The LiH; system: interaction forces and quantum
dynamics

12th December 2001






Preface

This work is the natural development of what I did in the graduate Thesis work
with Prof. M. Raimondi. At that time, thanks to a well established collabora-
tion between the Raimondi’s group here in Milan and the Gianturco’s group
in Rome, I started to be interested in the LiH + H™T system. I was working in
the Spin Coupled Valence Bond theory, of which I had just learned the basics.
The excitement in viewing chemistry through a pair of quantum mechanical
lens was big. Molecules, for the first time, could form and dissociate, starting
from isolated atoms, going through “distorted atoms in molecules” and ending
possibly with product molecules. I was going toward “chemical reactions”; at
the heart of Chemistry. The meeting with collision theory was unavoidable
and was accelerated by the casual discovery of the Taylor’s book. Then, the
LiH + H™" system became an occasion to merge the interest in Valence Bond
theory with that in Scattering theory. Indeed, the system was an “interesting”
excited state and (as we recognized later) was a particular collision system.

Thus, my PhD course started with some ideas (at a very early stage) on how
to face the excited state problem and with the study of basic scattering theory.
The development of a simple approach to the electronic excited problem and
a preliminary meeting with the practice of collision theory were the content of
the first stage of my course. I was ready to go as a visitor student in the group
of Prof. F. A. Gianturco, where the second stage of the PhD course started.

In Gianturco’s group I met a colleague, E. Bodo, which soon became a
friend. Our interests (and those of our supervisors!) were quickly attracted by
the Lz'H2+ system: we recognized that not only the LiH + H™T collisions could
have a relevance for what is called “Early Universe” but the full LiH, system
needed to be considered. Thus, the second stage of my course was devoted
to the understanding of the interaction forces and the dynamics in the title
system.

The work is organized in two Parts. The report of the PhD course is the
content of Part II, which the reader is strongly recommended to start with. In
Part II the above “story” is placed on a firm, scientific ground. An introductory
Chapter gives an overview of the system, showing its relation with the LiH
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“problem” in the Early Universe. Here the reader is supplied with a brief
review of the relevant astrophysics in order to make him confident with the
“Post-Recombination Era”. The novel method in the Spin Coupled Valence
Bond framework which allowed us to gain sights into the energetics of the title
system is presented in Chapter 6. The subsequent Chapter summarizes the
results of our extensive ab-initio calculations and draws some conclusions on
the Li ionic network. Chapters 8 and 9 describe a reduced dimensionality
approach to the quantum dynamics of the system. Chapter 10 describes a
novel algorithm for solving the Time-Independent Close-Coupling equations
at long-range, a method that appears to be promising for the study of the low-
energy (non reactive) dynamics in charge-dipole systems like our LiH + H™.
Finally, Chapter 11 summarizes the conclusions.

The content of Part I is the “theoretical background” that was needed to
carry out this work. In principle, it was designed in such a way to closely par-
allel the Wigner’s suggestions on chemical dynamics (also known as Wigner’s
three trees): first, one separates nuclear and electronic motions, taking into
account the disparity of masses and the similarities of forces between electrons
and nuclei; then, he studies the electronic motion, here treated in the Va-
lence Bond framework and in particular in the modern Spin Coupled Valence
Bond formulation; and finally, he studies the nuclear motion, here considered
in the general framework of collision theory, both in the single- and in the
multi-channel cases. However, as the reader will soon recognize, the Born-
Oppenheimer approximation doesn’t appear. The reason is that this Part I
grew enormously and at the end we had no more space available. This approx-
imation is however so well known that its exclusion should be tolerated.

The reason for the existence of this introductory Part is twofold: on the
one hand the author’s need to reorganize what he laboriously learned during
these years and on the other hand the possibility of focusing in Part II on
the work in the LiHQ"" system without continuous “introductory” breaks. It is
worth to note at this point that this Part contains known results, although the
presentation follows the personal tastes of the author.

One more note about this work. We use as much as possible the Dirac
notation for the state vectors of a system. Possible misleading with this no-
tation could arise when dealing with “improper” vectors; they are used in the
so-called stationary scattering theory and will be always indicated with their
“continuous” quantum numbers. No special symbols will be used for opera-
tors. Vector quantities (either vector operators or their vector eigenvalues)
will be indicated with bold characters, although bold characters will be used
also for special operators, like the scattering matrix, which act on “enlarged”
spaces. Hilbert spaces and subpaces will be denoted with emphasized capital
characters, like 7. Unless otherwise stated atomic units are used throughout.
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Chapter 1

Valence Bond Theory

We begin by reviewing in this Chapter the modern Valence Bond (VB) theory
which provides accurate description of electronic states while still preserving
a clear physical picture of the underlying interactions in term of “classical”
valence bond concepts. We first review the “classical” theory in Section (1.1)
by looking at the Heitler-London wavefunction and then introduce in Section
(1.2) the Spin Coupled wavefunction which is central to the modern version
of the VB theory, much like the Hartree-Fock wavefunction is for the MO’s
theories. Its relation to general electronic wavefunctions is discussed in Sec-
tion (1.4), after collecting some properties of the spin space of an N electron
system in Section (1.3). In particular, it will be shown that the Spin-Coupled
wavefunction is the most general one-electron approximation to an electronic
wavefunction. Then, we close this Chapter describing the modern Valence
Bond theory, the so-called Spin-Coupled Valence Bond theory, either in its
original formulation (Section (1.6)) and in the more recent improved version
(Section (1.7)).

1.1 The Heitler-London wavefunction

In 1927, soon after Schrodinger(1926) founded the “wave mechanics”, Heitler
and London(1927) (hereafter HL) explained the stability and bonding of the Ho
molecule by writing the first molecular wavefunction of the history of Quantum
Chemistry. They recognized that a product of atomic hydrogen orbitals is an
exact solution of the clumped nuclei Schrodinger equation when the atomic
centers are at infinite separation and, thus, used such ansatz for a perturbative
treatment of the electronic problem, in which the unperturbed hamiltonian was
the sum of the isolated hydrogen atom hamiltonians (at the finite separation
in consideration).

21
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Here we follow a somewhat different approach and write directly the HL
(normalized) wavefunctions for the singlet and for the triplet states, respec-

2 af — Ba
00 =\ {2 (1)
2 af + Ba

In these formulas x4 and xp are hydrogenic atomic orbitals centered at the
nuclei Hy and Hp (so that xaxp is the unperturbed wavefunction), « and
B are the usual spin functions of the electrons, S = (xa|xs) is the overlap
integral and A is the antisymmetrizer (projection) operator, which for the
general N electron system reads as

1
A= m Z EPP
PeSy

tively, as'

where Sy is the “symmetric group” to be discussed later, P is a permutational
operator in this group and ep is the corresponding parity. (We adopt the
convention that in a string of orbitals ¢q¢..¢¢ the electronic labels are in the
“natural” order, i.e. ¢q(r1)ds(r2)..d¢(rs)).

When the wavefunctions of eq.s(1.1,1.2) are used to compute the electronic
energy one obtains the following expression for the interaction potentials

JEt K

VIR) =13 BE

where the plus sign refers to the singlet state and the minus sign to the triplet.
J and K are called “Coulomb” and “Exchange” integrals, respectively, and are
given by?

J= <XAXB‘H(1) ‘XAXB>

K = <XAXB ‘H(l) ‘XBXA>

where
H(l):H_H(O):_L_i+i+l
B Tea Ti2 R

In the triplet manifolds we focus attention on the Ms = 0 state.

2This labeling is similar to that of the HF theory and differs from the usual practice of
semiempirical VB theory and of the magnetism theories, where J represents the exchange
integral.
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is the perturbed hamiltonian in the original HL treatment, with the usual
meaning of the symbols (r;z = |r; — Rz|, r;; = |[r; —r;| and R = |[R4 — Rp]|,
r; being the position vector of the i-th electron and Rz the position vector of
the Z-th nucleus).

The Coulomb integral is a “classical” interaction term

A / s xe@)? / s dor, DA e ()
/ |I'—RB| |I‘—RA| 1 12

and varies only slightly as the nuclei are brought from infinity to their equilib-
rium separation. The second, exchange integral is purely quantum mechanical
in origin

K:@—/di” XA(r)*xB(r) o /ds XBE)XA(r) o

R r — R Ir — Rp|
[ e, ) ) e
12

and it is its rapid variation around the equilibrium geometry that causes the
formation of the bond in the singlet state. In the triplet state it appears with
the sign reversed and thus it leads to a repulsive state.

Curiously enough, this first treatment of the chemical bond was a correlated
one: the molecule correctly dissociates into two asymptotic partners and it
appears made by two building blocks with their atomic nature.

The work was soon extended by Pauling, Slater and Van Vleck, thereby
posing the chemistry on a quantum mechanical ground. They showed that
molecules are formed by favorable exchange interactions between walence or-
bitals of the constituent atoms, either with their isolated shapes or with an
“hybridized” shape that rationalized the previous Van’t Hoff observations on
molecular geometries. A chemical theory was established: molecules appeared
to be formed by atoms whose wavefunctions enter directly (with their prop-
erties) into the molecular wavefunction, hence giving a simple explanation of
the regularities of the chemical properties of the elements. There were founded
reasons for which the periodic variations of the physical properties of the atoms
across the Mendeleev’s table are brought into molecules and molecular forma-
tion.

Despite these tremendous impact in the chemistry world the quantitative
application of this “classical” Valence Bond theory was somewhat unsatisfac-
tory. The dissociation energy of the HL treatment of Hy is 66% of the ex-
perimental value and the equilibrium distance is 117%. The reason was soon
recognized to be the lack of terms in the wavefunction representing the elec-
tronic rearrangement that occurs during the bond formation. Hence the need
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for “lonic” and “excited” configurations. However, it turned out that the con-
tributions of these configurations was so large that, when used, completely
obscured the original “reference” configuration.

1.2 The Spin-Coupled wavefunction

In 1949 Coulson and Fisher (CF) (1949) wrote the first Spin-Coupled wave-
function, making a substantial improvement on the HL’s results for the Hs
molecule. Their (unnormalized) wavefunction for the singlet ground-state was

p('5) = A {mw“‘%’*’} (13)

where
$a=xa+Axn (1.4)

(and analogously for ¢p) with x4 and xp hydrogenic orbitals as before and A
a variational parameter. The logic behind this wavefunction is clear: the su-
perposition of atomic orbitals in eq.(1.4) allows the polarization of the atomic
orbital in the molecular environment, thereby accounting for the above men-
tioned electronic redistribution. Indeed, the CF wavefunction contains implic-
itly some ionic configurations. The interesting result was that the A parameter
never becomes big: as the atoms are brought together from infinity to their
equilibrium geometry, A varies smoothly from 0 to 0.14. This means that the
orbitals preservs their “atomic” character, being only slightly distorted by the
formation of the bond. Thus, the VB picture was preserved while allowing a
substantial improvement of the results (the D, and R, turned out to be 85%
and 102%, respectively, of the experimental value).

The ansatz was generalized in 1971 by Gerratt(1971) who wrote the Spin-
Coupled (SC) wavefunction for a generic N electron system in the form

P = A{b1¢2..6nOF )} (1.5)

where {¢1¢9..¢n} are N (spatial) orbitals, free to overlap, whose shape is vari-
ationally determined and @g s 1s a spin eigenfunction with quantum numbers
(SM) which is variationally determined too. Since the spin eigenfunctions
can be expanded in a complete set of eigenfunctions of dimension fév (to be
discussed later, in Section (1.3))

s

N _ N
Osm = E ckOgnk
k=1
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the SC wavefunction can also be written as

N N
¥ = ki
k

This is not only an obvious relation: each basis element @fgv Mk entails a par-
ticular spin coupling (e.g. a Lewis structure) and the 9%,,.,’s are thus con-
ventional chemical structures. Their superposition is the qua’ntum mechanical
transcription of the chemical “resonance” phenomena and the coefficient ¢y, are
the weights of the classical structures. This interpretation is clearly well within
the Valence Bond picture and is possible since the orbitals usually turn out to
be localized on the atomic centers (Cooper et al., 1987; Cooper et al., 1991).

The Spin-Coupled wave function is a correlated wavefunction, in that it
incorporates almost the whole (80 — 90%) non-dynamical correlation, which
we operationally define as the correlation energy recovered by a ’N electrons
in N orbitals’ CASSCF calculation. Indeed, the SC function describe correctly
the dissociation processes, i.e. it is size consistent: when two fragments AB
are brought far apart the system’s SC function

Ppsm(AB) = A {165 . .on, #L 65 . dN, O% )

(in which we label the orbitals with the relevant fragment superscript in view
of their above mentioned localization) correctly reduces to

Na!Np! AJA A QN
Wy g 2 An {000,030, |
MaMp

Ysm(AB) —

Ap {6805 08,0500, } (SAMASEMp|SMS4Sp)

when one uses the simplification

(Na+Np)lA= )" epP~{ Y epP > epP

PeSy PESNA PESNB

That is, the asymptotic AB wavefunction reduces to a simple product of frag-
ment wavefunctions with the correct total spin properties (the coefficients
(SAMASpMp|SMS4Sg) are the usual Clebsh-Gordon (CG) coefficients that
accomplish the spin decoupling SMS4Sp —SaMaSpMp ) and the SC energy
is the sum of the energies of the isolated (sub)systems computed at the same,
Spin Coupled, level®.

3(learly, the correct asymptotic wavefunction is the full antisymmetrized wavefunction
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Thus, we have seen that the Spin Coupled wavefunction is physically con-
sistent, sufficiently accurate and still simple enough to allow the realistic de-
scription of the chemical bond in terms of classical valence bond concepts: we
strongly believe that such wavefunction brings chemistry on a firm quantum
mechanical ground. Let us now go slightly deeper into this theory, reviewing
first some properties of the spin space of an N electron system.

1.3 The spin space of an N-electron system

Experimental evidences show that the three spatial coordinates are insufficient
to describe the state of an electron. In a given point of space the electron
state is entirely characterized only when the projection of its intrinsic angular
momentum on a reference z axis is specified. Although the origin of this
angular momentum is not due to the existence of an internal structure it is
invariably referred to as a spin angular momentum.

Since the electron spin projection can take up only two values {1/2, —1/2}
we denote with |a) and |3), as usual, the eigenvectors of s,. They spans the
bidimensional vector space which is the spin space of a single electron, H;.
The spin space of an N electron system, SV , given by the tensor product

SN = =H1@H1..9 H1
—_—

N times

has dimension 2V and it is spanned by the “primitive” vectors

{li1) liz) .- [in)}  where [ix) = [e), |B)

These vectors are eigenvectors of the total spin component on the reference z
axis,
Ny — Npg

8: {lia) liz) - lin)} = =

{li1) [32) - [in) }

but are not in general eigenvectors of S?. Thus, they must be combined in order
to exploit the spin symmetry properties of the usual electrostatic hamiltonian.
This can be done in several different ways, leading to a number of widely used
spin basis. Here we note only that when this is done the N electron spin

that represents that actual limit of the SC wavefunction. The vanishing overlap between
orbitals that belong to different fragments makes null the inter-fragment spin couplings (see
Section (1.5)) and thus the total spin function tends to be the product of the spin functions
of the two isolated fragments. The actual Sa and Sp values depend on the relation between
the AB state in consideration and the asymptotic fragments (Wigner-Weitmar correlation
rules).
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space SV is decomposed in a certain number of (SM) subspaces V&, in which
{52, S,} are diagonal

®
SN =3 Vium
SM

(here (SM) run over all values allowed by the usual vector coupling rules, see
below). The dimension f év of each subspace is an angular momentum property
and it does not depend on the M quantum number

N!

N __
Js = (%+S+1)!(%—5)(25+1)

since M actually depends on the choice of the reference system*. Thus,

> @S+ 1N =2V

SM

The spin spaces corresponding to a different number of electrons are related
by the usual vector coupling rules; for example, adding an electron to the spin
subspace VéVM gives elements to the spaces Vé\:}\}l, with

M =M+ L
2
1 1
S'=|8—-=|,8+=
2|’ + 2
More precisely, the following formula holds
N -1 1
N-1 N-1 N
fsatfs = f5—1/2 S = T ‘S_ 5‘

where the dimension of the space with maximum spin, § = N/2, is always
one. The reason for this relation is easily explained with the help of the
branching diagram (Fig.(1.1)). In this diagram for each value of (N,S) the
dimension fév is reported at the corresponding intersection point; for given
(N, S) this quantity can be obtained from those of the N —1 case by summing
the value(s) of the circle(s) connected by the lines. Thus, starting with one
electron (N = 1,5 = 1/2) we can add one electron to form a singlet (along the
path (1,1/2) — (2,0)) or to form a triplet (along the path (1,1/2) — (2,1));
with the same token we can add an electron to (N,S) = (2,1) and go in
(3,3/2) or in (3,1/2), where ff/Q = 2 since we could have also followed the

“The (sub)spaces Vs which differ only for M are brought in a one-to-one correspondence
by the rising and lowering operators S+ .
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Figure 1.1: The branching diagram which gives the dimensions of the (SM)
subspaces. It is really a three-dimensional diagram, in that each circle is split-
ted in 25+1 equivalent circles, corresponding to the different values of M.

path (2,0) — (3,2). In general, the highest spin states S = N/2 can be
obtained only from the highest spin states of the corresponding N — 1 electron
system (i.e. f}VV/Q = 1), the S = 0 spin state of an even electron system can be

obtained only from the S = 1/2 state of the N — 1 system (f2" = ff}l;l) and
other intermediate spin states can be obtained both from the S —1/2 and the
S +1/2 states of the N — 1 system (e.g. f{ = f15/2 + f§/2).

We can uniquely define a “path” in the branching diagram by listing the S

quantum numbers of the 1,2, ..N intermediate numbers of electrons®
(817 825 -4 S)

Each path corresponds to a particular spin coupling of the electrons; for ex-
ample, in (1/2,1,1/2,0) the first two electrons are coupled to form a triplet,
the third electron is added to form a doublet and the fourth electron gives the
final singlet state, which is one of the two possible (linearly independent) states
of a 4 electron system (the other being given by (1/2,0,1/2,0)). Since this
construction exactly parallels the vector coupling rule each coupling defines
actually a basis vector in the VéVM space. These basis vectors are orthogonal
since they are eigenvectors with different quantum numbers of (at least) one
“intermediate” S? operator; for example the S? operator of the first two elec-
trons actings on (1/2,1,1/2,0) and (1/2,0,1/2,0) gives so = 1 and sy = 0,
respectively.

5We could avoid the use of the first and last quantum number since the first is obvious
and the last is the final point in consideration.
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These paths identify the basis elements of the so-called Yamanouchi-Kotani
basis and in practice they are obtained by making use of the relevant CG
coefficients

N oy [(S=M+1\"?
[Osww) ==\ 5572

S+ M+1\?
25 + 2

S+M\'?| o
S :( 28 ) eg—%l,M—%;k>|“>+

8§~ M\ oo
+(Pa5) [ )

where the first equation refers to the (S + 1/2) — S coupling and the second
to the (S —1/2) — S coupling.

Several other basis can be considered, even non-orthogonal ones. For ex-
ample, one very useful from a chemical point of view is that of Rumer(1932) in
which for a given S spin state 2S5 electrons are left unpaired and the remaining
N — 28§ electrons are paired to form singlet-two electron spin states (like that
used by Heitler and London for the singlet state). Rumer(1932) and then Si-
monetta et al.(1968) devised a graphical scheme to chose from all the possible
“pairs” those that give rise to a linearly independent set of spin functions. It
is interesting to note that in their schemes, placing N regularly spaced points
on a circle that represent the electrons, one obtains for the case N = 6 and
S = 0 the three Dewar and the two Kekulé structures of benzene.

The spin subspaces VéVM have important group-theoretical properties. In-
deed, since they are defined as eigenspaces of symmetric operators (S? and
S,), they are invariant under the action of the symmetric group Sy, i.e.
the group, of dimension N!, of the permutations of N objects. In other

words, if we fix a basis {‘@g M;k>} in VéVM, from the commutation relations
[S2, P] = [S,, P] = 0, it follows

A
P|O%hrx) = D Uik (P)|©8uy) VP € Sy
=1

where the set of matrices {UY(P)} pes,» independent of M, performs a rep-

resentation of Sy with dimension fév . The important result is that these
representations are irreducible (see for example Hammermesh(1989)). Each
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(SM) subspace carries a different representation®, which is more symmetric
the higher is the spin S. For example, the S = N/2 state of an N electron
system is always totally symmetric (or invariant) under the action of Sy

P‘®%/2,M;k> = ‘9%/2,M;k> VP € Sy

It is worth to note at this point that the spin space can contain only a
limited number of representations of Sy, except for the case N = 2 where the
only representations are the one-dimensional symmetric and antisymmetric
ones (S =1 and S = 0 respectively). For N > 2 the spin space cannot contain
the most antisymmetric representations; for example, it is clearly impossible
to antisimmetrize a spin state with more than 2 electrons or, in other words,
three electrons are prevented to be in the same position in space. Let us now
see how to use these properties.

1.4 Wigner’s representation theorem

We have discussed in the previous Section the relation between the spin space
and the symmetric group. Since we know that every state of a fermion system
must be a basis of the antisymmetric representation of the symmetric group,
the question arises of how to combine the group properties of the spin space
with those of the “spatial” space in order to get a vector that is antisymmetric
with respect to electron permutations. For the case N = 2 we know that such
a state can be written in the form

[Vsnr) = |®) [Osnr)

where
P |®sm) = (=) |Osur)

P"|®) = (-)%|2)

(the permutation operator has been written as product of a “spatial” P" oper-
ator and a “spin” P? operator, P = P"P?); how can we generalize this method
being unable in forming antisymmetric spin states with N > 27 Furthermore,
from a mathematical point of view, the spin free electronic hamiltonian has,
in general, degenerate (“spatial”) eigenvectors because of the permutational
symmetry and it is not clear at all if these vectors are “allowable” and if the
permutational degeneracy is, to some extent, preserved.

The answers to these questions follow from the application of the Wigner’s
representation theorem of group’s theory; the result can be stated as follows

5Strictly speaking a “non-equivalent” representation. We are referring to the different
representations that come from varying the N and S numbers.
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Wigner’s representation theorem. The following statements are equiva-
lent:

1. |¥sar), a N electron state vector with quantum numbers (SM), is anti-
symmetric.

2. [Ugp) = Z,{SN |®k) [Osark), where {Ogar,;} is an orthonormal basis set
of V3, which carries the I' = {U" (P)} , representation of Sy and {®;}
is a basis of the “dual” representation I'* = {epUN(P)*}P.

3. There exists |®) and |©gps) such that |Tgar) = A{|®)|Ogar)} is non
null (A is the previously defined antisymmetrizer operator).

Before discussing some consequences of this theorem, it is worth to note that
the equivalence 1 < 3 is not so trivial as it may seem. Indeed, on the one hand,
it is not clear that a generic antisymmetric wavefunction can be obtained by
projecting a product of spatial and spin vectors and, on the other hand, the
outcome of the projection of an arbitrary spatial-spin product is “likely” to be
null. Let us now focus on the 1 < 2 and 1 < 3 equivalences.

Point 2 tells us, in practice that an antisymmetric state can be obtained
by two sets of fév vectors, one set of spatial vectors and the other of spin
vectors: under the action of the symmetric group the two sets behave in a
opposite, “dual” way so that their product gives the correct antisymmetric
property to the full vector. This generalizes the N = 2 case discussed above to
the case fév > 1. Furthermore, it gives a sense to a statement like ’..the more
symmetric the spin vector is the more antisymmetric the spatial vector must
be..”, which implies for example the Hund’s rule: the higher is the spin the
more antisymmetric is the spatial vector and, then, the less is the Coulomb
repulsion between electrons’. Finally, point 2 factors out from the full set
of spatial vectors of the hamiltonian those vectors that are incompatible with
the Pauli principle: if I' is the representation carried by a degenerate set of
eigenvectors {®y} it gives rise to a physical state only if I'* can be carried by
one spin subspace. The case of the lowest energy (bosonic) state is a well known
example in which ['* is the antisymmetric representation, i.e. it is “forbidden”
for N > 2.

Point 3 is very important for our purposes: it states that every electronic
state can be put in the form of a(n antisymmetrized) product of spatial and
spin states. Thus, the Spin Coupled wavefunction can be seen as the simple
product orbital approximation to the spatial vector state or, in other words,

It is worth to mention in this context that the stability of the electronic structures
depends also on the maximum occupancy of the lowest “monoelectronic” states; the Hund’s
rule refers to the set of states that arise from a given configuration.
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the Spin Coupled wavefunction is the most general one electron approrimation.
It follows that the singlet RHF wavefunction or, in general, any Configuration
State Function can be written in a Spin Coupled form. Furthermore, since the
SC function is variationally optimized, we have always Fsc < Fgp, i.e. the SC
function is a correlated function being still a monoelectronic wavefunction®.

1.5 The Spin-Coupled equations

Let us now discuss the Spin Coupled equations which arise from the application
of the variational principle. Although the optimization of the SC function
is actually performed directly by minimizing the energy expression with an
efficient Newton-Raphson algorithm (Goldfed et al., 1996), it is interesting to
briefly sketch the derivation of the SC equations in order to make easier the
comparison with the well known HF equations.

We consider only the variations of the orbitals since the variations of the
spin-coupling coefficients lead to a common secular problem (with fixed orbital
configuration). Furthermore, it is clearly sufficient to consider only the varia-
tion of one orbital, say ¢1, the other variations differing only in the labeling of
the orbitals. Thus, we consider in the energy expression an orbital variation
|6¢p1) subject to the orthogonality condition

(6¢11¢1) =0, i.e. |0¢1) € |d1)" (1.6)
that arises from the normalization condition

(p1ld1) =1

The variation of the energy functional assumes the form

(H — E)ZGP (Osm |P7|Osm) PT{¢1--¢N}> =0

P

<5¢1--¢N

where the energy F reflects the normalization condition of the full wavefunction
which is not guaranteed by the orbital normalization. This energy comes from
the secular (spin) problem, which is solved for fixed {¢;..¢n} orbitals. Then,
if one uses the factorization of the symmetric group Sy brought by the Sy_1
subgroup of the {2,3,..N} electrons, he obtains

N
011> > epp, (Osu|P7Pr|Osu) -

m=1PeSN_1

Ap2-dm N | (H — BYP {¢o..1..dn}) |bm) = 0

8The correlation brought by the SC function is the non-dynamical correlation discussed
above. Furthermore, some contributions arises from relaxing orthogonality conditions: these
conditions are inessential only when the wavefunction has a determinantal form.
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where P, is the permutation (1,m) — (m,1) and

(¢2--Gm--¢n|(H — E)P"{¢2.41.6n })

is a scalar product in the N —1 electron space of the electrons {2,3,..N}. Now,
the above double sum must be orthogonal to |§¢1) which, in turn, spans the
orthogonal complement of |#1), eq.(1.6). Thus, it follows

N
> > epp, (Osm|P Pr|Osu) -

m=1PeSy_1

(2. bm--dN|(H — E)P"{¢1..d2..dN }) |pm) = €1 ]¢1)

or in general
N
Z Fiem |¢m> =€ |¢k> (17)
m=1

where the F},, are monoelectronic operators given by the previous equation and
by other analogous equations obtained from the variation of the k-th orbital.
These operators can be defined as Gerratt(1971) originally did?, (for brevity

u) = |¢u))

N
Fim = D(E|m)(h = Yem) + Y _ D(ku|mo)[yem (ulk|v) + G(uv)]+

u,v
L X

T3 > D(kuyug|muvivz) (urug|v1v2) Yem
U1U2VL V2

In this expression the D’s are the spin-free density matrices of the first (D(u|v)),
of the second (D(ujug|vive)) and of the third (D(ujugus|vivavs)) order, Yim =
1 — dgm and G(uv) = (ulg|v), with g the usual electronic repulsion operator
g = 1"131. In general, the n-th derivative of the energy needs the use of the
density matrix of the (n + 2)-th order. Their computation is the bottleneck
of the SC optimization, which at present can handle up to N = 12 “active”
electrons.

The D’s density matrices are actually discrete representations of the Spin
Coupled (spin-free) density matrices, that is

*y(p) = Z |urug..up) D®) (u1ug..up|v1V2..0p) (V1V2..Up|

ULU2.. UpV1V2..Vp

9They are not uniquely defined since we can always add a projector onto |¢m)L and leave
unchanged eq.(1.7).
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where
¥® = Tr [$§ir) (¥8u]

is the p-th order spin-free density matrix (Tr is the trace in the spin space and
in the particle space of N — p electrons). These discrete density matrices can

be obtained form the following recurrence relation'?
N
D) (w1ug..up|v1v2..0p) = ZD(UlUQ..UpUp+1|’U1'U2..’Up+q) (Upt1|vprq) (1.8)
g=1

Apart from the spin-coupling dependence, the highest order density matrix is
a pure group-theoretical object
'y(N) = Z |uiug..un) DW) (urug..un|v1v2..0N) (V1V2..UN|
UL U2 UNVIV2.UN

since
D N D N
) E :Czcl I(cl :

and
DWV) (urug..un|v1v9..vN) = €p <®§VM;k ‘R‘@gM;l>

where R is the permutation that brings {vive..vxy} in {ujug..uny}. Thus,
one may start from the highest order matrix and use the recurrence relations
eq.(1.8) to obtain the matrices of any desired order. In practice, the in situ
generation of the matrices, using the so-called “super-cofactor” approach, have
been shown to be more efficient (Sironi, 1989; Cooper et al., 1993) and it has
allowed to reach the present capabilities of the SC codes.

The Fj,,’s operators are the Spin-Coupled counterparts of the Hartree-Fock
operator. They enter the SC equations much like the HF effective operator
enters the HF equations, that is they depend on the orbitals and entail an
“effective-field” which the orbitals are subjected to. The difference with the
HF equation is that, now, each orbital has its own set of operators. This set

'0This amounts to take the following monoelectronic trace

@ _ 1 (p+1)
Y —N_ptrv

where the (N —p)~! factor arises from the McWeeny’s normalization

N N!
o= (5 )P =

which gives the number of p-uples taken among N elements in any order. With this nor-
malization, the “extensivity” is brought into the density operator; for example, a bielettronic

operator A = E,’jfl Aj; has mean value Tr(y? A;,).
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couples the motion of the electron described by the orbital in consideration
with those of the other N — 1 electrons. The on-diagonal operator

Fi, = D(k|k)h + Y D(kulkv)G(uwv)

u,v

resembles the Hartree operator of the Hartree method (the selection rule D(kk|uv) =
0 eliminates the self-interaction term) and it is expected to give the main con-
tribution to the “effective field” for the k-th orbital. In this way all the orbitals

are allowed to fit in the molecular environment, looking for the greatest nuclear
attraction while keeping low the electronic repulsion.

In order to highlight the differences with the HF method it is worth to
introduce an “external direct sum” much like we will do in the different con-
text of the multichannel scattering theory (see Chapter 3 and in particular
Section (3.2); there are remarkable similarities between this problem and the
multichannel scattering problem). We define an enlarged orbital space as the
direct sum of each orbital space, Hy,

D
Hy =) Hy
k

in such a way our orbitals {¢1..¢x} are the components of a vector in this
space

@) = {l¢1),--1én)}

Then, the Fj,, operators become the matrix elements of an effective operator
F (a “super operator”) which acts in this space. The SC equations, eq.(1.7)
can be written as

F|0) = ¢ |d)

where € is a diagonal operator in Hpy, the diagonal elements being simple
scalar multiplications (note that this problem differs from eigenvalue or pseudo-
eigenvalue problems). The difference with the HF method is soon evident: if
we realize the same construction for an HF wavefunction we are lead to a
similar equation in which the superoperator F is already diagonal, with the
usual Hartree-Fock operator on each diagonal element!!.

The final, hypothetical “Self-Consistent-Field” algorithm for optimizing the
Spin Coupled wavefunction is therefore as follows: one solves the orbital equa-
tions with a trial spin function (and the corresponding energy F) and obtains

"Tndeed, the corresponding Fy,, operators are null because D(ku|kv) = 0 for orthogonal
orbitals when k # m.
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an improved set of orbitals; then, he uses this new set of orbitals in the secular
problem

> AWl Hlr) — E (@rlp)} o =0 (1.9)
I

(where the 1)’s are the structures of Section (1.2)) in order to determine a
better set of coupling coefficients, go back to the orbital equations and so on.
In practice, as already mentioned, direct minimization of the energy functional
is more efficient, just like in the HF optimization.

It is interesting, however, to note how the overlap properties of the orbitals
determine the spin coupling. In order to show this we take a simple 2n electron
model system in which our best orbital configuration turns out to be composed
of a set of “orthogonal pairs”

(Boi—1|d2i) = sii=1,2,.N

(hoi1|doj—1) = (P2i—1|d2j) 2 0i #j

each of which well localized so that we can neglect the inter-pair electronic
repulsions. Then, it is possible to show that the spin equation simplifies to

{Z(Ji — K P )I_y j(1 — |Sj|2)} |©sn) = E{II}_, (1 — |S;]°P;)} |Osm)

=1

where P; is the transposition of the -th couple (i.e. (2¢ —1,2¢) —(27,2¢ — 1))
and J;, K; and S; are the Heitler-London integral defined in Section (1.1).
Then, the solution of this equation for the singlet state is the perfect-pairing
Rumer function (the “Lewis structure”) and the corresponding energy is a sum
of HL contributions from each bond

n

Ji + K
=Y 217
et 14 1S;]?

In closing this Section it is worth to mention that, although at present the
application of the SC method is restricted to few electrons, it is possible to
freeze the “core” electrons of a many-electron system in doubly occupied MO
orbitals and perform the SC optimization of the valence, most important part
of the electronic configuration. Furthermore, the MO core can be optimized
in the presence of the SC valence orbitals (see Karadakov et al.(1992) and
reference therein).
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1.6 The SCVB method

Much like what happens in the MQ’s theory one can introduce correlation in
the mono-electronic SC wavefunction exciting the “occupied” orbitals in ap-
propriate wvirtual orbitals, in such a way to build a Configuration Interaction
(CI) wavefunction. The differences with the MQO’s theory are that now we
have to introduce only the dynamical correlation and, further, that in our CI
wavefunction the Configuration State Functions (the structures in this context)
are non-orthogonal. Furthermore, since the SC function is a wvery good refer-
ence function for this excitation step, the resulting Valence Bond wavefunction
turns out to be dominated by the SC contribution; thus, this property allows
an accurate description of electronic structure while still preserving a clear
physical picture of the underlying interactions (Cooper et al., 1987; Cooper
et al., 1991).

There are at least two ways to generate the virtuals in SC framework. Here
we consider the early, computationally simple approach developed by Gerratt
and Raimondi (1980), which gave rise to the so-called Spin Coupled Valence
Bond (SCVB) method. In the next Section we will consider a more recent
improved version, usually known as the SCVB* method.

As already mentioned in the previous Section, the SC equations are rather
different from the HF ones, being not pseudoeigenvalue equations. Thus, it
is not straightforward to generate virtual orbitals using “excited” solutions
of the problem. However, with the solution of SC problem at hand, it is
possible to rewrite the Spin Coupled equations eq.(1.7) using the Lowdin’s
partitioning technique so that to isolate an effective monoelectronic operator
for each orbital,

(Fik — ) [9) = D Fio l60)

v,0#k

Frilde) == Y (Frw — €mbmo) [60) = — > Gmo o) for m # k

v,0#k v,0#k

In these formulas G is, in the language of the previous Section, an (adjoint)
super-operator that acts in the space Hy_1 obtained from Hy by striking out
the k-th component. In other words, when the usual expansion of the orbitals
on an atomic basis set is performed, the G operator becomes a (N —1)x(N —1)
(super)matrix obtained from the (super)matrix F — € by striking out the k-
th (super)row and the k-th (super)column. Thus, solving for |¢,) the last
equation and introducing the result in the first equation, one obtains

Fee— Y FeolG omPrk o k) = ex |¢5)
v,m(v,m#k)
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where G™! is a kind of Green’s operator in the Hy_; space that enters in the
construction of an effective potential for the k-th orbital

Vl:ff = Z Fkv(Gil)vamk
v,m(v,m#k)

(the similarities with the partitioning technique used in multichannel scattering
theory, to be discussed later in Section (3.5), are remarkable. In that context
the effective potential is known as optical potential since it is not necessarily
self-adjoint and thus can absorb flux. In our case it is self-adjoint).

One can therefore write an eigenvalue problem

FE) gy = €9) (1.10)

where the effective (self-adjoint) operator F,gef D) is the sum of the previous
diagonal (“Hartree” operator) Fy and the effective potential arising from the
interaction of the electron described by the k-th orbital with the other elec-
tromns,

Fkgeff) :Fkk:+Vk(eff)

The k-th “occupied” SC orbital, |¢g), obtained in the Spin Coupled optimiza-
tion step, is therefore one of the solutions of eigenvalue problem of eq.(1.10)
and, usually, but not always, is the one with the lowest (orbital) energy. The
other solutions of eq.(1.10) are wvirtual orbitals that can be used to build the
final non-orthogonal CI wavefunction, the SCVB function. The difference with
the HF-MO theory is that, now, each virtual comes from an effective N — 1
electron field, as it must be, and not from a N electron field, besides having
its own specific electron field. Thus, the resulting SCVB expansion is, for the
same accuracy, considerable shorter than conventional MO-CI expansions (see
Cooper et al. (1987) and reference therein).

The SCVB function is obtained, just like in the MO theories, by performing
excitations of the occupied SC orbitals into the virtuals obtained by diagonal-
ization of the effective operators. Each SC orbital has its own stack of virtuals,
the SC orbital and the virtual being orthogonal to each other within this stack.
In other words, this method allows to decompose each orbital space, Hy, in
orthogonal one-dimensional subspaces, made up of the k-th SC orbital and its
virtuals. Since the spaces Hj are clearly equal to each other we can say that
we perform in this way different decompositions of the same one-electron space
adapted to the particular molecular environment.

The excitations are usually “vertical”, in the sense that each occupied orbital
is excited into a virtual of its own stack, but clearly “crossed” excitation can
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be done. In the case of vertical excitation, the final VB function becomes
0) | (0) (0 0) (a) ,(0
0} = A3, {6 6000508 ) 4520 e, 608 0008y, )

+Zm’€z ?nﬂrbk ‘¢§0)--¢§rof N0, k> }
(1.11)

where ¢$,? ) is the a-th orbital in the m-th stack (¢ = 0 denotes the correspond-
ing occupied SC orbital), the sums over greek indexes run over the virtuals and
the spin coupling coefficient ¢, are variationally determined by solving the
corresponding (non- orthogonal) secular problem with an efficient VB code. It
is worth to mention in this context that the virtual space of each SC orbital is,
actually, the space on which the orbital variations |d¢y) of the previous Section
were performed in order to give variational SC orbitals (see eq.(1.6)). Thus, it
follows that each virtual satisfy a kind of Brilloun theorem when employed in
vertical excitation

<A{¢§°)..¢§g>.. ﬁ)}‘H—ESC‘A{ﬂO)..qsgg).. 53)}> —0

where Egc is the Spin Coupled energy.

1.7 Perturbative optimization of virtual orbitals

The Valence Bond expansion of eq.(1.11) can be considerably shortened if
foptmizationor each occupied SC orbital we optimize the virtual orbitals in
such a way to lower the energy of the corresponding VB wavefunction. Needless
to say, such “MultiConfiguration Self-Consistent Field” optimization of the
wavefunction is beyond the current computational capabilities. However, it
is possible to approzimately (and cheaply) optimize a reduced set of orbitals
in such a way that when these orbitals are used in the non-orthogonal CI
wavefunction it turns out to be substantially improved (Raimondi et al., 1996).
We describe here briefly the main ideas behind this method.

As is well known, correlation corrections are mainly brought by doubly
excited configurations and, thus, one may focus on optimizing a function of
the form

0) = csc [Tse) + D Cmn [Ton) (1.12)

m,n

where one keeps fixed the Spin-Coupled |¥g¢) wavefunction and optimizes the
virtuals |¢;) that enter in the double excited configurations

mn) = |1 bN)
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(when no superscript appear we refer to an occupied SC orbital). Furthermore,
since we are interested in optimizing virtuals to be used subsequently in the
(linear) variational optimization of the final VB function, we can minimize the
perturbative expression of the energy, i.e. we can consider in eq.(1.12) the SC
function like an “unperturbed” wavefunction and the doubly excited configura-
tions like perturbative corrections to such wavefunction; these configurations
then give the (second order) perturbative correction to the SC energy. The use
of this perturbative expression of the energy, which reads

2
B® =% (H(0.mn) = Hoo)S(0.mm))
mn (H(O,O)S(mn,mn) - H(mn,mn))

where H(O,O) = ESC
H(O,mn) = <\IJSC|H|\Ilmn>

H(mn,mn) = <\I}mn|H|\Pmn>
S(O,mn) = <\IJSC|\Ijmn)
S(mn,mn) = <‘I(mn|‘l(mn>

is particularly useful since it requires only “diagonal” and “first row” elements
of the operators H and 1. In practice, the most recent version of the opti-
mization code fixes the spin coupling coefficients at their SC level and uses an
approximate Hessian matrix in a Newton-Raphson algorithm which ensures
good convergence properties, while maintaining low the overall CPU time. In-
deed, the approximate second derivatives require only density matrix elements
up to third order, i.e. the same needed for a pure gradient driven optimization
(Clarke et al., 1998a). Thanks to the good choice of the unperturbed wave-
function, the overall procedure turns out to work well in producing optimized
virtuals while maintaining low the computational cost!2.

121t is worth to mention that the procedure outlined here can be employed to optimize a
set of orbitals at time. It has become usual practice to optimize pairs of orbitals at time,
and this is the method actually used in our work (see Part II).



Chapter 2

Single channel collision theory

In this and the next two chapters we will briefly review the collision theory.
Only a short summary of this fascinating matter will be presented; the inter-
ested reader is referred to the excellent book of Taylor (1969) for an introduc-
tion to the topic and to the books of Levine (1969), Gianturco (1979) and J.
Zhang (1999) for closer looks at molecular problems.

In this chapter we will consider the so-called single channel collision theory.
Although this theory does not concern directly our work it allows for the in-
troduction of some basic concepts of scattering theory, without the inessential
complications that arise from the internal structure of the colliding partners.
As a typical system we may consider two noble gas atoms that, for many
purposes, are equivalent to two structureless particles. We remove from the
beginning the center-of-mass motion, i.e. we take into account the linear mo-
mentum conservation law in order to work with the relative motion of the two
partners. Thus the hamiltonian of the system is

p?

H:@+V(x):H°+V(x)

where p is the momentum operator for the relative motion, u is the reduced
mass of the binary system and V(x) is the interaction potential which is a
function of the relative position vector operator x; H® defined by this equation
is the hamiltonian of the system in absence of interaction. The corresponding
Hilbert space for the relative motion is denoted with .

2.1 Wave operators
A scattering event can be schematically divided in three steps:

41
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e long before the collision takes place the atoms are far apart, do not expe-
rience any interaction and move according to the given “initial collision
conditions”;

e during “the collision time” the atoms undergo a very complicated motion
that depends on the interaction potential acting on them;

e long after the collision the atoms move again freely and follow a “free”
orbit determined by the collision.

In classical mechanics this means that as t -+ —oo
x(t) = x°(t) = bip + vin t

where v;, is the initial velocity vector and by, is the position that the system
would have at time ¢ = 0 in absence of interaction; analogously, as t — 400

X(t) - Xo(t) = bout + Vout t

where v, is the final velocity vector and by, is the position that the system
would have had at time ¢ = 0 if it had moved freely all the time. For each
specified “in” asymptotic state (the vectors by, and vy, ) there is an “out”
asymptotic state (the vector by, and v,yt) and viceversa; the one-to-one cor-
respondence is given by the actual orbit of the system, x(¢), which in turn is
determined by the laws of motion. Every orbits with an “in” asymptote have
an “out” asymptote, that is they are truly “scattering orbits”; however, they are
not, usually, all the possible orbits of the system because there can be orbits
in which the system is bound at all times: the bound and scattering orbits
represent all the possible orbits of the system!.

In quantum mechanics the situation is very similar: a scattering “orbit” (in
the relevant Hilbert space) should resemble the “free” motion as ¢ — +o0, i.e.

Uelyp) = U |hin) = e iH% |in) ast — —o0

where |1);,) is the “position” in the Hilbert space of system that the system
would have at ¢ = 0 in absence of interaction and

Ut |¢> — U? |¢out> = 3_iH0t Wjout) ast —> +oo

where |1oyt) is the position that the system would have had at ¢ = 0 if it
had moved freely at all times. The two vectors |1,) and |¢yy:) are known as

!These consideration actually apply to “reasonable” potentials. See below for the quantum
case.
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(in/out) asymptotic states. We expect that for each “in” state |1;,,) exists an
“out” state |1,y:) and that there is a one-to-one correspondence between them
determined by the full evolution operator. Furthermore, as in the classical
case, we expect that these scattering states are not all the possible states
of the system, because the potential could support some bound states which
cannot have asymptotes. However, the scattering and bound states should be
all the possible states of the system. For reasonable potentials? this turn out
to be the case; one can indeed prove some fundamental theorems which we are
going to describe.

Asymptotic condition. For every |4;,) in the Hilbert space of the system
there is a |tbg) such that

U |wbo) — UL |hin) — 0 ast — —oo
and likewise for every |toyt) in H .

This theorem in practice states that every state of the system can be an asymp-
totic state, i.e. the experimentalist can choose any arbitrary state to do scat-
tering experiments. This may seem surprising because among the states of the
systems there can be some bound states, which we know do not have asymp-
totes; however, one should reflect on the definition of the asymptotic state: it
moves according to the free evolution operator and only when the time is let
to go to infinity its orbit resembles the actual orbit of the system.

