = k∆ω ck =

√
2ωk∆ωJ(ωk )

π

provides a discretized model which is equivalent to the GLE

in the limit N → ∞
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System-bath models

0 2000 4000

ω / cm
-1

0

1×10
-2

2×10
-2

3×10
-2

4×10
-2

5×10
-2

6×10
-2

7×10
-2

J 0 / 
a.

u.

0 20 40 60 80 100
t / fs

-0.01

0.00

0.01

0.02

κ(
t)

/ a
.u

.

ω
ω

i

H



Basics Reduced dynamical models Dynamics

System-bath models

H =
p2

2M
+ V (z) +

∑
k

p2
k

2
+
ω2

k
2

(
xk −

ckz
ω2

k

)2


∗ dissipative dynamics for t < Trec = 2π
∆ω

∗ the bath can be obtained from small amplitude expansion
of the exact Hamiltonian..

∗ or used to model phenomenological J(ω)

∗ the Hamiltonian can be quantized to describe quantum
dissipation
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Summary

Reduced models are necessary for many reasons
Choice of the model requires physical insight into the
process, e.g.
does the surface play an active or passive role?
is dynamics classical or quantum?
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Classical dynamics with Langevin atoms

Primary 
atoms (y)

(x)

Secondary atoms (z)

Straightforward ... just integrate

mẍi = Fx (x, y, z)

Mÿi = Fy (x, y, z)

Mz̈i = Fz (x, y, z)−Mγżi + ξi

where

Fq = −∂U
∂q

(x y z) q = xi , yi , zi

U : many-body potential including
molecule-surface interaction
lattice potential

γ, ξ : Langevin terms,"consistent"
with the lattice
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Classical dynamics with Langevin atoms

Primary 
atoms (y)

(x)

Secondary atoms (z)

Periodic Boundary Conditions ||
to the surface

Minimum Image Convention

ξi is a Gaussian random variable

ξi(t + ∆t) is statistically
independent from ξi(t)
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Classical dynamics with Langevin atoms

Primary 
atoms (y)

(x)

Secondary atoms (z)

Sampling intial conditions
Molecule: (v , j ,mj) → {r ,pr , θ, j , φ, jz}

Zcm“large′′,Xcm,Ycm

Vx,cm,Vy,cm,Vz,cm

Surface:

Ts → {qi , vi}N
i=1

p(vi) =

(
Mβ

2π

)1/2

e−β
Mv2

i
2

p(q1, .qi , ..) =
e−βV (q1,q2,...,qN )∫

e−βV dNq
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Classical dynamics with Langevin atoms

Primary 
atoms (y)

(x)

Secondary atoms (z)

How to get p(. . .qi . . . ) ?

Set Tkin = 〈 1
2 Mv2

i 〉 = 2TS,
i.e. sample vi for T = 2TS

Find {q̄i} , equilibrium configuration

Start Langevin dynamics at
temperature TS

⇒ The system quicky relaxes
towards the equilibrium state at TS

⇒ Extract {qi}1 , {qi}2 , . . .
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Quantum dynamics (small systems)

Lead A

Lead B

Lead A

Lead B

junction
n=1

n=10

junction

Hψ = i~
∂ψ

∂t

Represent
ψ(x), ψ(x) → ψi

Represent operators
O, O → Oi,j

Evolve
ψ, ψi(t = 0) → ψi(t)
Analyze ψ(t) → P(E) at
all times
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Quantum dynamics (large systems)

Multi Configurational Time-Dependent Hartree

Ψ(x1, x2, .., xN) =
∑

i1,i2,...iN

ci1,i2,...iN φ
(1)
i1

(x1)φ
(2)
i2

(x2) . . . φ
(N)
iN

(xN)

ci1,i2,...iN = ci1,i2,...iN (t) are time-evolving amplitudes for the
configurations

φ
(k)
i (x) = φ

(k)
i (x , t) are time-evolving single-particle

functions
〈φ(k)

i |φ(k)
j 〉 = δij for any k = 1, ..N

Equations of motion?
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Quantum dynamics (large systems)
Dirac Frenkel variational principle

〈δΨ|i~∂t − H|Ψ〉 = 0

i~Ċ = HC
i~(1−Pk ) d

dt |m
(k)〉 = (1−P k )

∑nk
j,l=1

[(
ρ(k)

)−1
]

mj
H(k)

jl |l(k)〉

where
HIJ = 〈ΦI |H|ΦJ〉 |ΦI〉 = |φ1

i1〉 . . . |φ
N
iN 〉

Pk =

nk∑
j=1

|j(k)〉 〈j(k)| |j(k)〉 ≡ |φ(k)
j 〉

H(k)
jl = 〈Ψ(k)

j |H|Ψ(k)
l 〉 , |Ψ(k)

j 〉 = a(k)
j |Ψ〉

ρ
(k)
j m = 〈Ψ(k)

j |Ψ(k)
m 〉
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Quantum dynamics (large systems)

Close-Coupling Wave Packet

Ψ(.., xi , .., zi , ..) =
∑

n

ψn(x1, x2, ..)φ
(1)
n1

(z1)φ
(2)
n2

(z2) . . . φ
(N)
nN

(zN)

ψn(x1, x2, ..) are time-evolving channel wavepackets (e.g.
molecular WPs)

φ
(k)
n (x) are stationary single-particle functions (e.g. HOs

eigenstates)

i~∂ψn
∂t (x1, x2, ..) =

∑
m Hnm(x1, x2, ..)ψm(x1, x2, ..)