The vector |t¢) is the state at the time ¢ = 0 which (uniquely) character-
izes that particular orbit with the specified asymptote. It is obtained by the
following limiting operation

o) = limis— ooUS UL [thin) = Qs |9hin) (2.1)

which defines the Mpgller operator Q. for the incoming asymptote; similarly
one can introduce another Mgller operator, {2_, for the outgoing asymptote

Q. = limy 400U UL (2.2)

which relates the “out” asymptote to the actual state of the system at ¢ = 0.
The two Mgller operators are half collision operators, in the sense they divide
the duration of the process in two (infinite) time intervals. The role of the
t = 0 instant of time (and that of the two operators) depends on the actual

2The results that follow are surely valid for continuous potentials that are less singular
than =3/ at the origin and fall off faster than r~2 at infinity (see Chapter 2 of the book of
Taylor(1969)). However, these are sufficient conditions; some results can be proved under
weaker conditions.
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states involved. In some cases, like photodissociation experiments, one is able
to produce a state at ¢ = 0 which is well localized into the interaction region
and the ) operator truly characterize an half collision process. Adversely,
in cross-beam experiments one produces a state in which the two atoms are
initially far apart and with a momentum distribution directed toward the in-
teraction region; for this initial state the action of the full evolution operator Uy
in the past is equivalent to that of the free evolution operator U and therefore
it follows that

%0) = |in) (2.3)

(i.e. for our particular choice of the initial state Q1 ~ I3 ). In this case Q_
clearly describes the full collision process.

The two Mgller operators are limits of unitary operators and thus are iso-
metric. In general, however, they are not unitary, because unitarity means
that every state of the system has an (in/out) asymptote and this can only
happen when the system does not have bound states*. The €2, operator maps
the space of the asymptotic states (the entire H) onto a subspace, the space
of states that have an incoming asymptote, Ry = Q4 (). Analogously, Q_
maps H onto R_ = Q_(#), the space of states with an outgoing asymptote.
For a state in the appropriate space, |tg) € R4, we may write

Ui [1o) — UPQL 1) as t — Foo (2.4)

where we have used the isometric relation. Therefore when |1)9) € R4+ NR_ we
obtain a nice picture of the collision (see Fig.(2.1)): the system evolves along
the orbit U [1o) from an “in” asymptotic state |iin) = QL |1ho) to an “out”
asymptotic state |1gy:) = of |1o), the two asymptotes being related by the
scattering operator S

Wout) = QL [9hin) = S [thin) (2.5)

that represents the most important tool of scattering theory. To investigate
its properties we continue on showing two more results.

Orthogonality. The space of the states with an “in” (out) asymptote, R4+ (R_)
is orthogonal to the space spanned by the bound states of the system, B.
In other words, R4 C BL.

3This means that with our choice we can neglect the distortion caused by the potential “in
the past”. There are situations, e.g. weak potentials and high collision energies, in which this
approximation is good also for wavepackets well spread in space (or peaked in the momentum
distribution); in these cases this approximation is known as the Born approzimation.

4The isometric properties is expressed by the relation QfQ = 1 while unitarity requires
in addition that QQF =1 holds. The latter means that () = H , i.e. that the operator is
suriettive.
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U b,> : Uglv,>

t— _co t—+C0

Figure 2.1: A pictorial description of a scattering “orbit”. The vertical line
represent the Hilbert space H and the dots mark the “position” of the relevant
vectors.

This theorem states formally what we stressed previously: the bound states
of the system cannot have asymptotes. Moreover, it shows that the scattering
states must lye in the space spanned by the continuum eigenvectors of the
spectrum of the hamiltonian operator H; only in that space one can describe
a motion that extend to infinity.

Asymptotic completeness. The space of the states with “in” asymptote
coincides with the space of the states with “out” asymptote, Ry = R_ =
R, and they are the orthogonal complement of B, R = B*. In other
words, H = B+ R.

This is the most important result (and the most difficult to prove, see discussion
on p. 33 of Taylor(1969)) on which the S operator lays its foundation. From
a physical point of view it states that every orbit with an “in” asymptote has
an “out” asymptote (i.e. that such an orbit represents a true scattering event)
and that the scattering and the bound orbits are all the possible orbits of the
system. From a formal point of view this means that the Mgller operators have
a common image and therefore the S operator

s=0la, (2.6)

is a well defined operator which maps the space of in-asymptotes (H ) onto
the space of out-asymptotes (H ) with a one-to-one correspondence. Since
the Mgller operators are isometric the scattering operator turns out to be
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unitary®. This mathematical property has the very important meaning of law
of conservation of probability (particle number) in a scattering event. Another
very important conservation law, the conservation of energy, follows from the
so-called intertwining relation

O H=HOQ, (2.7)

which relates the asymptotic hamiltonian (or any function of it) to the actual
one (or the same function of it). The conservation of energy takes the form

[S,H =0

where we recall that H? is the free hamiltonian: since S maps asymptotic
states it commutes with the asymptotic hamiltonian. It should be noted that
the intertwining relation (2.7) has importance in its own rights: for example,
every (improper) eigenvector of the free hamiltonian gives rise to a correspond-
ing (improper) eigenvector of the full hamiltonian®. This fact opens the way
for the time-independent scattering theory, which is the subject of Section 2.3.
At the moment, however, we can note the following: because of the asymptotic
completeness one can construct a basis of H that is adapted to the decompo-
sition of the space in scattering and bound states. For example, if the vectors
{|%n)} form a basis of A then the scattering vectors |, +) = Q4 |¢y), together
with the bound states {|¢p)} of the full hamiltonian, form another basis of

7

1= 1¢n) (nl + D [9n+) (WnH]

In particular, one may use the momentum eigenvectors {|p)} of the free hamil-
tonian (or other eigenvectors) to write down two useful resolutions of the iden-
tity operator

T= 3" (6n) (6al + / @plp+) (= 3 [6n) (Bl + / @plp-) (p-| (28)

in terms of vectors that, in view of eq.(2.7), are eigenvectors of the full hamil-

tonian”.

5The result is contained in the chain of mappings: Q! is an operator extension of the
inverse of Q_ , Qf D Q! | which by definition maps the range of the operator back to
its domain, in this case H. Thus, if it happens that R_ D R4 the chain of mappings
is suriettive. For completeness, it should be said that the orthogonality theorem implies
Q! (B) = {0}, i.e. that B is the kernel of the operator QF .

5 Actually, this needs some care. We have seen that the Mgller operators are well defined
on true vectors of the Hilbert space H .

"Eq.(2.7) shows why, in general, the Mgller operators cannot be unitary. If they were
unitary H would have the same spectrum of H° .
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2.2 Cross sections

Collisions change the state of the system and therefore can modify the mean
value of observables that otherwise would be constant. Gaseous systems reach
the macroscopic equilibrium through this mechanism®. For example, in a gas
of noble atoms every binary collision changes the magnitude and the direction
of the velocity vectors of the atoms until they reach the equilibrium Boltz-
mann distribution®. Keeping this in mind, we consider a generic observable A
compatible with the energy of the free system, i.e.

[A,H° =0 (2.9)

whose mean value on a scattering orbit is expected to become constant as
t — +oo. Let |¢g) be a scattering state, i.e. |1h) € R , which originates
from a given “in” asymptotic state, |g) = Q4 |[¢in+). The mean value of the
observable A at the time ¢ is given by

< A >= (| Al9pr) = (Uetho| A|Urtho)
Using eq.(2.4) and eq.(2.9) we can write

<A> o= limy, oo (Ustho| A|Uptho) =

and analogously

<A>i00=limisi00 <U?QJL¢0‘A‘UPQTJ/JO> = <¢z’n

St AS|thin )

Thus, we see that the “collision change” of the value of the observable, AA_y;,
is given by the following simple relation'®

AAcoll = <7/Jm

StAs — A‘¢in>

When the system is not in a pure state one has to introduce a density matrix;
in that case the above result can be rewritten as

AAcon = Tr{pin(STAS — A)} (2.10)

8We are not claiming that this result is well understood...

“Note that we are talking about velocities in a laboratory reference frame. Every binary
system has its own center-of-mass frame and in that frame only the direction of the velocity
vector can change.

1%Note also STAS — A = ST[A, S] = [ST, A]S
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Figure 2.2: The idealized scattering experiment discussed in the main text.
On the left the “ideal beam machine”; on the right the target.

where p;, is the “in” asymptotic density matrix of the system. These are the
expected results considering eq.(2.5); however, one should note that they are
valid under the “observability” condition expressed by eq.(2.9).

The use of a density matrix allows us to consider more realistic problems.
In particular, in a still idealized scattering experiment a beam machine is
able to produce the same initial state |i;,) over and over again; such state
is well peaked in the momentum distribution around some value py but is
randomly displaced in the plane perpendicular to the direction of propagation
of the wavepacket (see Fig.(2.2) and Sections 3-d/e of Taylor (1969)). The
corresponding density matrix is given by

Pin = Ninc / dee—ipp |¢m) <¢m| eipp (2'11)

where 7y, is the number of particles incident on the target for unit surface. In
eq.(2.11) the integral runs (perpendicularly to the incident direction pg) over
an area that is much larger than the target dimensions and the displacement
operators describe the “imperfections” of the beam machine; thus, the p vec-
tor is the analogue of the classical impact parameter. This density matrix is
normalized to the number of incident particles, N

Tr{pin} = Ninc / d’p=N

and therefore the resulting collision change of the observable A is the change
in a system of N (non interacting) projectiles scattering off a target. Note that
there is no need to consider stationary experiments: we consider N particles
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(N > 1 so that they are really randomly displaced) and let them scatter off
the target, one at time, whenever we want. We define a generalized collision
cross section

oan=1Tr { / d*pe” P |thin) (in| €PP(STAS — A)} (2.12)
such that the collision change of A is given by

AAcoll = NincOAA

The cross section defined in eq.(2.12) has the dimensions of [A] x [length]? and
thus it is an effective area of the target for changing the value of the observable
A.

To obtain an explicit expression of eq.(2.12) we need to know how the the
momentum basis S matrix elements look like. Since the S matrix conserves
energy, it must be an operator that acts “on the energy shell”, i.e.

(P'|S|p) = 6(E' — E)s(p' + p)

where E = p?/2m, E' = p'?/2m and s is some function which is arbitrarily
defined out of the energy shell. We now observe, in addition, that in a scatter-
ing event the “out” state is always a superposition of a scattered state and the
incoming state and therefore a more adequate decomposition of the S matrix
elements is

)
(p'|S|p) = 05(p' — p) + 5—0(E' — E)f(p' < P) (2.13)
™m
where f, called scattering amplitude, is expected to contain no more delta func-
tions (see Section 2.3). Furthermore, without loosing generality, we consider
an observable that satisfies

[p, A] =0

This restriction is all but severe: the physically meaningful free particle ob-
servables cannot depend on the position of the system and the above relation
tells us, indeed, that A is a function of the momentum only. In this case the
resolution of A can be written as

A= / &pa(p) p) (p| (2.14)

Now, when we use egs.(2.13) and (2.14) in eq.(2.12) and take into account the
fact that the initial state |1, ) is well peaked around some value pg, we obtain,
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after considerable algebra,!! the following expression
47
san= [ dVaE)IE < poP - Calpolns(po < po) (219

where p’ is understood to have the same magnitude of pg and the integral runs
over the directions of the primed vector. If we set by definition

o(Po) = 4—mef(po < Po) (2.16)
Po

we can write the result in a more compact form

oan = / da(p)| £ (0 + po)? — a(po)o(po) (2.17)

We can now apply this formula to some specific observable A. We start
considering the observable that corresponds to the number of particles whose
momentum vector lays in a small angular cone A of our reference system.

This observable is defined by

A= /0 dpp? /A _d0[p) (p) (2.18)

that is, in eq.(2.14), by a(p) = 1 if p lays in the specified cone and a(p) = 0
otherwise.

We first consider the case where the cone does not contain the incident
direction; in this case the initial value of the observable is null and therefore
its change is the number of scattered particles in the specified direction. The
relevant cross section is therefore

o= [ a2 pol (2.19)
AQ
or, in the limit AQ — 0,
do ' 2
E(P < p) =|f(P « po)| (2:20)

This is the well-known expression of the differential cross-section in terms
of the scattering amplitude. If in eq.(2.19) we extend the cone to the full

" The approach is strictly original work of the author. The following result, to the author’s
knowledge, seem to be absent in the literature. The derivation is somewhat long; however,
we note that we use the same approximations of Section 3-e of Taylor(1969) except for the
fact that we do not need to exclude the forward direction from our consideration.
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solid angle (i.e. if we integrate (2.20) over all angles) we get the total cross-
section, o' (pg): it gives the total number of scattered particles, but it does
not correspond to any observable!2.

When the specified cone contains the incident direction the change in the
corresponding observable is the loss of particles in the beam and it is given by

oAl = /AQ d'|f(p' + po)|* — o(po)

or, in the limit AQ — 0,
OAA = —O’(p())

We therefore see that the quantity defined in eq.(2.16) is a measure of the
attenuation of the beam; since the particle number is conserved we expect
that this quantity is related to the total cross section defined above. Indeed,
we can apply eq.(2.17) to the observable A = I. In this case, considering
eq.(2.10) and the unitarity of S'3, we know that oas = 0 ; therefore it follows

o(po) = / 4 |f (0 po)[? = o™ (po)

With this interpretation of the quantity o(pg) our previous definition eq.(2.16)
is known as optical theorem.

One further application of the formula (2.15) is for A=p, i.e. when the
observable corresponds to the linear momentum of the system. In this case,
using the above results, one can easily obtain the following (vectorial) cross-
section:

oan = / 4 (' — po)|f (0’ < po)l?

The projection of this quantity onto the incident direction py defines the cross-
section corresponding to the loss of momentum of the beam, i.e. the expression

S / dY' (1 — po)| F (0’ po)|?

defines the momentum transfer cross-section'?.

12The experimental reader may be horrified by this claim; such cross-section is much more
easy to “observe” than the differential one. We are talking about the quantum mechanical
observables. One cannot extend the integral in eq.(2.18): in that case one would get A =1
and should consider also the forward direction (see below).

13 Actually, we need only the isometric properties of S.

In the momentum cross-section generally used one factors out the p term and thus obtain
a quantity with the dimension of an area (see (Levine, 1969)).
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2.3 The Lippmann-Schwinger equation

Up to now we have taken into explicit account the time in order to gain a
physical picture of what happens when two atoms collide. More precisely, we
have taken a time dependent point of view or, in other words, we have worked
in the time domain. Historically the scattering theory developed in the late
twenties and thirties in a time independent framework and only in the late
fifties its formalism was properly justified by the time dependent approach
outlined above (see Taylor(1969), Introduction). One of the main advantages
of working in the latter framework is that it furnishes practical means for com-
puting scattering observables. For a long time these were the only means to get
informations on collision processes. Nowadays, the tremendous increase in the
computational power of the last years has opened the way to the direct solu-
tion of the time dependent Schrédinger equation, but these time-independent
means are still widely used and therefore we describe here their theoretical
foundations'®. Before starting to be buried by complicated formulas it should
be stressed that we have to deal with the energy domain; the bridge between
this and the former domain can be built in different ways but in any case is a
time-energy Fourier transform.

We start considering the Mgller operator . (similar results apply to Q_)
—7; T770

and writing the time dependent operator inside the limit operation as an inte-
gral of its derivative

—00
Q+:I+z'/ Ulvuldt
0

We now apply it to an improper eigenstate of the free hamiltonian. In doing
this we need some trick to handle the non definiteness of the integral which
arises from the fact that the above operator is actually defined only for proper
vectors. The trick is to insert the famous e factor (Jauch, 1958)

Q. |En) = |En) +ilim_,+ / U Ve "t |En) dt
0

also used with the meaning of “adiabatic switching” (Lippmann and Schwinger,

5In our work we have used both the approaches (see Part II).
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1950).16 Using the result of Appendix A7 we arrive at the following expression
Q4 |En) = |Ent) = (I+ GT(E)V)|En) (2.21)

where the vector |[En+) is here defined. As discussed at the end Section (2.1) it
is an (improper) eigenvector of the full hamiltonian with same “initial” energy
FE and it is called scattering eigenstate. Since the time has been factored out
(we have a stationary, although improper, state) this vector contains all the

scattering informations for the chosen energy.
The operator G1(FE) is defined by

GT(E) = limppyy_,0+ G(A) (Rel = E) (2.22)

and it is the Green’s operator corresponding to the so-called outgoing boundary
conditions; it is given by a limit of the operator

G\ =W\—H)! (2.23)

which is well defined (and analytic as a function of its argument) in any open
set of the complex plane that does not include eigenvalues of H (proper or
improper). It is the most important tool of the time independent theory; the
reader is referred to Appendix A for a summary of its properties.

Eq.(2.21) expresses the action of the Mgller operator on the energy shell
and it allows us to introduce the “on shell” Mgller operators

Q. (BE)=1+GH(E)V

which in turn allow us to write down a sort of “spectral resolution”
+oo
Q) = / dEQ . (E)§(E — H?) (2.24)
0

We could have well defined a generalized “on-shell” Mgller operator

Q) =1+ GV (2.25)

"$Here we have used the symbol |En) to denote a general eigenvector; n is understood to
be any necessary quantum “number” although it actually may be a continuous index (as for
example in the case |En) = const |p) where it coincides with the direction of the momentum
vector). If needed we take these vectors normalized on the energy scale, i.e.

(E'n'|En) = 6(E' — E)dpn
when n is countable and
(E'n'|En) = §(E' — E)é(n’ —n)
when it happens to be continuous.

Y"1t is an half Energy-Time Fourier transform. Tt is at this point that we move to the
energy domain.
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from which
Q4 (E) = limpma—0=2(A) (ReA = E) (2.26)

Another useful related operator is the transition operator. It is defined by
T(\) =Va\) = Q' )V (2.27)

for the appropriate A values (i.e. where G()) exists); in particular we put for
future reference'®
T(ET) = lim_,o+T(E + ie) (2.28)

Now we can use the Lippmann-Schwinger equation for G(X) reported in Ap-
pendix A to write down a corresponding equation for 2(X)

Q) =TI+ Go(\VQ(N) (2.29)

or

(I Go()V)QM) =T

where Go(A) is the free particle Green’s operator. This is the Lippmann-
Schwinger equation for the on-shell Mgller operators: it applies both to Q4 (E)
and Q_(E)!. It is an equation for Q()) in terms of the known free particle
Green’s operator and the potential. A corresponding equation holds for the
transition operator defined above

T(\) =V + VGo(M)T(N)

or equivalently
I-=VGo(\)T(A) =V

Power series solutions of these equations, known as Born series, can be ob-
tained recalling the geometrical series

(I—A)"" = i Am
n=0

When they are truncated to definite orders they lead to different approxima-
tions, known as (first) Born approximation, second Born approximation and so
on. However it should be noted that the geometrical series do not necessarily

converge and, furthermore, even when they do it is not straightforward that the
convergence is so rapid that their first or two terms are good approximations??.
®Explicitly, T(E') = VQ4(E) = (- (E))'V .
190 (E) is defined accordingly to eq.(2.26) and satisfies a relation analogous to eq.(2.24).
20The “physical” Lippmann-Schwinger equations (i.e. those for Q and T, involve the
product of G§(E) and V; it follows that the Born approximation can be realistic when
V and G(E) are “small” in some sense, i.e. for weak potential or high energies.
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A Lippmann-Schwinger equation can also be written for the scattering
eigenstates,
|En+) = |En) + G§ (E)V |En+) (2.30)
which give rise to an integral equation for the scattering eigenfunctions, one of
the most powerful means to deal with scattering problems. We return in the
next section to its connection with the Schrodinger equation; for the moment
we leave this section of barren mathematics going back to the physics. In
particular, we have introduced “time-independent” operators but how can we
get scattering information from them? The answer is in S operator and in
particular in eq.(2.13) which introduced the scattering amplitude. To obtain
that expression we need a spectral resolution analogous to eq.(2.24). It is
simpler to work with the operator S — I which we manipulate as follow

+o0
oo, —1=0l (@, -0 )= / dEQ! (GT(E) — G~ (E))VS(E — H°)
0

where we have used the isometric property of the Mgller operators and their
spectral resolution. We now use the following formula
1
— (G (E)-GT(E)=6FE—-H
(G (B) - G*(B)) = (8 — H)
and the adjoint of the intertwining relation eq.(2.7) for Q_ to get
+00
S—I= —27rz'/ dES(E — H*)Q! (E)V§(E — H°)
0

where QF (E)V is the transition operator defined in eq.s(2.27, 2.28). Thus, we
have the following “spectral resolution” of the S operator

S = /+OO dES(E)§(E — HY) (2.31)
0

where the “on shell” S operator is given by
S(E) =1-2nié(E — HO)T(E™) (2.32)

Taking momentum basis matrix elements of this expression we obtain eq.(2.13)
if we put

f(@'  p) = —m(2n)* (p'|T(E;)|p) (2.33)
where p’ and p are understood to correspond to the same energy E, . We
therefore see that the scattering amplitude is given by the on-shell matrix
elements of the T operator; however, it is worth to note that they must be
taken with the appropriate limit of eq.(2.28) at the chosen energy E = Re),
i.e. there is a different operator for each fixed energy. It is worth to note that
the T operator(s) acts also “out of the energy shell” and in eq.(2.32) the energy
projector ensures that S conserves energy.
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2.4 The stationary scattering states

We are now ready to go slightly deeper in the time independent formalism. In
the previous Section we introduced the scattering eigenstates as the solution
of the Lippmann-Schwinger equation (2.30) which is, in practice, an integral
equation for the function %}, (x) = (x|p+) (or other representations). We
know that they are eigenstates of the full hamiltionan but we also know that
this property does not characterize them entirely?!. In this Section, therefore,
we show the actual connection with the Schrédinger equation.

We first note that eq.(2.21) is actually the usual limit (i.e. ImA — 07 with
ReX = E) of the following equation

|En+) = (I4+ G(A\)V) |En) (2.34)
which can be rewritten as
(A — H) |En+) = (A — H°) |En) (2.35)

when one remembers the meaning of the Green’s operator defined in eq.(2.23).
Whenever A has a non vanishing imaginary part, this equation has a unique
solution, given formally by the previous expression eq.(2.34)?2. When we take
the above limit this equation reduces to the usual Schrédinger equation

(E — H)|En+) =0 (2.36)

which we know to have a non unique solution. Thus, we see that the non-null
imaginary part of the complex energy A, i.e. the € factor of the scattering
theory, “contains” the boundary conditions that have to be applied to the
Schrodinger equation to get scattering solutions.

In order to obtain these boundary conditions we look at the “boundaries”,
that is we consider what happens, in coordinate representation, when R — oo.
Since the potential dies at the boundaries the Schrédinger equation reduces to
the free particle equation

(E — H%)f, (x) =0 for R — o0

and therefore the scattering eigenstate should be, at long-range, a superposition
of free particle states of the same energy. The actual superposition is obtained

21 The trouble is clearly in the degeneracy of the corresponding eigenspace.

*2We may well re-obtain the Lippmann-Schwinger equation (2.30) by writing on the Lh.s.
of eq.(2.35) H = H° 4V, using the free particle Green’s operator and taking the appropriate
limit.
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by taking coordinate matrix elements of eq.(2.30) and by using the asymptotic
properties of the free Green’s operator

S|t _ 1/2eiipR
(RX|Gy (BEp)|®) — —m/(2n) 7

(px|®) (2.37)

with |®) =V |Ea+). For example, for |[Ea) = |p) the well-known result is

1 . R ipR
¥y (x) = @n)l {6pr+f(px<— P)eR

} for R — oo (2.38)

where
f(p% « p) = —m(27)” (pX|V |p+)

is the scattering amplitude defined in eq.(2.33), when one remembers eq.(2.28).
We could have well proceeded starting from eq.(2.21) and using the asymptotic
behavior of the full Green’s operator, i.e.

e:l:i R
(R%|G*(E,)|®) — —m(ZW)I/QTp <pi\sz*_(E,,)<1>> (2.39)

which follow from eq.(2.37) and the Lippmann-Schwinger equation for G. In
this case the relevant scattering amplitude would have turned out to be

f(pX < p) = —m(2m)* (px—|V|p)

which is equivalent to the previous expression in view of eq.(2.27).

Eq.(2.38) is the boundary condition that has to be applied to the solution
of the Schrédinger equation (2.36) in order to get “scattering” solutions?®. It
clearly states that, asymptotically, such solutions must be a superposition of
the incoming plane wave and a spherical outgoing scattered wave.

Actually, starting from this result, one can set up the following “spatial”
description of the scattering process (see Taylor(1969), Chapter 10): the long
range behavior of a wave packet®* launched on the target centered in the origin
of our reference system is given by a superposition of the incident wavepacket
with a scattered one

1/J(x,t) = Q/Jin(xa t) + wscatt(x,t) for R — o0

BWith the same token, one can start with the Schrodinger equation and use standard
Green’s function techniques (see Morse and Feshbach (1953), Chapter 7) with the mentioned
boundary conditions. The result is of course the Lippmann-Schwinger equation.

24The wavepacket is understood to be well peaked in the momentum distribution around
a certain value po -
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where a1 (X, t) is proportional to the amplitude of the incident wavepacket
at the same distance R = |x| but in the incident direction,

f(poX < po)

in p at
7 Yin (RPo, t)

"pscatt(X,t) =
Therefore, well before that collision takes place (¢ < 0 ) the incident wavepacket
moves on the negative pg axis with a (group) velocity vo = pg/m and the
scattered wave is absent, as it must be (1, (x, t) attains significant values only
around x; ~ —Povolt|) . Adversely, for ¢ > 0 the unscattered wavepacket is
localized near pougt and the scattered one moves outwards in a shell of radius
’U(]t.

The conditions needed for this description to be valid are the same used
in Section 2.2. In particular the scattering amplitude must be a slowly vary-
ing function of its arguments, a condition not satisfied near a resonance; in
this case, indeed, one observes a resonant scattered wave that appears with a
certain delay time from its unscattered and non-resonant counterparts®>.

One further note on the long range behavior of a scattering state is needed.
Since ¥;n(x,t) and 1(x,t) have the same normalization some destructive in-
terference phenomenon must occur between 1, (x,t) and ¥scq(X,t) in order
to conserve probability (i.e. the “number of particles”). This is the reason for
the existence of the optical theorem, eq.(2.16), that

“.is characteristic of a wave theory, in which the reduction
in intensity of a plane wave passing through a scattering medium
is accounted for by destructive interference between the original
wave and the secondary waves scattered in the direction of propa-
gation...” (Lippmann and Schwinger, 1950).

Note also that, from a theoretical point of view, the Lippmann-Schwinger equa-
tion (2.30) or its direct counterpart, eq.(2.35), are much more useful than the
Schrédinger equation with the appropriate boundary conditions. This is clearly
because they entail such boundary conditions and these can be recovered, when
needed, by taking the appropriate asymptotic limit.

% The situation is actually more complicated. One has to distinguish between the case in
which the energy spread AFE of the wavepacket is much less than the width of the resonance,
I', and the case in which the opposite is true. In the former, the spatial spread of the
wavepacket, Az ~ vo/AE is much greater than the “delay distance” Azg ~ vo/I' and one
can measure the (energy) profile of the resonance but not its delay time. In the latter one
can measure the delay time, or “decaying rate of the resonance”, but cannot measure the
profile. See (Taylor, 1969), Sections 13-c/d for a clear discussion of the topic.



Chapter 3

Multichannel scattering theory

In the previous Chapter we have introduced some basic concepts of scattering
theory considering the simplest case in which the collision partners do not have
internal structure. We now move to the more interesting situation in which
the partners have some internal structure. Every molecular collision system is
of this kind: even in the simplest case of an atom scattering off a diatomics
one cannot neglect the rovibrational structure of the molecule. Furthermore,
it is clear that all the chemically interesting collision processes are of this kind:
the change of internal structure due to a collision is at the heart of chemistry.
These facts complicate the theory, but, ultimately, the price to be paid is well
compensated by a clear physical picture of the chemically interesting processes.

Exactly as in the previous Chapter, we factor out the center of mass motion
and denote with H the resulting Hilbert space of the system. H is the full
hamiltonian in this frame,

P}

H=K+V =
— 2

+ V(, X;, )

where {x;} is a suitable set of coordinates that factor out the center of mass
position, {p;} is the corresponding set of conjugate momenta and p; are the
relevant reduced masses. For definiteness, we take the potential V' vanishing in
the limit of the full breaking of the system, i.e. V' — 0 when R; = |x;| = +00
for all 4.

3.1 Arrangements and channels

The main difference in dealing with systems that have internal structure with
respect to the previous single-channel case is the increase in the dimensionality
of the problem. This fact, besides having several consequences in practical

59
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applications, has some important consequence also from a theoretical point of
view. First of all we have to abandon the idea of a unique scattering coordinate,
that is of a unique coordinate that, when left to be increased, brings the system
to the asymptotic situation. The reason is that, in general, we do not have one
asymptotic situation any more: molecules can rearrange themselves, that is
they can react. Furthermore, the increase of the number of degrees of freedom
allows the flow of energy from one degree of freedom to another: in some
cases this flow occurs only temporarily, i.e. only during the collision, while in
other cases it may lead to permanent excitation/deexcitation of the collision
partners.

These complications are best seen by taking as an example an isotopic
variant of the system which is the subject of Part II. We consider the possible
outcomes of a collision between LiH* and D, namely!

LiHt + D
LiDt +H
Lit + DH
Lit+H+D

LiH" +D —

In the first equation the outcome is chemically equal to the reagents and
the process seems to be analogous to that described in the previous Chapter.
However, when we remember that the diatomicdiatomic has internal structure
the possibility of exciting/deexciting the molecule should be taken into account.
That is, the first equation describes also inelastic processes.

The successive equations refer, instead, to chemical transformations. In
writing these equations we realize that several asymptotic hamiltonians are
possible. For example, the “reagent side” (center-of-mass) hamiltonian reads
as

P2
HY =L 4 hpipe

2
where P is the momentum operator for the relative motion of D with respect

to the center of mass of LiH™, u is the corresponding reduced mass and

2
pPi
hrig+ = Y. + Viin+(x1)
mi
is the hamiltonian of the Li H ' molecule, with x; the diatomic vector operator,
p1 its conjugate momentum and m; the corresponding reduced mass. On the
“product side” we have in the third line, for example,

P2
H® = =2 4 hpy
2p3

!We are talking about adiabatic processes.
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where now P35 and p3 are understood to be the “scattering” variables of the
atom LiT with respect to the center of mass of the DH molecule and hpg is
molecular hamiltonian of HD. Analogously, we can obtain a similar expression
for the other two-body process.

The fourth equation introduces a novel possibility of the multichannel the-
ory, that is the fact that many-body processes have to be considered. In general
they contain one or more molecular fragments, but in our three-atom example
we have only the full break-up process. The corresponding hamiltonian is pure
kinetic; in this case we have no more a physically advantageous choice of the
coordinates and we can take any diatomic vector and the relative vector of the
remaining atom with respect to the center of mass of the chosen “diatomic” as
a possible set of coordinates?.

Every asymptotic situation defines an arrangement which is characterized
by a particular asymptotic hamiltonian. In this Section only we label the dif-
ferent arrangements by the first few letters, a, b, c, ..; the corresponding hamil-
tonians will be denoted by

H* = K* + B

where K? is the kinetic energy of the scattering motion in the a arrangement
and A? is internal hamiltonian of the arrangement. This, in turn, is given by
the sum of the molecular hamiltonians of each fragment. For the full break-
up process (like the Lit + H + D arrangement of the previous example) the
internal hamiltonian is absent and the kinetic term coincides with the full
hamiltonian. The three “molecular” arrangements of a three atom system, i.e.
those in which a molecule is present, and a useful labeling of them is shown in
Fig.(3.1), together with a suitable set of coordinates.

The internal hamiltonians of each arrangement have one or more bound
states®. Each bound state of these hamiltonians defines a channel in the spec-
ified arrangement. For consistency, the case h* = 0, i.e. the full break-up
arrangement, also defines a channel. For example, the LiH " + D arrangement
has a certain number of roto-vibrational channels, labeled by the vibrational
and rotational quantum numbers (v, j) of the LiHT molecule; in the (v, )
channel the D atom and the LiH ™ molecule in the specified roto-vibrational
state move freely.

One therefore introduces a channel space #(*® C H which is given by the

2This already tell us the difficulties in treating such processes. We note that, without
factoring out the center of mass of the total system, the most democratic “individual” choice
becomes possible.

3The situation in which h?* does not have bound states is excluded by definition: we are
referring to asymptotically stable fragments and, therefore, such hypothetical arrangement
belongs to the full break-up arrangement. From this point of view the h*’s can be seen as
the molecular hamiltonians projected onto the space spanned by their bound states.
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Figure 3.1: The “molecular” arrangements for the three atom system and a
suitable set of coordinates. From left to right, the arrangements a,b and c.

space spanned by the vectors of the form

@) = [x) |¢a)

where |x) is a (general) vector that describes the translational motion in the
arrangement a and |@o) is the a-th bound state vector of the internal hamil-
tonian h®*. Note that different channel spaces in the same arrangement are
orthogonal with each other, but this is no longer true when different arrange-
ments are considered; for example the full break-up arrangement is one channel
and the channel space is the full space, i.e. it cannot be orthogonal to any
channel space.

Every channel space is much like a room on a floor of a building: one
can enter the room only if (s)he has enough energy. At a fixed total energy
only a certain number of channel spaces is available for being used as asymp-
totic spaces. The corresponding channels are termed open channels (they are
“available rooms”), in contrast to those that are forbidden at the given energy
and that are called closed channels*. One of the possible situations for our
three particle model system is depicted in Fig.(3.2): in this example we con-
sider the case in which all the molecular fragments are stable and, moreover,
bound states of the three atoms exist. The system could resemble the familiar
X'H50 system (or also our title system in the first excited state), in which
the arrangements describe the H + OH and the Ha + O collision processes and
the potential well supports many bound states. Other possibilities can be met
in practice.

The free motion in each channel is described by the asymptotic hamiltoni-
ans introduced before, H2, one for each arrangement. This means that, with

“Note, however, that the closed channel spaces, being subspaces of 7, can be “sampled”
by the actual orbit of the system and therefore, in general, these channels cannot be excluded
at all.
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Figure 3.2: Pictorial representation of channel levels in the ABC system. On
the top: the potential curves of the diatomic BC, CA and AB, with their energy
levels. The shaded region indicates the channels that are open at energy E:
in this case the c arrangement is closed. On the bottom: representation of the
potential function of the ABC system with the indicated energy levels on the
same energy scale as above.

respect to the situation of the previous Chapter, we will have to consider dif-
ferent free Green’s operators G,(A) that are the counterparts of the operator
Go() of the single channel case. This is not the only difference with the sin-
gle channel case. There is also a qualitative difference: the channel Green’s
operators are much more complicated and usually not known.

These complications are already evident if we focus attention on the two-
body arrangements. We know that the known, single channel Green’s operator,
G, describes the relative motion of the two fragments and we can argue that
an expression of the channel Green’s operator in terms of it should be feasible.
That this is the case can be seen by using the spectral resolution of h?, i.e.

GV = 3" GolA — el + /deGo()\ — )o(e — b (3.1)

where p? is the projector onto the a-th bound state of h* with energy e,
and the integral runs over the continuous spectrum of h?. Complications arise
when we realize that we need to know the full spectral resolution of the internal
hamiltonian if we wish to apply Ga(\) out of channel spaces and this depends
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on the our knowledge of the dynamics described by % 56 . From now on,
unless otherwise stated, we will drop the arrangement label.

3.2 Wave operators

We can now set up a time-dependent description of the collision process which
parallels that given in Section (2.1). The description is somewhat complicated
by the presence of the channels but a close analogy with the single channel
case helps us not to lose sight of the ultimate goal, i.e. the understanding of
the physics of the collision process.

Exactly as in Section (2.1) we expect that a scattering orbit should resemble
a free motion as t — +o00. In this case, however, we have more than one possible
“free” motion. From an experimental point of view, at the time of writing, we
can only prepare a system in a definite arrangement. This is however only a
practical limitation: we expect that the outcome of the collision process can be
a superposition of free motions in different arrangements and, thus, we should
expect that the same is true for the incoming motion. Therefore, a scattering
orbit should have the following limiting behaviors:

U o) = Y U [) for t — —oo
o

and
Uy [o) — Z UP [92,,) for t — 400
o

where Uy is the full evolution operator, Uf*’s are the channel evolution operators
and [9g,), [9%,,) are the channel components of the “in” and “out” asymptotes
respectively, which belong to the appropriate channel spaces defined in the pre-
vious Section. The sum runs over all channels of all arrangements. Although
we have one channel evolution operator for each arrangement (each arrange-
ment has its own free hamiltonian) we labeled them by a channel label. This

turns out to be useful in describing scattering processes’.

5For example, in the LiH' + D arrangement of our system we have h* = hy,z+. The
knowledge of the spectral resolution of this hamiltonian depends also on the knowledge of
the scattering dynamics in the Li™ + H system.

50ne remark about the continuous spectrum of the internal hamiltonian. Its lowest
energy marks the threshold for the breaking of the arrangement into (sub)arrangements. For
example, we can consider the D+ABC arrangement in a 4-atom system ABCD, in which
the ABC molecular hamiltonian is that of Fig.(3.2): only the bound states of ABC are
channels of this arrangement; the other levels represent channels in a different arrangement,
e.g. D+ A+ BC and so on.

TAs a matter of fact, each channel has a different translational behavior: for a given
energy the more the internal excitation the less its translational content, i.e. the channel
components of a definite arrangement move with different speeds.
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Exactly as in the single channel space we expect a one-to-one correspon-
dence between “in” and “out” asymptotes. In the previous Chapter this corre-
spondence was given by the unitary scattering operator; now we have several
channel components of the asymptotic state and therefore a matriz of scat-
tering operators is expected to connect these components. Furthermore the
actual scattering orbits are again expected to be orthogonal to the “bound or-
bits” and complementary to them, in the sense that, together, they should be
all the possible orbits of the system.

These results are contained in the multichannel version of the theorems
stated in Section (2.1), for which similar remarks about the potential apply.
Here, we consider briefly these multichannel versions; the reader is referred to
the previous Chapter for a deeper discussion on the general principles.

Asymptotic condition. For every |i;,) in the channel space H® there is a
vector |tg) such that

U lo) = U |in) — 0ast — —o0
and likewise for every |¢oy;) in H® .

In this case the same considerations of the single channel case apply. Here
we note only that the vector |¢g), which we remember to be the actual state
that characterizes uniquely that orbit with the desired asymptotic properties,
is obtained by the appropriate (isometric) channel Mgller operator

We have a different Mgller operator for each channel, also for channels belong-
ing to the same arrangement: every limit is taken in the appropriate channel
space, thus defining its own domain®. We can say that every Mgller operator
maps the channel space H® onto the space R = Q% (H®) which is the space
of the states with (in/out) asymptotes in the specified channel. These states
are related by the following theorem:

Orthogonality theorem. The space of the states with an “in” asymptote
in the channel «, RY, is orthogonal to the space spanned by the bound
states of the system, B, and to the space of the states with an “in” asymp-
tote in a different channel 3. In other words, R} C Bltand RiLRf_ if
a # B. Likewise for the R%’s.

8This fact is somewhat hidden in the awkward notation of eq.(3.2) where we know that
the channels of the same arrangement have the same evolution operator.



66 CHAPTER 3. MULTICHANNEL SCATTERING THEORY

Here we find again the “non-belligerent” relation with the possible bound states
of the system. The novelty is the orthogonality between the actual orbits that
come from different channels. We have already noted in the previous Section
that the channel spaces, in general, are not orthogonal to each other, so why
should the actual orbits be orthogonal? As in Section (2.1) the reason is again
in the definition of the asymptotic state: when we let the time to go to infinity
the orbits resemble their free counterpart and mowve accordingly to their free
evolution operators. 1t follows that, when the arrangements are the same, the
states are orthogonal because they are different eigenstates of the molecular
hamiltonian. On the other hand, when the arrangements are different there is
at least one degree of freedom which is bound in one state and not bound in
the other: this means that in the latter arrangement one interatomic distance
will be “stretched” by the free motion, thus making the states orthogonal.

The orthogonality relations allow us to clearly define the full space of the
states with an “in” or an “out” asymptote. For example, for the incoming
asymptotes we can define

R_|_ = Z@Ri
«

where the symbol @ denotes the (internal) direct sum. A general vector |g)
of this space is given by a superposition of orthogonal vectors, i.e.

[ho) = > Q% [45)

and characterizes an orbit with the following limiting behavior

Ut o) = Y U |45 for t = —o0
87

Furthermore, we can group together the isometric properties of the Mgller op-
erators and the orthogonality relations between their images with the following
formula

(Q5)1Q% = 634 (3.3)

This formula clearly states the orthogonality for different channels. However,
it is worth to note that the plus/minus signs in eq.(3.3) must be the same,
otherwise an orbit with an “in” asymptote in the « channel can never end in
the 8 channel, i.e. no @ — 8 processes are left.

We are left with the last, most important theorem.

Asymptotic completeness. The space of the states with “in” asymptotes
coincides with the space of the states with “out” asymptotes, Ry =
R_ = R, and they are the orthogonal complement of B, R = Bt. In
other words, H = B+ R.
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R
b Qb QP b
= —
in /\_/\\/_\_/ out
B

Figure 3.3: Pictorial representation of a collision in a three channel system. In
the middle the wall represents the Hilbert space H with the indicated bound
(B) and scattering subspaces (R). R can be thought to be a set of two computer
disks, one arranged in sectors (the three R$’s) and the other arranged in
cylinders (the three R*’s). The two disks exchange “information” by contact,
thus making possible the flow of the system from every “in” channel to every
“out” channel.

This exactly parallels the corresponding theorem of Section (2.1). It tells us
that we can define a set of scattering operators

Spa = (Q7)T02

which establish a connection between the “in” and the “out” asymptotic channel
components

Yout) = Spa l¥53)

The previously mentioned one-to-one correspondence is expressed by the uni-
tarity of the matriz, which takes the form

> slﬂsw =" 83,8, = 65a (3.4)

where the sum runs over all channels. The overall situation is depicted in
Fig.(3.3) where the role of the channel components and that of the various
spaces becomes evident.

Eq.(3.4) express the law of conservation of the number of particles; the
conservation of energy follows, exactly as in the previous Chapter, from an
intertwining relation

SHY = HQY (3.5)
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and reads as
SpaH®* = HP S, (3.6)

where now we have to take into account the fact that the final asymptotic
hamiltonian can differ from the initial one.

We note that we could have well proceeded with a closer analogy with the
single channel case. This is possible at the expense of introducing some more
mathematics. Just to sketch this analogy we arrange the channel spaces H*’s
into one unique asymptotic space Hasym- This is accomplished by building
their (external) Hilbert direct sum

Hasym = Z @HOZ
(6]

a general vector of which is a column vector with components [¢®), that is
@) = | [¥%)

In other words the previously defined channel components become the actual
components of a vector in an “enlarged” space. This space is an Hilbert space
with scalar product defined by

(@) =) (44"

where the sum runs over the channel components?. We can now arrange the
channel evolution operators in a row vector, one component for each channel,

U = [..UR.]

and use the usual matrix multiplication rules. In this way the asymptotic
limiting behavior of a scattering vector takes the form

Ut [tpo) = U} [@in)
and eq.(3.2) can be taken “as a whole”, that is
Q. = limy 00U UY

where €2is a row vector of operators, whose components are the channel Mgller
operators defined above. Eq.(3.3) allow us to write

Lo, =1

°Tf we define “canonical vectors” |¥*) = {0.., [*},..0} we may say that the “channels are
orthogonal”, i.e. <\IJ°‘ |‘I>B ) = 0o3- However this is a mere consequence of the introduction of
the asymptotic space.
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where QL is the column vector of the adjonts of the Mgller operators and 1 is
the unit operator of the asymptotic space Hgsym - This express the isometric
property of the whole Mgller operator. The scattering operator is now a true
matrix

s=alq,

which maps Hqsym onto Hesym With one-to-one correspondence, being a uni-
tarity operator
sfs =ssf=1

Each element of it, Sg, , relates the “in” channel « to the “out” channel 3; that
is, the column vector {Sg,}s describes the outcome of a collision process that
originates in channel a.

With the same token, the intertwining relation, eq.(3.5), takes the form

Q.H=HQ.

where H is the diagonal matrix of the channel hamiltonian operators H®

. 0 0
H'=|0 H* 0
0 0

and plays the role of asymptotic hamiltonian; the conservation of energy,
eq.(3.6), can therefore be written in the compact form

[S,H°] =0

which exactly parallels that of the single channel case.

To close this section we note that the physically relevant observables are
connected to the quantum operators through appropriate matrix elements of
the Sgo’s operators. Since this connection parallels that of the single channel
case we move directly to the time-independent formalism knowing that our aim
is, in any case, to obtain practical means for computing these matrix elements.
We will turn later on the actual expressions which establishes the link between
theory and experiments.

3.3 The Lippmann-Schwinger equation

Having developed the time-dependent formalism for the multichannel case we
can introduce its time-independent version, on which much of the current work
of research lays its foundation. With respect to the single channel case we have
now to take into account the fact that each channel experiences its own poten-
tial. This channel potential vanishes in that regions of space in which the full



70 CHAPTER 3. MULTICHANNEL SCATTERING THEORY

potential V approaches the internal potential of the channel in consideration!?;
that is, it is given by
V= H - H® =V —y°

where v® is the molecular potential of the specified arrangement. For example,
in a model three atom system ABC in which V is a sum of pair potentials

V =Vap+ Ve + Vea
the channel potential for the channels of the AB + C arrangement is given by
VO AB — Vo + Ve =V — Vg

which is the potential that links the different fragments of the specified ar-
rangement.

With this is mind we proceed, as in Section (2.3), by writing the (channel)
Mpgller operator in integral form, applying it to an improper eigenvector of the
channel hamiltonian H® and performing the time integral. The result is

Q% |En;a) = |En;a+) = I+ GH(E)V?*) |En; @) (3.7)

Here | E'n; o) is an improper eigenvector with total energy E of the H* operator,
taken in the channel space H%, and n is any quantum number needed to
specify completely the state of the system (see also footnote 16 of Chapter
(2)). The vector |En;a+) is here defined and, in view of the intertwining
relation, eq.(3.5), it is an eigenstate of the full hamiltonian with the same
energy E which is called stationary scattering state.

Equation(3.7) introduces an “on shell” Mgller operator

0% (E) = 1+ GH(E)V?) (3.8)

which allows us to write the following spectral resolution
0g = /dEQ?‘,_(E)(S(E — H%) = /dEQi(E)é(E —€q — K%)

In writing this equation we have taken into account the fact that each channel
Mogller operator is defined on its channel subspace; furthermore, since K¢ is a
positive definite operator, the integral effectively runs in the range £ > ¢,, i.e.
when the channel in consideration is open.

Eq.(3.8) is again the usual limit (ImA — 07 with Rel = E) of the "gener-
alized” channel Mgller operator

Q) =I+GN)V)

10 A5 before, there is actually one different “channel” potential for each arrangement.




3.3. THE LIPPMANN-SCHWINGER EQUATION 71

which satisfies a Lippmann-Schwinger equation analogue to eq.(2.29)
Q%) =1+ Go(N)VQY(N)

where now the channel Green’s operator takes the place of the free Green’s
operator and the channel potential takes the place of the potential.

Some differences with the single channel case arise when one introduces
the transition operator. We now have a set of double labeled operators, Tgq,
which describe the transitions o — 3 exactly as the scattering operators Sg,
do. But, when we generalize eq.(2.27) to the multichannel case we are left with
two different definitions for it. The first is known as the post version and is
given by B

Tsa(N) = VPQ2()N) = VP 1 VGV

Its name arises from the fact that in it, when specialized to the €2, case, we
first take the system in the interaction region with the initial channel Mgller
operator and then we let it interact with the final channel potential. The prior
version is instead

Toa(N) = (P(IN) Ve = Ve 1 VEG(A)V®

and its name follows from analogous reasoning. The two operators differ for
the difference of the two channel potentials

Tsa(N) — Tga(N) = VP —V°

This may seem strange: we have two different operators, which is the correct
one? The answer is that they differ for elements in which we are not interested
in: as we should expect, we need only their matrix elements on the energy shell
and the two operators give the same on-shell matrix elements !
they satisfy two different kinds of Lippmann-Schwinger equations

. However,

Tsa(N) = VP + Tpa(\)Ga(A)V®

Tsa(A) =V + VEGH(N)Tsa(N)

because such equations involve also elements out of the energy shell. It seems
that only the second of these equations resembles the single channel counter-
part; however, an equation like the first one can be written also for the single
channel case, as one can realize by taking a = 8 the label of the only channel
in a single channel process.

HTndeed, <E'm;ﬂ|Vﬁ - V"‘|En;a> = <E’m;ﬂ|H6 — H"‘|En;a>. However much care is
needed in using the self-adjont properties of an operator between two improper vectors (for
example, the momentum operators are self-adjont because in (¥|p|¢) a surface term vanishes
when one consider at least one L? function).
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Born series solutions can be hint for the Lippmann-Schwinger equation for
the channel Mgller operators and for that in terms of either versions of the
transition operators; in particular, the first Born approximation of the two
T versions differs again for the difference of the two channel potentials and,
therefore, it leads to the same matrix elements on the energy shell.

The connection with the physically relevant cross-section is again given in
terms of the S matrix. In particular, exactly as at the end of Section (2.3)
we can obtain an expression for the “on-shell” S operators in terms of the
transition operators. Using the same manipulations of Section (2.3) on the
operators Sgo — 0go (in place of S — 1) we arrive at the following expression
in terms of the prior version T operators

S — / dESsa(E)S(E — H?) (3.9)

Spa(E) = dpq — 2mid(E — HP)Tgo(E) (3.10)

which can be written also in terms of the post version T operators since the
projectors on either side of T ensure that they act on the energy shell. With the
matrix notation introduced at the end of the previous Section, eq.s(3.9,3.10)
can be rewritten as

S = / dES(E)§(E — H)
S(E) =1 —27id(E — HY)T(E)
where T(E) and S(E) are the matrix of operators T, (E) and Sgo(F) respec-

tively and H° has been defined in Section (3.2).
3.4 The stationary scattering states

Exactly as in Section (2.4) the Lippmann-Schwinger equation in terms of the
stationary states can be shown to be equivalent to the Schrédinger equation
with appropriate boundary conditions. The proof starts again by recognizing
that the equation (3.7) or the following equation

|En;a+) = (I+ G(A\)V?)|En; a) (3.11)
(which is the same in the limit ImA — 0% and ReX = E) is equivalent to
(A—H) |En;a+) = (A — HY) |En;a) (3.12)

Thus, this equation leads to a Schrédinger equation whose boundary conditions
are obtained by considering the asymptotic form of the “scattered” term of
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eq.(3.11) and by taking the limit from above in the complex energy plane. The
purpose of this Section is to obtain such boundary conditions.

We begin by first noting that we can write the full Green’s operator in term
of any channel Green’s operator, that is

G(A) = Go(\)(1+VPG(N) = Gr(\)(Q°(A))T
and in particular
G (E) = G (B)(1+V*GH(B)) = G{ (B) (9" (B))!

(In these formulas we have taken into account the fact the Gz and Vg depend
actually on the arrangement label and thus we have resorted to the “arrange-
ment notation”). Then we use the asymptotic properties of the channel Green’s
operators. In doing this, we restrict attention to two body arrangements, that
is we look at the scattered wave in a given two-body arrangement. In this case,
we have already discussed a decomposition of the channel Green’s operator in
terms of the free Green’s operator, eq.(3.1). This decomposition allows us to
write

GH(B) = { S 63 (B~ o)l + [ deGi (B~ 93(e b p ((B)! (313
B

where G operates on the (unique) scattering coordinate of the arrangement
b in consideration and pg, h operate on the internal coordinates'?. Therefore,
we can multiply eq.(3.13) by the vector (R| (where R = RX is the scattering
coordinate of our “final” arrangement) and use the known asymptotic form of
the free Green’s function, eq.(2.37). In this case, however, we realize that we
need also the asymptotic form of the Green’s function for negative real values
of the argument. Indeed, the closed channel terms in eq.(3.13) have negative
translational energy. The requested asymptotic form is given by
—-PR
<Rfi‘GgE(Ep)‘¢> = —m(27r)1/26T€>(Pﬁ) for Ep = —P?/2m

where
1

(27)3/2
Thus, we see that the closed channels do not contribute to the asymptotic limit

of the scattering states, being exponentially decaying, the faster the decaying
the higher in energy is the channel level. We consider a total energy less than

B(PX) = / PR PXR (R!|)

!2Note that in a many body arrangement one has no longer one “scattering” coordinate.
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the threshold energy of the b arrangement, thereby having asymptotically only
contributions from the (proper) channels. 13

To complete the proof, we now consider a state that originates also from a
two body arrangement and with (relative) momentum P. We denote this state
with |P; a), where « is the initial channel; its total energy content is given by
E = P2?/2m+e¢, and, for simplicity, is assumed to be less than the threshold for
the breaking-up of the arrangement (see Footnote 6 in this Chapter). Moreover,
we look for the full coordinate representation of the wavefunction and therefore
project eq.(3.7) on the vector (Rr|, where R has been defined before and r is
the set of internal coordinates of the final arrangement which we are looking
at. The final expression of the scattering wavefunction in the limit for R — oo
depends on whether or not we look at the initial arrangement. In the first case,
i.e. when we look at the elastic and inelastic scattering contributions, we get

(Rr|P; a+) —
iPﬂR

e { P Ra(r) + L f(PsX; B P 0) <= g(r) |

(3.14)
while in the second one, i.e. when we look at the reactive outcome, we obtain

(Rr|P; a+) —
iPﬁR

/ ~
(2753/‘2 {ZB (Z%)l Qf(PﬂX; B P a)f R ¢5(r)}

(3.15)
In both formulas the sums run over the open channels, where

Pp = \/2us(E — ¢p)

is the channel translational energy (with mg the relevant reduced mass), ¢g(r)’s

are the channel eigenstates and f (Pgi; a < P; ) is the scattering amplitude
for the indicated transition. This amplitude is given by

F(PsRs B Ps @) = ~(ugna) ? (2m)? (PsXs | Tpa(B) |Pi o) (3.16)

which can be written equivalently in terms of the post version T operator.
In this equation the mass factors are introduced following ((Taylor, 1969),

13Tndeed, we can show that theses contribution are negligible just outside of the strong
interaction region. This property can lead to notable saving of CPU time in actual compu-
tation (see Section(10.3)).
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Chapter 19) in that they ensure that the cross-sections have the same formal
expression

do P,
79 (Pg; B+ Py ) = —Pﬂ |f(Pg; B+ Pa; a))? (3.17)
(e}

in terms of the scattering amplitudes both for collisions with rearrangement
and for collisions without rearrangement . Indeed the simple rule

scattered flux/solid angle

Cross — section = —
incident flux/area

leads to eq.(3.17) when one notes that the incident flux per unit area is given
by
3P

incident flux/area = (27)
fa

and the differential scattered flux is

P,
diff. scattered flux = (27T)73u—’3—’B|f|2
Ha g

Eq.s(3.14,3.15) are the boundary conditions that we were looking for. They
clearly state that, asymptotically, the scattering states is a superposition of
the incoming plane wave and outgoing spherical waves. Indeed, exactly as in
Section (2.4) one can set up a “spatial” description of the scattering process
that exactly parallels that of the single channel case. That is, if one properly
prepares a wavepacket and launch it toward the target, long after the collision
(s)he observe a superposition of the original wavepacket with a spherically
spread one (Fig.(3.4)). Here we note only that in the multichannel case the
various channel components of the scattered wavepacket moves with different
speeds: the less the channel energy the more the velocity of the component.
Therefore, in a deexcitation processe one observe a component in advances

with respect to the incident wave'4.

3.5 The Close-Coupling approximation

In this Section we discuss in fairly general terms the widely used Close-Coupling
approximation. This approximation scheme is today widely used both in in-
elastic and in reactive scattering calculations, either in the time-independent
or in the time-dependent framework. Here we consider only its theoretical
foundations and, possibly, its merits and limitations. The actual specialization
to a case in which we are interested in will be discussed later, in Section (4.4).

“Much like in the single channel case, this picture is valid only “off-resonance”.
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t<<O0

t>>0

Figure 3.4: An inelastic event. The wavepacket long before (on the left) and
long after (on the right) the collision. We have four open channels (n =0, ..,3
with €y < .. < €3) and the collision starts form channel 1. On the right the
big arrow marks the incident wavepacket. The radius of the various circles are
given by v,t where v, is the “channel speed”.

We introduce it using the partitioning technique in the time-independent
formulation (Levine(1969), Part 3). This technique has the merit to give some
physical insight to the procedure, thus allowing to establish the feasibility of
the approximation as we will discuss at the end of this Section. However, we
are not able to avoid the introduction of some more mathematics...which we
hope will not obscure the physical content of the subject.

The partitioning technique consists in dividing the Hilbert space R C H in
two spaces, one that is of direct interest (P) and the other that is of secondary
importance (Q). The aim is obtain an ezact equation for the vectors projected
onto the space P which implicitly takes into account the effect of the less im-
portant space Q. In this way, approximate solutions to the scattering problem
can be obtained by neglecting or modeling the influence of the Q space on
the dynamics. In this sense its use is much like the use of a reduced density
matrix (see for example Section (1.5) ) in handling many body phenomena:
one focuses attention on a part of the system and tries to model the interaction
with the “bath”.

Let us consider, for example, the collision of an atom with a diatomic
molecule at an energy such that only the inelastic processes can take place.
We may focus attention on the open channels which, ultimately, are the only
channels that contribute to the asymptotic wavefunction. In this case we
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consider the following projection operator

P=3"|¢a) (¢al (3.18)

where ¢4 ’s are the rovibrational eigenstates of the diatomic and the sum runs
over the open channels and some low-energy closed channels. We can then
define the P space as image of the projector (3.18), that is P = P(R), and
the Q space follows from the image of the projector'® @ = 1 — P. In this case
we are interested in an ezract equation for the scattering eigenstate projected
onto the P space, that is

(Rr|P|P; ap+) = ZFaeao(R)qﬁa(r)

where the F’s here introduced are the translational “channel components” of
our wavefunction. Since in the asymptotic region (R — oo) the exact wave-
function coincides with the projected one, we could obtain, in principle, all the
scattering informations from this “reduced dimensionality” function.

In the following P and @) will be the projector operators onto P and Q
respectively and App , Apg, ...will be the “components” of the general operator
A on the above mentioned spaces, that is App = PAP, Apg = PAQ), and so
on. For each operator we have four different components: the “on-diagonal”
App and Agg operates in P and Q respectively, while the “off-diagonal” Apg
and Agp operates from one space to the other. We work in fairly general terms
with the “components” PG(A) and QG(X) of the Green’s operator onto the P
and @ space; if we want to solve the particular non-homogeneous problem

(A= H)¢) = 9)

in term of the components P |¢) and @ |¢) it is then sufficient to apply the
PG(X) and QG(A) operators on the vector |¢).
The result we need is obtained from the system of equations

{ (A — Hpp)PG(\) — HpoQG(\) = P
—HqoprQG(A) + (A — Hg)QG(A) = Q

which, in turn, follows from the equation (A — H)G(\) = 1 that defines the
Green’s operator. All the quantities of interest can be expressed in terms of
the following “Q-Green’s operator”

Go(\) = (A — Hgo)™ (3.19)

'5Since we deal only with the R space we write 1 for the identity operator in this space,
although a more appropriate notation would be 1.
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where, in practice, the hamiltonian Hgg describes the “constrained” motion in
the Q space. Eq.(3.19) allows us to solve for the components of interest and
lead us to the equation
(A = HF (W)Grp(\) = P (3.20)
(A= HT(0)Gpo() = HpaGo(V)Q

which states the map to the P space of the Green’s operator, i.e. of PG =
Gpp + Gpg. The effective hamiltonian introduced in eq.(3.20) is given by

HYT(\) = Hpp + HpoGo (M) Hgp (3.21)

where the last term on the r.h.s. of the above equation is known as effective
or optical potential

V}”’t(/\) = HPQéQ(A)HQP (3.22)

We turn back to these operators below, just after having reordered these com-
plicated formulas. Meanwhile we note only that the first line of eq.(3.20) tells
us that the in the P space the full Green’s operator can be computed with an
effective hamiltonian

Gprr(\) = (A—HYH P

thus establishing an equivalence relation (in P) between the exact hamiltonian
and some effective one. Two other expressions for the QG component can be
obtained

Goo(N) = éQ()\)(l + HorGpro(N)) (3.23)

where Gpg and Gpp are given by eq.(3.20) in terms of the Green’s operator of
equation (3.19). As a whole, eq.s(3.20,3.23) express the full Green’s operator
in terms of a unique “variable”, the Q-Green’s operator, and therefore we call
them “Q-expressions”'6. Analogous relations can be obtained in terms of the
“P-Green’s operator”

Gp(\) = (A — Hpp) (3.24)
that is

_ gl —
{(A Gy Hond (3.25)

— HET(X)Gor(N) = HopGp(\) P

181t’s worth to note that the Q-Green’s operator “variable” can occur also implicitly

through the Green’s operator of the effective hamiltonian. The latter operator gives the
solution of the first line in eq.(3.20) and can be used explicitly in the “Q-expressions” re-
ported.
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and

Gro(X) = Gp() HpoGaq() (320
and we call them “P-expressions”.

Eq.s(3.20,3.21,3.22) are the key equations we were looking for: we have first
introduced the Green’s operator for the “constrained” motion in the Q space
(the Q-Green’s operator of eq.(3.19)) and then written an effective hamiltonian
for the motion in the P space in which the constraints due to the use of the
projected hamiltonian Hpp are exactly corrected for by an effective potential.
To apply these results to a specific situation we use eq.(3.12), which we rewrite
as

{ Gpp(N) = Gp(N) (1 + HpoGqr(N)

(A= H)[y) = (A - H?)[¢)
We suppose for simplicity that [P,H*] = [Q,H®] = 0 and Q|¢) = 0; these
conditions are satisfied, for example, in the scattering of an atom off a diatomic
molecule discussed above, eq.(3.18)!7. Then, we obtain

|Py) = Gpp(A\) (A — HY) |¢)
or with the help of eq.(3.20)
(A —HFTO) | Py) = (A — H) ) (3.27)

We see that equation (3.27) for the P component of the scattering eigenstate is
formally identical to the Lippmann-Schwinger equation for the full eigenfunc-
tion in the P space. The only difference is that hamiltonian Hpp is modified
by the presence of the optical potential defined in eq.(3.22). This non-local
and energy-dependent potential operator express implicitly the role of the @
space on the dynamics. It allowed us to write down a closed equation for P
component of the scattering eigenfunction, eq.(3.27), that, by a suitable choice
of the P space, can be considerably simpler to solve than the original one.
However, this potential is a dream more than a reality: it is usually not known
unless we know the dynamics in the (complicated) @ space.

If we neglect the optical potential in eq.(3.27) we obtain a simple equation
in terms of the unknown |t..)

(A — Hpp) [pec) = (A — H?) |¢) (3.28)

"Note that we could generalize the projector of equation (3.18) to an R-dependent case

P=3"|o%) (¢%|

where |¢QR) depends parametrically on R and reduces to |¢.) when R — co as it is done in
the adiabatic expansion. However in this case the commutation relation [P, H*] = 0 is no
longer satisfied.
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which involves only operators acting in the P space!®. When the P space
is chosen like in eq.(3.18) this approximation is known as the Close-Coupling
approzimation (CC). It is probably the current most widely used approach to
the scattering problems: it has been here introduced in the time independent
framework but it clearly applies also to the (equivalent) time-dependent case.
In Section (4.4) we will consider the application of this equation to the problem
addressed before of the scattering of an atom off a diatomic; in the meantime
we try to get some ideas about the feasibility of this approximation which,
in some sense, is expected to be good (at the energy considered) when the @
space plays a negligible role on the dynamics.

In order to see when this is case we look at the optical potential of eq.(3.22)
which now consider on the physical energy axis

VPYE) = limmy_0+ VP (N) (Red = E) = HpQég(E)HQ P

Let Hgg be an “usual” hamiltonian, with a discrete spectrum bound from
below and a continuous spectrum that extends from a given energy Ey, to
infinity (see also Fig.(3.5)). We may distinguish three cases:

Case(a). If the total energy of the system is less than the threshold energy Ey,
for the continuous spectrum of Hgg then the Q-hamiltonian Hgg cannot
describe any scattering motion. In this case, then, when the energy is
not an eigenvalue of Hgg we have

GH(E) = Go(B) = G (E)

that is the Green’s operator is continuous and self-adjoint (it coincides
with its “principal value” ég (E), see Appendix A). It follows that
VPL(E) is self-adjoint and can be viewed as a pure “distortion poten-
tial”. We can argue that this potential is small when Hpg is “small”
and/or when the energy is far from the singularities of the Q-Green’s
operator, that is from the spectrum of Hgq.

Case(b). For E > E), we can write
G4 (E) = GY (E) — ind(E — Hoq)
and then
VPYE) = VH(E) —iV!(E)

18With the solution of eq.(3.28) at hand one may write, if needed, an equation for the
(component of the) exact wavefunction, that is

|PY) = [ec) + Grr(NVE™ (V) lthee) = lthec) + G (N VR () | Py)

but this is as much as complicated as the original one.
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Figure 3.5: A model scattering system: an atom-molecule system in which
the molecule has a pure discrete spectrum. The hamiltonian Hgg is given by
T+ QVQ+ 454 €a|da) (¢a| and its “threshold energy”, Eyy, , is given by €.
The V,,’s are effective potentials for the channels « (either adiabatic or diabatic
depending on the situation); usually their bound levels are good approximation
to the bound states of Hgq. The case (a), (b) and (c) are discussed in the text.
The resonance phenomenon (case(c)) that arises form the internal structure of
the colliding partners is called Feshbach resonance. In our case the atom-
diatom system is temporarily trapped in a well of the interaction potential
(i.e. it forms the quasi-bound state), the released translational energy being
used to excite the molecule to an asymptotically closed level.
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where VE(E) is a kind of “distortion potential” introduced before and
VI(E) = nHpqd(E — Hgq)Hqp

is a positive definite operator. We therefore see that the optical potential
has a non null negative imaginary part which play the role of an absorbing
potential in that it determine the non-conservation of probability in time.
This absorbing potential clearly takes into account the fact that, now,
the Q space can contribute to the distribution of the scattering flux.

Case(c). When the energy is close to an eigenvalue of Hgg our formalism

goes into trouble since the Q-Green’s operator (and the optical potential)
has a polar discontinuity. This singularity is responsible of anomalous
behavior of the scattering eigenfunction which, as we will show below,
is associated with the presence of a resonance. In order to proceed we
resort to the “P-expressions” introduced before, that do not suffer of
any singularity. Before doing this, however, we note that very close to
the chosen eigenvalue E; of Hgg, the Q-Green’s operator can be well
approximated by the term

1
A—E;

|gi) {gi

where |g;) is the corresponding eigenstate in the simple non-degenerate
case. Therefore, we may focus attention on such state defining a new
Q space as the corresponding eigenspace of the previously chosen hamil-
tonian Hgg'® . In this case the projected wavefunction onto the cor-
responding new P space is more than a close-coupling wavefunction in
the sense that it takes into account all eigenstates of the previous Hgg
except |q;). We will indicate the solution of the equation (3.28) with this
choice of the P and Q space with |¢g+) where “d” stands for direct??: in
the language of perturbation theory this state proceeds without having
the |g;) state as an intermediate. Now, eq.(3.27) can be written in the
form

|P) = Gpp(N) (A — Hpp) [ +)
which with the help of the “P-expressions” eq.(3.26) can be rewritten as
|PY) = [3+) + Gp(\) HpoGoo(\) Hor [¥§ +)

In this form the second term on the r.h.s. contains the interaction with of
the bound-state |¢;). The asymptotic behavior of this term is analogous

9That is, we now set Q = |¢;) (| and Hgo = E;Q.
20We use the + symbol since at the end we will take the usual limit ImA — 0F. More
properly, one should use the A\ “parameter”.
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to that of the first term; indeed the presence of the P-Green’s operator
on the left allows us to perform the same manipulation done in Section
(3.4). The result is that the scattering amplitude (in any arrangement)
is the sum of a direct and a resonant term: the first contribution arises
from |9 +) and the latter comes from the “potential”

HpqGoq(M)Hgp

(cfr eq.(3.11)). We have almost the desired result; we take the usual limit
and write

Gho(B) = (B - HY(EN) ' = (BY - E; — A(B) —iTy(E) 'Q
A(E) = <Qi

)
is a real quantity and
Ly(E) = m{gi|Horé(E — Hpp)Hpqla)

is real and positive definite?!. The final result for the resonant amplitude
is therefore (cfr eq.(3.16))

where B
HopGYy (E)Hpq

PsX; ﬂd_‘HPQ qi> (¢;|Hop|¥g+)
E—E — A(E) —il(E)

fres = —(mgma)1/2(27r)2<

where, as before, the subscript d refers to the “direct” process. As it is
evident this expression can give rise to the famous Lorentzian shape of
the resonance as a function of energy?2.

The three cases above described allow us some insight into the Close-Coupling
approximation (see also Fig.(3.5)). It is surely reliable in case(a) when the
total energy is well below the lowest eigenvalue of Hgg; this represents the
ideal situation for a CC calculation. In the other cases the reliability of the
approximation depends critically on the “interaction” terms Hpg and Hgp
which, in turn, are system dependent. The CC approximation, however, can
hardly be good in case(c): the only remedy left is to “enlarge” the P space in
order to contain the (quasi) bound state.

21The projector appearing in this equation can be explicitly written is terms of the direct
scattering states at the given energy, i.e.

S(E - Her) = Y |05 +) (45" +|

221t should be noted that this result is exact, that is it is valid also when the resonance is
not “isolated”. However, in the latter case this result is useless because the “direct” term is
also wildly behaving.
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Chapter 4

Computing scattering
observables

In this Chapter we review the basic approaches to computing scattering observ-
ables. It is clearly impossible to consider the plethora of methods developed
up to now; the interested reader is referred to the recent book of J. Zhang
(1999) and reference therein for a more comprehensive treatment of the sub-
ject. Rather, we outline here the general ideas and focus attention on those
particular approaches that are relevant for the Part II of this work.

As we have already emphasized in the previous two Chapters we have at
hand two basic approaches which differ for the choice of the “domain”: in the
time-dependent approach of Sections (4.2,4.3) one follows the time evolution of
a properly prepared wavepacket and at the end extracts the relevant scattering
observables on a broad energy range using the information at all times; in
the time independent approach of Sections (4.4,4.5) one works directly on
the energy domain by solving the scattering equations at a fixed total energy
and he extracts the scattering amplitude from the asymptotic behavior of the
stationary scattering states, for every fixed total energy.

This subdivision is a “traditional” one in the sense that in the last years
several “hybrid” approaches have been developed; for example, one may work
with wavepackets (i.e. superposition of scattering eigenstates with different en-
ergies) in a time-independent framework (Zhu et al., 1994a; Zhu et al., 1994b).
We have chosen this coarse grained point of view since it closely resembles the
experimental practice: on the one hand we have the stationary approach of
the cross-beam experiments (e.g. see Scoles(1988)) and, on the other hand, we
have the real-time photographs of the collision processes that come from the
Femtochemistry world (Zewail(2000))?.

!We can hardly be wrong if we state that the “Femtolands” of Zewail et al. at Caltech
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4.1 Partial wave expansion

Before outlining the most common practical approaches to computing dynami-
cal observables let us do few comments about conservation laws. Conservation
laws are important not only from a theoretical point of view: actual calcula-
tions could not be done without taking into account the simplifications that
arise from the symmetry properties of the collision system. Up to now we
have only used the energy conservation law and, implicitly, the total (linear)
momentum conservation, i.e. the invariance principles that arise from the
homogeneity of time and space, respectively. There are at least two other
symmetries that turn out to be useful in molecular collisions?. We will discuss
first the total angular momentum conservation law and, then, we will briefly
mention the conservation of parity.

For definiteness we consider a simple, spin-less, three atom system ABC.
Its hamiltonian can be written in terms of the Jacobi coordinates (R, r) of one
of the arrangements, for example A + BC' , (we drop the arrangement label)

2 2
P
-+ 4V
2 Tam T

or equivalently
P
2u  2uR?  2m  2mr?
where P, and p, are the radial momenta of the relative (A — BC) and internal
motion (BC) respectively, 1 is the orbital angular momentum of the relative
motion and j is the “rotor” angular momentum of BC. The total angular

momentum

+V (4.1)

J=1+]

is conserved because H is a scalar operator, i.e. it is invariant under arbitrary
rotations (we are considering an isolated scattering system).

In classical mechanics, taking into account this and the linear momentum
conservation law, one can reduce the motion of our three atom system to a
simpler 3x3-6=3 dimensional problem. That is, one factors out the overall
translations and the overall rotations. In quantum mechanics the situation
is somewhat different since the three components of the angular momentum
operator do not commute and, thus, cannot have simultaneously a definite
value, except when J = 0. This means that we cannot effectively factor out
three coordinates by making use of the rotational invariance.

are already part of the History of Chemistry.

2We will not mention a third symmetry, the time-reversal, that is also useful in practice
(it makes the “K matrix” real). It would be of great interest to discuss such invariance
principle in its own right, but it is well beyond the scope of the present work...
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Anyway, we can expand the state vector of our system in terms of {.J2, J,}
eigenvectors

o] J
w=> > ') (4.2)
J

J=0 M=—

where the vectors |U/M) have definite values {J(J+1), M} of the above men-
tioned obervables, and get independent equations of motion of each of them.
This means that either in the Time-Dependent and in the Time-Independent
approach the problem is considerably simplified. Furthermore, it is worth to
note that the value M of the projection of the angular momentum operator
depends essentially on the choice of the reference system and thus the fun-
damental (scalar) variables are independent of its value. For example, the
rotational invariance implies the commutation relations

[S,J;] =0 fori=uz,y,z

which identify the scattering S matrix as a scalar operator; from this follows
that the matrix elements (J'M'«a|S|JMp) are diagonal in J and indepen-
dent of M 3. We feel, in this way, to have accomplished a “two-dimensional”
reduction of the dimensionality of the problem.

There are at least two ways in which exploiting, in practice, rotational
invariance?. In the Space-Fized Representation one uses a complete set of

eigenvectors of the operators
{72, 1., 2, 3%}

These vectors, denoted |JMIj), can be obtained by coupling the I, j angular
momenta, i.e. using the known vector coupling rules

|TMIj) = > |imygmg) (Imyjmy | JMI5) (4.3)

mym;

where |lm;jm,;) are eigenvectors of {I2, l,, j2,j,} and the Clebsh-Gordon (CG)
coefficients are usually known in terms of 35 symbols

. N (=i M 1/2 L g J
(Imagmg| TMIj) = (<)M (2. +1) (ml M _M)

3A formal proof can be obtained by using the rising and lowering J1 operators in the
above mentioned commutation relations.

“The following discussion is based on the excellent works of Pack(1974) and Launay(1976)
and on Appendix D of the book of J. Zhang(1999). It follows however the personal tastes of
the author.
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Figure 4.1: Coordinates of the A-BC system in a Space-Fixed reference frame.

The above sum, eq.(4.3), is actually a single sum since the CG coefficients
vanish unless m; + m; = M; furthermore, from the triangular inequality it
follows, for example, that for each (J, j) values [ can take up 2Min(J, j) + 1
values, i.e.

l=|J—g,|J—j|+1,.J+]

In coordinate representation, introducing the unit vectors along R and r, we
can write

(Re|Tmij) = 70(0,8,6,¢) =

i Loy J m;

_ _\l—j+M 1/2 m,

= S, T (L ey 6.0
(4.4)

where (0, ®) and (0, ¢) are the polar coordinates of R and r respectively (see

Fig.(4.1)).
On the other hand, in the Body Fized Representation one uses the complete
set of eigenvectors of the operators

{J2, JZ7 JC an}

where ( is a body-fixed axis®. We choose, as usual, the ¢ axis coincident with
the R direction®. In particular, we define a Body-Fixed (BF) reference frame

5Tt is necessary for ¢ to be body-fized. Adversely, the corresponding operator cannot
commute with J;; the relation [J., J;] = 0 follows from the scalar nature of the operator
Je = In¢ where n¢ is the unit vector of the axis (.

5This is the usual choice when one focuses on a particular arrangement, e.g. in non-
reactive dynamical calculations. When all the arrangements are evenhandled (i.e. with
the use of hyperspherical coordinates) the body-fixed axis is better chosen to be the vector
normal to the plane of the three atoms.
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Figure 4.2: The BF reference frame is obtained by the SF one with two ro-
tations: a ® rotation around the z axis brings the (zyz) system in (z'y’'2)
1,00

system; a © rotation around ¥’ brings (z'y'z’) in (én¢).

(én¢) in such a way the 7 axis lies always on the zy plane of the Space-Fixed
(SF) reference frame (zyz). For a given direction R of the relative position
vector the BF frame can be obtained by rotating the SF frame of the Euler
angles (®,0,0) (Fig.(4.2)).

In order to obtain a coordinate representation of the BF vectors, denoted
with |JMQj), we focus attention on a given direction R, i.e. we consider the

vector <ﬁ‘JM Qj>. This vector can be obtained by (inverse) rotation of the
corresponding BF vector’,

<1:A{‘JMQj>SF — R1(,0,0) <f{‘JMQj>BF

where R is the rotation operator of Messiah(2000)
R(a, B,7) = e -0e 1B eiT:

here written in terms of the SF components of J. We can also write
J
) . _ J x /D 10 -
<R‘JMQJ>SF — Q{E_:JDMQ,(cb, 0,0)" (R|J0 QJ>BF (4.5)

where the D7’s are the usual rotation matrices of Edmonds(1957) and the
vectors <R‘ JAQ; > no longer depend on R since the relative position vector
BF

"We use the SF and BF pedices, when needed, to remember us the corresponding frame
and, in particular, the axis which the angular momentum projection refers to. If we imagine
to have a machine that produces a SF state, the actual meaning of a BF vector is that of a
state prepared by a rotated machine. In absence of pedices the vectors refer always to the
SF frame.
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has a fixed orientation in the BF frame (its polar coordinates in this frame are
(0,0)). Now, the vectors <ﬁ‘JQ’Qj>BF are eigenvectors of j2 with value j
and of J; with component Q' and Q simultaneously! Thus they must be of the

form®

<f{‘JQ’Qj>BF = const o |1 pr

Thus, using this expression in eq.(4.5) we obtain

2J+1

o =\ " Din(®.6,0)" Q) pp  (46)

<ﬁ‘JMQj> = <ﬁ‘JMQj>
or in “full coordinates” representation

2J +1
47

(Re|Tmj) = Di1a(®,0,0 Y20, ¢')
where the correct normalization factor has been used and where (€', ¢') are the
polar coordinates of r in the BF frame.

Taking into account the definitions of the D”/’s and Y ’s functions one may
also write

2J +1
47

<f{’r“JMQj> - Di0(,0,¢)Y(',0)

a formula which can also be obtained with a slightly different definition of the
BF frame (¢n¢). This last formula is particularly interesting since it factors out
the “external angular coordinates” (0, ®, ¢') from the (unique) angular internal
coordinate #'; that is, one may rewrite the angular momentum components of
eq.(4.2) in the form

J
(Re|0/M) = N D31o(®,0,¢) T/ MR, T,7) (4.7)
Q=—J

where v = @' is the angle between R and r and /M (R, r,v)’s are functions
of the three internal variables only. We therefore see that for given (J, M)
values we have 2J + 1 functions of the 3 internal coordinates: the reduction of
dimensionality is somewhat lower in quantum than in classical mechanics.
The SF and BF representations are related by a unitary transformation
(note that, just like in the SF case, for given (., j) values in eq.(4.6) there

8It is worth to note that the argument given here is entirely general since it does not
depend on the internal angular momentum, e.g. it is applicable also to the case of two
scattering molecules. Thus, in same way, one can obtain the eigenstates of a symmetric top
rigid rotor (Landau, 1996).
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are 2Min(J,7) + 1 values of Q, ranging from —Min(J,j) to Min(J,7)). This
transformation can be easily obtained by an argument similar to that used
before, i.e.

- ),

where now (see eq.(4.4))

<ﬁ‘JQlj>BF: Z(—)lj+9(2J+1)1/2< bea )Y[’”(O,O) lim;) g

my; m; —
mym;

214+ 1 (1 —m)! 20+1
m — (—=\"u /- pm =
Y(0.0) = (=)™ [ (1) = B

since P/*(z) = (1 — 22)™/2d™ Py(z)/dz™ and Pj(1) = 1. It therefore follows

with

|TMIjy =" U [J905)
Q

with l
e RS IE A
and where the sum runs over the allowed  values.

In practice one may use either the SF or the BF representation. The differ-
ences between the two are mainly due to the form of the kinetic and potential
matrices in these representations. The kinetic operator in eq.(4.1) is diagonal
in the SF representation since it involves explicitly the {2 and 52 operators,
while in the BF representation, remaining diagonal in j, couples Q with Q £1
(see for example Pack(1974)). On the other hand, the potential matrix has a
“full” complicate structure in the SF representation? while in the BF represen-
tation it is diagonal in 2 since the potential is invariant for arbitrary rotation
around the R direction. Thus, we can say that in the SF representation the
coupling is brought by the potential, while in the BF representation only the
j coupling is due the potential, the €2 coupling being brought by the motion.

The choice of one or the other representation depends on the particular
approach. Here we note only that the BF equations are simpler then the SF
ones at short-range, where the coupling is mainly due to the potential, while
at long-range they have a residual kinetic  coupling that falls off like R~2

% Apart, of course, being diagonal in (J, M).
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10 On the other hand, the possibility of working with 3D Q-component

wavefunctions, eq.(4.7), is very appealing in view of using methods other than
Finite Basis expansion for representing the wavefunction''. Furthermore, the
BF representation is better suited for doing dynamical approximations. For
example, one may neglect the  coupling in the kinetic energy term and obtain
a set of 2Min(J, ) + 1 independent equations ( Centrifugal Sudden or Coupled
States approximation). These approximations are reviewed in the excellent
work of Kouri(1979).

When one takes into account also the parity conservation law one more
simplification is obtained. Indeed, the {JM} subspaces are divided into two
subspaces according to the parity transformation properties of the vectors.
The basis vectors of the SF representation are already eigenvectors of the
parity operator II since this operator commutes with the set of commuting
observables that defines the SF representation!'?

[, %) = [I, 1] = 0

In particular, TT|JMIj) = € |JMIj) with ¢ = (—)7*! and therefore the SF basis
can be divided in two parity sets according to the parity of j +1. On the
other hand, the parity operator anti-commute with the .J; operator of the BF
representation since it is a pseudoscalar

J, = —J I

Thus, in order to exploit the parity symmetry in the BF representation one has
to combine the £ and — components; since IT |JM§j) = (—)” |JM — Qj) the
resulting parity adapted vectors are defined by (Launay, 1977)

|TMQje) = \/HT‘SQO {|TMQG) + e(=)” |[TM — Qj)}

where Q = 0,1,..Min(J,5) if e = (=)’ and Q = 1,..Min(J,j) if e = (=)7L
The partial wave expansion of the wavefunction of eq.(4.2) leads to cor-
responding partial wave expansion of the scattering attributes (Arthurs and

10This means that some kind of BF—SF transformation is needed. For this reason inelastic
CC calculations are usually done in the SF representation.

"Tndeed, the use of the BF representation has become the method of choice for Time
Dependent calculations.

2 The parity operator commutes with the SF components of J, [J;,II] = 0, since the
angular momentum is an azial vector operator (note on the contrary that usual vectors like
r and p change sign under inversion). Comprehensive accounts of tensor theory and its
relation to quantum mechanics can be found in the books of Landau(1997; 1996) and in that
of Messiah(2000).
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Dalgarno, 1960). Thus, in the general (two-body) differential cross section of
eq.s(3.16,3.17)13

do P
40P B Pai @) = 27|/ (Pg; f  Pos ) (48)
with
F(Pg; B Pao; a) = —(upjua)/(2m) (Pg; B|Tpa(E) [Pas @) (4.9)

one may use the usual angular momentum representation of the plane wave

vector 1
p) = —75 O [Eplm) V™ (P)"
(up)/?

to get
|P04;a> = 1/2 Z |E lml )* |-7va>

l,my
(where (jm;v) labels the rotovibrational state of the molecule in the generic
a arrangement of our three atom system and FE, is the corresponding kinetic
energy) in which ([, 7) can be coupled as in the SF representation to give the
following vector

J+j

[Py jmjv) = 1/22 Z Z |[EJMljv)

J=0 M=—J 1=[]j|
(JMIG|IM — mjjm;) YlM_mj(f’)*

where now |EJMljv) is a “free” vector of total energy F. Inserting this ex-
pression in eq.(4.9) and using the rotational invariance one obtains

f(Pﬂ§jlmIUI — Py jmo) = p P (PaP1/2 ZJ 0 ZM —J Zl v YM " (PB)YIM_m(f)a)*
(P )

(I'M —m/§'m! | TMU'§"y (JMI§|IM — mjm) T/,

(v i0) (B)

(4.10)
both for non-reactive and for reactive transitions (each set of quantum num-
ber refers to the corresponding arrangement). The T({,] - l]v)( ) is a matrix
element of the T operator of the previous Chapter and is related to an “oper-
ational” S matrix

E)

13We use the labels a and b for the initial and final arrangements, respectively. Further-
more, a = (jm;v) and B = (j'mjv’) label the initial and final channels, intented to be in
the a and b arrangements respectively.

S(llj Tl s lJU)( ) = 5ab5ll' 5jj’6vv —2mi T(l’] ! lgv)(
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which differs from the “on-shell” S matrix defined in Section (3.4) in that
a further delta function of energy has been factored out. Thus, thanks to
rotational invariance, the scattering amplitude is a single sum in J and the
differential cross section is given in the form

do
dQ(

Z{}

Pg;i'm'v' < Py;jmu) =

_2
O(

where {..} denotes the sums in the previous amplitude expression eq.(4.10). If
one then defines the degeneracy-averaged differential cross-section

do 1 do

dQ(P’B’jv — Py;jv) = 2j-|—1 dQ(Pg,] m'v' « Pg; jmu)

he finds that the corresponding integral cross-section
do
a(j'v' «+ jv|E) = / 10 (Pg;j'v' < Pg; jv)dQ

is given by a single sum over J values'

a(j'v' + jv) = Z ol (j'v' « jv)

where the partial cross section o”’s are sums of square modulus of T-matrix
elements (27 +1) 2
+
(JU<_.7U) PQ 2]+1 Z‘ l’]v’ljv

This expression has some attractive features for analysing a scattering out-
come, since it links in some rough sense the scattering probabilities with the
scattering cross-sections. For example, in the case of a reactive collision we
have —27iT;; = S;; and then, using the unitarity property of S one may define
a reaction probability (j,v) — (j'v") for each J and for fixed initial orbital
angular momentum [ (the “impact parameter”) as

‘P‘]{U’ —ljv =
v

<1

A

2
(B)|

§'vlslgv)

and the “true” reaction probability (j,v) — (j'v') for fixed J as the average
over the allowed initial impact parameters

1
PJ"{I i — A T N o ‘S(l’ U';lj’u)(E)

2
Vv T oMin(J, ) + 1 ‘

"1t is remarkable how the four-fould initial summation reduces to a single sum over .J
values when we look for a scalar observable.
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In this way the partial wave scattering cross-section can be written also in
terms of scattering probabilities!®

(2 + 1)(2Min(J, ) + 1)
(21 Py)? (25 +1)

o’ (v + juv) = PJ‘{

vl —jv

where m(2J + 1)(2Min(J,5) +1)/(2j +1)/(27P,)? is a geometrical factor and

Pl iy 1 a reaction “efficiency”.

4.2 The Time-Dependent approach

Thanks to important devolpements in the computational practice, like the
use of the Fast Fourier methods and that of Negative Imaginary absorbing
potential, Time-Dependent (TD) methods have been recently attracted the
attention of more and more researchers. The reason is simple: the TD method
is a straightforward solution of the initial value time-dependent Schrédinger
equation, gives a clear physical picture of a collision event and is easily extended
to explicitly time-dependent problems. Furthermore, from a computational
point of view, since it fixes an initial condition it solves for one “column of
S matrix” and several energies at time and thus scales more favoraubly with
the dimension of the problem than the traditional Time-Independent method.
However, if a complete state-to-state analysis of the collision process is needed
difficulties arise.

As a first step in solving the Time-Dependent Schrodinger Equation (TDSE)
one decides at the outset the working picture. In what follows we implicitly
assume to work in the Schrodinger picture, but it should be noted that works
in other pictures (like in the Interaction picture) have appeared.

As a second step one chooses a particular set of coordinates!”. In the
previous Section we have used the Jacobi set of coordinates of one of the
possible arrangements of our model three atom system. This is a very simple
choice and it gives rise to the simple hamiltonian of eq.(4.1). However, it should
be recognized that such a choice treats preferentially one arrangement. Thus,
although the total reaction probabilities are not affected by this “coordinate
problem” (for reason to be explained later in the next Section), it gives rise to

'5Thus, the previously noted simple J sum can be easily understood: the (degeneracy
averaged) scattering cross-sections are related to the probabilities, i.e. to particular squares
modulus of the component wavefunctions in eq.(4.2).

'8 This discussion is heavily based on the book of J. Zhang (1999) and on a previous review
article of Balakrishnan et al. (1997). References to original works will be given only in special
occasions.

170f course, this is valid both for Time-Dependent and for Time-Independent calculations.
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some problems when reactive state-to-state transition are to be computed!®.
On the other hand, one may choose to work with hyperspherical coordinates
(Smith, 1962; Whitten and Smith, 1968; Kuppermann, 1975; Johnson, 1980)
which have the advantage of treating in a even fashion all the arrangements:
the reactive problem is, in practice, transformed to an inelastic problem having
one scattering coordinate (the hyperradius) and the products at different values
of the hyperangles. In this case, however, the corresponding hamiltonian is no
longer simple and, from a computational point of view, requires a long-range of
integration to give rise to convergent observables; indeed, the single scattering
coordinate describes both the relative motion of the fragements in a given
arrangement and the vibrational motion of the molecule in that arrangement.

Having done the above mentioned choices we are ready to outline the ba-
sic problems of a Time-Dependent calculation, which can be summarized as
follows:

e the representation of the wavefunction |¥);
e the evaluation of H |¥);

e the time-propagation

(a fourth problem will be subject of the next Section). They clearly originate
from the nature of the problem (which we now consider taking into account
the results of Section (4.1)): we have a first order time differential problem for
a “proper” wavevector

d|u/M)
YT

H|w) ==,

[w20) = [¥g™)
whose formal solution (for time-independent problems)
‘\IJ.tIM> _ o—iHt ‘\IlgM>

needs to know the result of the action of a function of H on the wavevector.
The problem of representing the wavefunction is striclty related to the
choice of the coordinate set. Having decided for one kind of coordinates one
fixes the form of the hamiltonian operator and consequently looks for the rep-
resentation of the wavefunction more suited for evaluating the action of the
operator. In order to represent the wavefunction one may use either a “grid
description” or a “channel description” or a mixture of the two, in the sense

81t should be noted that with the recent introduction of the so-called Reactant-Product-
Decoupling approach the situation has been substantially improved.
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that one uses the first description for some degrees of freedom and the second
for other degrees of freedom.

In a “grid description” {(z,|¥)} one represents the wavevector on a fi-
nite set of grid points in coordinate or momentum space, sufficiently close to
each other in order to correctly represent the wavefuction and its properties,
thereby paralleling the ordinary “continous” representations like ¥(z) = (z|¥)
or ¥(p) = (p|¥). The grid must be chosen large enough “to contain the dy-
namical event”, i.e. in the usual Initial State Selected Dynamics (ISSD) the
grid must contain the interaction and the asymptotic regions. The grid param-
eters depend on the system at hand: a grid in a spatial coordinate of lenght L
and with average separation between points of Ax can represent the conjugate
momemtum with a precision ~ 1/L up to a maximum ~ 1/Az.

In a “channel description” {(i|¥)} one expandes the wavevector over an
appropriate basis set, thereby transforming the TDSE in a set a coupled equa-
tions for the expansion coefficients. This is the so-called Finite Basis Repre-
sentation and its use is very similar to the well known LCAO expansion in
ab-initio calculations. In this case the choice of the basis set depends on the
problem at hand, and in particular on the coordinate set chosen at the outset.
In jacobi coordinates, rotations and vibrations of the reagent molecule can be
treated by expanding the wavevector over a set of (proper) eigenfunctions of
the diatomic. Continuos sets (i.e. improper eigenvectors) are handled with
difficulties and therefore the use of such an expansion is limited to that region
of the configurational space which can be described well by this “bound reagent
set”. This region should be large enough to contain the dynamical event, much
like what happens with the grid description or, in other words, the vibrational
basis must allow the reaction to occure. Usually, the FBR is not applied to
all coordinates since the unbound motion on the scattering coordinate is best
handled with a grid.