Hnm(x1, x2, ..) = 〈φ(1)
n1
φ

(2)
n2
. . . φ

(N)
nN
|H|φ(1)

m1
φ

(2)
m2
. . . φ

(N)
mN
〉
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Quantum dynamics (large systems)

Time-Dependent Self-Consistent Field

Ψ(x1, x2, .., xN) = ct φ
(1)(x1)φ

(2)(x2) . . . φ
(N)(xN)

c(t) = e−iS(t) phase-factor
φ(k)(x) = φ(k)(x , t) are time-evolving single-particle
functions..
..one spf for each DOF

i~∂φ
(i)

∂t (xi) = H(i)(xi)φ
(i)(xi)

H(i)(xi) = 〈. . . φ(i−1)φ(i+1)...|H| . . . φ(i−1)φ(i+1)...〉
⇒ i − th mean-field



Basics Reduced dynamical models Dynamics

Quantum-classical dynamics (large systems)

Time-Dependent Self-Consistent Field with Gaussians

Ψ(.., xi , .., zi ..) = ψ(.., xi , ..)φ
(1)(z1) . . . φ

(N)(zN)

φ(k)(x) = g(k)(x , t) are Gaussian wavepackets centered in
{zk (t),pk (t)}

i~∂ψ∂t (.., xi , ..) = H(t)ψ(.., xi , ..)

H(t) is the quantum Hamiltonian averaged over the classical
DOFs

{zk (t),pk (t)} evolve classically on a mean-field Hamiltonian
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Langevin

R. Martinazzo, S. Assoni, G. Marinoni, G.F. Tantardini, J.
Chem. Phys., 120 (2004) 8761

H atom on H adsorbed on
Ni(100)
Classical dynamics with a
9x9x11 slab
Thermal contacts with a
reservoir at Ts = 120− 300K

Eley-Rideal H2 formation vs.
Hot-atom species
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Langevin

Thermal shock-wave Hot species

R. Martinazzo, S. Assoni, G. Marinoni, G.F. Tantardini, J. Chem. Phys., 120 (2004) 8761
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Surface Oscillator Model

M. Hand and J. Harris, J. Chem. Phys., 92 (1990) 7610

Minimal model for
dissociative sticking of
diatomics (z, r ,q)

3D Quantum dynamics with
wave packets

Recoil effects in surface
dissociation
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Surface Oscillator Model

M. Hand and J. Harris, J. Chem. Phys., 92 (1990) 7610 M. Dohle and P. Saalfrank, Surf. Sci., 95 (1997) 373
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Surface and Mass Oscillator Models

M. Dohle and P. Saalfrank, Surf. Sci., 95 (1997) 373

Results do not depend on Ω

The shift is mainly due to the
E → Erel transformation

For q initially at rest

p = M
M+m P

Erel = p2

2µ = E M
M+m
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Modified SO Model

M. Dohle and P. Saalfrank, Surf. Sci., 95 (1997) 373
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Quantum dynamics: approximate methods

T. Klamroth and P. Saalfrank,
J. Chem. Phys., 112 (2000) 10571

Different models and different
methods
Failure of the mean-field
approximations

Classical can be better than
mixed quantum/classical
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Quantum dynamics: approximate methods

T. Klamroth and P. Saalfrank, J. Chem. Phys., 112 (2000) 10571
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Quantum dynamics (large systems)

B. Lepetit, D. Lemoine, Z. Medina and B. Jackson, J.
Chem. Phys., 134 (2011) 114705

Accurate rigid-surface PES
Coupling to the lattice
phonons leads to a
system-bath-like Hamiltonian
Full quantum dynamics with
CCWP and other methods

One-phonon approximation
works fine
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Quantum dynamics (large systems)

The adopted CCWP correctly handles
PES corrugation

Ψ(r,q1,q2, .., t) =∑
i,n ci,n(t)φi(r)Φn(q1,q2, ..qN)

H3Dφi = εiφi

|Φn〉 = |01,02, ..0n−11n0n+1..0N〉

⇒ Selective adsorption resonances
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Quantum dynamics (large systems)

H =
p2

2M
+ V (s) +

∑
k

p2
k

2
+
ω2

k
2

(
xk −

ck f (s)

ω2
k

)2


f (s) = 1−e−αs

α → s for s → 0
V (s) = Dee−αs (e−αs − 2),
with De = 1.55eV
M = mH

Several J(ω)s
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Quantum dynamics (large systems)

Vibrational relaxation

ρt(s|s)

Sticking

ρt(s|s)
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Quantum dynamics (large systems)

Vibrational relaxation

〈a†ωaω〉t

Sticking

〈a†ωaω〉t
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Summary

Surface atoms may be directly involved in activated
process, i.e. their motion exponentially influences the rates
Surface atoms are responsible for energy dissipation
Approximations are always needed, no recipe works for
any situation



Basics Reduced dynamical models Dynamics

Acknowledgements

Thank you for your attention!


	Basics
	Linear chain model
	Scattering from real surfaces

	Reduced dynamical models
	Traditional models
	System-bath models

	Dynamics  
	The methods
	Examples