One can (and in practice does) switch betwenn channel and grid descrip-
tions, since some operators are best evaluated in one representation and other
operators in the other representation. For example, for what concerns the
angular variables, the orbital and the rotational operators are best evaluated
in a FBR like the ones described in the previous Section, while on the other
hand the potential is diagonal in the coordinate representation. With the same
token, the radial operator is best handled in a “momentum basis set” and the
potential in the radial coordinate representation: the difference with the pre-
vious case is that now both representations are continuos in origin and thus,
in practice, they both give rise to grid descriptions (but in different spaces).

In order to explain better how one switches between the two representations
let us go slightly deeper in the grid description. The use of a grid is equivalent
to a particular (truncated) expansion of the wavefunction: the values of the
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wavefunction at grid points are the coefficients in the expansion of the wave-
function over a basis set made up of functions localized on the grid points.
This is the so-called Discrete Variable Representation (DVR), introduced by
Light and coworkers (Light et al., 1985; Vill et al., 1982) in opposite to the
previous FBR. A DV Representation is realized when one fixes an oridinary
basis set {|¢;)} and a quadrature rule such that the scalar product between
basis elements becomes

(ildj) = prﬁb?(ivp)fﬁj(wp) = 04
P

where z, are the quadrature points on the = space and wj, are the weights of
the quadrature rule. Then, the expansion of the wavevector over the basis set

{li)}
= Z|¢z‘)<¢i|‘1’)

can be rearranged, approximating the scalar products with the quadrature
rule, as a sum over quadrature points

ZZW wy (2p) ¥ Z\If 2) |69) (4.11)

%

where

1€p) = wp Z |pi) &5 (zp)

is a basis vector associated to the x, grid point. This vector is localized on the
grid point since the quantity

(z]&p) —w,,quz z)¢; (Tp)

is, in the same approximation, the representation of a Dirac delta function

pr‘ﬁz )¢5 (zp) = wp (7| {Z |pi) (il } |zp) ~ wpd(z — zp)

and thus it is, in practice, a function very peaked on the grid point. The
accuracy of the representation of this Delta function depends on the truncation
error in the Finite Basis set which, in turn, is related to the accuracy of the
quadrature rule: starting with an arbitrary set of grid points, these determine
a maximum number of finite basis elements because, clearly, the orthogonality
relations prevent one from having more functions than grid points. In turn,
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the truncation error in the DVR (and in the corresponding FBR) is due to the
empty space between grid points and outside the boundaries of the grid.

It follows that the FBR—DVR and the converse DVR—FBR transforma-
tions are simply given by

(wp [ 2) = 3 (o) (i)

(1| ¥) = Z wp; (zp) (zp|¥)
P

where {(z,|¥)} and {(i|¥) = (¢;|¥)} are the DVR and FBR representations,
respectively, and {¢;(z,)}pi and {w,@;(xp)}ip are the matrices that perform
the above mentioned transformations.

One commonly used DV representation is that defined by the uniform
quadrature rule and the plane wave basis set (which is not an ordinary Finite
Basis). This representation defines the discretization of the Fourier transform
operation. With a finite (periodic) grid of period L and spacing Az the al-
lowed momentum values are given by the Born-von Karman conditions and
the corresponding basis elements are (n = L/Az is the effective number of
grid points, being z¢ and z, equivalent, ¢(zg) = ¢(zy))

1 . 2T
Bo (@) = 2 Ak = it — k=

They satisfy (w, = Azx)
ACC " ik k A.’L’ " .o DA p
) = S 3t - B2 (s s

L L
p=1 p=1

since

n
D _ n'n' r=1 n _ i2r(m—1) _
Zr { Tr—_llr r£1 and r e 1

In this case'®

0) =) U(zp) &)
p=1

"9The reality of the DVR basis functions can be obtained with a symmetric choice of the
“first Brilloun zone”. That is, for an odd number n of grid points we select k,, = mAk
(with m = 0,%1,..,£(n — 1)/2) and for an even number of points k, = mAk/2 (with
m = +1,43,.. £ (n — 1)). Clearly, this kind of choice allows an even representation of the
momentum space in both directions.
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A 2o\ A sin { Mr@=1p)
el = T3 () an{{(L)}}

This kind of grid representation has the advantage of being DVR both in the
coordinate and in the momentum representation since each “Finite Basis el-
ement” is, at the same level of approximation, a Dirac delta function in mo-
mentum space. However, it is uniformely spread in space and thus the use of
a DVR more densely arranged in the interaction region can be preferred for
some applications.

Anyway, the numerical solution of the TDSE, either with FBR or DVR de-
scriptions of the wavevector, amounts to approximate the configuration space
with a subspace (e.g. the finite grid) and, therefore, according to Section (3.5),
the full hamiltonian should be corrected with an optical potential term that
accounts for the neglect of the complementary space?®. This is not only a
problem of principles: in practice, for example, the use of a grid with finite
size is equivalent to place an infinite repulsive potential on the grid bound-
aries on which the wavefunction unphysically bounces off?!. The solution of
this problem was an important devolpement in the area of TDQM calculations
and followed the systematic investigation of Neuhauser and Baer (1989) of
the Negative Immaginary Potentials (NIP). In practice, a NIP located in the
asymptotic regions (i.e. “at the boudaries of the grid”) is added to the interac-
tion potential in order to absorb the wavefunction after it has been analyzed
for extracting the relevant scattering informations. In this way, one avoids ar-
tificial reflections from the boundaries, although introduces a reflection effect
from the NIP, which can be substantial in the low energy regime.

The evaluation of the action of the hamiltonian operator on the wavefunc-
tion depends strictly on the representation of the wavefunction. The problem
is considerable simplified when an operator is diagonal in the chosen represen-
tation; if it is not the case (and this is always true for some operator!) one
may change representation or perfom a kind of vector-matrix multiplication.
In a FBR representation one has to perform a multiplication between the vec-
tor representation of the wavefunction and the matrix representation of the
operator. In a DVR the evaluation of a (non-diagonal!) operator is accom-
plished by computing and storing the result of the action of the operator on
the DVR basis set. For example, momentum operators in coordinate DVR
representation can be evaluated by knowing the derivatives d"&y(z)/dz™ of the

20This is true in the time independent framework where the optical potential depends on
energy. In this case we may argue that the correction should be a time dependent potential.

21With the “Fourier-DVR” described above, because of the periodicity conditions, one
observes the wavepacket turning around the grid. Analogously, with a reagent vibrational
basis one observes an anomalous re-forming of the reagent molecule.
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basis element &,(z), as can be easily obtained by eq.(4.11)?2. An execption to
this rule is the above mentioned Fourier-DVR: in this case one has actually
two DVR representations, one in the coordinate space and the other in the
momentum space, and thus he uses the Fast Fourier Transform (FFT) algo-
rithm to switch from one representation to the other, in order to evaluate each
operator in its simplest diagonal form?3. Needless to say, the introduction of
the FFT in the practice of TDQM calculations by D. Kosloff and R. Kosloff
(1983) was another great development in the Time Dependent approach.

Focusing now on the last problem, the “time differential” one, we may say
that there are several way to perform the propagation in time of the solution,
starting with the simple second order approximation of the time derivative of
the TDS equation and ending with the complicated Lanczos iteration scheme.
Here we consider briefly only two very common approaches. The first is the
Split Operator method which represents a short-time, unitary approximation
of the evolution operator (Feit et al., 1982; Feit and J. Fleck, 1984a; Feit and
J. Fleck, 1984b)

o—IAHHOHY) _ —iSLHO —iAtH! —i4L HO + O(At?’) (4.12)

where H = H® + H' is any useful decomposition of the hamiltonian operator,
or a part of it which one wishes to “split” further. In the case of non commuting
operators this is clearly an approximation but it is very good for short time
propagation steps and, furthermore, has the advantage of being explicitly uni-
tary. One straightfoward application of this method is its use in conjunction
with the Fourier-DVR representation of the wavefunction and the FFT algo-
rithm for switching between the coordinate the momentum representations.
For example, in one dimension, one may choose H! = p?/2m and H° = V (z)
(or the converse) and evaluate the first operator on the r.h.s. of eq.(4.12) in
coordinate representation, move to the momentum representation to evaluate
the second operator and finally go back to the coordinate representation for
the third operator. In this case one has to perform two Fast Fourier Trans-
forms for each time step and simple scalar multiplication operations. In 3D
calculations the situation is somewhat more complicated. Working in reagent
jacobi coordinates we can employ a mixed channel-grid description and split
the hamiltonian operator in the following form
o _ P y_ P i
H —E-}—h H()—2MR2+W+th

21t is worth to note in this context the conceptual advantage of working with a DVR: if we
had stopped our reasoning with the introduction of a generic grid the only way to compute
“derivatives” would have been by using a finite-difference approximation.

% Note that the FFT algorithm scales as NlogN, while the above DVR computation scales
as N? (although there would need a less number of points with a suitable DVR).
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where h is the vibrational hamiltonian of the reagent diatomic and Vj,; =V —v
is the corresponding interaction potential. Thus, the first exponential operator
is best evaluted in the {(P,v€j|¥)} representation where the (momentum)
grid description is used for the relative motion and the channel description is
used for the other variables. The resulting vector can be transformed in the
{{Ryrm$2j|¥)} representation (in which the DVR is used for the two radial
coordinates) and the action of the second exponential operator evaluated for
each {R;ry,} grid point by diagonalizing the effective potential matrix

(Rerwest

g ‘ermﬂj > = 0 Srmm Uev 1,525 (Rt )

which is already diagonal in the radial coordinates and which can be computed
and stored at the outset for each couple of radial points. Then, one goes back
to the first representation and so on. Essentially this kind of procedure has
been used by D. Zhang and J. Zhang to perform 3D calculations in the H 4+ O,
atom-diatom case and 6D calculations (J = 0) for the Ho+OH diatom-diatom
case (Zhang and Zhang, 1994a; Zhang and Zhang, 1994b).
An alternative method, suitable for the long propagation time is the Chebichev

expansion of the long-time propagator (Tal-Ezer and Kosloff, 1984)

U(t  tg) = e~ t(t-t0)H

In this kind of approximation one uses the good truncation properties of the
Chebichev polynomials and writes

eIt — =ii=10)Em N ™ A, (AE(t — t0)) Ty (—iHnorm)

n=0

where Hporm 1S a “normalized” hamiltonian operator with spectrum in the
range (—1,+1), E,, is the mean value and AFE the range of the original spec-
trum, T, are the Chebichev polynomials and A,, are defined by

Ap(z) = (2 = 0po)i" In(x)

where J, are Bessel functions of the first kind. This kind of approximation
can be viewed as a wise reorganization of the truncated exponential series

ity _ N i —0)]"
e 0% = 7;) . H

and its formal powerful is essentially due to the same reasons for which the
exponential function in pocket calculators is evaluated by Chebichev expansion.
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4.3 Scattering observables from TD calculations

Having described how to solve the Time Dependent Schrédinger equation we
now consider briefly the problem of extracting scattering information from the
time evolution of the wavepacket. Much like in the formal theory outlined in
the previous two Chapters, this step needs a Time-to-Energy mapping which
allows us to get the scattering attributes on the energy shell from the time
evolution of the system. Here we consider only the so-called Initial State
Selected Dynamics, in which one fixes at the outset the initial internal state of
the collision system and obtains scattering cross sections for the processes that
start from that initial state and simultaneously for several energies, because the
initial translational wavefunction spreads over the energy spectrum. This is not
the only way to obtain scattering informations. A less detailed analysis of the
process can be obtained by applying the Time Dependent version of the Miller’s
ideas about the direct and ezact calculations of canonical (and microcanonical)
rate constants (e.g. see Miller (1998)). While looking for developing a Quantum
Transition State Theory, Miller recognized that chemical rate constants (i.e.
state-to-state rate constants averaged over initial states and summed over final
states) do not require to know the detailed state-to-state informations that are
“washed out” by the final averages, simply because, as he was able to show, the
required averages can be computed directly by looking at the reactive “fux”
(Miller, 1974; Miller et al., 1983). Although this subject is very fascinating
we mention only that the corresponding theory can be cast both in the Time
Dependent and in the Time Independent approaches; an application with TD
methods can be found in the work of Light and D. Zhang (1998).

The above mentioned Time-to-Energy mapping in the ISSD is given by the
following (half) Fourier transform

+oo | +00 .
/ P, dt = lim,_,g+ / e~ Pt @) dt = iGH(E) |To) (4.13)
0 0

which has been formally evaluated by introducing the famous € converging
factor>*. Now, with the use of the Lippmann-Schwinger equation for G (see
Sections (2.3) and (3.3)),

GH(E) = G{(B)(1 + ViGT(B)) = GL(B)(2" ()

we are left with the Q_ operator of the (arbitrary) “final” arrangement b: as
already noted in the single channel case®®, under suitable conditions on the

24The first integral actually converges to an improper vector. The introduction of the
converging factor allows one to define the operator that perfoms the time integral.

%5Gee the discussion in Section (2.1) on the meaning of the ¢ = 0 instant of time in the
theorem of the Asymptotic Condition and in particular eq.(2.3).
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initial state vector |W¥g), the operators 0%’s contain the desired scattering
informations.

In order to see this, we multiply the above expression by the vector (Rp/],
where Ry, = RRy is an asymptotic value of the scattering coordinate in the
b arrangement (i.e. R — oo0) and 8 = {jg,vg} is the rovibrational set of
quantum numbers necessary to specify completely the state of the system. In
this way, we can use the asymptotic expansion of the channel Green’s operator
to get

o0 iPR
/ e (R, BTy dt = i (RpB|GT(E)|Tp) ~ —i(27r)1/2ub% <Pﬁbﬁ—‘%>

’ (4.14)
where P is determined by the conservation law, E = P2/2u;, + €5, in which
€g is the B = {jg,vg} channel energy. Now, if the initial wavepacket |¥q) is
well localized in the asymptotic region of the a arrangement and with momen-
tum distribution directed toward the interaction region (a sort of “asymptotic
condition”) we can write

[To) = Z/dE" |E'ye+) (E'ye+|To) ~ /dE' |E'aa+) (E'0alTg) (4.15)
ey

where 7y is the appropriate set of initial quantum numbers in the ¢ arrangement
needed to specify (along with the total energy E’) the state of the system. Here
the above mentioned asymptotic condition has been used in the form

[Wo) = Q% [W5) ~ [¥5)

along with the orthogonality theorem of Section (3.2). As already emphasized
in the single channel case, this approximation holds in this case because, with
our wavepacket, the full evolution of the state vector back in time is equivalent
to the evolution of the free channel evolution operator.

We are almost at the desired result. We write for simplicity

1 1
(unP)12 W'
7
where now 8 = {ﬁbajﬂavﬂ}

‘Pﬁbajﬁav,3> = ‘Eﬁbajﬂavﬂ> = Ep)

and insert in eq.(4.14) the spectral resolution of the initial wavepacket (eq.(4.15))
obtaining

~ 1
(PRo s, |¥0) = gy [ 4B (o= | Bl (' o) =

(1 P)
= s [ 4 (1S5l ) (o o)
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Here the relevant S matrix element can be written in term of the “on-shell” S
matrix (eq.(3.10))

(EB|Spal E'a) = (EB| Spa(B)| E'a) = 6(E' ~ E){8as —2mi (EB| Tpa(E)| Ea)}

and finally in terms of the “operational” S matrix defined in the previous Section
which appears in the last term between brackets, i.e.

Sga(E) = 0ap — 215 (EB|Tsa(E) | Ec)
Therefore, we arrive at the following, very important result
iP'R 1
R (uP)1/?

e

w .
/ ¢ (R jgvg | Wo) dt = —i(2m) Spa(E) (BaWy)
0

/8 = {ﬁbajﬂ,vﬂ}

from which a number of other useful expressions can be obtained (see Chapter
7 of the book of J. Zhang (1999)). This is the working formula, although
in practice it is used on the J components of the state vector with a simple
redifinition of the “projection” vector (Rgf| (the actual constants depend on
the choice of this vector). It was introduced in a different form by Balint-
Kurti et al. (1990) and Zhang (1995). In practice, it allows one to obtain the
relevant S matrix elements from the knowledge of the “weights” of the energy
components in the initial wavepacket?® by simply computing the half time-
energy Fourier transform of the amplitude of the wavepacket in the relevant
asymptotic region®’. One considers a definite initial state and, from a single
calculation, obtains the desired S matrix elements for the processes a — 8 («
fixed, B arbitrary) for all the energies well represented in the initial wavepacket.

It is worth to note at this point that the time-propagation of the wavepacket
performed in a TDQM calculation is contained, in virtue of eq.(4.13), in the
Green’s operator G1(E), i.e.

+oo
/ EFL G, dt = iG (E) o)
0

26These weights, a(E) = (Ea|¥o), can be chosen at the outset with an appropriate prepa-
ration of the initial wavepacket. Usually, one chooses a gaussian wavepacket for the transla-
tional motion and thus the a(FE) can be readily computed from the momentum representation
of this initial state vector.

271t should be noted that the application of this formula is not straightforward as it may
seem. One problem is how far apart one should project the wavefunction, which could
require the use of a very large grid. A second problem arises with the coordinate chosen: for
example, if one uses a reagent jacobi set of coordinates the projection onto final states requires
a sort of interpolation of the product wavefunctions in reagent coordinates or, viceversa, the
interpolation of the wavepacket in product coordinates.
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whereas the initial conditions (for several collision energies) are contained in
the wavepacket. Beacuse of the meaning of the the Green’s operator, the result
of Fourier transforming the time evolution of the wavepacket can be obtained
also by solving the inhomogeneous problem

(B —H)|Vg) = [¥o)

(where the unknown |¥g) is the previous G (E) [¥y) vector) with the usual
outgoing boundary conditions?®. This is the Time Independent Wavepacket
Schrodinger Equation (Zhu et al., 1994a; Zhu et al., 1994b) which, as it stands,
has already one advantage with respect to the conventional time independent
methods described in the next two Sections: it allows one to “fix” the initial
collision conditions (i.e. it allows to solve for “one column” of the S matrix).
In practice, one can express directly the Green’s operator for several energies
using the Chebichev expansion technique with a little more effort than in the
single energy case.

The methods described up to now furnish, at least in principle, a complete
state-to-state analysis of the collision process. Much like in the Miller’s flux
approach to computing chemical rate constants, if one is interested only in
total reaction probabilities/cross-sections one may look at the total flux going
through a surface in the relevant product region. Without going into details
we note only that this flux is related by the continuity equation to the reac-
tion probability and, for stationary states?? , it can be computed through any
arbitrary surface. Thus, one may use reagent jacobi coordinate to perform the
time propagation and compute the total flux going through a surface adapted
to the reagent coordinates. In this way one can avoid the “coordinate prob-
lem” mentioned in the previous Section. It is worth to mention here that the
formal flux operator relative to a given surface s is obtained by definining the
operators that project the state vectors onto the spatial regions divided by s,
which we denote P and Q = 1 — P. Indeed, the flux operator F is simply the
time derivative of P (or @) depending on the verse of the surface normal)

Fo=— = i[H, P] = i[H°, P]

where HU is the free-particle hamiltonian (P commutes with the potential).

28This is an equation for an “improper” vector: eq.(4.14) tells us its asymptotic behaviour,
i.e. a pure outgoing spherical wave. Indeed, the initial wavepacket is localized in space and
thus, in the asymptotic region, the equation reduces to an ordinary Schrodinger equation for
improper vectors.

2®These states can be formally obtained by the Time to Energy mapping of the kind
discussed before.
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Using the definition of P
. / dRdr |Rr) (Rr|
P,

where the integral extends over the relevant region P; one gets the known flux
formula in coordinate representation.

4.4 The Close-Coupling equations

We now consider briefly the Time Independent approach. In particular we
focus on the simple inelastic (“subreactive”) dynamics which allows us to defi-
nitely choose one of the possible sets of jacobi coordinates. Reactive problems
can be handled in a “similar” fashion by making use of the hyperspherical
coordinates (at least in principle).

The standard approach is to solve the Time Independent Schrédinger Equa-
tion (TISE) of the previous Chapter (see Section (3.4))3°. One begins expand-
ing the unknown scattering eigenvector on a suitable basis set that describes
the internal motion of the colliding system and thus transforms the TISE in a
set of coupled equations for the (simpler) expansion coefficients, just like what
happens with the use of FBR in TD calculations. Since one can handle only
finite basis sets, one must truncate the orginal complete basis set thereby “clos-
ing” the coupled equations. This is the close-coupling approximation described
formally in detail in Section (3.5). It is clearly the same approximation of us-
ing FBR in TD calculations, though the name “Close-Coupling” (CC) refers
invariably to the time independent approach.

In Section (3.5) we introduced the CC approximation using a fixed rotovi-
brational basis set of the target molecule; now we take into account the results
of Section (4.1) and use a cleaver basis set in order to exploit the rotational
invariance. Before doing so, it is worth to note that we use in this way what
is called a diabatic basis: it remains fixed for every value of the scattering
coordinate. An alternative approach is the use of an adiabatic basis, that is a
basis that “adapts” itself during the collision process: one defines the basis that
diagonalizes the effective potential at the expense of introducing non-adiabatic
(kinetic) coupling terms. The adiabatic and diabatic descriptions of the scat-
tering process in this context closely parallel the analogous descriptions in the
electron-nuclear separation problem: in the (electronic) adiabatic representa-
tion one diagonalizes the electronic hamiltonian at the expense of introducing
kinetic non-adiabatic couplings (at least in principle), while in the diabatic

300f course, one may well solve the Lippmann-Schwinger equation.
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representation he works with a diagonal kinetic operator and a non diagonal
potential.

We consider each partial wave at time and use the Space Fixed Represen-
tation3! of Section (4.1) for building the SF rovibrational basis set {|JMIjv)}
starting from the uncoupled rotovibrational basis vectors defined by

h|jmjv) = ey [jm;v)

in which ) .
h — p’r‘ -]

2m ' 2mr?
is the hamiltonian of the target molecule. In this way, we use a FBR for all
the coordinates involved except the radial coordinate
F/M(R) , .
MR, r) = 30 2 (Re| TMijo )
(R,r) Z i r|(JMljv
ljv
where F;7)(R)/R = (R|(JMljv|¥’M) (the introduction of the factor 1/R
simplifies the evaluation of the radial momentum operator). Therefore, we
obtain a set of coupled differential equations for the “channel components” F’s
of the scattering eigenfunctions (we drop the {JM} label)
d? 1(1+1)
{W + k]2U - T E]U(R) = —2u Z I/l‘j]v;l’j’v’ (R) E'j'v' (R)

l’j’U’

+ v(r)

where

kJQ-v/Qu =F —¢€jy
is the channel translational energy (positive for open channels and negative
for closed channels) and Vlj«;;l' jv (R) is the potential matrix in the channel
basis. This last matrix is computed at the outset, usually starting from the
“vibrational couplings”

o0
Virjrinj (R, ) = /0 dr Xy it (1)V (r, R, 7) Xwj (1)

where 7 is the jacobi angle cos™!(Rr) and x,;(r)’s are the radial components
of the target eigenvectors®?

(x| jom) = X2 ym

31That is, we consider the CC equations in the SF representation. Anologous equations
can be written in the BF representation.

320ne often neglects the rotational dependence of the vibrational functions, i.e. he sepa-
rates rotational and vibrational motions by approximating (2mr®)~" ~ (2mr2)~! = B, or,
more properly, by a vibrational dependent rotational constant B, .
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The angular dependence of the vibrational couplings is usually expressed in
terms of Legendre polynomials

VU’j’;’Uj (Ra 7) = Z szf’\j’;vj (R)P)\ (0037)
A

and the angular coefficients (operators) are used to build the final potential ma-
trix by making use of the complicated formulas that express (JM j'l'| Py|J M ji)
in terms of 35 and 65 symbols.
In matrix form we can collect the channel components in a column vector
F/ and write
F oeovio L lg 0 4.16
A oS (4.16)
where
(K jroritjo = 0w 61 v ki

(12)l’j’v’;ljv = 6ll’6jj’5vv’l(l + 1)

and V7 is the potential matrix introduced before. In principle, one solves this
equation with the regularity condition at the origin

F/(R) =0
(which follows from the fact that each F' is actually a radial component of
the wavefunction) and the scattering boundary condition in the asymptotic
region. This boundary condition is the partial wave expansion of the “three-
dimensional” boundary condition of eq.(3.14), i.e.

J B —i(kgR—Ip T J i(kjyR—1Z
Fljv(R) - {5lloéjjo(svvoe ( 2) — Sljv;lojovoe( 7 2)} as R — oo

1
N
(4.17)

for the open channel components (k]?v > 0) and Fjj,(R) — 0 for the closed
channel ones (1%21; < 0)33. In this equation we have used {lgjovo} for the en-
trance channel quantum numbers, i.e. for the initial collision condition (k3 /2u
is the corresponding collision energy) and we have denoted with Sév;lo ot the
corresponding element of the “operational” S matrix defined in Section (4.1).
In principle, the study of the collision process from the internal state {jovo} is
reduced to the solution of the previous equations for each value of J and all
the allowed [y values for each fixed J: the scattering observables can then be
obtained by their partial waves expansions as outlined in Section (4.1).

33 Actually, the spherical waves are Riccati-Hankel functions ﬁl(i), which have the property
h,(i)(m) — e*@= 3™ when z — co and which reduce to exponentially decaying functions in
the closed channel case (z — iz). The “asymptotic” value at which the scattering function

resembles a superposition of Riccati-Hankel functions is usually smaller that that needed for
the e**® behavior.
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4.5 The Log-Derivative matrix

The Close Coupling equations of eq.(4.16) can hardly be solved in practice as
they stand. The reason is simple. If we use M channels they represent a set
of M coupled second order differential equations, among which the regularity
condition at the origin selects M well behaved solutions. These M independent
solutions contain a number N, of scattering solutions (which depends on the
number N, of open channels) and M — N, unphysical solutions. The physical
solutions should be chosen accoring to the boundary conditions of eq.(4.17) but,
in practice, these conditions are difficult to impose because one always solves
the equations starting from the known value of the function at the origin34.

This problem is solved by considering the whole set of M independent
solutions left us by the regularity conditions. They can be arranged in a
matrix ¥ (in which each column vector is a vector solution) that satisfies the
matrix equation

d2 9 J 12
{a§+k—V-3ﬁ}w=o (4.18)

Of course, if ¥ is a matrix solution we can multiply it to the right by an
arbitrary (non-singular) matrix and still get a solution matrix: indeed, the
right multiplication perfoms a (non-singular) linear combination of the solution
vectors.

We may now define the Log-Derivate matrix3®

Y=y

that is invariant for non singular combinations of the solution vectors and holds
all the invariant properties of the solutions. This is the key quantity: we can
re-write the previous equation in term of the unknown Y matrix and get the
(first-order) Riccati matrix equation

dY

— +W+Y?=0

dR
where W = k2 — V7 —12/R2. Now, we can solve this matrix equation, starting
from the condition Y~! = 0, up to the asymptotic region where the potential
is vanishing small and the solution resembles that of the free particle problem.

34This problem doesn’t arise if we resort to the Lippamann-Schwinger equation, which
entails the boundary condition. However, its numerical solution turns out to be very difficult.

351t is the multichannel version of the log-derivative function usually introduced in one-
dimensional scattering problems (see for example Messiah(2000)). In that case it factors
out the normalization constant which is inessential for computing the scattering phase shifts
from the asymptotic behaviour of the eigenfunction.



4.5. THE LOG-DERIVATIVE MATRIX 111

In order to see how this asymptotic solution looks like we turn back to the
channel Schrodinger equation (eq.(4.18)) with 'V = 0 whose general solution
can be written in “standard form” as

Here the J and N matrices can be defined as follows (z; = k; R are dimensionless
quantities):

(J(R))ij = by \/l,c—z (%Zz’)m Jii+1/2(2i)
Open channels : (4.19)

(N(R));; = 85 J (52)"* Vipi1jo(2)

N

F(R))ij = bij J (20)"/? Tyayo()
Closed channels : (4.20)
(N(R))ij = =bij g (20)'? Kyp41/0(=1)

where J,, Y, are the Bessel functions of the first and second kind and I,
K,, are modified Bessel functions of the first and third kind as defined by
M. Abramowitz and I.A. Stegun (1972): they are the general solutions of the
(scalar) “free” equations for open and closed channels respectively3® »37 . The
K matrix introduced here is the whole set of constants that combine the basis
solutions. It holds the scattering informations in its “open-open” block K,,.
Indeed, this block is related to the (operational) S matrix by a Caley transform

S = (14 iKy)(1 — iKy) ™" (4.21)

as the reader can easily check starting with the Hankel/S form of the asymp-
totic solution
¥ —HO — H(+)Saug

where S4,4 is an “augemented” S matrix (whose open-open block is the previous
S matrix) and H&) = —N +4J (see also eq.(4.17)).
It follows, then, that the asymptotic Y matrix, here denoted Y*°, reads as

Y*(R) = (J(R) - N(R)K)'(J(R) - N(R)K) ™'

36We have used real valued k; to refer to \/2u(E — €;) for the open channels and to
v/2u(e; — E) for the closed ones. Furthermore, it should be noted that with our definition
the wronksian for each channel is unity both for open and for closed channels, i.e. in matrix
form W{J, N} =1

3"The J, N solutions are “standing wave” solutions, just like sin(kr) and cos(kr) are
standing solutions of the [ = 0 case. We could have well used the ougoing/incoming spherical
solutions (the “Hankel solutions”).
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where K is an arbitrary matrix of constants. This K matrix can be obtained
by the “matching condition” Y (Ry) = Y°(Ry) (for any R = R, sufficient
far from the interaction region), that is by solving the simple linear problem

{N(Roo)l — Y (Rw) N(Roo)} K= {J(Roo)l — Y (Rw) J(Roo)} (4.22)

As already mentioned, once it is obtained one gets scattering observables by
making use of the Caley transform, eq.(4.21), to have the “operational” S ma-
trix.

It is worth to note at this point that the Riccati equations are very different
from Ordinary Differential Equations (ODE), as can already be argued by
looking at our initial condition Y ! = 0. We can see this clearer considering
the Riccati equation for one free channel without centrifugal potential (i.e.
W — k2): its solution y = cotg(kR) is singular at each R point such that
kR = (% + n) m, n = 0,1,... Thus, in order to propagate the solution from
the initial condition at the origin, one has to adopt special techniques based on
“local boundary conditions” (Mrugala and Secrest, 1983; Manolopulos, 1986;
Alexander, 1984; Alexander and Manolopulos, 1987). One could also consider
the Riccati equation for the inverse log-derivative matrix Y =Y !

daY ~ <

Fi +YWY+1=0
and switch between Y and Y whenever one of the two matrices reaches a
singluar point: this method, combined with the ODE integrator to be described
in Chapter 10, has approximately the same accuracy at the same expense of
computational time of the traditional log-derivative algorithms.

In concluding this Section we note some symmetry properties of the relevant
matrices. First of all the Caley transform of eq.(4.21) is a one-to-one mapping
between self-adjoint and unitary operators (whitout —1 as proper eigenvalue).
It is a well known map in spectral theory and allows us to state that the K,
matrix is self-adjoint since the S matrix is unitary. We can say more. The
time-reversal invariance allows us to consider real ¥ matrices without lose of
generality. For the same reason we can consider the Riccati matrix equation as
a real and symmetric equation whose initial condition is also symmetric: thus,
the Y matrix can be considered to be a real and symmetric matrix. It follows
that also the “augmented” K matrix is real and symmetric, as the reader can
check by using eq.(4.22) along with the wronskian relation of the footnote 36
on pag. 111.
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Chapter 5

Overview

In this Chapter we review the molecular astrophysics relevant to the present
work and introduce our system, the LiH;' system, showing its possible im-
portance in the early Universe chemistry. We begin in Section (5.1) with a
brief history of the Universe evolution, as it turns out from the widely used
Big Bang theory. In Section (5.2) we focus attention on the recombination and
post-recombination era which saw the birth of chemistry and set the stage for
the subsequent evolution of the Universe. The Lithium chemistry is reviewed
in Section (5.3) while the LiH," system is introduced in Section (5.4), in which
we show its connection with the Lithium network.

5.1 Universe evolution

We briefly review here the history of the Universe by looking at the crude
diagram of Fig.(5.1) in which only “recent events” are shown. The diagram
represents the arrow of time and is based on the data collected in Table 1 of
the review article of Lepp and Stancil (1998). The actual dating of events is
correct in red-shift units (the “z” parameter) while is somewhat uncertain in
the usual time units. This is because the actual dates of the Universe evolution
events depend on the cosmological model adopted while the red-shift z is an
“observed” quantity, although at present we can observe objects only up z ~ 5.
As it is well known, the red-shift is the fractional reduction of the frequency
of light that comes from a moving source: it is related to the velocity of the
moving source through a Doppler-like relation

c+v
c—v

z+1=

—>2+1Whenfu<<c
c
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and to the distance from the source by the Hubble’s law, which (in the recent
Universe) reads as
v = H()d

where Hy = 40 — 70 kms~ ' Mpc™!, the “parsec” (pc) being the astronomical
unit of distance (1pc = 3.6231y ~ 3x10'%m). The relation between z and ¢ is
given by

dt/dz < —(1 4 2)72(1 + Qoz) /2

where g (the “closure parameter”) is 1 for a flat Universe. The data of Fig.(5.1)
corresponds to Q¢ = 1 and Hy = 50 kms~ ' Mpc~!.

The events of the first few seconds of life of the Universe do not concern
our work: this is matter of particle physics which, with the current energy
obtainable in particle accelerators, has confirmed the present theories up to
10719 5 after the Bing Bang'.

We begin our history at about 200 s after the Big Bang, when the adiabatic
cooling due to expansion allowed the formation of the first composite nuclei
(D, He). Only the lightest nuclei were formed in this nucleosynthesis process,
because of the lack of a stable nucleus with atomic mass five. Slightly heavier
elements were formed in rare collisions between the D, T', 2 He and * He nuclei:
they are Li, "Li and " Be which complete the Standard Big Bang Nucleosyn-
thesis (SBBN) scenario. These nuclei were free of electrons, as the matter
was mantained ionized by the still high temperature, either through termal
collisions and (high energy) photoionization. At that time the Universe was
filled with a homogeneous barion-photon fluid and matter and radiation were
strongly coupled. Indeed, the background radiation field could exchange en-
ergy in a continuous fashion with the charged particles present (mainly through
Compton/Thomson scattering on electrons) much like what happens between
the radiation field and the wall of a(n ideal) black-body containing it. The tem-
perature drop due the continuos expansion broke this equilibrium: for example,
for temperatures below T ~ 10° K the thermal motion becomes ineffective in
ionizing hydrogen atoms and for He™, He the “critical temperatures” are even
higher. This means that when the neutral hydrogen formation was completed
at about z ~ 1300 the Universe underwent a phase transition from a charged
(plasma-like) system to a neutral one?. The radiation then decoupled from the

'The highest attainable energies are ~ 90 GeV in the LEP accelerator at the CERN center
of Geneva, Switzerland (to be substitued with the LHC collider that will work at ~ 7TeV)
and ~ 1TeV in the Tevatron accelerator at the Fermi National Accelerator Laboratory,
Batavia, IL.

2Two notes about this “decoupling” process: (i)the mean energy of radiation is E, ~ 3kgT
and that of the matter is E,,, ~ 3/2kpT, thus the radiation plays a primary role in ionizing
the matter; (ii)the temperature at z = 1300 was about 3500 K, that is it was well below
the “critical temperature” mentioned above; this is because every recombination process has
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Figure 5.1: The arrow of time: some representative events of the evolution of the
Universe.

matter and begun its independent evolution: this period marks the istant at
which the Cosmic Background Radiation (CBR) interacted with matter for the
last time, apart for very weak subsequent interactions: the CBR conserved its
original (equilibrium) spectrum, modified only by the adiabatic expansion.
This period, z = 6000 — 1000, which begun with the netralization of He
and ended with the partial neutralization of Li is known as recombination era,

a megative entropy contribution and, therefore, is substantially delayed with respect to the
epoch in which the temperature reached its critical (enthalpic) value.
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although the term is somewhat misleading because at this time nuclei and
electrons combined for the first time. The chemistry of the recombination
era and of the subsequent post-recombination era was very simple: only few
elements were present, while dust grains, cosmic rays, interstellar radiation
field and stellar UV emissions had yet to appear. The chemical evolution was,
thus, determined by binary collisions and low-energy photon processes.

The formation of the first generation of stars (Population IIT or simply
PoplII) at about z ~ 20 — 12 changed abruptly the situation. These stars
originated from the collapse of the early clouds which is thought to have begun
at about z ~ 100 — 20. In their high temperature interiors, they produced for
the first time the heavy elements, the so-called “metals”. Futhermore these
stars produced solar winds, ultravacuum UV radiations and shock waves (with
their death) that spread over the interstellar medium, thereby complicating
the “simple” situation of the previous epoch. This is the epoch of structure
formation in which the Universe reached its present aspect, together with our
Milky Way, our Solar System and our Earth.

The chemical and physical evolution of the late Universe was(is) very com-
plicated, in particular in the star forming regions. From a chemical point of
view dust grains are thought to have played a key role in this evolution, since
they allowed many reactions that otherwise would have been forbidden. For
example, only in this epoch the simple reaction

H+ H — H,

became possible on the grains surface.

5.2 The post-recombination era

The recombination and post-recombination era are a somewhat unique area in
astrophysics, because the current impossibility of observing “objects” of this
epoch. Our knowledge of these era relies on the current knowledge of non-
equilibrium chemistry, physical cosmology, hydrodynamics and only occasion-
aly can be indirectly tested on the Universe we see today. Much of the work
in this area is a judicious use of available rate constants and computational
power in chem-physical simulations of a composite gas, subject to the initial
SBBN concentrations of nuclei together with the general relativity theory of
gravitation in an expanding Universe.

In this Section we consider briefly two main topics in this research area: the
“average” evolution of the chemical species across this era and the onset of the
collapse within the gas that determined the end of the post recombination era
leading to the formation of the first generation of stars. Since the pioneering
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works of Saslaw and Zipoy (1967) and of Peebles and Dicke (1968) the role of
molecules in the Universe evolution has been recognized. Molecules set scale of
the first objects and might have helped to amplify galaxy formation and lead
to large-scale structure. Molecular formation in the early Universe has been
the subject of several theoretical studies (Palla et al., 1983; Lepp and Shull,
1984; Stancil et al., 1996; Bougleux and Galli, 1997; Galli and Palla, 1998; Puy
and Signore, 1999). Here we focus attention on the above mentioned review
article of Lepp and Stancil in the book of Hartquist and Williams (1998) and
on the recent work of Galli and Palla (1998).

5.2.1 Early Universe chemistry

In their recent work Galli and Palla (1998) followed the evolution of 21 molec-
ular species from z = 10* to z = 0 in a homogeneous and isotropic gas (the
Universe matter in the Friedman cosmological model). They included 87 gas-
phase reactions and critically discussed some of them.

Starting with the abundances predicted by the SBBN model the fractional
abundances of the molecular species were followed until they reached their
asymptotic limit at z ~ 100. Indeed, at that time the reaction rates fell below
the speed of the expansion of the Universe and the molecular concentration
“froze out”. From that time the gas would have remained in that state unless
some perturbation was introduced. As already noted, perturbations appeared
at z ~ 100—20 as collapse of overdense clouds and, later at z < 20, as reheating
due to UV stellar radiation. Therefore, the data of the above mentioned works
are applicable down to these red-shifts, where they set the initial conditions
for the next stage of the evolution of the Universe.

The chemistry of the post-recombination epoch started at z ~ 1300 with
the formation of the molecular ions HeH ' and Hej through radiative associ-
ation®

He+ HY — HeH' +1

He+ He™ — Hey +
The ions, however, were depleted by two dissociative recombination reactions

HeH" +e — H+ He

Hej +e  — He+ He

3The radiative association is the major route for the formation of the first neutral and
ionic molecular species in rarefied dust-free environments where densities are too low to allow
for the more common ternary association A + B+ M — AB + M. Here the third body M
absorbs the energy released by the AB system in the continuum-to-bound transition. Also
the associative detachment A+ B — AB™ 4+ e~ plays an important role.
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thus increasing the rate of neutralization of He™ and H'. Furthermore, the
photodestruction at z ~ 1300 was particularly efficient and therefore chem-
istry really began with the formation of the first Ho molecules. Hs could not
be formed by radiative association since the lack of dipole moment forbids
the continuum-to-bound transition. Two different routes led to the molecule
formation, each initiated by slow radiative processes,

H+e — H +7v
H +H-—->Hy+e

and
HY+H — Hf +v

Hf +H— Hy+H?

(also the reaction HeH™ + H — H, + He contributed to the Hy formation
for z > 500, since the H; product of this reaction could enter the charge-
exchange process with H). The so-called H, sequence was important for
z > 100 while the so-called H~ sequence became dominant for z < 100 when
photodetachment of H~ was reduced by the decline of the CBR.

The chemistry of He is summarized in the above mentioned reactions while
that of D was very similar to that of hydrogen, except for the fact that H D can
be produced also by direct radiative association thanks to its (very low) dipole
moment. The Lithium chemistry played only a minor role in the evolution
of the early matter since the very low initial abundance of Li nuclei (~ 1079
with respect to H™, in contrast to Dt and He?*t that were ~ 10! times the
hydrogen abundance) prevented the Lithium species to really affect the other
molecular abundances. However, as we shall see in the following, Lithium
species could really play an important role in astrophysics.

Let us now go slightly deeper in the evolutionary model of the early matter
in order to get some ideas of the order of magnitude of the relevant quanti-
ties. The evolutionary model consists of a set of coupled differential equations
coupling the chemical species, the background radiation field and the (matter)
temperature Tp,,

d .
ani = k:fnjnk — kgni + .. (51)
dt
d1, dR 2
d;n = _2Tmm + %—n (F - A)scatt + (F - A)mol] (5'2)

The first equation represents the canonical rate of formation of the specie i,
where k; and k4 are the formation/destruction rates and n; is the number
density of specie 7. The initial conditions are taken from the SBBN model and
usually expressed in terms of fractional abundances with respect to the (most
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abundant) H species. The total atomic hydrogen density is taken to be (see
for example (Stancil et al., 1996))*

ng = 8.02-107°Qh%(1 + 2)3em ™3

where 5 ~ 1 and h ~ 0.5, depending on the cosmological model adopted.
This quantity corresponds to 2.0 - 10 3¢m 2 in the “compressed” Universe
of z = 1000 and to 0.018 cm~3 at the end of the post-recombination epoch
(z = 20). These values are to be compared with the standard gas density at
273.15 K, i.e. n = 1.35- 1022 cm™3!

The radiation temperature diminishes following the relation®

T =Ty(1 + z) where Ty = 2.726 K

and is considered to be in equilibrium, as the perfect black-body spectra of
the CBR suggests. Therefore, the number density of photons with frequency
between w and w + dw is given by the Planck distribution law

8T wlw 7260

n(w,dw) = @nc) o —1 87reﬂhw —

(where 8 = (kpT)~'and ¥ = w/(2nc)) from which the energy density follows

h (ksT\ n’én . _ hw
203( h )e”—l with n =T

u(w, dw) = T

™

In Fig.(5.2) we report the last mentioned distribution function at four sig-
nificative values of z; in Table (5.1) we report some relevant data about these z
values. From left to right we report the radiation temperature, the wavenum-
ber of the approximate maximum in the energy distribution (the values corre-
sponds to 7 = 3 which is very close to the maximum) and the corresponding
energy and photon number densities in a spectral range 1 ¢m ! wide; finally, in
the last column we report the above mentioned total hydrogen number density.

“The (1 + 2)® dependence follows from the expansion of the Universe, which is linear in
z because of the Hubble’s law.

5 As already noted in the previous Section the CBR underwent to simple adiabatic cooling
after hydrogen recombination. Thus, the evolution of the radiation temperature can be
obtained by the Wien law for the frequency peak of the energy density distribution

w_wo

T T
knowing the present radiation temperature Tp: the mentioned relation follows from w =
(1 + 2)wo.
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Figure 5.2: Energy density distributions (normalized with respect to their
maximum value) of the Cosmic Background Radiation in four moments of the
post-recombination era.

|z | T/K | w/em™ | Sug/eV em™ | dng/em™ | ny/em™2 |
1000 | 2728.7 | 5689.66 3.01*¥107 4.26*%107 2.0%10°
500 | 1365.7 | 2847.64 3.77*10° 1.07*107 252.1
100 | 275.3 | 574.01 3.09%10% 4.34*10° 2.1
20 57.2 119.26 2.77%102 1.87*%10% 0.018

Table 5.1: Some relevant quantities at four significative z values.

The matter temperature evolves because of the expansion (the first term
in Eq.(5.2))% and because of the interaction between matter and radiation: the
(T' — A)scart term represents the net transfer of energy in Compton scattering
of CBR photons on electrons, while the (I' — A)ue is the molecular heat-
ing/cooling. The (I' — A),; can become an effective heating(cooling) source
for the matter if the rate of collisional de-excitation is faster(slower) than the
radiative decay; however, in general, the contribution of this term is small.

5The adiabatic expansion of a monoatomic gas (E = 3/2kgT) is given by dT/T =
—2/3dV/V where dV/V = 3dR/R, R being the radius of the spherical Universe.
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Nevertheless, this term is important for the collapse of the early clouds that
we are going to describe.

5.2.2 Molecules in the collapse of early clouds

The model of an isotropic gas filling up the Universe is very useful in studying
the average composition of the early matter, but it is clearly untenable. As
a matter of fact, although very homogeneous on a large scale, our Universe
is quite inhomogeneous, having local overdense zones (galaxies and clusters of
galaxies) separated by almost empty regions, where the number of atoms can be
as low as 1 per a cubic meter. In the Big Bang framework one has to postulate
the existence of small deviations from homogeneity, i.e. of regions in which a
significantly overdense portion of the early matter starts to collapse under the
effect of self-gravity and, ultimately, can form gravitationally bound objects.
In particular, the star formation process is one of the possible outcomes of a
falling down cloud.

One of the main problems that a collapsing cloud has to face at is its
cooling: without a cooling mechanism that works taking away the energy ex-
cess, the collapse will end in a stationary state in which pressure (i.e. the
atomic and molecular motion) counterbalances gravity. In particular, in the
low-temperature gas of the late post-recombination era a cooling mechanism
involving only hydrogen and helium atoms is quite inefficient, because of the
lack of low-lying energy levels. For this reason it has been long recognized
that, even at a fraction of 10™* — 1075 of the total atomic hydrogen abun-
dance, molecules trigger the collapse. The mechanism is known as radiative
cooling and has been introduced at the end of the previous Section: in practice,
molecules are collisionally excited and radiatively de-excited, thereby taking
away the energy as light quanta. This mechanism was proved to be efficient
even when Hy only was considered, but it is clearly more efficient when H D
and LiH are taken into account: indeed, despite their lower abundances, these
two molecules have more closely spaced energy levels and greater radiative
efficiency of Hy'.

The characteristic quantity in this context is the molecular cooling function
which for a molecule M in the initial state i is given (in steady-state level
populations) by

M= Z nin);jP;iiAeij
X,j>i

X

iy is the relevant collisional rate

where X represents a collisional partner, &

"It is worth to note that radiative rotational transitions in H, are of quadrupole type
(Aj = £2) and thus they (i) need a higher collision energy to be started and (ii) give rise to
a weaker emission efficiency than in the case of HD and LiH.
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constant, Pf%; is the radiative de-excitation rate and Aey; is the (absolute)
energy gap between level 4 and level j; analogously, we can define a molecular

heating function
i . pre 1.X
T = E Aeij PS5 ik~ inx
X,j>i

3
given in terms of the Einstein coefficients,

where now P’¢ j is the radiative excitation rate. The radiative rates can be

pré. = Aji + Bjiu]'i

Jj—i
FiS; = Bjiugi
where uj; is the energy density of the radiation per unit frequency correspond-
ing to the ¢ — 7 transion. The total cooling and heating functions are then
given by
AM =D, avz)\ﬁ\/[
VM = D2 Ty

where z; is the fractional population of level 4, and the net cooling function by
A=A —7mr

The net cooling function clearly depends on the temperature and on the density
of the collisional partners: it is an increasing function of the temperature, due
the increasing ability of the molecules to be excited in higher levels, and it is a
decreasing function of the density of the collisional partners, since the higher
the density the higher is the rate of collisional de-excitation prior to radiative
transfer®. Galli and Palla (1998) computed the cooling functions of LiH, HD
and HH in the low density limit using the available data to date. The Figure
2 in their Appendix shows that LiH cooling dominates up to 100 K, followed
by HD in the temperature range 100 — 2000 K and, ultimately, by Hy for
T > 2000 K°.

5.3 The LiH in the Early Universe

There is considerable uncertainty on the abundance of LiH in the early Uni-
verse. This is somewhat unpleasent since Li bearing species have some im-
portance for the astrophysical community. Thanks to its high dipole moment,

81t is worth to mention that the above formulas should be corrected, when needed, by
the enthalpic contribution of the chemical reactions.

9We should mention, however, the fractional abundances of these species as they turned
out from their work for z < 20: f(Hs) ~107%, f(HD) ~107° and f(LiH) ~ 107'° .
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LiH could be the first “object” of the early Universe to be observed and, in-
deed, a very preliminary search for primordial LiH molecules has been started
(de Bernardis et al., 1993). Dubrovnich (1993) and Maoli et al. (1994) have
suggested that Thomson scattering of CBR photons by primordial molecules
with large dipole moments may have attenuated second order angular CBR
anisotropies, thereby leaving their imprint on the CBR spectrum. This im-
print may be observable if sufficient molecular abundances were produced. On
the other hand, it is important to assess the feasibility of such experiments
since the total Lithium abundance turns out to be a discriminant for the nu-
cleosynthesis models. Furthermore, the role of LiH in the cooling mechanism
of the early clouds, if any, depends clearly on the molecular abundance.

The pioneering computations of Lepp and Shull (1984), using an estimated
value for the radiative association rates, gave the LiH/Hs abundance ratio at
low red-shift to be as high as 1075%; with Ho/H ~ 107 the fractional abun-
dance of LiH would be 107125 Subsequently, and independently, Dalgarno et
al. (1996) and Gianturco and Gori-Giorgi (1996; 1997) computed accurate rate
constants for the radiative association process from ground-state atoms, both
for LiH and for LiH". Gianturco and Gori-Giorgi (1996; 1997) also exam-
ined the possibility of producing LiH from an excited Li(2p) atom and found
the relevant rate six order of magnitudes larger than that involving Li(2s)
atoms. These first-principle results gave rise to a much smaller abundance of
primordial LiH (Dalgarno et al., 1996; Galli and Palla, 1998). In their work,
Galli and Palla (1998) further noted that the LiH abundance fell below that
of LiH ™, since the formation of the molecular ion is controlled by the radiative
association process Lit + H — LiH ™' + and Lithium remains ionized even at
low red-shifts. All the recent works agree on a very low final L¢H abundance,
thereby preventing any possibility of observing primordial LiH. However, we
should recognize that the LiH/LiH™' abundances depend also on the reactive
interactions with the other primordial species.

Very little is known about the exoergic reaction of LiH with the most
abundant atoms

LiH+ H — Li+ Hy

(Galli and Palla (1998) used an estimated rate constant of 2 - 107! em3s~1).
This has prompted the ab-initio study of the underlying interactions and the
first-principle determination of the rate constant: Clarke et al. (1998b) evalu-
ated the ground-state PES and studied the collinear dynamics, both quantum
mechanically and classically. They found surprisingly that the reactivity is
dynamically prevented by the very narrow channel corresponding to the Hy
formation. Bodo et al. (2001) found that the subreactive interaction is very
simple but dominated by the Hy formation, showing that even the inelastic
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dynamics cannot prescind from the reactive one. Lee et al. (1999) found that
the excited Ha(n = 0) + Li(2p) channel is already open at zero collision en-
ergy and is directly accessible from the LiH (n = 0) + H(1s) via non-adiabatic
transition to this first excited state. These data stimulated recent far-wing
experiments on this system (Bililign et al., 2001). Martinez (1997) tested its
Multiple-Spawning Ab-Initio-Molecular-Dynamics approach around the coni-
cal intersection of the Li(2p) + Ho system.
The dissociative recombination rate, i.e. the rate of the process

LiH " +e — Li+ H

has been estimated to be k = 3.8 - 1077 (T/K)~%4" em3s~! and only very
recently has been measured to be 3.8 £1.4- 107" em3s™! at 300 K, i.e. about
10 times the estimated value (Khron et al., 2001).

All the (positive) ionic reactions have only estimated rate constants; Galli
and Palla (1998) used in their model the following reactions with the indicated
rate constants
LiH+H" - LiH "+ H k~10"cm3s™"

LiH + H" — Li™ + Ho k~10"%m3s~!
LiH" + H - LiH + H* | k = 10711~ 679000K/T ¢35~ 1
LiH" + H - Li+ H | k=102 66400K/T 3 5—1

LiHt + H — Li* + H, k=3-10"1%m3s!

where the exponential terms arise from enthalpic considerations. Strangely
enough the reaction
LiH + H" — Li+ Hf

has been omitted.
On the other hand, much work has been done in evaluating the contribution
of He to the LiH cooling function. The collisional process

LiH(n,j) + He — LiH(n',5') + He

has been largely studied (Gianturco et al., 1997b; Gianturco et al., 1997a; Bodo
et al., 1998b; Bodo et al., 1998a). The reliability of the interaction potential has
been questioned by Taylor and Hinde (1999); however, their new potential has
been proved to be somewhat less satisfactory in reproducing the only available
(high energy) experimental results than the previous one (Bodo et al., 2000)
and several experiments have been suggested to solve the controversy.

The H contribution to the LiH cooling function, as already said, has been
proved difficult to assess, because of the competing Hos formation reaction
(Bodo et al., 2001); although the reactive outcome could turn out negligible,
the inelastic dynamical results must come from full 3D reactive calculations.
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Also in this case, the HT contribution to the LiH cooling function has not
been determined. In this context it is worth to mention that the low red-shift
fractional abundance of H+(f ~ 10™*) is much lower than the corresponding
abundances of H (f ~ 1) and He (f ~ 10~ 1) but the charge-dipole interaction
acting between the strongly dipolar molecule and the proton can give rise
to very large cross-sections (10* — 10% times a typical neutral cross-section),
thereby offsetting the lower abundance of H™.

All the above considerations on the ionic species motivated our interest
in the LiH, system, which we shall present in the following Section: it is
the relevant system for studying both the ionic Lithium (sub)network and the
inelastic processes

LiH(n,j) + Ht — LiH(n',j') + H*

LiH*Y(n,j) + H — LiH" (n',j') + H

i.e. the interactions of LiH/LiH™* with the abundant H*/H species. We hope
that this work will contribute to shed light to the entangled ionic (sub)network
of the Lithium chemistry in the early Universe and, possibly, to furnish starting
material to computing accurate rate constants that, in turn, could be of help
for the astrophysical community.

5.4 The LiH; system

Very little is known about LiH, . A preliminary work of Hobza and Schleyer
(1984) speculated somewhat on its connection with the neutral LiHy system
in order to interpret ionization experiments (Wu, 1979). Subsequent accurate
calculations around the Cy, (ground-state) equilibrium structure were done
by Searles and Nagy-Felsobuki (1991): the system was found to be weakly
bound by the polarization forces acting between LiT and Hs. This equilib-
rium structure was also inferred in previous studies on the inelastic Lit + Hy
dynamics (Lester, 1971; Barg et al., 1976) which could be compared with beam
experimental results (see the introductory Chapter of the collection edited by
Bernstein (1979) and reference therein).

Here we approach the system in its full dimensionality by looking at the
lower lying electronic states in order to determine its relavance with the reactive
and non-reactive ionic processes described in the previous Section.

We report in Fig.(5.3) the correlation diagram for the energy levels of our
system in order to see the relation between the asymptotic fragmentation chan-
nels. On the right hand side we have reported the channel fragments in terms
of the LiH/LiH™" species while on the left we have drawn the energy levels
in the range of coordinates corresponding to Hy/H, molecules. The three



128 CHAPTER 5. OVERVIEW
H,(B'5,) + Li ('s) LiH "(?) +H(s)

3 LH(X ) +H"
H(X?54) + Li(%S)

! O SE—
LR 18.214 eV 1
110.400 eV
101326 | o+ :
: : Li+H+H 1
I L L L LR LiH (x%") + H(S)
T
311.369 ev :
‘ l4.572 ev
v vy
1t -1,
H,(X'Zg) + Li *(*s) Y

2

Figure 5.3: Correlation diagram for LiH; and its asymptotic states. Triatomic
fragmentation arrangements are also displayed. See text for details.

atom break-up channels are displayed (as dashed lines) in the middle of the
diagram, because of the relevance for the ground-state process (see Chapter 8).
What is readily evident from the diagram is the large energy gap between the
ground electronic state of LiH + H™ and that of LiH' + H by one side and
Hy + Lit /H; + Li on the other side. This is due the large difference between
the ionization potentials of the Li-bearing species and those of H, Hy. On
the other hand the energetic difference between the second and third state is
much smaller; indeed, their three atom asymptotes (Li + H' + H) are degen-
erate because they only differ for the simple exchange of charge between the
hydrogens. We left unspecified the third asymptote for reasons to be explained
below (see Chapter 7). Anticipating the results of the following Chapters we
can say here that these features remain substantially unchanged in the interac-
tion region: we will see two well separated lowest-lying states, while the second
and the third electronic states interact because of the charge-exchange process
between the two hydrogen atoms. Thus we will exclude non-adiabatic interac-
tions between the first two states and we will focus on the adiabatic processes
occuring on the corresponding PESs; we will neglect the interaction between
the first and the second excited states.

The situation is summarized in the pictorial representation of the system of
Fig.(5.4) as it turns out from the present work. In this picture we report also
the relevant topological features of the PESs: the above mentioned polarization
well of the ground-state LiT...Ho and two much deeper wells in the first excited
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Li+H+H"
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LiH + H

Figure 5.4: Pictorial view of the potential energy surfaces for the two lowest electronic
states of LiH, .

state. These last wells are of electrostatic origin too: on the reagent side
(LiH + H™") we have a charge-dipole well which turns out to be the deepest,
while on the product side (Li + H;) we have a charge-induced dipole well.
The third electronic state, here not reported, turns out to be purely repulsive.

In this work we intentionally focus on the singlet manifold since we expect
that the triplet one (which “touches” the LiH"™ + H and Li + H2+ asymptotes,
apart from the three atom dissociation limits) is purely repulsive, because of
the non-bonding nature of the exchange interaction between the two valence
electrons. Furthermore, we expect that the spin-orbit coupling that trigger
the possible singlet-triplet transition is small for such light atoms and, thus,
our singlet states should not be affected by the triplet manifolds. It should
be emphasized, however, that spin multiplicity must be taken into account in
dynamical considerations; for example, only 1/4 of the LiHt + H collisions
has a chance to go on the singlet manifolds.

For completeness we note that the data reported in Fig.(5.3) were extracted
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from a combination of experimental/theoretical data. All the results reported
there refer to adiabatic transitions, with the exception of the process involving
the Hy(X'ST) — Hy(B?Y1) transition where we have instead used the verti-
cal difference (Huber and Herzberg, 1979; Stwalley and Zemke, 1993; Moore,
1971); for the LiHt molecule we used our computed values. We collect the
relevant molecular parameters in Table (5.2).

| [ D./eV [ Do/eV | Re./ay |
Hy, | 4710 | 4.478 | 1.401
HY | 2.792 | 2.648 | 1.997
LiH | 2515 | 2429 | 3.015
LiH* | 0.138 | 0.111 | 4.107

Table 5.2: Molecular parameter of the relevant diatomics. See text for details.

With this we close this long introductory Chapter which, starting with the
Big Bang, leaves us with the Big Deal: the LiH, system.



Chapter 6

A MultiReference Valence Bond
approach

In Chapter 1 we introduced a modern Valence Bond approach to computing
electronic energies. The method described there is based on a single refer-
ence wavefunction, the Spin Coupled wavefunction, with which the electron
correlation is introduced by vertical excitation on suitable virtual orbitals (see
Sections (1.6) and (1.7)). As already emphasized in Chapter 1, one great ad-
vantage of the method is the possibility of gaining a clear physical picture of the
underlying interactions while maintaing a high degree of accuracy. However,
much like in MO theories, to treat excited state problems and near-degenaracy
effects a multireference approach should be more appropriate. In this Chap-
ter, therefore, we will consider a MultiReference Valence Bond approach which
parallels the well-known MultiReference approach of the MO theory. The nov-
elty is that, as we will show in Section (6.1), we can optimize Spin-Coupled
wavefunctions that work as reference functions to introduce correlation in the
ground and in the excited states. In this way we can extend the appealing
features of the SC method to the excited states while maintaining an overall
high accuracy.

The realization of this procedure to compute ground and excited PESs was
an important step in our work on the LiH;' system, since, for example, the
very important channel LiH + H* lays in the first excited PES of the system.
All the ab-initio calculations described in this work were carried out using this
method.

131
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6.1 SC wavefunctions for excited states

In this Section we describe an approximate but very simple method to optimize
excited state Spin Coupled wavefunctions. The method has the advantage of
being easily implementable and of preserving the physical transparency that
characterizes the SC theory.

Before treating in some details this method let us make a few remarks about
the excited states. Why do excited state problems need more care than ground-
state ones? Besides other things (see for example Bruna et al. (1987)) there is
a basic problem in treating excited states. The method described in Chapter
1, like the MO-CI method (either in the HF-SCF or in the MC-SCF versions)
or the Coupled-Cluster one, relies on the previous wvariational optimization of
a simple wavefunction which is expected to contain the basic features of the
exact wavefunction. The spirit of such procedure is based on the recognition
that the Schroedinger equation can be obtained by a variational principle, i.e.
that the solutions of the stationarity condition of the energy functional

0E =0 (V|H|¥)=0 (6.1)
under the normalization condition
1= (T|P) (6.2)

are the stationary states. This is true when the trial space is the entire Hilbert
space, but it is clearly “almost” true when the trial space is a good approx-
imation to the entire Hilbert space'. Thus, one expects that a solution of a
variational problem is a good starting point to obtain an accurate wavefunc-
tionZ.

The variational principle can be applied to any state: if one is able to
localize a stationary point of the energy functional the solution is expected
to be a good starting point for some state of the system. The trouble with
the excited states is that, in practice, we are able to localize efficiently only
the minima of the energy functional and, thus, the variatonal principle is

'One might object that the (non-linear) space spanned by the single determinantal HF
wavefunction is rarely a good approximation to the Hilbert space. One, however, should
remember that the HF energy accounts almost always for more than 95% of the exact
energy of system. The trouble, as it is well known, is that the remaining 5% is the realm of
chemistry.

2With the exception of the Coupled-Cluster method, in all the methods mentioned above
the improvements are achieved by a further application of the variational principle, that is
they are variational methods.
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useful only for the ground-state reference optimization®. Therefore, an excited
variational solution can be obtained “in practice”, with the knowledge of the
ground state |¥y), only by adding to the normalization condition (6.2) the
orthogonality constraint

0= (¥]¥g) (6.3)

This condition allows us to obtain a solution for the first excited state as a
minimum of the functional (6.1) and can be easily generalized to other excited
states. If we do not know the exact ground state |¥g) but only an approxima-
tion |®g), as it is always the case, it is still possible to obtain an approximation
to the first excited state by replacing the condition (6.3) with

0 = (%) (6.4)

In this case, as it is well known (see for example Messiah (2000), Chapter
XVIII), the stationary solution |®;) (which we assume to be normalized) is
not orthogonal to |¥g), but given

g0 =1 — [(¥o|®o)| °

it follows that
[(To|®1)| > < eo

and then
E[q)l] Z E1 — 60(E1 — EO)

where Fy and FE; are exact ground and first excited energies, respectively.
From this it follows that an increasingly better approximation can be obtained
whenever the approximate ground-state function is closer to the exact one.

This is the starting point of our approach: we are not directly interested
in such approximation but we recognize that it can be useful also when, as
it is in our case, the variational solution |®;) is used as a reference for the
introduction of the correlation directly into this first excited state, as well as
in the ground state®.

Our aim is to preserve the appealing feautures of the Spin-Coupled VB
method and therefore we use the ground-state Spin-Coupled wavefunction as

3To be clear, to the best of author’s knowledge there is no evidence, for example, of a
HF solution which corresponds to a saddle point of the energy functional, except when the
symmetry of the system gives a simple structure to the saddle point. The only case in which
a saddle point of the functional can be easily reached is the trivial case in which the trial
space is linear: this is why the CI solutions can be used to approximate more than one
electronic state.

4The higher energy excited states can be managed in a similar manner by a straight-
forward extension of the above considerations, although alternative “orthogonalization” ap-
proaches turn out to be equally valid (see below).
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an approximate ground-state function and search for a function with the same
shape, that is, we consider both |¥) and |®() in equation (6.4) to be as in
eq.(1.5) on pag. 24. We are not interested in the exact variational problem,
which would consist of the application of the SC optimization (see Section
(1.5)) under the general additional condition (6.4). Rather, we consider a
simplified version where the same SC optimization procedure employed for the
ground state is used on another still properly bound function. In this context,
the only situations to be considered are those in which the excited state should
be described by an orbital configuration different from that of the ground-
state: adversely, the different solutions of the secular spin problem (eq.(1.9)
on pag. 36) automatically satisfy equation (6.4) and are already included in
the expansion of eq.(1.11). This is the key observation: we can try to satisfy
the orthogonality condition

(T|®o) = > (h1¢ha- 9N |P"|p1.-dn) (SM'|P7|SM) =0 (6.5)

PeSy

(where {|¢;)} and {|¢;)} are, respectively, excited and ground-state orbitals
and P belongs to the symmetric group Sy) whatever the spin functions em-
ployed for the two states and, of course, for eq. (6.5) to be valid it is sufficient
that

(Y192 YN [P |$12..9n) = 0 (6.6)

for any chosen P € Sy. This problem has a lot of solutions (see also Fig.(6.1)):
given X = {|¢;)},_; y the set of ground-state orbitals and A = {|¢;)};_, ,, € X
a chosen subset (the active one) of k elements, it is sufficient for N — k + 1
excited state orbitals {|1;)},_; y_j,, = A" to span the orthogonal complement
of A. Indeed, only a one-to-one mapping between X \ A (the inactive set) and
A* could lead to a non-vanishing overlap but this is forbidden by the different
numbers of the elements in the two sets. Obviously, we can consider different
values of k (i.e. change the dimension of the active orbital set in the ground
state) and we can consider different possible choices of the active space for

each k. For each k there are < JZ

(1)

k=1

) possible choices of the active space; this

means that there are

different possibilities to satisfy condition (6.4) only using simple constraints
on the orbitals. In this way, we obtain a trial space that is flexible and simple
enough to be employed in practical calculations. As an example, for N = 2,
we can consider an orbital |41) orthogonal to the two ground state orbitals, or
two orbitals orthogonal to |¢1) or |¢2); for N = 3, we can consider one orbital
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Figure 6.1: Schematic representation of the orthogonalization schemes. Over-
lap matrices between ground (orizontal axis) and excited (vertical axis) SC
orbitals in a 4-electron system. The dark areas mark the matrix elements con-
strained to be zero, i.e. the orthogonality constrains. The symbols in circles
indentify the “active” space. From left to right, from top to bottom the [N : 1],
[(N —1):2], ..[1: N] schemes (see the main text).

|1h1) orthogonal to the three ground state orbitals, two orbitals |11) and |i2)
orthogonal to one of the three pairs of ground state orbitals, or, finally, three
orbitals orthogonal to one of the ground state orbitals.

We can take into account all these possibilities, optimizing one spin-coupled
wavefunction for each of them and keeping the ones that yield the minimum
energy to study low-lying excited states. In practice, we need only some of
these combinations: for example, we can usually distinguish a given number of
core orbitals that are not substantially altered in passing from the ground to
the excited state and thus we can discard the "high energy" orthogonalization
schemes which do not contribute to the first excited states (e.g. we can neglect
a priori a situation in which all the excited orbitals are orthogonal to one
specific core orbital since this would correspond to a core excitation).

In practice, the introduction of the orbital constraints turns out to be very
simple: we change the basis set from the pure atomic to a projected one that
is adapted to the decomposition of the one-electron space into an active space
and its orthogonal complement. In this way the orthogonality constraints on
orbitals are converted into an unconstrained, but limited, expansion of the
excited state orbitals in the projected basis set. In two typical cases (see
below) good results are obtained with a “[N : 1]” (N orbitals orthogonal to
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one ground state orbital) and a “[1 : N]” (one orbital orthogonal to the ground
state orbitals) orthogonalization schemes; for such situations a proper ordering
of the orbitals and a Gram-Schmidt orthogonalization are sufficient (of course,
in the same orthogonalization procedure the N linearly dependent functions
are eliminated). It is worth noting at this point that the excited SC orbitals
are subjected only to the orthogonality constraints and therefore their shape
turns out to be variationally determined by the problem at hand.

6.2 The MRVB scheme

Having obtained one or more reference functions we can now optimize the vir-
tual orbitals as described in Section (1.7) by taking the new SC functions as
references for building the “perturbed” wavefunction. In doing this we realize
that, in the optimization process of the virtuals, we have to employ some or-
thogonality constraints on them in order to avoid the wavefunction of eq.(1.12)
on pag. 39 to collapse onto the ground state one. The actual constrains to
be imposed depend on the particular orthogonalization scheme that generated
the excited Spin-Coupled function. As a general prescription, in performing
vertical excitation of the SC orbitals into virtuals, one has to use for the vir-
tual orbital the same space used for the original “occupied” orbital of the state
involved.

For example, let us consider an excited SC wavefunction that comes from
the [N : 1] scheme; in this case all the excited orbitals are orthogonal to the
(unique) active orbital of the ground-state and, thus, every virtuals must be
optimized in the orthogonal complement of the active space. On the other
hand, let us consider the case in which the excited SC function comes from the
[1: N] scheme and let us write the function as

|U5E) = A{l¢1) - [¢n—1) - [En) [SM)}

where |{x) is the (unique) orbital constrained to be orthogonal to the active
space. In the excitation process |¢1) — |¢f> the virtual is allowed to spread
over the full space, while in the process |{n) — |§]"\}> the virtual must be
subject to the orthogonality condition with the active space.

With these general prescriptions a MultiReference Valence Bond procedure
can be easily set up (Fig.(6.2)):

e optimize the ground-state Spin-Coupled wavefunction.

e optimize one or more excited-state SC wavefunctions. In doing this a
number of physically reasonable orthogonalization schemes should be
considered, although for a large-scale calculation one can look only at
a number of key geometries.
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Figure 6.2: Pictorial representation of the MRVB scheme. Dark areas mark
the occupied SC ground and excited orbitals, with their “stacks” of virtuals.
Possible vertical excitations are indicated with thin arrows.

e for each SC wavefunction optimize a set of virtual orbitals, using the
appropriate constrains described above.

e perfom the vertical excitation of the “occupied” SC orbitals into the pre-
viously optimized virtuals, in such a way to generate the VB structures.

e solve the secular problem corresponding the non-orthogonal Configu-
ration Interaction wavefunction that mixes the previosly obtained VB
structures.

In the following we consider some applications of the scheme just described.
The applications to the LiH, system is of direct relevance for this work; as a
matter of fact, all the ab-initio calculations described in this work were done
as described in the following Section. The application to the awkward C2X%+
state of the BeH molecule shows how the MRVB method can be used in such
pathological situations.
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Figure 6.3: Jacobi coordinates for the LiH+H™ scattering system.

6.3 Application to the [LiH|" system

6.3.1 The calculations in the subreactive region

As a first computational example of the newly developed approach, we consider
here the sub-reactive interaction of a proton with the LiH species. We report
only a short summary of the calculations performed: a full description of the
complete potential energy surface (PES) will be the subject of Section (7.1),
while the work in progress on the energy transfer dynamics of the [LiH + H|*
system will be summarized in Chapter 10. The overall energetics of the system
has been already discussed in Section (5.4).

In this Section we describe some potential energy curves obtained by mov-
ing the proton toward the center of mass (CM) of the LiH target treated as a
rigid rotor at its equilibrium geometry (re = 3.1042 ag). We examine the be-
havior of the interaction for some values of the orientation of the approach (the
angle 6 of the Jacobi coordinate system shown in Fig.(6.3)) as a function of
the scattering coordinate. The basis set employed in the calculations consists
of Li[10s4p2d/5s3p2d] and H[7s2pld/5s2pld] contracted Gaussian functions
and it has been already adopted in previous studies involving the LiH specie
(Clarke et al., 1998b).

The Spin Coupled wavefunction of the system ground state turns out to
have the form

|@0) = A{|d1s) |#15) |m,) |6m,) [SM) } (6.7)

where |¢15),|¢),) is a pair of orbitals localized on Li representing the 1s?
core of the atom and |¢m,) ,|Pm,) is a pair of atomic orbitals localized on the
hydrogen atoms (Fig.(6.4)). Thus, we see that the ground state of the system
naively describes the physical configuration Li H + H with the positive charge
localized on the Li atom.
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Figure 6.4: Contour plot of the (valence) Spin Coupled ground-state orbitals
on the molecular plane. Distances are in atomic units.

In order to optimize reference Spin Coupled wavefunctions for the first ex-
cited state, we tried different orthogonalization schemes and, for the geometries
considered, we obtained very good results by using only one excited reference
configuration. The best scheme turned out to be the [NV : 1] scheme, i.e. that
in which four excited orbitals are maintained orthogonal to one of the ground
state orbitals. The best active orbital was found to be that with the highest
orbital energy®: this orbital coincides with the 1s(H) orbital of the projectile
when R 2 r. and becomes the 1s(H) orbital of the target when R < re. The
Spin Coupled wavefunction of this state therefore has the form

@1) = A{[b1s) |¢1s) 6m) |$os(ri)) [SM) } (6.8)

where |¢15),|¢,) is the pair of core orbitals of the Li atom, |¢g) is the 1s
orbital centered on the hydrogen atom closest to the Li site and ‘d)%( Li)) re-
sembles the (distorted) 2s orbital of the Li atom in the isolated LiH molecule
(Fig. (6.5)). We thus note that, except for the region where R < r, this wave-
function describes exactly the physical situation of a proton colliding with the
LiH molecule. It is worth to mention at this point that the same qualitative
result is obtained by considering the orthogonalization scheme [1 : N] in which
it is not necessary to choose the active ground state space. This last scheme

5The orbital energy was defined in Section (1.5).
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Figure 6.5: Contour plot of the (valence) Spin Coupled excited-state orbitals
on the molecular plane. Distances are in atomic units.

is slightly better within a small cone around the target hydrogen atom corre-
sponding to the entrance channel for the reaction LiH + HT — Li + H;' as
it will be discussed in the following Subsection.

We report in Fig.(6.6) the two simple Spin Coupled energy curves for the
ground and the first excited states together with the results of Full-CI calcu-
lations corresponding to the same basis set. It is evident from this figure that
there is a very good qualitative accordance between the two calculations: in
particular the irregularity at short range appearing in the Full-CI surface cut
is well reproduced in the corresponding Spin Coupled curve. An analysis of the
SC wavefunction shows that such point corresponds to the change of character
of the highest occupied SC orbital in the active space (from H(1ls) centered
on the projectile to H(1s) on the target). We therefore can conclude that the
irregularity mentioned above, located in a narrow cone around the Li site, is
the activation barrier of the exchange reaction LiH, + HI;" — LiHy, + H}.
It is obvious that a single reference configuration wavefunction is not apt to
correctly describe this region of the PES, thus a slightly refined SC Valence
Bond wavefunction, that will be described below, was employed for the non-
orthogonal CI calculations.

Dynamical correlation contributions to the ground and excited state ener-
gies were introduced by optimizing a selected number of virtual orbitals. For
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Figure 6.6: Spin-Coupled energy curves for [LiH — H|" system, with the LiH
distance at its equilibrium value. Full-CI calculations corresponding to the
same basis set are also reported (filled-in squares).

the ground state, one pair of core virtuals and three pairs of valence virtu-
als were considered: in the latter case one pair was made up of orbitals of
a’ symmetry while the other two pairs of @ symmetry were forced to take
up "z" and "y" character (we call zy the molecular plane). A similar pro-
cedure were used to describe the excited states but, in this case, the virtual
orbitals were expanded into the orthogonal complement of the active orbital
in order to preserve the orthogonality to the Spin Coupled ground state. The
final Spin Coupled Valence Bond wavefunction was constructed as a Configu-
ration Interaction between the two reference functions and all the singly and
doubly excited configurations of appropriate symmetry, obtained by vertical
promotions to the optimal virtuals previously calculated. In order to correctly
describe the region of the proton exchange reaction, we used additional con-
figurations obtained by single replacements of the valence orbitals of the SC
excited state with the SC orbitals of the ground state. In this way the final
SCVB wavefunction was able to describe both the configurations LiH, + H b+
and LiH, + H} representing the interacting states at small R values. By
adding a set of ionic configurations, where double occupancy of the orbitals is
included, the total number of configurations of the final SCVB wavefunction
turned out to be 84, which corresponds to 125 Valence Bond structures, when
one includes the spin degrees of freedom.

The results obtained with this wavefunction are shown in Fig. (6.7), where
the potential energy surface cuts for some of the orientations of the impinging
projectile are compared with the Full-CI data mentioned above. A first perusal
shows that the SCVB and the Full-CI PES proceed parallel to one another over
all the configuration space sampled by our calculation. In particular, it is worth
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Figure 6.7: Cuts of the MRVB energy surface regarding the ground and the
first excited states for r(LiH) = r. at some values of 6. Full-CI calculations
corresponding to the same basis set are also reported (filled-in circles).

noting the good agreement between the two calculations in the charge-exchange
region, a feature that suggests our description of the third electronic state (for
clarity not reported here) to be a good one in this region. On the whole,
the differences between the MRVB and the Full-CI values are of the order of
2.0 - 1072 and 4.0 - 1073 E}, for the ground state and for the excited state,
respectively. It is important to note at this point that, even with the small
basis set employed, the Full-CI expansion resulted to be much longer than the
MRVB one, involving 1654650 determinants. Therefore, the computational
cost of such MRVB calculation is extremely convenient when compared to the
Full CI.

6.3.2 The calculations in the reactive region

In order to explore the reactive configurational space, the procedure outlined
in the previous Subsection should be slightly refined in order to describe at
the same level of accuracy the full Potential Energy Surface along a reactive
pathway. Indeed, we found that as the Li — H distance increases and the
H — H distance decreases the [N : 1] orthogonalization scheme described above
becomes higher in energy than a [1 : N| scheme. In this case, no choice was left
for the active space and we obtained at the outstart the Spin-Coupled function
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for the reaction products:

|(§2> =A {|¢ls> |¢Ils> ‘¢25(Li)>

¢09(H2+)> ISM>} (6.9)

in which the |¢25( Li)> orbital came from the orthogonality constraint with the

ground-state function (6.7) and the ‘(ﬁag( H;)> orbital was the novel product

of the optimization procedure. Therefore, in the present system we added at
the MRVB wavefunction described above one more reference function and a
set of 4 pairs of virtuals to correctly sample the reactive configurational space.
Moreover, we decided to consider full (vertical) excitation of the occupied or-
bitals into the virtual ones. In this way the total number of configuration used
was 321, corresponding to 617 structures when the spin degree of freedom are
taken into account. The same basis-set described above has been employed
here.

In Fig.(6.8) a collinear Li™ H™ H sample calculation along a reactive path
is compared with FullCI calculations. In the left panel the energy of the three
references (6.7,6.8,6.9) has been reported to show the role of the different SC
functions in the various configurational subspace. In the right panel, for the
same path, the MRVB results are compared with the Full-CI one. We see that,
with the previously described refinements of the subreactive wavefunction, the
MRVB function is accurate over the full configurational space.

A detailed description of the collinear PESs and a preliminary analysis of
the full dimensional PESs will be given in Sections (7.2,7.3).

6.4 The C 227" state of the BeH system

The C?%7 state of the BeH system is the first excited state of 2% symmetry
of the molecule and is well known (Herzberg, 1950) to arise from an avoided
crossing between the diabatic highly repulsive ground state Be(1s22s%;! ) +
H(1s;2 S) and the bonding excited state Be(1s?2s2p;3 P) + H(1s;2S). The
presence of near-degeneracy effects of the atomic Be renders the actual de-
scription of the system more complicated. Such effects arise, schematically,
from the interaction between the Be(1s%2s%;! S) and the Be(1s22p%;! S) states
so as to require for the BeH molecule a minimal set of configurations of the
form

{Lshe2shelsm} + X Y {1she2phe;lsu} (6.10)

1=T,Y,%
The SC wavefunction of the ground state mimics this description with the
configuration
2 —
{lsBeo'BeagelsH}
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Figure 6.8: Comparison between VB and Full-CI results along a rectilinear

reactive path. In abscissa the path is defined by (r = r§,5 , s = r2) for

positive s and (s = ry, ro = r;ﬁ) for negative s. SC energy curves are
2

reported in the left panel and MRVB results in the right one. Energies and

distances are given in a.u..

where o & 255, + 1 2ppe,, take into account the term ¢ = z in eq. (6.10). As
already described by Gerrat and Raimondi (1980), this configuration is appro-
priate for all the interatomic distances r, changing abruptly its spin counterpart
around 7 = 5.0 ag. Indeed the Spin Coupled wavefunction possesses a configu-
ration which is suitable for both the ground state and the excited C?Xt state:
when 7 is greater than 5.0 ag, the orbitals {oc™, 0~} are paired to give a singlet
or a triplet (in the ground state and in the excited states respectively) which
couples with the spin of the remaining valence orbitals to give the two resultant
doublet states; conversely, when r is smaller than 5.0 the same spin-coupling
competes to the orbital pairs {o*,1sg} . For such system the lowest energy
orthogonalization scheme turned out to be [1 : N], i.e. the case in which one
orbital is expanded in the orthogonal complement of the ground state orbitals,
and led in a natural way to the configuration

{1323625367@613;1}

apt to describe the A?II. The lowest energy X reference configuration obtained
is optimal for the 4% state dissociating to Be(15?2s3s;> S) + H(1s;2S) which
actually turned out to properly describe the higher states of ¥ symmetry, a
feature which however remains beyond the scope of the present work. In this
case, therefore, the presence of molecular symmetry forced us to symmetry-
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Figure 6.9: MRVB energy potential curves for low-lying states of the BeH sys-
tem. The filled-in circles show the computed points . All energy and distance
values are in a.u..

adapt the final reference configuration. This could be easily achieved by single
replacements of the 7 orbital of the A2II state with ground-state valence or-
bitals by a strategy similar to that used in the case described in the previous
Section for the region of the proton exchange. Indeed the pair of configurations

{132360§6233e181{} , {13236056233613}[}

correctly describes the state under investigation, both in the bonding (combi-
nation with the minus sign) and in the repulsive (combination with the plus
sign) regions. Therefore, the appropriate multireference 3-VB wavefunction
was built via the resulting four-configuration reference space, while the virtu-
als were optimized with the two X, A Spin Coupled reference functions. The
use for the ¥ manifolds of the orbitals optimized for the II state is justified
by the similarity in energy and character of the A%Il and C?XFstates, both
arising from the Be(15%2s2p;3 P) state of atomic Be; this assumption fails in
the proximity of the equilibrium geometry of the A?II state, where the opti-
mized virtual orbitals resulted to be specific for this state and seemed not to
be optimal for the repulsive region of the C?%1 state.

In practice, the virtuals were optimized for each pair of valence electrons of
the ground X2+ and excited A%II states. For each pair of the ground state
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electrons, orbitals of symmetry s, p;, dgy Were optimized; by proper rotation,
the latter were transformed to py, d;2_,2> symmetry. By considering vertical
single and double excitations of the appropriate symmetry and some ionic con-
figurations, the multireference VB wavefunction of ?X*symmetry included 236
configurations. A single reference VB wavefunction consisting of 223 config-
urations (for one of the basis functions belonging to a single component of
the TI irreducible representation), was adopted for the A%II state. To remove
asymptotic discrepancies between C?*%t and A?II functions, a Spin Coupled
¥t configuration optimized within the S = 3/2 manifold and properly disso-
ciating to Be(1s22s2p;® P) + H(1s;2S) was added. This total wavefunction
contained 388/380 structures for the 1 and ?TT symmetries respectively if the
core orbitals were paired and 928/917 if the full spin space of five electrons was
considered. There were no quantitative differences between the two approaches
at all the internuclear distances examined. The basis set is the same as that
employed by P.S.Bagus et al. (1973), D.L.Cooper (1984) and C.Henriet et al.
(1986), in which the STO were replaced by STO-6G functions.

The potential energy curves obtained for the X2+, C?%F and A?IT states
are reported in Fig.(6.9); the higher energy states (B2II, 3%1,4%T), not re-
ported here, are in good qualitative accordance with the calculations of C.Henriet
et al. (1986), I.D.Petsalakis et al. (1992) and F.B.C.Machado et al. (1998),
the quantitative discrepancies being due to our description of these states at a
more approximate level, i.e. without inclusion of proper SC reference configu-
rations and virtual orbitals specifically optimized to describe such states. From
the asymptotic energy values the Be(*P <! S) term turns out to be 2.726 eV,
to be compared with the experimental value of 2.725 eV. The resulting well
depths for the X2%+ ,C?%+ and A?II states are 2.112(2.161) eV, 1.046(1.048)
eV and 2.295(2.400) eV respectively, where the experimental values are quoted
in brackets. These results for the X2“ % and A?II states are undoubtedly of
lower quality with respect to today state-of-the-art results, but a complete
investigation of such states in their equilibrium regions does not concern the
present analysis: we mention only the fact that the correct description of the
C?Tt state eliminates the previously observed small hump in the X2 tone
(Gerratt and Raimondi, 1980), in agreement with MO-CI calculations (Bagus
and Moser, 1973; Cooper, 1984; Henriet and Verhagen, 1986; Larsson, 1984;
Larsson, 1985). An optimal description is reached for the C?%*state in the
minimum region. This is confirmed by the above mentioned dissociation en-
ergy value and by the values of the equilibrium distance r, = 2.295(2.301)
A and of the first (J = 0) vibrational term AG 5 = 1004(997) cm ™!, the last
obtained by numerical Numerov integration of the radial Schroedinger equa-
tion. To the best of our knowledge, only D.L.Cooper (1984) has reached a
comparable accuracy regarding this state by means of valence electron Full-CI
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calculations. As expected, in the repulsive region there is a little evidence of
the avoided crossing with the 3sX T Rydberg state, probably due to our choice

of the virtual space.
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Chapter 7

The interaction forces

In this Chapter we will summarize the most important results that we have
extracted from our ab-initio calculations of the electronic structure of the title
system. We will analyze the details of the interaction potential of the LiH2+
system in the view of establishing a connection with the dynamic processes
analyzed in Chapter 5. We shall follow a chronological approach, analyzing first
the sub-reactive surface and then the reactive ones. Finally we will summarize
some important conclusions that can be drawn by only looking at the energy
landscape outlined.

Through the following, when discussing reactive paths, we will take the
convention that LiH/LiH* are the reactants of the processes unless otherwise
stated.

7.1 The sub-reactive surfaces

In this Section we consider the first of the potential energy surface that we
produced at the very early stage of our work. At that time the main objective
was to obtain the interaction potential that acts between the LiH moiety
and a colliding proton. The idea was to use it in a non-reactive dynamical
calculation in order to help to estabilish the possibility of producing detectable
rovibrationally excited LiH molecules (Maoli et al., 1994). We were interested
in the collisional heating/cooling efficiency of LiH since we recognized that
the strong, long-range interaction acting between the dipolar molecule and
the charged projectile would result in cross-sections much larger than others
previously computed in our group (Gianturco et al., 1997a; Bodo et al., 2000).
Thus, the study was limited to the sub-reactive configurational space, i.e. we
considered the orientational dependence of the interaction for a few number
of geometries of the target molecule chosen to be close to the equilibrium one.

149
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Only after this study we realized that a fuller understanding of the system was
necessary and therefore we moved first to the collinear reactive geometries and
then to the full dimensional evaluation of the PESs of the system.

The Jacobi coordinates that we employed for the construction of the sub-
reactive surface is shown in Fig.(6.3) and the details of the MRVB calculations
are given in Subsection (6.3.1). We generated the surface on a dense numerical
grid whose range in these Jacobi coordinates is as follows: the distance be-
tween the center of mass of the molecule and the projectile, R, varies between
1.75ap and 15.0ag for a total of 21 points on an slightly irregular grid; r, the
internuclear separation in the LiH molecule varies from 2.3 ag to 4.3 a¢ in five
points chosen to be inside the range determined by the two turning points of
the v = 4 vibrational level of LiH; finally 6, which is the angle between R and
r, ranges from 11° to 169° in twelve points corresponding to the abscissas of
the Gauss-Legendre quadrature. Although the computed grid of points is apt
to describe better the excited state correlating with the asymptotic fragments
LiH+ H™, we can also extract some information on the behavior of the ground
state that leads to the fragmentation into LiH " + H (the r,, value for the LiH
molecule is 3.014 ag while the value for the LiH ™ is 4.101 ap).

In the following we first look at the orientational anistropy that, roughly
speaking, controls the efficiency of the rotational energy transfer and subse-
quently we consider the vibrational dependence of the interaction.

7.1.1 The rotational coupling

When we keep the internuclear distance of the target at a fixed value we re-
cover the behavior for a rigid-rotor potential (RR) energy surface that shows
the coupling between the R and the 6 coordinates. When the internuclear
distance is fixed at the equilibrium value of the target the RR potential is, in
many cases, a rough approximation to a (ground-state) vibrationally adiabatic
potential; thus it can help to understand the low-energy dynamical processes
that proceeds with a vibrationally adiabatic dynamics (Gianturco, 1979). We
briefly consider here the Rigid Rotor potentials of the two target (LiH/LiH™).

An overall view of the first two electronic states for r = re,(LiH) in cilin-
drical coordinates is shown in Fig.(7.1) where we can see that the two states
are well separated by a ~ 5eV energy gap. Thus, the asymptotic energy gap
noted in Section (5.4) (see in particular Fig.(5.3)) is not substantially altered
by the interaction, at least in the configurational space spanned by the present
calculations. The importance of this large energy gap between the two PESs
will be considered later in connection with the possibility of a charge-transfer
reaction.

The Rigid Rotor excited surface is markedly determined by the dipole-
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Figure 7.1: Three dimensional view of the two surfaces as a function of cylindrical
coordinates where © = Rsinf and y = Rcosf. The internuclear distance r is that of
LiH at its equilibrium geometry. In lower panels contour plots of the two surfaces
are displayed.
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charge electrostatic interaction (see lower right panel of Fig.(7.1)). This is best
seen in Fig.(7.2), where we report the coupling potential as a function of the

IIroot r=3.014a.u.
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Figure 7.2: Behavior of the interaction potential in the excited electronic state as a
function of the two coordinate # and R. The internuclear distance r is that of LiH
at its equilibrium geometry hence kept fixed at 3.014 ayo.

main radial coordinate for different values of the orientational angle. We see
that the most stable structures occur in the small angle region of the upper left
panel, while beyond 6 ~ 7 the interaction becomes essentially repulsive as it is
driven by the dominant dipole-charge interaction proportional to P (cos) R=2.
It therefore follows that the corresponding anisotropy is rather marked and
extends over the whole angular region examined by the calculations. The
minimum structure, expected for the linear configuration, turns out to be quite
deep: from the graph we obtain ~ 46 mE}, that is ~ 1.25 eV which is about
half the dissociation energy of the target molecule, D (LiH) ~ 2.5 eV.

The corresponding Rigid Rotor potential for the ground electronic state is
presented in Fig.(7.3) where now the r value is fixed at 4.3 ag, which is closer
than the previous one to the equilibrium value of the Li H* fragment. We note
that the well in the small angular cone located around the target hydrogen is
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Figure 7.3: Same calculations as in Fig.(7.2) but for the lower surface and for r =
4.30 ag.

very deep and narrow (upper panels)!: the minimum is ~ 4.6 eV below the
asymptote, a value that compares favorabouly with the formation of an Hs
molecule (D, ~ 4.7 e¢V') when one takes into account the low binding energy
of LiH' (D, ~ 0.1 ¢V). The H — H distance at the minimum turns out to be
very close to that of the isolated hydrogen molecule and thus, taking also into
account the nature of the wavefunction (see Section (6.3.1)), we may argue
that this is the entrance channel for the reaction LiH+ + H — Lit + Hy . On
the other hand, in the Lithium cone the shape and strength of the interaction
is rather different: the surface is almost flat, with a residual weak well of ~ 0.1
eV on the Lithium side at a Li — H distance of about 4.5a¢ (to be compared
with the structure of LiH*). A somewhat similar situation has been recently
found in the corresponding neutral system, LiH, (Bodo et al., 2001).

!Note that the cusp in the upper left panel is due to the H — H repulsive interaction.
This is amplified by the lightness of the H atom which places the center of mass of the target
very close to the Lithium atom.
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7.1.2 The vibrational dependence

The full PES discussed here also includes the explicit dependence of the in-
teraction on the internuclear distances of the LiH molecule. It is the effect
of the change of r which explicitly gives us the vibrational coupling produced
within each surface. A pictorial example of such quantity is given by the results
reported in the four panels of Fig.(7.4) where we can note the following:

r.y Dependence of V (R,6)
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Figure 7.4: Computed vibrational dependence of the two PES’s as a function of
relative distances R and for two different relative orientations: § = 11° (left panels)
and 6 = 169° (right panels). Each couple of panel refers to different values of the
distance R (lower in the upper panels and higher in the lower ones) and in each couple
of panel the upper plot represent the excited state and the lower one the ground state

(in gray).

1. Both the surfaces attain their asymptotic behaviour in a rather short
range region, i.e. as the distance between the projectile atom and the
molecule increase, the dependence of the intermolecular potential on
the molecular stretching motion becomes weaker. This indicates, as
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often noted (Gianturco, 1979), the chiefly short-ranged nature of the
vibrational-to-translational (V-T) coupling terms;

2. The asymptotic behaviour is reached faster on the Lithium side of the
target. This a sort of “light atom effect” due to the fact that the center
of mass of the molecular target is very close to the heavy Li atom. In
other words, the stretching of the internuclear distance moves outward
the H atom much more than the L¢ one.

3. The upper PES shows a V-T coupling that remains stronger as the angle
varies and that it is also non-negligible at the larger distances (displayed
in the lower panels). The charge-dipole interaction obviously plays here
a dominant role in creating a more marked V-T coupling;

4. In the lower right panel, we have also shown the n = 0 and n = 5
vibrational wave functions of the isolated LiH molecule. For distances
of the order of 8.0ag, and for the 8 = 169°, we see that we can almost
neglect the coupling coming from the residual interaction between the
LiH molecule and the proton. The monotonic long range electrostatic
interaction simply causes our calculated potential to be an intermolecular
LiH potential shifted by the charge-dipole contribution, which is only
weakly affected by the vibrational motion. This is not true for the # = 11°
orientation for which a much more pronounced effect is observed (see
Section (7.2)).

What the calculations, therefore, indicate is the existence of rather marked
couplings between R and r over the range of the examined coordinates and
thus the presence of an overall interaction which should produce dynamical
outcomes with sizable flux going into rovibrationally excited molecular states.
To make a more precise connection with the dynamics in the LiH + H ™ system
we consider here in detail the vibrational coupling matrix elements, i.e. the
terms o

v (R, ) = /0 dr X, (r)V (r, R, 8)x (1) (7.1)
(where the x’s are the vibrational eigenfunctions of the target molecule) which
enter in the Close-Coupling equations in the usual multipolar expanded form

V(R 0) = 3 VI (R)P (cost)
A

(see Section (4.4)). Since for a long-range potential like the one we are em-
ploying here, the true asymptotic values are never reached by the ab-initio
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calculation, we used a linear square fitting to get the correct asymptotic limit.
We adopted the following analytic form of the interaction at long range

V(r,R,0) = Vyo(r) + O;OIS;) Py(cos)+
D(r R ag(r
+ B(!2)P1 (cosB) + (% + 221(%4)> Py(cosh)

in which Vi, ap, ag, D and @) are respectively the energy, the spherical
and anisotropic polarizability, the dipole and the quadrupole moments of the
molecule. All these terms were determined by a linear square fitting of the
outer three R points of the computed ab-initio potential for each value of 6
and r. We report in Fig.(7.5) the behavior of the above quantities as a func-
tion of r when compared against experimental values in the ground vibrational
state taken from M. Rerat (1992). In particular the asymptotic value of the
potential Vi (r) has been compared to the diatomic potential of an isolated
LiH which has been calculated with a full-CI calculation with the same basis
set as that employed for our calculations.

Once we have obtained a complete representation of the interaction poten-
tial in all the configurational space spanned by 6 and R, we still lacked an
equally good description of the potential dependence upon the LiH internu-
clear distance r. To obtain a reliable representation also in the r coordinate
we used an extrapolation procedure already adopted in the corresponding neu-
tral system? (Bodo et al., 2001). Briefly, we recognized that the interaction
potential

VLiH—H+ (’f’, R, 9) = V(’I‘, R, @) — VLiH('r)

in the limit 7 = 0 reduces to the simple “united-atom” diatomic curve
Vieig—u+(0, R,0) = Vpep+ (R)

and therefore we added one more point in the r coordinate by computing the
BeH™ curve. This point has been used in a spline interpolation, which was
subsequently joined to a long-range (in r) multipolar expansion of the type

A(R,0) B(R,0)
_|_
rP rd

where the exponents p,q were determined by the long-range behaviour of the
interactions (i.e. the H — H' and the Li — H' interactions, for which we

2Today such extrapolation is no longer necessary since the full dimensional PES is now
available (see Section (7.3)). However, it turned out useful for the preliminary analysis of
Chapter 10.
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Figure 7.5: Fitted values of the multipoles of LiH compared with experimental data
(dotted lines). In the upper -left panel the asymptotic potential is compared with a
CI calculation of isolated LiH (solid line). Distances are in A and other quantities
in atomic units. The FullCI curve of the upper left panel has been energy shift by
about 4 mE},.

chose p = 4 and ¢ = 6) and the coefficients A, B were determined by ensuring a
smooth joining with the spline of the inner region. Some of the ab-initio points
with the extrapolated potential are shown in Fig.(7.6), where we also reported
the vibrational wavefunction for n = 15 to give an idea of the extension of the
integrals (7.1) to be performed?.

The coupling elements are reported in Fig.(7.7) in cylindrical coordinates
centered on the LiH center of mass. The vibrational couplings converge rapidly
toward small values with increasing the difference in the vibrational quantum
numbers: while the V% is identical to the rigid-rotor potential the off-diagonal
couplings V% V02 and V% are orders of magnitude smaller. The vibrational
couplings are on average rather short ranged meaning that a certain degree

3 As we will see in Chapter 10 we need such high vibrational levels since, as already noted,
the depth of the interaction well is about one half the D, of the target molecule.
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Figure 7.6: The r extrapolation. The dependence of the interaction is shown
for two values of the jacobi angle and several value of the scattering coordinate.
Distances are in A.

of vibrational coupling exists only in or near the well region of the potential.
A closer examination of the V)\""' terms of the coupling potential suggests,
instead, that the long range coupling is quite substantial and mainly due to
the /\”:”1 term that, in fact, turns out to be the dominant among the others
for each value of n and n’. As it can be seen from Fig.(7.8), the A = 1 term
is the largest both in inner region of the well and in the asymptotic one where
the potential reduces to the contribution

V™ (0, R) ~ V" (R) Pi(cosf) ~ 1;;;’ Py (cosB) for R — oo

where the off-diagonal coupling is proportional to the (vibrational) dipole tran-
sition moment

Dyt = /0 " s (1) D) (r)

The presence of such large term in the expansion of the potential makes the
rotational coupling very large; since it couples directly the Al, Aj = |A| =1
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Figure 7.7: Coupling elements for the lowest vibrational levels in cylindrical coordi-
nate centered around LiH center of mass.

transitions we expect an evident effect on the Aj = +1 transitions. The actual
situation is somewhat more complicated (see Chapter 10).
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Figure 7.8: V)’s as a function of R for the lowest adiabatic potential coupling
elements.

7.1.3 The charge transfer reaction

We have mentioned in Section (5.4) that the difference between the LiH and H
ionization potentials (respectively 7.9 €V and 13.6 €V) causes a large energy gap
between the two lowest-lying electronic states; we have seen (see for example
Fig.(7.1)) that, at least in the subreactive space spanned by the calculation
described in this Section, the two PESs remain well separated also in the
interaction region. As a consequence of these features and of the electronic
nature of the system (Section (6.3.1)), we therefore expect that the behavior
of the electronic densities in the two adiabatic roots is quite different.

A pictorial view of such differences is given in Fig.(7.9) , where we report
the variation of the Mulliken charge populations on the three atomic centers
as a function of orientation and of the relative atom-molecule distance R. The
internuclear coordinate has been kept fixed at the equilibrium value of LiH in
order to simplify the presentation. We only report in the figure two of the
orientations we have examined since the behavior of the Mulliken populations
changes rather smoothly across the angular range.

When looking at the ground electronic state (two lower panels) we see that
the system is qualitatively well described, in both orientations, by the conven-
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Figure 7.9: Computed Mulliken populations (negative charges) as a function of R
and for two orientations (@ = 11°, 169°). The two lower panels refer to the first root
while the upper ones to the second root. The r value was chosen to be that of LiH
at its equilibrium geometry. The black circles in the triatomic schemes are indicating

the atoms on which most of the positive charge is localized. Energies are in ecm~!.

tional formula Lit - - - Ho, where the charge is located on the lithium atom over
the whole range of relative distances. Therefore the small angle region closer to
the expected Cy, geometry of the ground state of the [LiHj]" complex shows
an arrangement of charges that corresponds to a sort of LiT --- Ho situation.
The behavior of the excited state is quite different and is shown in the upper
panels of Fig.(7.9); one sees there more clearly the effects of electronic distor-
tion during the approach of the proton. In the small-angle region the system
undergoes a marked and rapid charge variation as one of the H atom is added
to the complex: thus while in the asymptotic region the arrangement corre-
sponds to that of a proton and a neutral LiH molecule, during the collision
the positive charge is transferred to the H atom previously belonging to the
LiH molecule. In the large-angle region the charge exchange between the two
H atoms is more clear and takes place in a small range of R values, while the
lithium atom remains nearly neutral. In this latter case one can think of a
flow of electronic charge between the two H atoms via a sort of through-bond
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charge migration. Between 2.5 and 3.5ag, in fact, the two hydrogen atoms
exchange one unit of charge and reach fairly rapidly a situation where HT is
removed from a neutral LiH system. This situation is the direct consequence
of a strong non-adiabatic interaction with the third electronic state and it is
the cause of the observed bumps in the high energy region of the LiH — H™
potential when the proton approaches the target on the Lithium side (see right
panel in Fig.(6.7); the bump, either a conical intersection or an avoided cross-
ing, is located at ~ 3 eV above the asymptotic LiH + H* limit)* . As we
shall see better in the following Section, the third root of the system correlates
asymptotically with an excited state of LiH in the presence of a proton charge,
when the internuclear distance in the LiH moiety remains close to the equilib-
rium one; however when r is increased the second excited state changes nature
and becomes essentially an excited state of LiH* (in the presence of a neutral
hydrogen atom) in which the positive charge is localized on the hydrogen side.
Thus, we can argue that in the interaction region this diabatic state interacts
strongly with the diabatic LiH + H™* state that characterizes the interaction
potential here described in almost the whole range of coordinates examined.

The above analysis and in particular the fact that Li is not exchanging
charge, shows that the chemical reaction leading to a charge-transfer process
between the ground state of LiH ' and LiH is prevented by the large energy
gap separating the two surfaces at least for intra-molecular distances close to
the near-equilibrium geometry of the molecular partners. In conclusion, this
qualitative analysis, although still preliminary, can lead us to say that the
charge-transfer process

LiH"+H=LiH+H"

is not likely to be effective during the dynamics of LiH, . We will turn back to
these consideration in Section (7.4). We note, here, that the strong interactions
that we have seen in this Section can be hardly discussed whitout proper
consideration of the reactive configurational space. Therefore, we now move
to the simple reactive collinear situation.

7.2 The collinear reactive surfaces

We will consider here the reactive potential energy surfaces for the system
by looking at the collinear geometry of the partners relative approach. In
particular, we will focus attention on the Li-H-H geometry which seems the
most favorable for the reactions to occur. Although a full 3D surface for the

41t is worth to note that the bump is much more pronounced when the LiH molecule is
streched.
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reactive interaction is now completed, we will show below that the analysis of
the collinear situation is already capable of providing us with a lot of insights
into the microscopic aspects of the relevant reactions.

R(U\HV q,

—
=
=
—
=

Figure 7.10: First and second roots in three dimensions as a function of R(Li-H) and
R(H-H). The points are obtained from the analytical fitting of the ab-initio values
(see text).

From the analysis of the previous Chapters (see in particular Fig.(5.3)
on pag.128 and Subsection (6.3.2)) we deduce that the ground-state surface
represents the interaction potential relevant for the study of the adiabatic
processes
Lit + Hy
Lit+H+H
which will be the subject of the reduced dimensionality quantum dynamical
treatment of Chapter 8. In eq.(7.2) the three body (3-B) break-up channel has
been considered because, as already mentioned, the very low binding energy
of the LiH ' molecule makes it already accessible at a collision energy of a few
tenths of €V.

With the same token the first excited PES is relevant for the adiabatic
reaction

LiHY + H — (7.2)

LiH + HY — Li+ Hy (7.3)
which will be the subject of Chapter 9. Since in this case the asymptotic part-
ners experience strong electrostatic forces (due to the strong dipole of the LiH
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Exci ted states

Figure 7.11: Second and third roots in three dimensions as a function of R(Li-H)
and R(H-H). The points are the raw ab-initio values.

molecule and the substantial polarizability of the Li atom), the mentioned
potential is characterized by the dipole-charge and charge-induced dipole in-
teraction terms. Indeed, we have already seen in Fig.(6.8) two deep potential
wells that could support several triatomic bound states and, as we shall see,
will have a marked influence on the dynamics.

The reactive surfaces that we will discuss in the following were calculated
on a rather dense grid of the two inter-atomic distances. We computed the
potentials on a regular grid ranging from 1.0ay to 11.0ag for the LiH inter-
atomic distance and from 0.5 ag to 10.0ag for the HH distance. A single point
calculation was performed every 0.5ag throughout this region; the step-size
has been halved in a small region around the saddle point of the first excited
state, that is for 2.0ay < rr;g < 5.0a9 and for 1.0ay < rgg < 4.0ag.

An overview of the computed PESs is presented in Fig.(7.10) and in Fig.(7.11).
In the first one, we show a 3D representation of the PESs for the first two elec-
tronic states. In particular, we report the analytical fitting obtained from the
ab-initio points (see below) that show the main features of the potentials: the
two electronic states are well separated in energy and have a very different
topology. Indeed, as we shall see better in the following, only the first excited
state presents a non-trivial shape, having a saddle point between the two deep
wells located in the asymptotic channels. In Fig.(7.11) the first and second ex-
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cited PESs (only the ab-initio points this time) are reported: although we are
not interested in the highest state here showed, we note that the two surfaces
come into contact in the asymptotic three-body break-up region and that the
upper surface remains mainly repulsive.

In what follows we will consider some details of the potentials along with
the fitting procedure used to obtained analytical representations of them, that
in turn were used in the dynamical calculations of the next two Chapters.
Before doing this we focus attention on an interesting feauture that occurs in
the first excited state.

7.2.1 A curious fact

The possible non-adiabatic processes between the two lowest energy states have
been already introduced in Subsection (7.1.3) where, taking into account the
energy gap and the different nature of these states, we argued that multisurface
events can hardly be effective in the dynamics of our system. We will see in the
following that similar conclusions can be drawn from the reactive calculations
and we will discuss their implications at the end of this Chapter. For the mo-
ment we focus attention on the first and the second ezcited electronic state for
which non-adiabatic interactions should be expected. Indeed, as already noted
in Section (5.4), a simple inspection to the three body break-up arrangement
reveals that the dissociating state (Li + H + H™") is doubly degenerate due to
the presence of the charge, thus bringing the two lowest ezcited potential sur-
faces into contact (see Fig.(7.11)). The previous analysis of Subsection (7.1.3)
already revealed that deeply in the interaction region of the subreactive config-
urational space the two excited states are somewhat interacting, because of the
charge-exchange process that takes place between the two hydrogen atoms (see
the bump in the right panel of Fig.(6.7)). Thus we expect a strong interaction
between the mentioned states.

The location and characterization of the seam of the possible conical inter-
section is an interesting matter, but it is beyond the scope of this work. Here
we note another interesting aspect that arises in the asymptotic LiH potential
energy (as considered within the LiH, system) because of the above men-
tioned degeneracy in the three-body break-up arrangement. This effect has
been rarely noted in literature, although it occurs in similar systems, like the
ground-state of HeH; (Sathyamurthy, 2000). In practice, a lower electronic
state, in which the charge appears exchanged onto the two H atoms, arises
whenever one stretches the LiH bond in the presence of an isolated HT. In
Fig.(7.12) we report (in the left panel) the relevant diatomic curves for the
isolated LiH moiety and (right panel) the first lower lying curves of the L'L'H2+
PES obtained by stretching the LiH distance and fixing the HH distance at



166 CHAPTER 7. THE INTERACTION FORCES

LiH isolated moiety

'76 T T T [ L L
A = LiH :
Ll ° LH'| -79F
[ le ° LiH"
L ] -
Q
[ %m ©-0-0-0-0-0-0-0-0¢
i 1 80
78
= L
g ® [LiH') +H
w T 81 ° o LiH"+H ]
- | o LiH +H i
r °
| 8.2 O
8.0 e )
|- o]
- L %mmmo.ooooooooox
i _83 1 1 1 1 l 1 1 1 1 l 1 1 1 1
0 0 5 10 15
Min /ao

Figure 7.12: Potential energy curves for an isolated LiH and for the asymptotic
situation in Lz'H2Jr when rgg — oo. Total energies and lengths in atomic units.

a very large value (50aq in the collinear LiHH configuration). The potential
energy curve of the ground state of the right panel is simply the ground state of
LiH™ (white circles) which is being energy-shifted by the presence of a neutral
hydrogen atom at infinite distance. The potential energy curve of the first ex-
cited state in the right panel can be imagined to arise from two diabatic curves,
one is that of the isolated LiH molecule (black squares) and the other is that
of an electronically excited state of the isolated LiH* molecule (not shown in
the figure, but very high in energy); this last state is the first excited state
of the LiH* molecule and dissociates asymptotically as Li + HT. Because of
the presence of a shallow polarization well located at about 7.5ag, this state,
when considered in the presence of an isolated hydrogen atom, becomes lower
in energy than that of the LiH with an isolated HT and thus gives rise to a
double minimum structure in the first excited asymptotic potential of the title
system. At shorter range, instead, it becomes higher in energy than the state
which correlates with the A'XT state of LiH and therefore the nature of the
second excited of LiH, state depends much on the geometry at hand. This
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is the reason why in Fig.(5.3) we left an unspecified label for that asymptotic
situation. Since this asymptotic interaction disappears in the interaction re-
gion (where the different electrostatic character of the two states is enhanced
by the reduced distances) in the following we will neglect such interaction. In-
deed, our purpose is to obtain some information on the low energy processes
occurring in the first excited states for which we could safely assume that an
electronically adiabatic picture is sufficiently accurate for a preliminary study.

7.2.2 The ground state

The ground-state potential energy function given by our calculations presents a
very simple structure, arising mainly from the two-body contributions. Indeed
it was a relatively simple matter to fit the 3-body (3B) non-additive term,
given by

Vap(rrim,ram) = V(rLim,ron) —Vig+ (roie) =V, (ree) —Vip+ (rrig+rom)

where the last term represents the potential acting between the lithium atom
and the outer H atom. The diatomic potentials were chosen according to the
properties of the ground-state electronic wavefunctions. Since the charge is
always located on the Li atom the diatomic potentials corresponding to the
two LiH were chosen to be that of LiHt. The asymptotic potentials were
obtained from additional calculations at larger distances, one at rr;;z = 15 ag
for the Ho curves and the other at rgg = 50 ag for the LiH curves.

The parameters of the Ho potential turned out to be D, = 4.612 eV and
r¢ = 1.421 ag; it supports 14 vibrational bound states, of which the lowest
one has a dissociation energy of Dy = 4.348 eV. For the LiH" potential we
computed D, = 0.138 eV, ¢ = 4.107ap and 5 vibrational levels, the lowest-
lying yielding Dy = 0.111 eV

We fitted the 3B with the following functional form,

Vip(ri, r2) = Vsgr(ri, r2) * (1 — f) + VLr(r1, 72) * f
where r1 and 79 now correspond to rr;z and rgg respectively. Here Vgpg is

the short range potential, f is a “shape” function of the form

1 1
]_ + e'rl —p1 ]_ + 67'2—)02

f(’f'1,7'2) =

(with p; and py fixed respectively to 7.0ag and 9.0ag) and Vg is the long-
range tail of the 3B potential,

VLr(ri,re) = — ! iz (om, (r2) — 2 am)

2(7“1 +T2/2
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R(Li-H)/a,

R(H-H)/a,

Figure 7.13: Contour plot of the ground state PES for the Li — H — H geometry.
Darker areas correspond to minima in the potential.

in which oy, is the polarizability curve of the hydrogen molecule and ay is the
polarizabilty of the hydrogen atom (4.50 in atomic units); for the first curve we
used an analytic fitting of the data of Hyamas et al. (1994), further corrected
to ensure the right asymptotic behaviour. The short range potential, Vgg is
the term that was actually fitted: we wrote it as

4
VSR(Tla"'?) = Z bnan(Tl)Lm(TQ) % g Prm(ritra) (7.4)

n,m=0

(where Ly, ’s are Laguerre polynomials). We optimized the 50 parameters {bym,
HJ {Bnm } minimizing the square deviation by using the efficient Levenberg-
Marquadt method (Press et al., 1986). Since for Sy, = 0.5 the basis functions
reduce to products of ordinary Laguerre functions, we used the coefficients of a
preliminary linear optimization as guess for the non-linear optimization. The
resulting fitting was fairly good having a standard deviation of 0.009 eV .

In Fig.(7.13) we report a contour map of the fitted PES. As already men-
tioned, the surface is fairly uneventful and shows one deep and narrow channel
corresponding to the Hgy molecule formation and a shallow and broad channel
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corresponding to LiHt formation®.

7.2.3 The first excited state

The first excited surface has a more complicated structure than the ground-
state, mainly because of the different electrostatic forces which are now acting
between the reagents and between the products. Here a 3B potential were
obtained by considering the charge located on one of the two H atoms:

Vap(rrim, rian) = V(roim, ram) = Vi (rrin) —Vyg (re ) = Vyp+ (rein +rmm)

In this formula Vi;m is the LiH curve (the diabatic curve in Fig.(7.12)) and
Vi g+ is the diatomic curve of LiH" in its first electronic excited state, which
dissociates as Li+H™T. Our LiH curve turned out to have D, = 2.466 eV,
R = 2.977ag and supports 25 vibrational states, the first one with a dis-
sociation energy of Dy = 2.392 eV. The Hj molecule turned out to have
D, =2779 eV, R = 1.998ay and support 18 vibrational states the first one
with Dy = 2.637 V.

Since in this case the 3B term has very important contributions coming
from the long-range tails of the interaction we wrote it in the form

Vap(r1, r2) = Vsr(r1, r2) * f1 *f2+VL(2(T1, Tg) * (1—f1)+VL(2(7"1,7”2) *(1— fo)

where
1 1

T 1t 0Bt fa= 14+ en—&

f

and
prin(r)

v ry) = —
Lr(rir2) (0.5 %71 +73)*

is the dipole potential term obtained from the data of Hyamas et al. (1994)
and VL%) is the analogous polarizability contribution (we used ar; = 176.0 a.u.
as obtaneid from our asymptotic potentials). The shape function f; switches
on the dipole contribution when 0.5 rrjg + ragg > &1, while fy switches on the
polarization term only at large Li-H distances (for the dipole term it should
be noted that the behaviour of dipole curve as a function of r(LiH) ensures

*We computed and fitted also the ground state PES of the other collinear arrangement
H — Li— H, because of its possible relevance on the Collision Induced Dissociation of the next
Chapter. In that case we used an evenly spaced grid rrim, > rrim, € [1.0a0, 11.0 ag] with
a step size of 0.5ag. A simple linear fitting with ordinary Laguerre functions was sufficient
to achieve a very small standard deviation: 0.001 eV with 5 * 5 Laguerre functions. Indeed,
the surface is very simple: it is obviously symmetric and shows only a shallow well due to

the weak polarization charge interaction between LiH ™ and H.
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Figure 7.14: Left panel: potential energy curves for different R(LiH) values along
the R(HH) coordinate. Solid lines are the analytical fitting functions, while the open
circles show the raw ab-initio points. The dashed line is the asymptotic H, potential.
Right panel: long range region joining the ab-initio points and the fitting asymptotic
function.

that the contribution vanishes for large Li-H distances). The variables ¢1and
&9, and those entering in the expansion of the short-range contribution, were
subjected to the same optimization procedure used for the ground-state PES,
the only difference being that the short-range term were written as

5
Vsr(rir2) =Vo+ 3 bumLn(p)) L (pD) x 0508 +0w)  (7.5)

n,m=0

where

() =g, (7‘;11{ - 0.5> and pl? = B, (rri - 0.5)
iH,e Hi e

(rare ’s being the equilibrium distances of the diatomic molecules). In this
case the origin of the coordinates of the Laguerre functions was slightly shifted
to better model the interaction region. It turned out that the final fitting
function had to be slighlty modified in the (extrapolated) short range region
(ie. p) < 0) to avoid anomalous behaviour of the analitycal PES.
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Figure 7.15: Left panel: potential energy curves for different R(HH) values along
the R(LiH) coordinate. Solid lines are the analytic fitting functions, open circles are
the raw ab-initio points and the dashed line is the asymptotic LiH potential curve.
Right panel: long range region joining the ab-initio points and the fitting asymptotic
function.

We optimized a total of 53 parameters using the data points with energy less
than 1.0 eV (with the zero of the potential put in the triatomic dissociation
limit). The resulting fit turned out to have a standard deviation of 0.018
eV. Fig.(7.14) and Fig.(7.15) show a comparison between the fitted PES and
the original ab-initio data, both for the entrance channel and for the exit
channel of the reaction eq.(7.3). In the right panels we report an enlarged
view of the regions to show how smoothly the long-range term was added
to the potential of the “ab-initio” region. Finally, in Fig.(7.16) we report a
contour plot for the fitted surface of the upper electronic state. It presents
an interesting topology caused mainly by the strong electrostatic forces which
are now acting at large and intermediate distances between the fragments. As
is evident from the figure, the surface presents two well localized minima and
a saddle point. The minimum in the reactants region (along rgpm) is at an
energy of ~ —1.26 eV with respect to the LiH+H™ arrangement and of about
~ —3.74eV with respect to the dissociation limit (Li+H+H™); the other is
~ —0.46 €V in reference to Hy +Li and ~ —3.24 eV to the dissociation limit.
The “barrier” is located at —2.655 eV respect to the dissociation limit. The two
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10+

R(Li-H)/a,

R(H-H)/a,

Figure 7.16: Contours for the first electronic state in the Li — H — H geometry.
Darker areas correspond to minima on the potential energy surface.

LiH and H, asymptotes are respectively —2.47 eV and —2.78 eV in reference to
the dissociative threshold and therefore the barrier is 0.185 eV lower in energy
than the LiH+H™T asymptote and 0.125 eV higher than the Li+H ;’ one. This
is clearly illustrated by the minimum energy path on this surface, reported
schematically in Fig.(7.17). One should note however that the position of the
“left” asymptote is different from what is shown in the figure since the cut of it
is taken in a region where the dipole charge contribution is still not negligible
and thus it lowers the real asymptote of about 0.13eV.

It is interesting to note that the transition state involves a geometry in
which the LiH and the HH bonds are markedly “stretched” (rpig ~ 5.0 ag and
7 ~ 3.0 ag) and thus one should expect enhancing of the reaction probability
when vibrationally excited LiH (or Hy for the reverse reaction) is involved,
while one should find a more limited reaction efficiency when starting with LiH
(HJ) in its vibrational ground state. Apart from these simple considerations,
however, the topology of the surface is such that only a direct treatment of the
dynamics could give us more quantitative details.
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Figure 7.17: Minimum energy path for the first electronically excited state.

7.3 The 3D reactive surfaces

In this Section, we present an overview of the full 3D reactive surface for which
we have just completed the huge amount of calculations required. At the end
of the calculations a simple count of the data collected resulted in a total of
11341 ab-initio energy values for each electronic state®. It needs some time to
put in order and fit this huge amount of data; at the time of writing, we are
only at the very early stage of such procedure and therefore we present here
just a preliminary analysis.

The coordinates used to sample the configurational space are depicted in
Fig.(7.18). For a fixed © we computed the PESs on a rp;5 — rgy grid similar
to that employed for the collinear Li — H — H study of the previous Section.
We considered one © angle every 1(° starting from © =10° and ending with
© =120° (12 grids); in the large angle region, where the dipolar repulsive
interaction of the excited surface prevents any reaction, we computed only the
© =140(° and 160° PESs.

Our choice of the coordinates clearly does not make any use of the simmetry

5This data refers also to the collinear geometries of the previous Section, but not to the
calculations in the subreactive region.
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of the system and thus the results in the large angle region (© >90°) are some-
what redundant (although the actual geometries can be hardly superimposed).
From a computational point of view, we took advantage of the fact that the
time needed for each single point calculation was very low (about 10-15 min
on a RISC6000 processor with 512Mb of RAM, in a multiuser environment).

r(H-H)

' r(Li-H)

Figure 7.18: Reactive cordinates used in the calcualtion of the 3D surface

7.3.1 The general trend

When increasing the © angle of Fig.(7.18) from the zero value of the collinear
geometry the PESs do not change substantially their qualitative behaviour, as
can be seen from Fig.(7.20) on pag.176 where we report the rr;g — rgg cut of
the PESs for © =5(0°.

The interaction in the ground electronic state is dominated by the two-body
contributions and in particular by the strength of the H — H bond. Therefore
we see that the ground-state PES is almost flat with one very deep and narrow
channel corresponding to the formation of the Hs molecule. On the other hand,
in the excited electronic state the features of the surface arise mainly from the
strong electrostatic interactions between the two partners, which are of course
of the charge-dipole type in the LiH + H™ channel and of the charge-induced
dipole type in the Li + H, channel. In this case, however, because of the
anistropy of the dipolar contribution we observe a marked difference in the
strength of the interaction when varying the © angle; this feature ultimately
leads to a repulsive contribution when © 290°.

When we consider the large angle region (© >120°) some structure arises
(Fig.(7.21) on pag.177) which is due to our choice of the coordinate system.
Indeed, for the ground-state we observe the appearence of a repulsive barrier
between the two asymptotic channels; this is clearly due to the steric effect
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of the Lithium atom that prevents the projectile hydrogen atom to reach the
target H when we fix the © angle at a large value. For the excited state the
situation is somewhat more complicated because of the presence of the previ-
ously mentioned charge-exchange process (see for example Section (7.1.3)). We

. R(HH) Q
Ic_;;:lr:nzl Charge—exchanged
Repulsive dipole region
interaction
C,,geometry

O ®-e

R(LiH)

Figure 7.19: Schematic representation of the large angle region.

may analyze this region of the PES with the help of the diagram of Fig.(7.19)
where we report a schematic representation of the PES for © =16(° along with
some relevant geometries. When © > 90° our configurational space spans also
the symmetric Cy, subspace; for a fixed © it is a simple matter to show that
this subspace reduces to the rectilinear path of equation

THH = —2c08OTL:H

shown in Fig.(7.19) as a bold line. The dashed region above this line corre-
sponds to the entrance LiH + H™ channel (hindered by the repulsive dipole-
charge interaction) and close to the rp;mz axis we have, as always, the exit
Li+ Hj channel. In between these areas there is a “charge-exchange” region in
which the initially charged projectile has exchanged its charge with the target
hydrogen atom in order to form the more stable L¢H moiety. This is the origin
of the minimum evident in the central panel of Fig.(7.21).

We will turn below on the possible implications of such features on the
dynamics of the system; for the moment let us briefly describe the low energy
structures that characterize the bound states of the LZ'HQ+ molecule.
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7.3.2 The stable structures

We can obtain some preliminary informations on the equilibrium structures of
the system by looking at the profiles obtained while fixing the value of one of the
two internuclear distances of our grid at the equilibrium value of the relevant
molecule. For the ground-state we have already noted that the interaction
is mainly due to the formation of the Hs molecule and, thus, fixing rgg =
re(H2) we may infer with a good approximation the equilibrium geometry of
the complex. In the excited state the situation is somewhat different but we
noted in the collinear arrangement that the two deep wells were “pre-reaction”
wells, characterized by a substantially unchanged equilibrium distances of the
relevant reagent molecule. Thus, although at a more approximate level, the
same kind of profiles of before can be of help in understanding the nature of
the interaction.
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Figure 7.22: Cuts of the ground-state PES for R(HH) = 1.5 ag and for different
© values.

In Fig.(7.22) on pag.178 we report some curves obtained with rgg = 1.5 ay,
i.e. we consider the interaction of an approaching Li* atom for different ori-
entation of a rigid Hy molecule. We see that the shallow well of the collinear
geometry becomes deeper and deeper when © is increased until it reaches the
minimum for ® = 100°. A closer inspection of the corresponding geometry of
the molecule reaveals that at the minimum we have, with a good approxima-



7.3. THE 3D REACTIVE SURFACES 179

tion, a Cy, structure. Indeed, the equilibrium structure of the ion obtained by
D.J Searles et al. (1991) corresponds in our coordinates to rz;g = 3.860 ag and
© = 100.6°, i.e. very close to that shown in Fig.(7.22). The binding energy
is De ~ 9mE}, = 0.245eV, which is very close to that of D.J Searles et al.
(D, = 0.258 €V). It is worth to note, however, that the linear saddle point is
only ~ 6 mE, = 0.163 eV above this value.
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Figure 7.23: Cuts of the first excited PES for R(LiH) = 3.0 a¢ and for different
© values.

In the first excited state we have two wells. When we fix the LiH distance
at the value rr;g = 3.0ag we recover the expected behaviour of a dipolar
interaction (see Fig.(7.23)); that is the collinear equilibrium geometry is a true
minimum of the system and it turns out to be the absolute one. At the end,
when we fix the HH distance at the value rgg = 2.0 ag we obtain surprisingly
that the collinear equilibrium geometry is a saddle point between two symmetry
related minimum structures with © ~ 10°, located at about 2mFE), = 0.054 eV
below such saddle point (see Fig.(7.24) on pag.180). Note also in Fig.(7.24)
the minimum that appears for ® = 160° at rr;g ~ 8.5a¢ which corresponds
to the same structure of above’.

"Just to have an idea of the strength of the interaction the binding energies of some bonds
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E/E,

Figure 7.24: Cuts of the first excited PES for R(HH) = 2.0 ag and for different
© values.

7.3.3 The reaction pathways

We discuss here in some details the excited state PES focusing attention on the
possible reaction paths that could take place on this surface. The ground-state
PES, as already noted several times before, has a trivial topology and the 3D
results here presented add only the repulsive “steric” barrier to the topology of
the potential discussed in Section (7.2).

As expected, starting from the collinear geometry the saddle point of each
cut PES becomes higher and higher in energy when © increases. That is, the
collinear saddle point is a true saddle point of the surface®. The behavior of the
saddle point can be seen in Fig.(7.25) on pag.181 where the relevant portion of
the various surfaces is displayed. In upper panel of this figure, the saddle point
moves toward larger rp;g distances (y axes in the figure) when increasing ©
below 90°. This means that for ® >0°, not only the collision energy has to
increase to overcome the barrier, but also the degree of vibrational excitation

are: Di(pT —e”) = 13.6eV, D.(Ha) = 4.76¢V, D.(C — H) ~ 4¢eV, D.(H20..H:0) ~
0.22¢eV and D.(LiH..He) ~ 0.025¢V.
8This is only a qualitatively result that can be extracted by looking at the data.
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of LiH must increase to overcome the saddle point. When we futher increase

= g Wi

(=2}

Figure 7.25: Saddle point evolution for a variation of the angle. From left to right,
from top to bottom the angles are: 10°, 50°, 90°, 120°, 140°, 160°. Distances are in
a.u.. The y axis is the R(Li-H) distance.

© beyond 90° the saddle point coalesces on the repulsive Cy, barrier until for
large © a second saddle point appears that correponds to the barrier for the
charge-exchange process (see Fig.(7.19) and Fig.(7.21)). Therefore, we may
argue that, from a classical point of view, two mechanisms are possible for
the reaction. At low energy only a small angular cone (the dipole allowed
one) is effective for the reaction to occur: in this case the proton scatters off
the hydrogen side of the target molecule and we expect the product appears
backward with respect to the incident Ht beam (back-scattering),

LiH, + H, — Li+ H,H,

At higher energy, instead, the reaction may occur following “two steps”, a
charge-exchange process followed by a dipole-driven one, as indicated by the
equation
{ H + LiH, — LiHy, + Hf
LiHy + H} — Li + HyH}

(In Fig.(7.19) this corresponds to a clockwise path on a large circle). In this
case we expect that the product appears in the forward direction with respect
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to the incident proton beam (a sort of harpooning mechanism). In quantum
mechanics we cannot distinguish these two paths because the two protons are
indistinguishable; however, the forward-backward nature of the process could
be estabilished and the interference pattern between the two paths could be
observed.

These conclusions would be at least plausible if the dynamics proceed in a
direct way. However, the deep pre-reaction wells suggest (and the treatment
of Chapter 9 confirms) that the dynamics is dominated by the formation of
long-lived metastable states which delete memory of any actual mechanism.
In other words, the long time of survival of the metastable states allows the
system to perfom complete rotations before its breaking-up and, thus, the
products are expected to appear in random directions (see for example D.R.
Hershbach (1987)).

7.3.4 Avoided crossing or conical intersection?

Another interesting point pertaining to the excited state is its possible inter-
action with the third one: as we have already seen, non-adiabatic interactions
should be not significative between the groud and the first excited state, but
could play an important role between the first and second excited state.

The two surfaces interact strongly in the triatomic dissociation region (as
already noted for the collinear geometries) where the dissociation limit is dou-
ble degenerate. The problem of the asymptotic interaction between the two
states has already been described above in Subsection (7.2.1) and is due to
the mixing between the ground and first excited states of LiH with an ex-
cited state of LiH ™ in the presence of an hydrogen atom. In the interaction
region we are not able to discuss accurately the question of the location and
caracherization of the seam of the possible conical intersection since the third
state was not calculated by an optimized reference function. However as the
Fig.(7.26) shows the two surface are indeed very close to each other on the line
that locates the Cy, subspace in our coordinate system (see also Fig.(7.19)) .
What remains to estabilish is (i) if the surfaces actually cross and (ii) how the
crossing point moves with the © angle®.

7.4 Forbidden reaction pathways

As it is evident from the three-dimensional representation of the first two elec-
tronic states which we plot again for the collinear Li — H — H geometry in

°In this context it is worth to note that the two relevant states have the same symmetry
in the Cs group (*A ) and in the C», subspace belong to the 'A; and ' B> representation
respectevely.
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Figure 7.26: 3D representation of the first and second excited state for ©=90° (upper
panel) and for ©=160° (lower panel). The two figures in each panel are exacly the
same but the visual angle is changed to permit a better visualization of the two
asymptotic states.

Fig.(7.27), the ground and the first excited states remain quite well separated
in energy through the reactive regions. This feature was first noted in the con-
figurational region sampled by the sub-reactive surfaces described earlier in
Section (7.1) and then was confirmed by the full dimensional 3D reactive cal-
culations described in the previous Section and by the Cy, calculations shown
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Figure 7.27: 3D view of the PES’s for the first electronic states in the @ = 0°
geometry as a function of the two internal coordinates. The two plots differ only from
the point of view of the relative perspective. All quantities are in atomic units.

in Fig.(7.28)10. This suggests that parts of the chemistry of the neutral and
g g8

0n similar system the seam of the conical intersection or the avoided crossing region is
found in the critical Cs, geometry, where the charge-exchange process can take place; in our
system this process indeed takes place in this geometry but it occurs between the first two
ezcited states.
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Figure 7.28: The computed potential energy curves for the complex breakup process
along the Cy, symmetry path. Dashed lines are for the third state.

ionic species of lithium hydride have to be revised since most of the reaction
paths that were expected to be efficient are probably adiabatically forbidden.
The reason is that the two states show no intersections or non-adiabatic in-
teractions in the whole configurational space, that is there is no evidence of
electronic funnels which can connect the upper state to the lower one. In other
words, there is no way in which a wavepacket “living” on one of the two surface
can flow into the other unless we envisage the intervention of the photon field
but this event seems to be rather unlikely.

Indeed, let us explain somewhat in detail this last point with an order-of-
magnitude estimate of the relevant rate. Let us consider a multisurface event
that goes from the first excited state to the ground state through a spontaneous
emission process; the rates for the photon stimulated processes can be obtained
from the rate of the spontaneous one. Now, if we look for the probability that
along an excited state “trajectory” the system relaxes to its ground state, the
probability of spontaneous emission is:

P, 1}

E(IL == 3mh

5 lw(i > )P
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where py; is the polarization-orientation averaged transition moment and w is
the frequency of the transition. In atomic units we can use the above expression
and obtain
%(z‘ = f) ~p x AB(i — £)? x 1.7-10° 57
where we can consider a AF of the order of 5eV (0.2 Ep) and py; to be about
unity in a small volume of configurational space where the H' scatters near
the LiH molecule and zero elsewhere. We could therefore consider [ as the rep-
resentative dimension of that small area of the configurational space in which
the transition has a non-negligible probability of taking place. In this case the
cross section of the “active” trajectories is /2 and the probability of having a
transition is I x (dP/dl) i.e. lv—! x (dP/dt) where v is the relative velocity of the
colliding systems. Therefore, the total cross section for a radiative reaction can
be estimated to be: o ~ I3 /v x dP/dt and the corresponding kinetic constant is
k ~ [3dP/dt. In our case we can use the above formulas and set I ~ 1.0-+10.0 ag
to obtain a very crude estimate for k ~ 2-107® = 2.10 " em3s~!. Thus,
the radiative reaction rates turn out to be well below the estimates provided
by the recent literature for the non radiative processes (Bougleux and Galli,
1997)1.
Let us now to focus on the reactions

LiH+H" - LiH* + H (7.6)
LiH+ HY — Lit + Hy (7.7)
LiH+ H' — Li+ Hy (7.8)
LiH*+ H — Li+ Hyf (7.9)
LiH" + H — Lit + Ho (7.10)

that are generally employed in the evolutionary models of the primordial Uni-
verse (see Chapter 5). A pictorial view of the possible reactions is presented
in Fig.(7.29) where we draw schematically the energy levels of the various
asymptotes involved and some arrows connecting them in order to represent
the reaction pathways.

"' The rates for the stimulated processes are N times the spontaneous rate, where N is
the number of photons in the active volume of dimension 3. Using the Planck distribution
in the high temperature regime corresponding to z = 1000 we obtain a photon density (at
an energy of 5eV) of n = 23.9cm™> for a spectral range 1cm™" wide; thus, this number is
N = 3.5410" 2" which is extremely low even when the spectral range is increased by a factor
of 10 — 10%. Tt is worth to note in this context that the relevant stimulated processes are
actually three-body processes, A + B + «, in which the density of photons comes from the
black-body distribution law.
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Figure 7.29: Allowed and forbidden adiabatic reaction pathways in LiH. .

First of all, we may state that the charge transfer processes (CT) in equa-
tion (7.6) and in its inverse, although very common in highly polar systems,
appears not to take place between the ground-states of the molecules involved.
The CT process involves in fact the interchange between the asymptotic states
LiH" + H and LiH + H* that belong to the ground and first excited states
respectively, a process that has been excluded above.

If we consider now the process which can lead to the destruction of LiH
through formation of neutral molecular hydrogen (equation (7.7)) we can, as
before, exclude this reaction from those relevant to the depletion of LiH from
the primordial gas since, like the charge transfer reaction, in order to take place
it requires a crossing between the electronic surfaces of the ground and first
excited states.

Furthermore, among the processes that involve the H2+ molecular ion (the
equations (7.8,7.9) and their inverse processes) the reaction that produces
LiH* needs a jump between the two lower-lying PESs and therefore has to
be considered forbidden. The other process seems, instead, to be particularly
interesting because the surface connecting the reactants to the products (see
Figure 7.16 on page 172) has a complex topology and will be subject of Chapter
9.
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It is worth to mention at this point that reaction (7.10) appears to be
inefficient in forming Hj too, despite its high exoergicity, since it is strongly
limited by the competing production of the dissociation product (Li* + H + H)
even in the singlet spin state considered in this work. We will consider in detail
this aspect in the following Chapter.



Chapter 8

Collision Induced Dissociation
of LiH™"

In this and in the next Chapter we will consider a reduced dimensionality
quantum time-dependent treatment of the adiabatic processes left to us by the
considerations of Section (7.4). There are several reasons why we planned the
collinear calculations which, owing to the fact that they cannot produce any
observable in the three-dimensional (real) space, are to be considered out of
date when compared to 3D calculations (even with J = 0):

e At that time the full interaction potential was not available.

e We planned this preliminary analysis because the relevant processes were
somewhat unusual. As a matter of fact, the CID process has received
attention only in exact 2D and in approzimate 3D quantum calculations
(such as of the IOS type) and, on the other hand, reactions with long-
range potentials like of the dipole-charge type has never been reported.

e Even if the 3D, J = 0 calculations can be routinely done today they
tell us very little from a quantitative point of view. The reason is that
many partial waves contributes to the cross-sections in all but the very
low collision energy regime, expecially when long-range potentials act
between the collision partners.

In this Chapter we will consider the ground state adiabatic process in the two
possible collinear geometries, while the excited state reaction in the Li— H — H
geometry will be the subject of the next Chapter.

189
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A B C

Figure 8.1: Jacobi coordinates for the collinear reaction AB + C — A + BC.
R and r are the reactants’s Jacobi coordinates while S and s are the products’

Jacobi coordinates. v is the center of mass of AB and « is the center of mass
of BC.

8.1 TD calculations

For the AB + C collinear calculations to be discussed in these two Chapters
we used the reactants’ Jacobi coordinates of Fig.(8.1) in terms of which the

hamiltonian reads as p2 »?

H= oM + om +V
where m is the reduced mass of the reagent molecule AB, M is the reduced
mass of the C' — AB scattering system and p, P are the momenta conjugate to
r, R of Fig.(8.1) respectively. As it is well known (see for example the book of
R.D. Levine and R.B. Bernstein (1987)) the treatment is much more simplified

if one scales the coordinates
Q1 =aR, Q2 =ar

choosing « in such a way that the kinetic energy term assumes a very simple
form which we write in terms of the velocities Q) = dQ;/dt, i.e.

1
1= Su(Q + Q)

where 4 is some kind of reduced mass of the three-atom system. The usual
choice for « is

M\ /2 m 1/2 . 9 mampmc
a=|— =|— with p° =
H© U maA +mp+ mc

where m 4, mp and m¢ are the masses of the atoms involved. Without going
into details we note that with the introduction of these mass-scaled coordinates
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the dynamics of our system becomes equivalent to that of a point particle of
mass p subject to the potential V(Q1, Q2)!. Since these coordinates are given
explicitly by

{ Q1 =a (7R + o)

Q2= ar

where s is defined in Fig.(8.1) as the product internal coordinate, the new
coordinate system is skewed with respect to the “chemical coordinate” system
defined by r and s, the skewing angle being tg—!(mp/u), where mp is the mass
of the atom transferred during the reaction.

In this Chapter we consider the ground electronic state of both the collinear
geometries, Li — H — H and H — Li — H. The surfaces in the corresponding
skewed coordinates are reported in Fig.(8.2). The two directions of approach of
the H projectile are markedly different simply because only the ® = 0° orien-
tation can lead to the formation of Hs. This last geometry shows an extremely
exoergic pathway that is due to the large difference in the binding energy be-
tween products and reactants as one can easily see in Fig.(8.3) where we report
the asymptotic potential profiles for LiHt and Hs with their vibrational levels
and density probabilities. On one side the LiH T molecular ion with its low
binding energy (D, = 0.138 V), supporting 5 vibrational bound levels, has
to be compared with the molecular structure of Hy with 15 bound vibrational
levels. (Taking into account the ZPE, the exoergicity of the reaction results
to be 4.241 eV'). Another striking aspect of the PES is the narrowness of the
product channel, a feature that will strongly influence the dynamics as we shall
see below. This is due to both to the electronic structure of the HH bond and
to the light nature of the nuclei involved. The skewing angle that character-
izes this surface is 48.6° because of the external position of the Li atom. A
completely different situation occurs when the H atom impinges on the other
side of the molecular ion; in this case the surface is, indeed, clearly symmetric,
almost flat and with a shallow well due to the relatively weak polarization
interaction between LiH™ and H. In this case the skewing angle is of 82.8°
degrees because this time the exchanged atom is the heaviest one.

!Similar coordinates can be introduced starting from the products’ Jacobi coordinates
and lead to an analogous expression for the kinetic energy operator in terms of products’
coordinates. Thus, one of the main advantage of such scaling procedure is that in this way a
reaction process reduces (asymptotically) to a simple rotation of the representative point of
the system. Actually, the introduction of mass-scaled coordinates is the first step in defining
the hyperspherical coordinates in which the arrangements appear at different values of the
hyperangle (see for example B.R. Johnson (1980; 1983a; 1983b)). In our simple case the
hyperspherical coordinates are simply the polar coordinates in the (Q1,@Q2) plane.
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Figure 8.2: The two reactive PES’s for the collinear collisions Li-H-H (left) and H-
Li-H (right) in the ground state. On the left the energy ranges from -5.0 eV to 1.0
eV while on the right from -0.5 eV to 0.5 eV. In the upper panels the abscissae
correspond to the mass scaled translational [LiH — H| coordinate (Q1), while the
ordinates give is the mass scaled vibrational [Li — H] coordinate (Q)2) (both distances
are in A).

8.1.1 Computational method

As one can see from Fig.(8.3), the triatomic dissociation threshold is here very
low, due to the small binding energy of LiH™, and thus the triatomic disso-
ciation channel becomes open at a very low collision energy (0.111 eV for the
ground vibrational level). The presence of reactive and dissociative channels
within the same range of energies poses some conceptual and pratical problems
in treating the dynamics. The difficulties arise when one uses an expansion
over target states and are due to the presence of a non-orthogonal double con-
tinuum in the asymptotic basis functions associated with the full break-up:
the continuum eigenfunctions of the LiH ™ would be needed to describe both
the reaction forming Hs and the full triatomic dissociation process (Diestler,
1979).

The presence of this double continuum requires that one should resort to the
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Figure 8.3: Asymptotic potentials of LiH+ (left) and Hs (right) referred to the
dissociation limit as a function of mass scaled internal coordinates. Vibrational levels
and probability densities are displayed.

use of hyperspherical coordinates that correctly describe on an equal ground
both the dissociative and “reactive” continua, simply using a basis set made up
of eigenstates of the “surface hamiltonian”. This approach has the advantage
of giving a complete description of the scattering process with a complete S
matrix, but it should be mentioned that in the hyperspherical coordinates the
propagation can be inefficient and time-consuming for a many channels prob-
lem (see the exploratory work of Kaye and Kuppermann (1981; 1985; 1988)).
Most of the previous studies on the collision-induced dissociation involved a
time independent scheme in hyperspherical coordinates which rely on a DVR
representation of the scattering eigenfunction with the proper boundary con-
ditions. In these studies (where a reactive channel was also present), only the
collinear geometry has been investigated by Sakimoto and collaborators (1994;
1996; 1997) and by Onda and Sakimoto (1999). When the reactive arrange-
ment can be neglected, instead, a full 3D calculation becomes feasible: both
a semi-classical (Sakimoto, 1999; Sakimoto, 2000) and a quantum mechanical
IOS description have been applied (Nobusada and Sakimoto, 1997; Nobusada
and Sakimoto, 1998; Sakimoto, 1998) to simple systems like He + Hy.
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Since we are not interested in the kinetic energy distributions of the three
atoms (that would be given in terms of a complete S matrix), a grid description
of the wavefunction is sufficient to obtain the total dissociation probabilities
by computing all the bound-to-bound probabilities. Thus we used a full grid
Time-Dependent scheme.

In our approach the initial wavefunction was taken to be the product of a
minimum-uncertainty Gaussian wavepacket for the relative translational mo-
tion and a vibrational eigenfunction of LiH ™ (obtained by Numerov integration
of our asymptotic Hamiltonian). The initial wavepacket, located well into the
reagent asymptotic region (~ 10 A), were chosen narrow enough to allow us to
examine a wide range of collision energies with a single propagation without
loosing accuracy in its representation on the chosen spatial grid. In particular,
we employed seven different wavepackets (see Fig.(8.4)) each with an average

Initial energy distribution of the WP

PR I T [N AT T NN (NI AT N ST NI (NI ST NI R
050 05 1 15 2 25 3 35 4 45 5 55 6 65 7 75 8
Total Energy (eV)

Figure 8.4: Distribution of energies for the seven wavepackets used in the calcula-
tions. The energy scale is the total energy with respect to the dissociation threshold
of the three atoms. The thick solid line is the asymptotic potential of LiHT. The
inset shows the well region of this molecule with its bound vibrational levels.

width dz = 0.125 A except for the lowest energy for which éz was chosen to be
0.27 A to ensure that the resulting wavepacket had only momentum compo-
nents directed towards the interaction region. The lowest energies considered
were those at the triatomic dissociation threshold (as one can see in the inset
in Fig.(8.4)) while all the other wavepackets were confined to energy regions
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above the dissociation threshold. The time evolution of the wavepacket was
carried out using the Split Operator method combined with the Fast Fourier
Transform algorithm to evaluate efficiently the action of the kinetic energy part
of the Hamiltonian on the wavefunction. The grid had to be dense enough to
adequately represent all momentum components in the wavepacket. In par-
ticular we had to correctly represent the large energy gain due to the deep
well (~ 4.5eV) in the product region together with the collision energy. We
therefore used different grid spacings depending on the collision energy: the
finest-grained one was built with 384 points in 14 A for the Q; coordinate (from
1to 15 A) and of 256 points in 8.5 A for the Q coordinate (from 0.5 to 9 A).
These parameters were sufficient to represent up to 20 €V in the entrance chan-
nel and up to 37 €V in the product channel. The propagation was carried out
using a very short timestep (0.01 fs) to correctly account for the large potential
energy difference experienced by the wavepacket when it enters the product
channel. The calculation was continued until the 0.01% of the wavefunction
was absorbed by the absorbing potentials placed at the grid boundaries. The
absorbing potentials used were two cubic ramps of the functional form

—iV |:(1*((IN*AQ)i|3 —Ag<og<
VNip = 0 Aq an 9>~4q>4n
0 elsewhere

where gy is the grid boundary point, Agq is the width of absorbing region
and Vj is the strength of the absorbing potential. V was set to the value
of the mean kinetic energy of the wavepacket and the spread of the absorbing
potential was set to 5 A along 1 and to 3 A along Q2. All the parameters used
were chosen after several test calculations and represent well stable solutions
for all the considered dynamical quantities.

8.1.2 Bound-to-bound and dissociation probabilities

A complete grid representation of the wavefunction do not suffer the problems
associated with the existence of a double continuum and thus it was possible
to extract total dissociation probabilities from our 2D time-dependent calcu-
lations. One can, in fact, calculate the 1 — f state-to-state probability Pr._;
using the usual Time-Energy mapping

‘/ o f\¢t”>d’f‘ = 2m1%a(E) Prei(B) (8.1)

Here ‘¢§i)> is the wavepacket at time ¢ (initially prepared in state i), |f) is

an asymptotic eigenfunction of the products (or of the reagents) and |R> >
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is a Dirac delta function of the scattering coordinate in the product (reagent)
arrangement (located well inside into the asymptotic region) so that the spatial
integral in (8.1) is actually to be performed on a dividing surface (on a line for
2D) placed into the relevant asymptotic region. As usual, the quantity a(E)
is the weight of the energy component E in the initial wavepacket.

If one chooses to represent the wavepacket in the reagent skewed coordi-
nates, the calculation for the sub-reactive transitions is easily accomplished.
For the product transitions, however, one has to transform the wavefunction
into the mass scaled Jacobi coordinates of the products before evaluating the
spatial integral in equation (8.1). Hence, we interpolated the wavefunction
values on the original grid points by using the Fourier-based DVR basis set
implicitly assumed in our calculation: the wavefunction at a given point in the
product region A(Q1,Q2) can in fact be obtained by

N1 Ny

P(A) = Y p(Zp)p(A) (8.2)
p

where Z,(Q¥, Q%) is a point of the skewed grid, N; and N, are the grid dimen-
sions and the basis functions are

sin { N1m(@=Q]) sin { V2m(Q2-Q3)
&)= N% Sin{{w(Q;IQf) }}J\172 Sm{{ w(Q;Qg) }} (8.3)
1 2

with Ly and Lo being the periods of the grid in two dimensions (i.e. the grid
lengths plus one more spacing for each direction) . Thus, we could represent
the wavefunction over a line sufficiently far from the interaction region and
which coincided with the vibrational coordinate of the products. It is worth
to note at this point that the contribution from the various basis functions
defined by equation (8.3) is very localized in space and thus we could evaluate
the wavefunction at a given point A (on the product analysis line) summing
up in equation (8.2) only the contributions from the points Z contained in a
square centered in A. The size of the square was limited to the first nearest 100
grid points. Different test calculations were carried out to correctly place the
analysis line and to determine the optimal length and spacing of it. We used a
sufficiently long line to correctly represent the highest vibrational wavefunction
of Hy and the grid spacing used in the evaluation of the integral (8.1) was
taken to be comparable to that of the two dimensional grid. We checked
the numerical stability of the final transition probabilities to changes in the
parameters which characterize the analysis line by preparing a wavepacket in
the exit channel as a superposition of vibrational functions of the products
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Figure 8.5: Left panel: computed reaction probabilities. Right panel: position
of the analysis lines employed. Filled-in symbols refer to the method described
in the text, open symbols are for the usual flux approach.

and evolving it in time toward the asymptotic region under the influence of
the solely asymptotic product potential.

The correct evaluation of the reactive and, simultaneously, of the non-
reactive transition probabilities (that we call here bound-to-bound transitions)
allowed us to have the total dissociation probabilities simply by using

PO™P(E) =1 - (PF(B) + PY™ ()
where n is the initial vibrational level and PF and PN® are the total reac-
tive and non-reactive transition probabilities (i.e. summed over all the final
vibrational states of the reagents and of the products).

It is worth to mention here that the common fluz approach usually em-
ployed to obtain the total reaction probability from the total flux in the product
channel cannot be used in this context. The reason is that, clearly, the total
flux contains contributions both from the reaction and from the dissociation.
This is illustrated in Fig.(8.5) for the LiH(n = 1) — H scattering system,
where in the left panel we compare the results obtained from the usual flux
approach (open symbols) with those obtained from the state-to-state product
analysis outlined above (filled-in symbols). Different analysis lines were con-
sidered (right panel); in particular for the flux approach we used, as usual, the
translational coordinate of the reagent while for our state-to-state analysis we
had to employ the vibrational coordinate of the product molecule. It is clear
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from the Figure that the total flux results converge slowly to the “exact” re-
sults as we move the line further and further away from the interaction region.
Futhermore, it should be noted that the total flux results converge because, as
we shall see below, the dissociation proceeds “on the reagent side”; in general,
the total flux results are even not guaranted to approach the exact ones.

8.2 Results

8.2.1 The collinear reaction Li-H-H

The first geometry that we sampled is the one that should be the most likely
for the reaction LiH ™ + H — Li*T + H; to happen. As previously mentioned,
the energy profile is extremely exoergic (~ 4.2 V') and thus one should expect
a fast transformation of LiHt into Hy, but, as we shall see below, the impact
of the wavepacket on the repulsive wall opposite to the reagent channel will
instead preferentially break up the initial diatom. Indeed, the motion of the
wavepacket is very simple and consists of two successive impacts, the first on
the H, repulsive wall and the second on that of LiHT; the wavepacket, then,
returns to the reagent side having become widely spread in space due to the
CID process (see Fig.(8.6)).

To clarify the situation we report in Fig.(8.7) the total probabilities for
the three processes that can take place just above the dissociation threshold.
For each process we show the results obtained with an initial state prepared
in each of the first three vibrational levels. The filled-in circles are reaction
probabilities, the open circles are the subreactive probabilities and the filled-in
squares are the dissociation probabilities. For a wavepacket prepared in the
ground vibrational state the non-reactive process (i.e. the permanence of a
bound LiH™ after the collision) is dominant although an increase in energy
tends also to increase the dissociation products. Here we see that the threshold
is not clearly defined for n = 0 since the energetic threshold does not coincide
with the dynamical one, as already noted in previous works (see for example
Nobusada, Sakimoto and Onda (1995) and reference therein)?. As LiH™T is
prepared in a vibrationally excited state, a marked enhancement of the disso-

2Tt should be noted that in 3D simple phase-space arguments give the o o ET(”_Q)/ 2
threshold law (with E, = E — Eipresn), where n is the number of unbound degrees of
freedom (Sadeghpour et al., 2000). These arguments rely on the fact that the corresponding
momentum T matrix elements tends to be a non-null constant at the threshold and thus the
result follows from “kinematic” factors (for example, in the 2-body case o E; /2 follows from
€q.(3.17) on pag.75 when f — const as P3 — 0). Here we are focusing on the probabilities
which in 3D correspond to the squares of the angular momentum T matrix elements; for the
CID process these elements should be linear in E, to ensure a non-null threshold behaviour
of f.
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Figure 8.6: Some significative snapshots of the time evolution of the
wavepacket.

ciation process is clearly evident in the figure: the dissociation is the dominant
process both for n = 1 and n = 2, already at a fraction of an eV above
threshold. The most striking result is given by the almost complete absence
of reaction (filled-in circles in Fig.(8.7)) even when the energy is just above
the threshold (0.1-0.5 eV'). The highest reaction probabilities are observed for
the m = 2 initial vibrational level, but they still do not exceed 20% of the
total and decrease rapidly with increasing total energy. The absence of reac-
tive contributions is probably due both to the narrowness of the potential well
where the products are formed and to the reduced vibrational inelasticity of
the exit channel, features that make the products not able to absorb efficiently
the release of excess energy.

If we now look at the dissociation probabilities as a function of the collision
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Figure 8.7: Total probabilities for the three possible processes at low energy (above
dissociation threshold E=0 eV') as a function of total energy. The three sets of curves
refer to the lowest three vibrational levels of Li H+.

energy over a broader range as in Fig.(8.8) we clearly identify the thresholds
corresponding to the different initial vibrational energies and, for collision en-
ergies below 4 eV, we can see the effect of the vibrational enhancing due to the
“heating” of the reagents. For higher energies the vibrational excitation of the
reagent is no more the driving force of the break-up process and a vibrational
suppression is observed instead.

One striking feature of the curves shown in Fig.(8.8) is the presence of
shoulders that have already been noted by several authors before in systems
where there are no rearrangement channels available (e.g. see Nobusada, Saki-
moto and Onda (1995) and reference therein). The presence of these shoulders
in our case appears to be linked to the dynamical absence of reaction during
the collisional event. We point out that the number of such shoulders is equal
to the vibrational quantum number of the initial wavepacket. This seems to be
an indication of the direct dynamics taking place on this very simple potential
energy surface. Indeed, when one looks at the final wavepackets one clearly
notes a sort of memory effect of the initial vibrational state. As shown in
Fig.(8.9), the wavepacket spreads in space because of the dissociation process,
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Figure 8.8: Total collision induced dissociation (CID) probability as a function of
collision energy for the first 4 initial vibrational levels of LiH ™.

but preserves the initial nodal structure of the molecular bound state selected
for the process. The discrete contribution of each lobe of the wavepacket to the
break-up flux seems to be responsible for the previously mentioned structured
CID probabilities. It would be interesting to see if such structure is preserved
also when the full dimensionality of the problem is taken into account.

8.2.2 The collinear reaction H-Li-H

The second geometry considered here corresponds to [H — Li — H] in which
case the possible reaction is degenerate and is

H, + LiH; — H,Li* + H,

The surface showed in Fig.(8.2) exhibits a shallow well that is due to the
weak polarization forces between the H atom and the charged molecule. We
choose to perform an analogous set of calculations in this arrangement to see
if the pattern for the collision induced dissociation remained similar to the
one already found for the other geometry. Although not entirely rigorous,
this further test could help us to more clearly understand if a full dimensional
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Figure 8.9: Initial and final stage of the evolution of the probability density for a
wavepacket prepared in the first three vibrational levels of LiHT. In the upper panel
on the left we have the initial situation for the three different wavepackets (shifted in
Q1 for clarity) and in the remaining panels the situation soon after the collision (90
fs) for a mean kinetic energy of 1.0 eV.

calculation could lead to similar results at least for the general behavior of the
dynamics.

In Fig.(8.10) we report the results for the collision induced dissociation
probabilities in a similar way to that of Fig.(8.8). As one can see, the results
do not change much in this other orientation. The physical picture of a reactive
dynamics dominated by CID processes is maintained. Such a test helps us to
make more realistic the assumption that all the properties of the dynamics
are determined by the interaction of the wavepacket with the repulsive walls.
Also in this second geometry, the total flux is shared between the dissociative
and the subreactive events. This is why we can observe in Fig.(8.10) the same
shoulder structure seen before in Fig.(8.8). In this case the structure is even



8.2. RESULTS 203

Collision induced dissociation for H-Li-H geometry

o
pe
g

oo
.............
o

o
0O
.......
o
o

—n=0
——on=1
—anN=2
~—n=3

Total dissociation probabilities

1 2 3 4 5 6 7
Collision energy (eV)

o

o
(&)
L R R R AR RN RN RR RN RERRRE RN

o
o
X
D000,

[oe) o b b b b b b b s [y

Figure 8.10: Collision induced probabilities for the H — Li — H orientation. See
Fig.(8.8).

more evident showing here a perfect correspondence with the initial vibrational
states up to the n = 3 level.

8.2.3 The effect of isotopic variations

One of the interesting results of the above analysis is that, even in the most
favorable orientation Li-H-H, the collision does not lead to the production of
an appreciable quantity of Hy. The specific shape of the PES allowed us to
suggest that such a behavior was due to the particularly narrow shape of the
Hy exit channel. In order to further check this hypothesis, we consider here
the effect of an enlargement of the well in the exit channel which arises from
the mass changes of the isotopic substitutions in the mass-scaled coordinate
system. Two kind of isotopic substitution have been examined:

LiDY+H — HD + Lit

and
LiH"+ D — HD + Lit

In Fig.(8.11) we report the total dissociation probabilities, together with the
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Figure 8.11: Total reaction, non-reaction and CID probabilities for the three different
isotopic variation examined in the text. The energy scale is the total energy and thus
the dissociation threshold is the zero of the scale.

subreactive and reactive fluxes for the average collision energy of the wavepacket
of 1.0 eV and for the n = 1 initial vibrational state. The most striking result
is that, in both cases, the reaction is highly enhanced and becomes, at least
for LiD™, the dominant process. This is mainly due to the greater ability of
the product HD to absorb the excess of translational energy with respect to
previous case of Hs. In the case of HD, in fact, the density of vibrational states
is greater near threshold and the resulting potential energy surface has a less
narrow exit channel (in the mass-scaled coordinates). However, the comparison
between the two isotopic variants here considered, that lead to the same prod-
uct molecule, suggests that the situation is somewhat more complicated: in the
case of the reagent LiD* the reaction appears also to be helped by the heavier
atom trasferred?. In fact, an opposite behavior is registered for the non-reactive

3The differences in the distribution of masses of the reactions here considered lead to a
greater skewing angle for the first reaction system. The results obtained are, thus, somewhat
unusual since one expects a higher reactivity when the translational coordinate of the product
is more aligned with the translational coordinate of the reagent (i.e. heavy-ligth-heavy
system). This fact reveals the importance of the reagent diatomic potential.
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process, where, surprisingly, the isotopic substitution LiH™ — LiD™" reduces
significantly the occurrence of the sub-reactive transitions during collisions.

If we look at the probability density plot given in Fig.(8.12), we see how

LiD"+H LiH™+D

Figure 8.12: Probability density contour plots for the reaction of LiDt(n =1) + H
(on the left) and LiH* (n = 1) + D (on the right) at the end for the reaction (100 fs)
for a 1.0 eV of kinetic energy. Distances are in A.

the distributions of the final wavepacket are dramatically different from the
one previously investigated for the non-isotopic reaction. As we see in the
left panel of Fig.(8.12), the representative wavepacket of the LiD" + H system
reacts and dissociate mostly in the product region while that of the LiH* + D,
shown in the right panel, continues, as the lighter case, to dissociate mostly in
the reagent region.

An interesting further difference between the three isotopic variations has
been found when analyzing the threshold behavior of the reaction probabilities.
The reaction probability for a wavepacket prepared in the initial vibrational
state n = 1 is displayed in Fig.(8.13). In the case of LiH* + H the reaction
probability rises sharply just above threshold, reaches a maximum at ~ 0.25eV
and then begins to decrease until, as we already know, reaches smaller and
smaller values as the energy increases. The behavior of the LiDT + H reaction
is almost similar, but the rise of the probability is much steeper now. The
behavior of the probability is, instead, completely different for the LiD+ + H
reaction: it rises with a step-like shape much like what happens with quantized
transition state energy levels (see for example Mahapatra and Sathyamurthy
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Figure 8.13: Reaction probabilities as a function of collision energy for the reaction
LiX*(n=1)+Y — Li* + XY where (X,Y)=(H,H), (D,H), (H,D).

(1996) and references therein)?.

8.2.4 Final state analysis

As we have discussed before, we obtained from our calculations the state-
to-state transition probabilities for the reactions forming Ho/HD. We can,
thus, analyze the behavior of reagents’ and products’ populations over the
vibrational states.

Let us briefly consider the non-reactive analysis of the LiH™ + H case.
We have already mentioned that most of the flux after the reactive event is
shared by the subreactive and the dissociation channels. In the subreactive

Tt should be noted that the reflection of the wavepacket at low energy on the absorb-
ing potential was a serious problem in our calculations and therefore these considerations
are somewhat speculative. This problem is indeed one of the main drawback of the time-
dependent calculations: at low energy the dynamics may be strongly distorted by the reflec-
tion on the boundaries. One promising solution, that came out after this work was started, is
to accelerate the slowly moving wavepacket before absorbing it (Hussain and Roberts, 2000).
In this case one should only take care of avoiding reflection from the accelerating well, but
this last problem is simpler to solve than the previous one.
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channel the LiH™" moiety turned out to have a vibrational population spread
over its entire vibrational spectrum and markedly dependent on the collision
energy. This can be seen in Fig.(8.14) , where we report the elastic and some of

Elastic transition for the sub-reactive flux
1
T T T T T

0.8

0.6

0.4

Probability

0.2

Probability

Collision Energy (eV)

Figure 8.14: Sub-reactive probabilities as a function of collision energy. Upper panel
for the elastic transition, lower panel for the inelastic vibrational excitations and
relaxations. For clarity of presentation only transitions for n < 3 are reported.

the inelastic transition probabilities as functions of the collision energy®. The
dependence of the probabilities from the collision energy can be razionalized
by looking at Fig.(8.9) on pag.202, where we see that the probability density
after the scattering event, while maintaing the initial nodal pattern, is strongly
distorted by the effect of the repulsive wall and is pushed outward with respect
to the initial situation. Thus, the oscillations of the probabilities seem again to
be the imprints of the various lobes of the final wavefunction going through the
bound LiH* asymptotic region and lead to the shoulder structure in the total
CID probabilities shown before because of the absence of reactive contributions.
However, these non-reactive oscillations should persist (in a direct dynamics)

51t is worth to note that the non-diagonal transition probabilities in the lower panel of
Fig.(8.14) satisfy the micro-reversibility principle (the vibrational energy is quite low on
such a scale) although they come from the time evolution of different wavepackets, thereby
showing the accuracy of our calculation.
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even when a reaction takes place, while the existence of the structure in the
CID probabilities seems to be due to the absence of reactions.

H, vibrational population HD vibrational population
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Figure 8.15: Population analysis for products H2 and HD for the three reactive
processes examined here.

Let us now focus on the products’ analysis. In Fig.(8.15) we plot as his-
tograms the population of the final vibrational states for the three processes
examined here for an average total energy of 1 eV and an initial wavepacket
prepared in the n = 1 state. We see that, as already noted, HD can absorb the
excess energy much better than Hy because of a higher density of states near
the dissociation threshold; thus, besides the difference in the magnitude of the
total reaction probabilities discussed above, H D comes out from the reactions
with a population that is distributed over many vibrational levels. In any case,
however, the most striking feature is that the reaction produces always a vibra-
tionally hot diatomic molecule with an almost inverse Boltzmann population.
A vibrationally hot hydrogen molecule was also found in the classical dynamics
study of the collinear neutral reaction LiH + H — Li + Ho as done by Clarke
et al. (1998b); in that case the surface structure was almost similar to the one
examined here although the exoergity was five times smaller. This fact can be
attrubuited to the lack of vibrational inelasticity in the product channel.
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8.3 Vibrational image?

In this Section we speculate somewhat on the origin of the shoulder structure
in the CID probabilities, that Sakimoto and collaborators already interpreted
as an interference phenomena between vibrational trajectories with different
vibrational phases. In the previous Section we noted that the number of shoul-
der equals the vibrational quantum number of the initial state, thereby arguing
a closer connection between the initial vibrational state and the dissociation
pattern. This connection was enforced by the shape of the final wavefunction:
we noted the existence of a sort of “memory effect”. Here, we can go somewhat
deeper in this analysis.

We recognize that the very simple dynamics (see for example Fig.(8.6) on
pag.199) that takes place in our system is mainly determined by the repulsive
atom-atom interactions. In effect, we expect on classical grounds that all
the CID processes, at least for sufficiently high energy, are solely determined
by the short-range two-body repulsive interactions®. We therefore apply the
Born approximation to a model three-dimensional ABC system in which the
potential is a simple sum of two body terms,

V(ra,Ra) = Vpo(ra) + Vac(rs) + Vap(ry)

where Vpe is the bonding potential of the molecule BC subject to the dissoci-
ation process (i.e. A+ BC — A+ B+ C ) and V¢ and Vp are atom-atom
repulsive interactions (each potential is a function of the corresponding relative
position vector, which we write following the usual labelling of the arrangments
in three-body systems, see Section (3.1)). In doing this we use the results of the
“dumb-bell” model, developed in the fifties for inelastic collisions (see Section
2.3 of the book of Levine (1969)). The modifications brought to those results
are very simple and lead to the following Born transition amplitude

t5(Py ¢+ Po; ) = Vap(q)a(—Ca — g) + Vac(@dal((l — O)a — g)

where

e |P,; ) is the initial A+BC state, (roRqo|Pq; @) = (21)~3/2¢PaRa g (r,,),
in which R, is the position of BC relative to A and r, is the position of
B with respect to C.

e P, is the set of two vectors (G, g) that characterize the final dissociated
state; they are eigenvalues of the momenta conjugated to the (Rq,rq)
coordinates.

5The energy must be high enough to suppress any possible reaction process.
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e ( is a mass factor, { = m¢/(m¢c +mp).

e q is the momentum transfer, q = G — P,, which actually is a “par-
tial momentum” transfer; that is, it is the the projectile-target relative
momentum transferred during the collision.

e Vag(q) is the Fourier transform of the potential, Vag(q) = [ dre™"¥V,p(r),
and ¢, is the Fourier transform of the initial bound state, ¢q(u) =

[ dre™™T ¢, (r).

In this formula we see the presence of a Fourier transform of the initial state:
the dynamics is istantaneous and the distribution of the products is determined
by the momentum wavefunction of the initially bound molecule; that is, the
scattering outcome turns out to be an image of the distribution of momenta
of the molecule. To make a closer connection with our results we note that
in the collinear problem only one of the two “dissociating” potentials acts and
therefore the amplitude reduces to a single contribution, for example

tg(P, + Pyja) = VAB(Q)%(—@ -g)

From this result the shoulder structure in the total probalities could arise
as a superposition of a background contribution (the V4p(q) term) with the
momentum distribution of the initial state of the diatomic. As a matter of
fact, the magnitude of the last contribution arises (both in 3D and in the
collinear geometry) from the vibrational wavefunction and, thus, ¢, (u) has
the same shape of the vibrational wavefunction (as a function of its argument
u=—-(q-g).

Although plausible, the argument should be retained solely speculative
until the appropriate proofs are not provided. Indeed, some points has to be
clearified: (i) how the vibrational pattern persits on the total (i.e. integrated
over all allowed (G,g) for a given energy) probabilities/cross-sections as a
function of the energy (= G?/2uq +g2%/2my); (ii) how this vibrational pattern
is modified by the “background” contribution (the number of peaks in the n—th
vibrational eigenfunction is n + 1 and not n).

On the other hand, we note that the “single contribution” result is not
restricted to the 2D case; for example, when mp > m¢ ¢ ~ 0 and the inter-
action with the (very heavy) atom B of the diatomic will not contribute much
to the transition. Thus the possibility that such phenomenon is not due to the
constrained motion considered in this Chapter should be taken into account.



Chapter 9

Collinear LiH + H™ reaction

The first excited state dynamics is completely different from the ground state
one. The deep wells, due to the electrostatic interactions, that are present
in the surface tend to capture the wavepacket and the probability pattern
is filled in with resonances. This is one of the limits of the simple collinear
model employed here: since it does not allow the molecules to rotate, the
long-lived states are not disturbed by centrifugal forces/rotational motion and
the corresponding resonances halfwidths are very small. Neverthelss, also in
this case we can obtain useful (although qualitatively) indication about the
dynamical process. In this Chapter we will first consider the initial state
selected dynamics and then we will focus on of the transition state resonances
and bound states. Since we were interested only in the reaction process, we
limited our analysis to the collinear LiH — H geometry.

9.1 The reaction probabilities

In Fig.(9.1) the excited state surface is reported in skewed coordinates. The
two minima of Fig.(7.16) on pag.172 are now, stretched and compressed by
the mass scaling factors in the new coordinates but the main conclusions that
we drew in Chapter 7 remain the same. Indeed, if we imagine a trajectory
starting in the lower-right corner of the surface directed straight toward the
dark minimum in the lower part of the figure, we see how it should be difficult
for it to reach the transition state unless a high degree of vibrational excitation
is present in the initial wavepacket. That is, the geometry of the transition
state in the “dynamical” (skewed) coordinates is still such that we expect a
vibrational enhancement of the reactive probability, as it usually found in
direct dynamical processes. However, the presence of the deep minimum in
the entrance channel clearly influence the dynamics since this deep well can

211
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easily “capture” the wavepacket giving rise to a complex series of long-lived
resonant states.

10

Q.

Figure 9.1: Excited state surface in skewed coordinates.

The dynamical calculations were done as in the previous Chapter using
the time-dependent approach. As for the ground states we used an initial
wavepacket localized in the reactants asymptotic region and propagated it
through the interaction region. Different wavepackets were prepared in view of
sampling a small part of the possible initial conditions: for each of the first 4
vibrational levels of LiH two different average energies were used, 0.5 and 1.0
eV. The numerical method employed was exactly the same as that used for the
ground state process, but, since the surface is very different, some technical
details of the calculation were changed:

e The potential energy difference between the reactants and products is
about 0.2 eV and the energetic gain due to the well is never larger than
1.5 eV. Therefore it was possible to use a much larger time step. In
particular we used At =0.1 fs.

e The much smaller energy differences presented by the surface, allowed
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us to work with less dense spatial grid while, at the same time, the long
range tails of the potential forced us to use a very large configurational
space to correctly account for the dipole interaction. The @)1 coordinate
ranged from 1 to 30 A in 640 points, while Qo was inside the range
(0.5,11.0) A with 256 points.

It should be noted that even with our choice of the grid the long-range dipole-
charge potential had to be (smoothly) cut. This modification was necessary
since we were not able to reach a true asymptotic region, in that test calcula-
tions with the solely reagent channel potential revealed an anomalous behavior
of the probabilities that were somewhat different from unity. The reason of
this failure is that with a long-range potential the asymptotic condition is no
longer valid, unless one starts the motion of the wavepacket very far from the
interaction region (hundreds of A in our case; see also Chapter 10). This means
that in practical calculations the weight of each energy component of the initial
wavepacket would not be correctly computed and the resulting probabilities
would be in error!. This is a major problem that one has to take into account
when planning realistic 3D calculations of ion-dipolar molecule reactions. One
possible solution could be the use of an additional grid, the new grid being used
for the asymptotic motion; in this case the merging between the two grids could
be done via a procedure similar to the Reactant-Product-Decoupling scheme
(see for example the book of Zhang (1999) or the works of T. Peng et al.
(1998) and S.C. Althorpe et al. (1997)). In our case the cut of the PES (few
A before the edge of our chosen grid) produced a negligible difference on the
average behavior of the probabilities with respect to a “standard” calculation
in which the cut was made ~ 15 A further away from the interaction region,
although, as expected, the position of some resonances was sensitive to such
modification.

The reaction probabilities calculated for the above mentioned wavepackets
are reported in Fig.(9.2) as a function of total energies. Resonances domi-
nate the whole range of energies and are due to the quasibound states formed
during the reaction in the large wells created by the electrostatic interactions.
The reactive probabilities are reported for the first two and for the n=4 vi-
brational states. The general trend of the reaction probabilities for the two
lowest vibrational states is to decrease with increasing energy since an ener-
getic wavepacket will simply bounce off the repulsive wall behind the dipole
minimum. To better appreciate this fact we draw in the right panel of Fig.(9.2)
also an average probability calculated every 20 points in energy.

!Note also that the weight of the energy components goes to the denominator of the
relevant formula that gives the probability in terms of the time-evolved wavepacket, see
eq(8.1) on pag.195.
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Figure 9.2: Left panel: reactive probabilities summed over all possible vibrational
states of the product as a function of total energy shifted to the ground vibrational
state of the reactant molecule. Right panel: reaction probabilities averaged over an
interval of energies.

A significative vibrational enhancement is produced with a vibrationally
excited LiH: for a given total energy the probability increases with increasing
the vibrational energy content and for n = 4 it remains appreciable throughout
the whole energy range sampled here.

It is worth to note here that at low collision energy we obtain high prob-
abilities in correspondence of the resonances of the system. Thus, in the low
energy regime the formation of metastable states plays a very important role
for the occurrence of the reaction, such that even the initial n = 0 state can
give rise to almost complete transformation into product in correspondence
with the position of the resonances. We can ascribe this effect to the presence
of the deep pre-reaction well: the formation of reagent Feshbach resonances
allows for the temporary formation of highly excited LiH states that, in turn,
can easily overcome the saddle point region. Thus we can argue that in similar
systems the reagent molecule can be helped by the “subreactive” dynamics in
forming highly reactive (metastable) complexes. In the following Section we
will analyze in some detail the bound and quasi-bound spectra, although the
complete characterization of the resonances remains beyond the present work?.

2We have to admit that, with a rigorous resonances analysis, it would have been possi-
ble to test our hypothesis on the role of the “reagent” Feshbach resonances: in particular,
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It is also interesting to note that, apart form the resonance pattern, the back-
ground probability remains confined below 40% (as can be seen by the average
values of the probability in Fig.(9.2)) even if the considered geometry appears
the most favorable for the reaction to occur (see Chapter (7)).

9.2 Resonances analysis

To carry out an analysis of the resonant states that we encountered in the
reaction probabilities we followed the method already used by Mahapatra and
Sathyamurthy (1995; 1996; 1997). In this method the resonances are studied
by following the unimolecular dissociation of the transient species LiHH™.
The key quantity is the temporal autocorrelation function defined by

(1) = (olye) (0.1)

that has to be computed at each time step for a sufficiently long time T. This
quantity can be related to the bound and unbound spectrum of the system by
noting that

[) = Ut [9ho) = D €% ) (¢ |9h0) + D / dEe™ " |Ef+) (Ef+]to)
n f

where the first sum runs over the bound states of the system and integral runs
over the continuous state space (f is the set of indexes needed to specify com-
pletely the state of the system, i.e. it is the composite index for the arrangment
and channel labels). Indeed, its time-energy Fourier transform gives

C(E) =) 0(E—Eny)an+ Y ap(E)
n !

where a, = |(¢n|t0)|* is the weight of the n — ¢th bound state in the initial
wavepacket (the “transient species” ) and ay = [(E f+|0)|? is the weight of
the indicated scattering eigenstate. When the wavepacket is placed well inside
the interaction region it generally spreads over all bound and quasi-bound
states since they are well localized in such region. In practice, one follows
only the forward dynamics (¢ > 0) for a finite long time, thereby introducing
a window function in the computation of the Fourier transform. As it is well
known the simple “box window function” has some unpleasant features for the

we could have characterized the quasi-bound states “eigenfunctions” and compared them
with the expected probability density of a “reagent” Feshbach eigenstate (see for example S.
Mahapatra and N. Sathyamurthy (1995; 1996; 1997).
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computation of the Fourier transform, thus, following S. Mahapatra and N.
Sathyamurty (1995), we used the Hanning window function

H(t) = 7(1 = cos(2mt/T)) for 0 <t <T
| Ofort<Oandt>T

to compute the “spectra”
+oo
I(B) = ‘ / CELC () H ()t
—0o0

in which the original delta functions and resonance profiles turn out to be
convoluted with the Fourier transform of the window function.

We evolved three wavepackets placed in different positions around the sad-
dle point region. We used the same time step of before (At = 0.1 fs) and fol-
lowed the evolution of the wavepackets for a very long time interval, T' = 15 ps,
on a grid that could be chosen much larger than the previous one (i.e. @1
ranged from 1 to 50 A and the long-range tail was not cut)®. The total prop-
agation time determined an energy resolution of §E ~ 2r/T = 3x10~*eV
below which the system spectral features superimpose with the peaks of the
transformed window function.

An overview of our results is reported in Fig.(9.3) where the (combined)
spectrum obtained from the evolution of the various wavepackets is shown,
together with a schematic energy profile of our system. In particular, we
report in that scheme the energy position of the minima of the two wells,
the asymptotic energy of the fragments and the position of some low energy
vibrational levels. With our choice of the initial wavepackets, which turned
out to have a mean energy of -1.3899, -2.0416 and -2.8576 eV respectively, we
were able to sample a broad energy range, ~ 3eV wide. As it is evident from
the figure, the pattern is very complicated: a comparison with the reaction
probabilities shown if Fig.(9.2) revealed that we computed such probabilities
on a energy grid much coarser than the resonance pattern!

The spectrum obtained is analyzed in Fig.(9.4). We can consider four
different energy regions. In panel A we report an enlargement of the lowest
energy region (between —3.6 and —3.0 eV, with the zero of the potential put in
the triatomic dissociation limit) in which only the dipolar well is available for
the motion. Thus the peaks correspond to the dipole-bound eigenvalues of the

3In this case we had only to evaluate the integral of eq.(9.1) and therefore the computa-
tion was much less expensive than the initial-state-selected dynamics, although it furnished
only qualitative features. It is worth to mention here that such dynamics could be made
quantitative as it is done with “transition-state-methods”, in which the Cumulative Reaction
Probability is computed (Light and Zhang, 1998). In our system, the use of such methods
would avoid the problem associated with the long-range of the potential.
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Figure 9.3: Overview of the bound and quasi-bound spectrum.

system. The corresponding eigenstates are, within harmonic approximation,
combinations of a high frequency stretching motion of the (pre-reaction) LiH
molecule and a lower frequency motion of the proton-molecule system. This is
illustrated more clearly in Fig.(9.5) where we report a temptative assignment
of the energy levels: the LiH motion has a “frequency” of ~ 0.160 eV, while
the other motion has a frequency of ~ 0.070eV. The labels (n,m) refer to
the approximate vibrational quantum number in this order. In panel B an
higher energy range (from—3.0eV to —2.7¢V) is displayed. In this range the
polarizability well opens and the previous regular spectrum is superimposed
with the bound spectrum of the LzHQ+ well; furthermore, the bound states
of the two wells starts to mix, thereby complicating the situation. The energy
range of panel C corresponds to the pure elastic Li— H2+ domain: in this range
only the elastic subreactive dynamics of Li — H;' is possible, although the
resonance pattern comes both from the “reagent” Feshbach metastable states
and “product” Feshbach metastable states and mixed metastable states*. The
region of panel D opens the reaction: now the LiH + H™ — Li+ H, reaction
is possible and the spectrum has a very complicated structure, which is best
seen in panel E. In this last panel we report the results of two very different

“Thus, the Li + H; inelastic dynamics can be hardly described with a usual “subreactive
potential”, although the saddle point turns out to be a real barrier to the “reactive region”.
It is also worth to note, in this context, that the LiH..H' metastable states in this energy
range may be really long-lived states.
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Figure 9.4: A closer look to the spectrum. See text for comments.

calculations (one started in a well and the other in the other well), thus showing
the “extension” of many metastable states that spread over the two wells.

To conclude this Section, we note that the widths of the observed reso-
nances (> 0.001eV) corresponds to lifetimes 7 < 2ps = 2x10712 s. For com-
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Figure 9.5: Low-energy bound state spectrum.

parison, the spontaneous radiative decaying rate to the ground-state (assuming
an average 5eV energy gap) is much slower, as usual, than the resonance de-
caying rate (dP/dt ~ 10° s~! for the radiative process and dP/dt > 5x10'2 s~!
for the non radiative one) and the rotational period of the LiH molecule is of

the order w=! ~ (JB)™! ~ 0.7ps.
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Chapter 10

The LiH + H™ non-reactive
dynamics

In this Chapter we present our preliminary results on the LiH — H T inelastic
dynamics which is relevant to estabilish the contribution of H' to the LiH
cooling function.

Talking about inelastic dynamics when the reaction is possible, as we have
shown in the previous Chapter, is clearly an approximation. The rigorous
procedure would need a full dimensional reactive calculation, from which one
extracts both the reactive and the non-reactive cross-sections. However, owing
to the long-range nature of the charge-dipole interaction, a state-to-state anal-
ysis of this kind could be beyond the current computational facilities. Thus,
one is left with an approximate dynamics. The approximation may be useful
when (i) the three-dimensional reaction efficiency is much lower than the corre-
sponding inelastic probability; (ii) the contributions to the inelastic processes
come from a wide range of J values (in the high J partial waves the reactive
channel should be closed by the centrifugal barriers and its inclusion would not
alter substantially the computed inelastic cross-sections). It is worth, then, to
note that (i) our reaction is collinear dominated and (ii) our long-range poten-
tial is expected to spread the inelastic opacity functions over a wide range of
J values.

Anyway, such subreactive study can be of help in planning more exact
studies on the system and on similar (charge-dipole) ones. As a matter of fact,
in this Chapter we will discuss the pathological strong, long-range potential
and our new propagator for Time-Independent calculations which seems to be
a good starting point for solving this kind of problems.
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10.1 The charge-dipole interaction

The charge-dipole potential
_ Dcost

Vp = 2
is somewhat pathological for the scattering theory outlined in Chapters 2 and
3 (see note 2 on pag.43) because its long-range nature poses some doubts
about the validity of all the mentioned results. For example, the forward Born
scattering amplitude for a D/r? potential is readily shown to be divergent

(10.1)

f(p <+ p) o< (p|V|p) = 47TD/0 dr

This is not a problem of the Born approximation since we can show that
the total cross section (and consequently the forward amplitude, because of
the optical theorem of equation (2.16) on pag.50) is divergent. Indeed, the
convergence of the partial wave series

o0
D (2 +1)sin?s, (10.2)
=0

g =

=l &

is determined by the behaviour of the high / phase-shifts and we can estimate
these values by simply noting that the dipole potential adds a 2u.D contribution
to the centrifugal term

I(1+1) = I(I +1) + 2uD

This means that we have to use non-integer values of [ which, denoted with 7,
are determined by the equation'

nin+1)=1(1+1)+2uD
Since in the high [ limit the relevant solution of this equation behaves like

uD
(+3)

n—1+ (I = o00)

the total phase-shift is given by

D
gtot — T _ T H
SNy =iyt T

!This amounts to use non-integer Riccati-Bessel functions or, more properly, non-half-
integer Bessel functions.
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and, then, the scattering phase-shift by

__#D
="
It therefore follows that for I — oo
Dr)?
ol 4 1)sin2s, — PP
(21 + 1)sin”6; — 1

that is, that the series (10.2) is divergent.

Anyway, for a single channel problem (or a multichannel problem with an
hypothetical spherical 7~2 potential) the contribution of each angular momen-
tum can be obtained without no more effort with respect to “conventional”
short-range problems. In fact, one can solve the scattering problem in the “in-
ner” region as usual and then match the wavefunction with the known solutions
of the long-range region, i.e ordinary Bessel functions.

When, as in our case, the r~2 term is off-diagonal in channel space the
situation is somewhat different: on the one hand we expect that the total
cross section is no longer divergent because the potential couples asymptotic
states with different internal energies?, but on the other hand we can hardly
obtain an analytical solution for the long-range region.

The problems associated with the charge-dipole interaction are well known
in electron-molecule collision theory (Gianturco and Paioletti, 1998). In that
case one can obtain considerable simplifications by taking into account the
lightness of the projectile. Even the Born approximation with the pure point-
dipole potential model is expected to be good at reasonably low collision ener-
gies (Itikawa, 1978) since the contributions of the short-range potential term to
the total cross section are limited to the low partial waves (head-on collisions)
and the integral cross section values mainly come from the high partial waves.
Citing Collins and Norcross (1978)

“The scattering of electrons by molecules with permanent dipole
moments has been intrinsically interesting ever since Massey ob-
served in 1932 that ’..the collision of electrons with a top possess-
ing such a dipole moment may be treated by Born’s method what-
ever the velocity of the electron may be..’ .The assumption that
the interaction is dominated, if not completely determined by the
long-range dipole potential, leads to extremely simple cross-section
formulas “

2Tt is worth to mention in this context that, in contrast to the previous “diagonal” case,
the momentum basis representation of the potential does not have singularities. The forward,
elastic Born amplitude involves the spherical average of the interaction potential (which falls
off faster than r~2) and then is finite.
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In citing Massey (1932) the authors italicized “whatever the velocity of the elec-
tron may be”, since clearly the Born approximation has always a low-energy
limit of validity. Collins and Norcross (1978) further showed that integrated
and momentum transfer cross sections for electrons scattering off polar sys-
tems can be reliably generated within the adiabatic approzimation®. They did
not apply “consistently” this approximation, since forward-scattering and in-
tegrated cross-sections diverge if this approximation is consistently adopted,
mich like we have shown above for the spherical r—2 potential. Subsequently
Clark (1979) introduced an “intermediate region” in the electron-molecule con-
figuration space in which the rotational coupling can be neglected and the inner
solution can be analytically propagated using ordinary Bessel functions up to
the external region, where the rotational coupling due to the dipole potential
is treated perturbatively. The validity of such procedure has been shown to be
good for energy higher than a few eV.

In atom-molecule collisions the energies required to apply any reasonable
approximation to the charge-dipole problem are quite unphysical (for example
the Clark’s criterion on the energy lower bound becomes ~ 102 eV) and thus
one is forced to consider brute-force calculations. It is instructive, however,
to look at the crude Born formula for a point-dipole model potential and a
rotating target (in a.u.)

. . 8 !
o' = §) = Oy g1 (uD)?

j> 1, (p+p
2j+1p% |p—p

where D is the dipole moment, y is the reduced mass of the collision system,
Jjs> = Max(j,j') and p and p' are the initial and final momentum respectively.
This formula highlights the dominant coupling due to the charge-dipole poten-
tial: such potential couples (directly) only the Aj = +1 transitions and the
resulting cross section is exceedingly large for molecules with large momenta
of inertia (closely spaced rotational levels) and/or large dipole moment. In
particular, when the moment of inertia tends to infinity (stationary target),
p ~ p' and the cross section diverge. The coupling properties of the potential
can also be seen clearly in the Body-Fixed representation (see Section (4.1)),

_ _ D . . -/ 1 . -/ 1
(it = w0 (33 0) (3 8 o)

3The term adiabatic is used in a somewhat different way with respect to the usual meaning
in scattering theory. Here, it refers to the adiabatic internal motion of the target and not to
the adiabatic motion of the projectile when it is so slow that the target adjust itself during
the collision. That is, the adiabatic approximation mentioned here is the Born-Oppenheimer
approximation to an unbound electronic motion and it is inherently limited to sufficiently
high collision energies.
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where it becomes evident that this kind of potential couples only the rotor
states that differ for one unit of angular momentum since

Vi ] 1 j+itl,. 1 1 2(2])'
(o 0 0) O g (N U+ g2 G2 2 1)

(it is worth to note that in this representation the kinetic energy term couples
the states that differ for one unit of body-fixed angular momentum component).

We were not able to analyze the mathematical problems associated with the
charge-dipole interaction. It is an interesting matter, but it is clearly beyond
the scope of this work. One should have done a careful analysis of all the key
steps in the theory outlined in Chapters 2 and 3, in order to determine which
results are valid and which are not.

Rather, in our work we approached the subject from a computational point
of view, looking at the Time-Independent problem in the Close-Coupling ap-
proximation. We recognized that the number M of channels to be included in
the expansion of the wavefunction over target states

U (R, z) Z Fri(R) * Xf(z)

(where R represents the scattering coordinate and z collectively denotes the
internal coordinates) depends, besides other things, from the value of the scat-
tering coordinate. Indeed, at short-range, where the interaction is strong, the
set of channels should include at least all the locally open channels and there-
fore M can be vary large but, on the other hand, in the asymptotic region,
where the interaction is absent, only open channels are needed since for R — oo

VO (R,z) — Z R) x Xf(z)

f€open

where FJ?O(R) are the appropriate, “free” channel components. Thus, in be-
tween these two extreme situations there should be a region, that can be quite
large for long-range potentials, in which the strongly closed channels are in-
creasingly less important for the scattering obervables and could be neglected
without loosing accuracy. The saving of CPU time that results from this chan-
nel reduction procedure can be quite large in our case since the long-range
potential is also quite strong and therefore needs a huge number of channels
in the interaction region to have convergent scattering observables.

To neglect the channels that become less and less important during the
(outward) R integration one should use a propagating scheme with a clear-cut
separation between the “open-space” and the “closed-space”. Only in this way
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one can evaluate the influence of the closed space (or a part of it) on the open
one, that is the only one involved in the asymptotic condition. We therefore
resort to the well known Variable Phase method developed some time ago by
several authors (Calogero, 1967; Degasperis, 1964; Zemach, 1964; Dourneuf
and Lan, 1977); it will be briefly reviewed in the following Section.

Partial cross sections
Jo=0 E,=200cm

Partial cross section (arbitrary units)

\ \ \ \ \ \
300 400 500 600 700 800
R

cutoff

Figure 10.1: J=0 partial cross section as a function of Reytozf-

Before doing this, let us show some results of the extensive numerical tests
that we did for a preliminary examination of multichannel scattering in pres-
ence of a dipole off-diagonal interaction. We used a low number of channels in
a low-energy scattering calculation and we studied (i) the radial convergence of
partial wave cross sections and (ii) the convergence of the opacity function for
fixed cutoff distances of the potential. We looked at the radial convergence of
a selected partial wave by following the dependence of the various observables
on the “matching point”, i.e. on the distance at which the solution is taken
to be potential-free. This clearly amounts to apply a cutoff to the potential
and, not so strangely, is the spirit of Variable Phase method. For given J’s, the
partial cross values turned out to be oscillating functions of the cutoff distance,
Reutoff- In particular the results for the J = 0 case are reported in Fig.(10.1)
for some selected transitions. These results have been normalized to allow the
comparison but they clearly indicate that the oscillations due to the action of
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Figure 10.2: Same as in Fig.(10.1) but for three different values of J.

the coupling potential are considerable and not limited to the direct Aj = £1
transitions. They do not depend on the particular total angular momentum
value chosen: as one can see in Fig.(10.2) the oscillations, on a different scale,
exist for every transition at each angular momentum value (in Fig.(10.2) the
J = 500 curve starts at Reypory = 1000 A since for smaller values the matching
point turns out to be below the centrifugal barriers). We found further that
the oscillation amplitude and the rate of convergence toward the asymptotic
limit were, as expected, dependent upon the collision energy and on the dipole
strength.

When we looked at the behavior of the partial opacity functions for dif-
ferent cutoff distances of the potential we found an unexpected behavior for
large J (Fig.(10.3)): for the selected cutoff distances the elastic cross-section is
monotonically converging as a function of the angular momenta (upper panel
in Fig.(10.3), while the inelastic one shows spurious beatings for high angular
momenta (lower panels). The entity of the beatings decreases rapidly with
increasing Reytopf. or the collision energy. Clearly, the truncated potentials
must have a finite total cross section (besides all they are of finite range) and
thus each opacity function must tend to zero faster than o« J~'; however,
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Figure 10.3: Elastic opacity functions for elastic and inelastic transitions. The lower
panels shows the same function as the upper ones but on a logarithmic scale.

this example show that for a correct evaluation of the opacity functions one is

forced to use a J dependent radial cutoff.
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10.2 The Variable-Phase method

In this Section we outline the well-known multichannel Variable-Phase method
in the K matrix formulation, along with the modifications brought by M. Le
Dourneuf and Vo Ky Lan (1977) to handle the presence of strongly closed
channels. In the subsequent Section we will show the modifications that we
brought to this method in order to be useful for our strong, long-range problem.
In particular our method differs from the original one by two chief features:
(i) it allows for the gradual reduction of the number of closed channels dur-
ing the outward propagation and (ii) it avoids the direct calculation of the
computationally expensive Bessel functions.

10.2.1 The K-matrix equations

In Sections (4.4,4.5) we showed how the usual, Space-Fixed, Close-Coupling
equations for M channels

d2 9 12
TtV g =0 (10.3)

of the inelastic scattering problem in the diabatic basis can be reduced to the

Riccati equation
dY

— +W+Y2=0 10.4

dR W (104)
for the unknown Y Log-Derivative matrix (in this equation W = k? — V —
12/R?%). We said that one solves for this matrix up to the asymptotic region
where the “augmented” K matrix can be obtained by the following linear sys-
tem

(N-YN)K=J-YJ (10.5)

in which J(R) and N(R) are matrices of Riccati-Bessel and Riccati-Neumann
functions. The open-open block of K holds all the scattering informations
since it is related to the scattering S matrix by means of the usual Caley trans-
form. We defined the J and N matrices as follows (z; = k; R are dimensionless
quantities)?:

J(R))ij =05 (52)" Jys1/2(20)
Open channels : (10.6)
(N(R))ij = 05 F= (520)'"* Vi1 2(22)

*As in Chapter 4 we use real valued k; to refer to 1/2u(E — ¢;) for the open channels and
to v/2u(e; — E) for the closed ones.
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(R = 8ij g (20)'1% Ty yolai)
Closed channels : (10.7)

(N(R))ij = —0ij = (2:)'/? Ko (1)

where J,, Y, are the Bessel functions of the first and second kind and I,
K, are modified Bessel functions of the first and third kind as defined by M.
Abramowitz and I.A. Stegun (1972). With this definition the wronksian for
each channel is unity both for open and for closed channels, i.e. in matrix form

W{J,N} =1 (10.8)

We now use the Y to K transformation of equation (10.5) for each R to
define a K(R) matrix. This matrix is clearly the augmented K matrix for the
potential truncated at R , that is®

o { V(R) for R <R (109)

n —
V(E) = (0] for R > R

A differential equation for K(R) can be written by differentiating the Y to
K transformation, using the Riccati equation (10.4) for Y and the wronskian
relation (10.8). The result is

K =-0'vye (10.10)

where ¥ = J — NK. A term involving the derivatives of the J and N ma-
trix must be added when eq.(10.3) contains a first derivative term. A similar
equation holds for the inverse of the K matrix, here denoted K,

K =+0¢fvy (10.11)

where now the role of J and N is interchanged, i.e. ¥ =N —J K.

In principle, the Variable-Phase equations (10.10), with the starting con-
dition K(0) = O, can be solved up to the asymptotic region to get the “true”
K matrix (i.e. that for the non truncated fully acting potential). In practice,
however, the two equations (10.10,10.11) must be used together because of
the presence of “local” scattering resonances (i.e. resonances that exist only
because of the unphysically truncated potentials). These resonances cause a
specific K eigenvalue to be infinity at some value of R and therefore do not

5This is the usual starting point for the derivation of the Variable-Phase equations. Here
we follow a somewhat different approach based on the existing one-to-one mapping between
K(R) and Y(R) (see eq.(10.5)). The derivation is straightforward and will not reported.
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allow the use of an Ordinary Differential Equation (ODE) integrator. Close
to these singular points one has to invert the K matrix and solve eq.(10.11)
until K starts to diverge, at which point one goes back to K. Thus, one can
solve alternatively eq.(10.10) and eq.(10.11) using common ODE integrators by
making use of a (problem dependent) number of matrix inversion operations.
It therefore follows that the Variable-Phase method cannot be used efficiently
in the inner region, where the strong coupling between channels would force
one to perform a large number of such matrix inversion operations. Thus, in
the following we assume to have a starting K(Rp) matrix, obtained for example
from a log-derivative propagation up to the value Ry outside from the strong
interaction region.

10.2.2 Strongly closed channels

Whenever one has to face a strong interaction potential in the inner region, one
has to use a huge number of channels most of which become asymptotically
closed. These can be a source of numerical difficulties in the Variable-Phase
method because the corresponding Bessel functions for the closed channels,
I, and K,, , are exponentially increasing and decreasing respectively. The
solution to this problem has been already discussed by M. Le Dourneff and Vo
Ky Lan (1977). They, in practice, proposed to define “scaling” matrices of the
following types

W) =5 { 11 tor et ey 24 A% =W
and introduce “scaled” Bessel functions
Js=JA,J. =T A"
N, =NAT N, =N'AT

which are of order of unity for large arguments (note that the primed quantities
are no longer the derivatives of the unprimed ones). With this functions one
defines a “scaled” K matrix, K;, by means of equation (10.5), from which it
follows

K, =A"KA~™ (10.12)
and therefore

K, = —(WK, + K,W + ¥'VU) (10.13)

where ¥ = J; — N5 K. Analogously, for the inverse of the scaled K matrix,
K, one obtains B B B
K, = +(WK, + K,W + 0V ©) (10.14)
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where now ¥ = Ny —J sﬁs. Since the “scaled” Bessel functions can be directly
computed without any pathological behavior we can avoid in this way a large
number of numerical overflows and underflows.

It should be noted that, since K tends to be constant when R becomes
large, it follows from equation (10.12) that K, tends exponentially to zero
everywhere but the open-open K matrix block. This can cause numerical
difficulties when, owing to the mentioned presence of “local” resonances, one
tries to move to its inverse. However, as we will explain in the next paragraph,
this problem doesn’t really arise because we can remove the strongly closed
channels without losing the accuracy of the physically significant K matrix
block.

From now on, we will consider only “scaled” quantities in our analysis and
therefore we shall drop the subscript s. Thus, unless otherwise stated, we will
refer to the present K matrix as a “scaled” quantity.

10.3 The new Variable-Phase propagator

Unlike in the log-derivative formalism, the K matrix elements are not all
equally important. We are mainly interested in the open-open block of the
matrix and, in particular, in the asymptotic region, we are only interested in
that block. The other blocks of the matrix must be considered only to the
extent they influence the open-open block. Having a clear separation between
the “physical” and the “virtual” spaces, one may argue that when the virtual
contributions to the physical space become negligible, the virtual space can
then be reduced. This is the basis of our channel reduction procedure, which
we describe in what follows.

10.3.1 The channel reduction procedure

Let @ be the projector onto that portion of the (closed) channel space, that
we name the @) -space, which we are trying to remove. Let P =1 — @) be the
projector onto its orthogonal complement, the “P- space”, that also contains
the open channels space. The specific choice of the () - space will be discussed
below: for the moment it corresponds to a specified number of closed channels.
Let us write now

V=Vpp+V, (10.15)

where V is defined by this equation and, as usual, App = PAP . Inserting
this equation in eq.(10.13), taking the P — P projection of that equation and
using the fact that [P, J] = [P, N] = [P, W] = O and P? = P = P! we can
write

Kpp=Kp + K., (10.16)
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where
b =—(WppKpp + KppWpp + UL, Vpplpp)

and
K/ = —P(¥'V,0)P

The first term, in which ¥pp is given by Ypp = Jpp — NppKpp , represent
the contribution to the {PP} block that we would compute if we neglected
the @ space; the second term, therefore, measure the influence of ) on the P
space. In particular, we can take the open-open block projection of equation
(10.16)

Koo = (Kp)oo + (K3)oo (10.17)

(where O is the projector onto the open channel space) and compare on this
“physical block” the contributions coming from the @ space with that coming
from the P space: if the first are negligible for a given integration range and
if the potential is monotonically going to zero we can reasonably assume that
the neglect of the @) space doesn’t produce any appreciable error in the final
scattering observables given by the open channels space.

We can therefore devise a simple channel reduction procedure: define a @)
space, check that (K!)oo in equation (10.17) is negligible for a given range of
radial values and therefore drop the () space; define a new () space and so on.
Following this procedure, we will be left in the asymptotic region with only
the open channels and, possibly, a few of closed channels rather close to the
threshold.

10.3.2 The modified equations

Without the channel reduction procedure described above the Variable-Phase
method cannot really compete with the most common methods used to handle
long-range potentials, like the Log-Derivative Airy propagator. The reason
for this is that to solve the Ordinary Differential Equations (ODE) given by
eq.s(10.13,10.14) one must evaluate the Bessel functions for a number of times
per steps. Although one doesn’t necessarily need to do matrix inversion for
each step the computation of Bessel functions is so demanding enough that
the algorithm become markedly slower than the Log-Derivative-Airy method.
The solution of this problem is very simple: one use zero-orbital angular
momentum bessel functions, i.e.
(J(R))ij = dij o sin(kiR)
Open channels : (10.18)
(N(R))s; = —0ij = cos(kiR)
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Closed channels : (10.19)
(N(R))ij = —0ij \/5k;

(where, for closed channels, we use the scaled quantities of Subsection (10.2.2))
if the centrifugal potential matrix, 12/r2, is added to V in eq.s(10.13,10.14),
i.e. V= V +12/r2. In the spirit of the Variable-Phase method this means
that in eq.(10.9) we truncate not only the potential matrix but also the cen-
trifugal term. Consequently, our K matrix is a “modified” K matrix, related
to the Y matrix by the usual relation, i.e. eq.(10.5), with J and N defined in
eq.s(10.18,10.19) (this modified K matrix differs from the usual one in that it
contains also the phase-shift contributions due to the centrifugal barriers). We
can therefore follow this matrix up to the end point of integration, where it is
transformed back to the usual K matrix. Since we have now to compute only
simple transcendental functions the speed of the calculations is quite consid-
erably improved.

It is also a simple matter to realize that, since this modification doesn’t
mix the open and the closed spaces, it is perfectly compatible with the channel
reduction procedure described above.

10.3.3 The new algorithm

We can now summarize the overall algorithm that implements the ideas of
Subsections (10.3.1,10.3.2). To solve the ODE problem we choose a fifth-
order embedded Runge-Kutta method that uses the Cash-Karp formulas (Press
et al., 1986). The term “embedding” in this context means that, for each step,
six functional evaluations allow two independent estimates of the solution,
correct up to fourth and fifth order respectively. In this way, i.e. using six
functional evaluations per step one get a fourth order solution and an estimate
of the truncation error. If the error is lower than a preselected threshold value,
A;j ( for each (4, j) element) its value is used to increase the step size for the
next step. Otherwise its value is used to estimate the step size to retry the
previous step (which requires five more evaluations). Therefore, we adopt in
this way a variable step size integration. The threshold value that determines
the accuracy of the integration is given by the (7, j) matrix element

Ay = ex ([[Klij| + b * [K')5])

where ¢ is an input parameter (1073 — 1077 ).
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The channel reduction procedure is used on the “energy shell” each time,
i.e. the @ space of Section 3.2 is made up of the closed channels with the same
highest wavevector k; . The contribution of this “shell” to the open-open block
is checked during the propagation and it is considered negligible whenever

K% ]ij| < N oen |[Kplijl (10.20)

for all open-open matrix elements. Here o, is an input parameter (usually
107*—10"7) and N is the number of channels in the @ shell considered. When
condition (10.20) is inwvariably satisfied in an interval greater than A/k; the
Q@ space is eliminated and a new () space is defined by looking at the now
highest shell (the actual value of the constant that defines the interval, i.e.
A = 0.1 + 1, is not important, because it is related to oo, ). The use of a
channel-dependent checking of the interval takes into account the fact that the
smaller the wavevector the smaller is the decaying behavior of that channel.

We assume to have our K matrix from a usual, constant reference potential
Log-Derivative integration in the inner region (Mrugala and Secrest, 1983;
Manolopulos, 1986). Then, the overall algorithm could be summarized as
follows:

1. given K(R), a first evaluation of the right hand side of (10.13) is made
by decomposing V according to eq. (10.15). In this way we check the
validity of the condition (10.20). If it is the case we drop the existing @
space, retain only the Kpp matrix (i.e. Kpp — K) and define a new @
space.

2. given a trial step size we implement a forward step with the Cash-Karp
Runge-Kutta ODE integrator. This step needs at least five evaluations
of the r.h.s. of eq.(10.13) (in the case of successful step) and gives a
trial step size for the next step, hpeqt - If this value is smaller than a
prescribed value, hpg, (that we choose to be 1 — 3 times the length of
the sector for the Log-D propagator in the internal region) then we are
likely to be in the presence of a local resonance and we proceed to point
3; otherwise we go back to point 1.

3. We invert the K matrix and solve eq.(10.14), that is we implement steps
1-2 with K in place of K until a matrix inversion is required by the con-
dition hpezt < hmin. The only difference is that in the K representation
we cannot attempt to further reduce the dimensionality of the problem
and therefore step 1 is a simple functional evaluation of the r.h.s. of
eq.(10.14). For this reason we force the integration of the K equations
by using for the K equations a A, value that is ten times larger then
that used for equations (10.13).
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Figure 10.4: The new Varable-Phase propagator. The (K)j;(symbols in the
upper panels) and (K !)q1(symbols in the lower panels) matrix elements com-
puted during the integration are compared with exact Log-D results (dashed
lines).

Clearly, a pathological situation in which the K matrix has a local resonance
and a zero eigenvalue can arise. This case is signalled by the fact that in
step 2 we find hpezt < hmin both for the K and for the K equations. In this
case we resort to a standard Log-Derivative integration for a small interval
to overcome the relevant region. Extensive tests calculations, some of which
will be described in the next section, show that if the ODE parameters h,,,
and € are chosen with an educated guess the number of calls to this “safety”
propagation is at most of the order of 10 in a range of thousands of angstroms
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of potential integration. It is also clearly concentrated in the inner region of
the integration.

In Fig.(10.4) we report the results of one the first successful propagations.
One element of the K matrix and one of the K~! matrix are shown in a given
integration range together with “exact” values coming from Log-Derivative cal-
culations (dashed lines). One can note (i) the presence of the “local resonances”
mentioned above and corresponding switching between the two matrix, (ii) the
use of a variable step size of integration and (iii) the accuracy of the channel
reduction procedure.

10.4 Test calculations

The new propagator has been included in a new Fortran90 code for the treat-
ment of atom-vibrating diatom scattering (Bodo, 2001). The code also includes
the Log-D (Manolopulos, 1986) and the Log-D/Airy (Alexander and Manolop-
ulos, 1987) propagators as were found implemented in the MOLSCAT scat-
tering code (Hutson and Green, 1994) and with minor modifications to make
them compatible with new code. The tests we are going to describe thus refers
to the same program runs on the same machine (an Alpha Server with a DEC
21264 Alpha EV6 @ 500 MHz processor, with 256 Mb of RAM). As in the
MOLSCAT code, linear algebra operations are performed, whenever possible,
with the use of Lapack/Blas subroutines. All the three propagators use the
same subroutine to generate the potential matrix as a function of R .

To test the present algorithm we used the LiH — H™ subreactive poten-
tial (Section (7.1)) considering only the vibrationally diabatic ground-state
potential. This means that converged calculations would require many more
channels than those employed here. The rotational constant used was fixed
at its rigid-rotor value, By = 7.40650cm !. We used the Log-D propaga-
tor (Manolopulos, 1986) for the solution of the inelastic problem in the inner
region, i.e. up to R = 20.0 A. The VarPh propagator and the Log-D/Airy
propagators were employed, starting from the Y(R = 20.0 A) matrix, up to
R = 2500 A. Different test calculations were performed at a given parity and
total angular momentum (.J). The collision energy was fixed at E = 200 cm ™!
; at this value only the 7 = 0 — 4 rotational levels are open in the target
molecule.

In Fig.(10.5), as an example, we show the performance of the channel
reduction procedure. Calculations with different numbers of channels were
used to show the increase of the rate of integration as the number of channel
is reduced during the propagation. This “rates” are computed as mean values
in a interval with a constant number of channels. The different calculations
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corresponds to the following parameters: j = 0 — 20 with J = 10 for 210
channels, 7 = 0 — 30 with J = 10 for 255 channels and j = 0 — 30 with
J = 30 for 465 channels. The Log-D propagation was performed with a step
size of 0.0024 A that corresponds to 400 steps taken within half asymptotic
wavelength of the lowest channel. The corresponding hy,;, parameter is chosen
to be 3 times this value for the K matrix propagation and 10 times greater
for the K propagation. The accuracy parameter for the ODE integration, e, is
fixed at 10~° while the channel reduction parameter, o, of eq.(10.20), is chosen
to be 1075. In Fig.(10.5) the speed of the Log-D propagation is also reported
as dotted lines (clearly this speed is a decreasing function of the number of
channels). We can note the following:

1. with the same number of channels the Variable-Phase propagator is
slower than the Log-D propagator, and therefore much slower than the
Log-D/Airy one. This is usually true, although the actual ratios de-
pend on the regions of integration (remember that the number of matrix
inversions is a problem dependent quantity).

2. although we used a reasonably low o, parameter, the channel reduction
procedure is quite efficient and within a few bohrs the speed is increased
by 2 — 3 orders of magnitude (left panel of Fig.(10.5)). As it is clear form
the right panel of the same figure, at 40 — 45a¢ all the closed channels
are eliminated and the speed is determined by the few asymptotically
open channels, which are 10 for each calculation.

In Table 10.1 we report the “statistics” of the propagation, i.e. the number
of successful steps n,, the number of retried steps npqq , the number of matrix
inversions m;ny ,the number of “safety” call to Log-D nrp and the final number
of channels retained ny . It is clear that for a reasonable choice of the input
parameters the number of inversions and the number of calls to more robust
Log-D propagation is quite low.

Table 10.1: Statistics of VP propagations
| nen | nok | Mbad | inw | nop | ng
210 | 5009 | 2539 | 46 3 10
255 | 4549 | 1466 | 6 0 10
465 | 5212 | 2383 | 52 4 |10

Clearly all the above results make little sense unless one could also mea-
sure the accuracy of the propagation. In order to do this, we considered dif-
ferent calculations with a variable e parameter but with a o, parameter fixed
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Figure 10.5: “Rate of integration” for different number of channels. Dotted lines
correspond to the speed of log-derivative propagation.

at 1075 We compared these results with those obtained by using the Log-
D/Airy (Alexander and Manolopulos, 1987) propagator; in this case different
accuracies were obtained when varying the TOLHI parameter with a constant
POW=3 (see Ref.(Alexander and Manolopulos, 1987) for the meaning of these
quantities).

The accuracy of the present calculations were measured by computing the
standard deviation A, of the S -matrix elements with respect to an “exact”
calculation. We considered “exact” Log-D propagations used up to the ending
point of integration (2500 A ) and with the same step size as that mentioned
above (0.0024 A ). This step-size was chosen in a such a way to guarantee an
accuracy greater than 107 for the above mentioned A,,,s. The potential was
artificially cut just before the ending point of integration because, in this way,
we avoided artificial deviations due to the differences in the actual ending points
that arise since both the present and the Log-D/Airy propagators work with
a variable step. We compared the VP and Log-D/Airy propagators employing
different numbers of channels: 55 channels corresponding to 5 = 0 — 10 and
J =10, 105 channels corresponding to j = 0 — 15 and J = 10 and, finally, the
210 channels calculation of before.

The results are reported in Fig.(10.6), where the CPU time of the long-
range integration was computed by subtracting off the total time the CPU time
used for the Log-D propagation in the inner region. The Figure clearly shows
that, for the same accuracy, the present propagator is orders of magnitude
faster than the Log-D/Airy one. This justifies our present suggestion for the
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channel reduction procedure. The actual saving of CPU time strictly depends
on the problem at hand, because the saving mainly arises from the fact that
we solve a much smaller problem for the main part of the integration range,
i.e. we are saving more time when using longer-ranged potentials. It is worth
to note the following:

1. as already mentioned, the CPU time of the VP calculations is mainly due
to the number of channels retained, which is the same for the different
calculations reported here (i.e. 10 ).

2. with a fixed o, parameter, the accuracy of the present method is a
much steeper function of the CPU time than in the case of the Log-
D/Airy propagator. This means that, in the present case, a much greater
accuracy is reached with a reduced expenditure of computational time.

3. in the limit of € — 0 the curves of Fig.(10.6) tend to become constant, i.e.
the accuracy of the calculation are bound from below. This is due to the
fact that below a given threshold, the o, parameter starts to control the
overall accuracy. Hence, a greater accuracy can be reached with lower
values of ggy,.

10°F A
o . _ %116
A o =a VP with o, =1.010
P o | oo Ay
x m. a :."o
= . .
E A o
D et “a "o
5 Aa °..
. . N o
<«
OOk a A O, o
o
6F
1078 ! ! ! !
10° 10" 10° 10° 10"

CPU time (at long-range) / sec

Figure 10.6: Comparison between the present Variable Phase propagator (filled-in
symbols) and the Airy one. Squares for 55 channels, triangles for 105 channels and
diamonds for 210 channels. See text for details.



Chapter 11

Conclusions

In this work we have presented a new and detailed study of the electronic
structure of the Lz'H2+ and a first quantum mechanical study of its dynamics.
We have first showed the connection of the title system with the early Universe
chemistry, where the need for accurate rate constants has been highlighted
showing the possible relevance that a revised Lithium chemistry could have in
establishing the LiH abundance at low red-shifts. A more accurate evaluation
of the chemical rate constants that enter the astrophysical models could be of
help for the astrophysical community, in that it could prompt a temptative
search of primordial LiH. The problems we have faced in this study have led
us to some interesting results which can be useful in treating similar systems:
the novel MultiReference Valence Bond approach to computing excited state
wavefunctions, the modelization of the collision induced dissociation with time
dependent methods and the study of a new algorithm for the treatment of
collisions in presence of long range interactions were, indeed, necessary to fully
understand the global dynamics of LiH;' .

The electronic structure of the title system has been analyzed to a high
degree of precision using a newly developed approach to the study of excited
states in the framework of the well established Spin Coupled Valence Bond
method. The new approach is based on a specific optimization of excited
Spin Coupled reference functions that is achieved with simple orthogonaliza-
tion constraints to the SC orbitals. The orthogonalization relations mimic
the relationships existing between the exact solutions of the problem. They
give rise to good reference functions with which dynamical correlation can be
brought directly in the excited states of interest by means of the recently devel-
oped perturbative optimization of the virtual orbitals. The accuracy has been
tested favorably against FullCI calculations. It turned out that the excited
Spin Coupled functions, like the ground-state SC function, preserve the major
role in the final wavefunction, thereby allowing to gain a physical picture of
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the excited-state interactions in the spirit of the Spin Coupled Valence Bond
method.

The lower computational cost of these ab-initio calculations, with respect
to equally accurate methods, has allowed us to gain a good description of the
interaction forces for a considerable amount of different geometries. At the
end, we are left with the first ab-initio three dimensional Potential Energy
Surfaces for the lower-lying states of the title system. These PESs, once fitted,
can be used in 3D quantum mechanical studies of the reactive and non-reactive
dynamics, in order to furnish kinetic rate constants and excitation/relaxation
coefficients to the astrophysical community. However, we have already ob-
tained some interesting results on the system, either by looking at the resulting
energy landscape and by performing reduced dimensionality quantum studies
of the dynamics.

First of all, we have showed how the electronic structure that turned out
from our calculations suggests that the non-adiabatic reactive pathways (see
Figure 7.29 on page 187)

LiH + HY — Lit + Ho
Li+Hf - LiH" +H (11.1)
LiH + HY - LiHt + H

are not likely to take place in a rarefied and dust-free environment since the first
two electronic states of the system are almost completely uncoupled one from
each other. The above processes, tough, could be triggered by spontaneous
emission but a simple reasonable estimate of the radiative constant seems to
exclude this possibility. On the other hand, photon-stimulated processes are
even more unlikely to happen, since the Wien tail of the black body distribution
of the CBR at the recombination era does not contain sufficient energetic
photons in the range 4-5 eV. We therefore concluded that some changes to
the network of reactions commonly used are necessary. In particular, the first
of reactions of eq.(11.1), together with the neutral-neutral reaction LiH +
H — Li+ Ho, has been considered one of the major route to the destruction
of primordial LiH, and was employed with a “guessed” rate of 107 cm3s~1.
According to our calculations this value is too high and should be substituted
with that computed for a much slower radiative process.
The remaining adiabatic paths that we were left with are:

LiH* + H — Li* + Hy
LiH"+H - Lit+H+H (11.2)
LiH + H" — Li+ Hf

The first of the above processes is highly exoergic, but as we have seen, the
most probable outcome from a binary collision between LiH™ and H is the
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dissociation product (second reaction) or the non-reactive event, at least in the
collinear geometry sampled by our calculations. We found, indeed, that the
reaction of the LiH™ ion with H does not produce an appreciable quantity
of Hjy, since the collision induced dissociation process is by far the most likely
event for energies slightly above ~ 0.1 e€V. For energies below this value, the
non-reactive product (a vibrationally excited LiH ™) is the dominant outcome
of the collision, unless the ion is in a vibrationally excited state: in the lat-
ter case, a small fraction of highly excited Hj is also produced. Furthermore,
our Time-Dependent approach to the CID problem allowed to see a clearer
relationship between the initial vibrational state of the colliding molecule and
the “shoulder structure” in the CID probabilities. This structure was previ-
ously noted by some authors and assigned to an interference phenomena of
vibrational origin.

Since the main result of our reduced dimensionality study of the ground-
state dynamics was the lack of reaction in favor of the break-up of the system,
we suggest to introduce the dissociation reaction in those deemed to be rel-
evant for the modeling of the lithium chemistry in the primordial Universe.
Indeed, our conclusions appear not modified when the full dimensionality of
the problem is taken into account. It is worth to note, here, that such “full
dimensionality” is still a challenge for dynamical calculations.

The third reaction of eq.(11.2) is governed by the first excited interaction
potential. This potential turns out to have a complex topology, dominated
by strong electrostatic forces acting between reactants and between products,
which now differ only slightly in the energetic content. As a consequence, the
resulting dynamics is quite complex because of the presence of long-lived states.
We have found the expected wvibrational enhancement that follows from the
particular geometry of the saddle point, which require a substantially stretched
LiH to be reached. Further, we argued that an “activation” mechanism for
low energy scattering could work in this and similar charge-dipole systems:
the formation of highly reactive metastable states (i.e. vibrational Feshbach
resonances) could be of help for the reaction to occur, even in absence of
initial vibrational excitation of the reagent molecule. However, in this case
our qualitative results could be somewhat dependent on the treatment of the
dynamical process; a 3D calculation urges but, just like the previous ground-
state processes, it appears to be a challenge for dynamical (state-to-state)
calculations.

The dipole-charge potential has been the subject of the last part of this
work. This kind of potential, besides being somewhat pathological for the
scattering theory, needs very long integration ranges. Furthermore, it is also
very strong and thus requires that a huge number of channels should be used
to give reliable scattering attributes. A novel algorithm that reduces “on the
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fly” the number of channels used in a Time-Independent CC calculation has
been designed. The algorithm relies on the known Variable Phase method and
appears to be promising for the treatment of strong, long-range interaction
potentials: test calculations proved that the new method can be, at the same
accuracy level, order of magnitude faster than the widely used Log-Derivative-
Airy algorithm.



Appendix A

Green’s operators

We collect in this Appendix the properties of the Green’s operators that we
used in Chapters 2 and 3.

Green’s operators arise naturally in linear problems of the kind Az = b
when one looks for the “operator of the solutions”, i.e. the inverse A™!, in
terms of which the solution is given by £ = A~'b. We consider here only those
spaces and operators that are relevant for the present discussion, i.e. Hilbert
spaces and self-adjoint operators in these spaces. In particular, we consider a
self-adjoint operator H : H — H with the general spectrum depicted in the
left panel of Fig.(A.1): a number of proper eigenvalues on the negative axis
and a continuos spectrum that extends from zero to infinity (the choice of the
zero is of course irrelevant). We intend H to be the hamiltonian of our system.

The fundamental eigenvalue equation

(A= H) ) = 0
has its inhomogeneous generalization
(A —H) [¢) = |[¢o)
whose “operator of solutions”, or more properly resolvent or Green’s operator,
GO = (A — H)™!

plays a central role in spectral theory. It is a well defined operator for every
A value out of the spectrum of H, i.e. in our case whenever )\ has a non null
immaginary part or, if real, is not a proper or improper eigenvalue of H. Thus
the (close) set of points of the complex plane that make up the spectrum of
H (0(H)) define the (open) set of points of the domain of the function G(\),
called the resolvent set and denoted with p(H). It turns out that in this set
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¥ Continuos spectrum

el

spectrum

Figure A.1: “Typical” spectrum and countor paths considered in the main text.

the Green’s operator is a bound operator (G(\) € L(#)) and it is an analytic
function of its complex argument, i.e. it has a power series representation for
each A € p(H)

G(A) =G () {I +Y (A /\o)"(—)”G"(ko)} A, Ao € p(H) (A1)

where the convergence of the serie is in the norm topology of L(#) whitin the
circle

A =Xl IG(Mo)|l < 1

The spectrum of H is a set of singular points for G()): the proper eigenval-
ues are first order poles whereas the improper eigenvalues determine a branch
cut. These properties can be seen by looking at the spectral resolution of G(\)

1 * 1
G(N) _%:A_Enpﬁ e
where P, is the projector onto the proper eigenspace of H corresponding to the
eigenvalue F, and dPp is the differential projector operator onto the improper
E—eigenspace, usually written in the form dPg = §(F — H)dE.
The polar discontinuity around each true eigenvalue can be used in con-
junction with the residue theorem to write

1
— G(A\)dX =P, A2
3mi § GOA=P, (42)
where 7, is any couterclokwise path that encloses (only) the E, eigenvalue.
The branch cut determines a discontinuity of the Green’s operator when it
is considered across the continuum spectrum of H; that is, if we define the
following (weak) limiting operators

G*(E) = lim_,o+G(E £ i€) for E >0



247

we have
GT(E) -G (E)#0
In general, taking into account the existence of the branch cut we may rewrite
the residue theorem in the form
1
271

75 G(\)dx =1

where I' is any counterclockwise path that encloses the whole spectrum of H.
If we compare it with the spectral resolution of the unit operator

I:ZPn+/() §(E — H)dE

and distort the I' path as in the right panel of Fig.(A.1) we obtain again
eq.(A.2) for each discrete eigenvalue and get, for the continuum spectrum,

1

2mi

7{ GONAA = ——lim, o+ / (G(E—ie)—G(E-+ie)}dF = / S(E—H)dE
v 211 0 0

from which it follows the novel relation

i(GT(E) — G~ (E)) = 2n6(E — H) (A.3)

which parallels the previous eq.(A.2). In general using eq.(A.2) and eq.(A.3)
in the spectral resolution of any analytic function of H

() = S F(Ba)Py + /0 " {(B)N(E - H)dE

one may obtain the following representation theorem

1

FH) = 5 f[p FOVG(N)dA = QLM ) AfE—Al)LIdA

(where in the last term we have used a very common notation for G(\)) which
closely resembles the well known Cauchy representation theorem

B
f(z)—Q—mfg/\_sz

where now I' is any counterclockwise path surrounding the pole of the inte-
grand.

Equation (A.3) identifies the previously mentioned discontinuity of the
Green’s operator with a pure “immaginary” operator —2mid(E — H). Thus,
we may write

G*(E) = GP(E) F ind(E — H)
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where GP(E) = (G (E) + G~ (F))/2 is the “real” (i.e. self-adjoint) part of the
Green’s operator, also called the “principal value” Green’s operator. Its name
arises from its spectral resolution

1 S |
Gp(E)EZA_E Pn+P/0 E_Elé(E'_H)dEf:
n n

E—¢
=> ;PR + lim,_o+ </ +/ ) 6(E' — H)dE'
n A— En E+e

Of course, when E < 0 (E # E,), GP(E) = GT(E) = G~ (E).

The power serie of eq.(A.1) allows us to write the Green’s operator in A
once we know the operator in a point Ag sufficiently close to A. More important
for our purposes is the fact that the Green’s operator satisfies the Lippmann-
Schwinger equation, which can be obtain starting with

A-—HY=\-H)+V

(where H = H® +V is any useful decomposition of H) and multiplying on the
left by GO(A\) = (A — H°)~! and on the right by G()), i.e.

G\ =GN +G°V)VGE(N)

Analogous equation can be obtained multiplying on the right by G° and on
the left by G,
G\) =G°(\) + GWVGO(\)

These equations are very useful in practice; for example, they allow one to
obtain approximations to the “full” Green’s operator in terms of the known
GO(\) operator and the “perturbing” potential V = H — H.

In connection with the Time Dependent Schrédinger Equation (TDSE) we
note that the half “Fourier” transforms

+oo .
/ MUt
0

are well defined for each £ImA > 0 and can be computed using the TDSE

dU,
HU, :zd—tt

Indeed, we can write

. d i i
za(e ’\tUt) =—(A—H)(e )‘tUt)
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and then

doo +oo ) )
/ MUt = —iG(N) / %(e’)‘tUt)dt = GO {limi s MU -1} = iG(N)
0 0

Thus, the limiting operators G*(E) can be defined also by
doo ]
iGH(E) = lim,_+ / e BRI dt
0

and their immaginary part can be obtained by the standard Fourier formula
i
27

+o0

(GHE) - G (B)) = - / GE-Btgy — §(E — H)
2 ) o

Therefore, we see that the G*(E) operators entail the forward /backward time

evolution and their combined action gives a “stationary” situation. In this con-

text it is worth to compare the GT(E) operators with the (improper) Fourier

transforms of the following step functions

—1Ept
(+) _ +e™* for +¢>0
o= { 0 otherwise

T Bt () - i
/_oo e\ (t)dt = lzme_)o+m

and with the following representations of the Dirac delta function

+oo too
/ ezEt(g(—i—) (t) — @(—)(t))dt — / e E—Eo)t gy 2n0(FE — Ey) =
. 1 B 1 i, . %
SO \NE_Eytic E—Ey—ic) M (E_E)2+e

The forward /backward nature of G*(E) (E > 0) gives rise to the asymp-
totic behaviour of their matrix elements. Before showing the relevant formula
it is worth to note that the following quantities

(x|G*(B) [4o)
are, by definition, solutions of the following inhomogeneous problem

(E - Ho)p(x) = tho(x)

(where H; is the usual Schrodinger representation of H): as r = ||x|| — oo we
have 1(x) — 0 for any L? function and, thus, the equation reduces asymptot-
ically to the (improper) free particle equation, whose boudary conditions must
be chosen according to the limiting e process, which we now decribe.
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We consider only the free particle Green’s function integral
(x| G5 (E) |vo)

since we can always use the Lippmann-Schwinger equation G*(E) = G (E)(I+
VGE(E)) = GE(E)QL(E) to write

(x|G=(B) [4o) = (x|GF(B)|41)

with
1) = ‘QIF(E)%>

(note that although the action of G*(E) on [¢g) gives rise to an improper
eigenvector the presence of the potential V' ensures that |17) is still a proper
vector when 3/2V (r) — 0 as r — co). Furthermore, we start by looking at
the general “Green’s function”

(x[Go(V)[x)

which can be evaluated inserting the momentum resolution of the identity

operator '
(2m)3 A—E,

where FE;, = p?/2m. Using polar coordinates and performing the angular inte-
gration we obtain

a1 /oo p? el _/oo p? el
GNP =G \y PX=Braole—xT Sy PX-B il x|

which can be rewritten as

1 +o00 P etpllx—x||
Go(\)|x') =
OO = G | 3Ty e

(x[Go(V)[x") =

and evaluated using contour intergration. The appropriate path is an infinite
semicircle on the upper complex plane and the relevant pole of the integrand is
at the point & = (2m\)"/2, defined to be the root with Imé > 0. This point is
of the form & = +pg + i6 when A = pZ/2m + i€ (po > 0 and d,¢ — 07). Thus,
the result is

+ip||x—x’ 2
m e<ll Il P o

2 |x — x| 2m

(x|Gg () |[x) =

(note that it correctly reduces to the Coulomb potential when p — 0, i.e.
when the relevant inhomogeneous Schrédinger equation reduces to the Poisson



251

equation for a point charge). Adversely, when E = —p2/2m < 0 the position
of the relevant pole is at the point £ = ipy and thus

m e Pl

(x|Go(BE)|x") = E <0

2 x — x|
(remember that in this case G = G7).

Finally, going back to our original problem, the asymptotic r — oo be-
haviour of the integral

(K|GFD o) = [ i (x] G (E)|x') (X o)

can be obtained by observing that if 1o(x’) is well localized the value of the
integral depends essentially from the small ' = ||x/|| region and, then, we can
use |x — x| =r|x —x'/r|| = r —xx' for r/r" — oco. The result is

m e:l:ipr
(x| G () o) >~

L~ Lipr
[ e (o) = —miem) 2 i)

and therefore, in general

+ipr
(x| G=(B) o) — ~m(2m)/2 © (epZ o)

where the fact (p| QL(E) = (p%| (for E = p?/2m, p = ||p||) has been used.
It is worth to note that in the previous expansion of the distance between
the “source” and the “observation point”, ||x — x/||, the localization property
of (x) (91(x)) is a necessary condition for the validity of the results; in
particular, the “error” term

5 el X . o
/ d x'il 1o (x') N/ dr'r’ e="P" /d X'1ho(x")
r'>r ||X—X || r'>r

must be, first of all, a finite quantity (and it must converge to zero when r —
00). Thus, for example, the case 1o(r) = O(r~2) already gives rise to a not well
defined integral. In this context it is worth to mention that such situation can
arise when one looks at the asymptotic behaviour of the full Green’s function
and uses the previous substitution 41 (x) = 1o(x) + V(%) (x|G*(E)|1g) with
V(r) =0(r 2.
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