
A TOUR ABOUT EXISTENCE AND UNIQUENESS OF DG

ENHANCEMENTS AND LIFTS

ALBERTO CANONACO AND PAOLO STELLARI

Abstract. This paper surveys the recent advances concerning the relations between triangulated

(or derived) categories and their dg enhancements. We explain when some interesting triangulated

categories arising in algebraic geometry have a unique dg enhancement. This is the case, for

example, for the unbounded derived category of quasi-coherent sheaves on an algebraic stack or

for its full triangulated subcategory of perfect complexes. Moreover we give an account of the

recent results about the possibility to lift exact functors between the bounded derived categories

of coherent sheaves on smooth schemes to dg (quasi-)functors.
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Introduction

There are certainly many fruitful and interesting ways to enhance triangulated categories to

higher categorical structures: differential graded (dg) categories, A∞-categories or stable (∞, 1)-

categories, just to mention some. To some extent and in some appropriate sense, they are equiva-

lent. We will not explore this, but it is certainly clear that as soon as the passage from triangulated

to higher categories is achieved, then everything becomes very natural.

Indeed, triangulated and derived categories have acquired a growing relevance in the context

of algebraic geometry. Their applications to the study of the geometry of moduli spaces are well

consolidated, by now. Nonetheless, some aspects of their general theory look very unnatural. A

well-known example is the so called ‘non-functoriality of the cone’. This problem disappears when
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one looks, for example, at (pretriangulated) dg categories: all (closed degree zero) morphisms have

functorial cones.

In this survey, we focus on dg categories and, more specifically, on some of their geometric

incarnations. The kind of questions we are interested in have a foundational flavor and can be

roughly summarized as follows:

When can a triangulated category be enhanced by a dg category?

Is a dg enhancement unique?

Clearly, the same kind of questions can be raised for exact functors between triangulated categories:

When can an exact functor be lifted to a dg quasi-functor?

Is a lift unique?

These problems become particularly interesting when the triangulated categories and the exact

functors in question are of geometric nature. For example, one could consider the unbounded de-

rived category of quasi-coherent sheaves D(Qcoh(X)) or the bounded derived category of coherent

sheaves Db(X) or the category of perfect complexes Perf (X) on a scheme X and exact functors

between them.

In this setting the questions above have been around for a long while in the form of (folklore)

conjectures. But only recently a satisfactory and (almost) complete set of answers has been pro-

vided. This is the reason why we believe that this is a good moment to collect and explain all the

known results in this field. Let us now be a bit more precise.

• The triangulated categories D(Qcoh(X)), Db(X) and Perf (X), for any scheme X, have

dg enhancements (see Section 1.2 and Section 3.1).

To be honest this is well-known for a long while and it is rather clear that finding geometric

triangulated categories without dg enhancements needs inspiration from algebraic topology rather

than from algebraic geometry (see Section 3.2).

That the second part of the first question should have a positive answer was conjectured in [9]

(even in a stronger form). The first striking results in this direction are contained in the beautiful

paper [42] by Lunts and Orlov. Here we discuss the vast generalization of their results contained

in [17] but the intellectual debt to the seminal paper by Lunts and Orlov has to be made clear at

the very beginning. The results we want to discuss are the following:

• The triangulated categories D(Qcoh(X)), Db(X) and Perf (X) have unique dg enhance-

ment at various levels of generality (see Section 4.3, Remark 5.8 and Corollary 5.6 respec-

tively).

Nevertheless, there are categories with non-unique dg enhancements (see Section 3.3).

Now consider the case of an exact functor F : Db(X1) → Db(X2), where Xi is, for example, a

smooth projective scheme over a field. Again, the existence of a dg lift of F was predicted in [9, 49].

But here the situation becomes more sad. Indeed, in this case, the dg lift of F may not exist (see

Section 6.2) and may not be unique (see Section 6.1). The beauty of this side of the story is that

the property of being dg liftable does not depend on the choices of the dg enhancements (thanks

to the uniqueness results mentioned above) and coincides with the fact that the exact functor
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is of Fourier–Mukai type. The precise definitions are given in Section 6.1 but the reader with

some familiarity with Hodge theory should think of Fourier–Mukai functors as categorifications of

the usual notion of a Hodge theoretic correspondence. Fourier–Mukai functors are ubiquitous in

algebraic geometry and essentially all exact functors that an algebraic geometer encounters in his

life are of this type. Nonetheless the recent counterexamples to the belief that all exact functors F

as above should be of this form raise a warning.

These facts make it clear that the relation between derived categories and their dg enhancements

is quite delicate and cannot be superficially analyzed.

Parts of the considerations about Fourier–Mukai functors discussed in this paper have been

already explained in [12]. In a sense, the present paper should be thought of as a companion and

an update of [12].

Although the main problems of geometric nature have been solved by now, we believe that there

are still very interesting and open problems that deserve attention. They are spread out all along

this survey in the form of open questions and we hope that they may help stimulate further work

on the subject.

Geometric motivation. One of the goals of this survey is to try to attract the attention of

algebraic geometers and to convince them that the issues we discuss here are of some interest from

their viewpoint. Thus we feel some pressure to discuss at least one geometric application.

The homological version of the so called Mirror Symmetry Conjecture by Kontsevich [33] predicts

that there should be an A∞-equivalence between a dg enhancement of Db(X), for X a smooth

projective Calabi–Yau threefold, and the Fukaya category of the mirror Y of X. The Fukaya

category is actually anA∞-category but its homotopy category is an ordinary triangulated category.

Roughly speaking, the objects of this A∞-category are Lagrangian submanifolds of Y .

Now, one could ask the following natural questions:

(1) Do we have to care about a specific choice of a dg enhancement of Db(X)?

(2) Is the A∞-nature of the quasi-equivalence relevant? Or does only the induced exact equiv-

alence between the (triangulated) homotopy categories matter?

The results concerning the questions at the beginning of this introduction and which are discussed

in this paper suggest that, a posteriori and in theory, only the triangulated side matters. On the

other hand, in practice, the situation is not so simple: in all the examples, the construction of the

exact equivalence exploits the dg and the A∞-structures.

To get another example of why one should care about the uniqueness of dg enhancements, let us

go back to the problem of showing that a Fourier–Mukai functor can be lifted to a dg quasi-functor.

These triangulated functors are compositions of three exact functors (pull-back, push-forward and

tensor product). Each of them needs to be derived using appropriate (and a priori distinct) dg

enhancements. Only quite recently, Schnürer constructed in [57] dg resolution functors for suitable

dg categories over a field that allow to lift the three exact functors mentioned above to the same

type of dg enhancement. On the other hand, the uniqueness of dg enhancements makes the problem

well-posed in complete generality.
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Plan of the paper. The paper is organized as follows. In Section 1 we summarize some ba-

sic material about dg categories, dg functors, localizations of the category of dg categories and

enhancements. The emphasis is on the geometric examples.

Section 2 is a short summary about well generated triangulated categories. Such a theory plays

a crucial role in the proof of uniqueness of dg enhancements for the unbounded derived category

of a Grothendieck category (this includes the case of D(Qcoh(X)) for any scheme X). This will

be extensively discussed in Section 4 but before indulging in this analysis we show that there are

triangulated categories without dg enhancements or with more than one up to quasi-equivalence

(see Section 3).

The uniqueness of the dg enhancements for the full subcategory of compact objects in the derived

category of a Grothendieck category is explained in Section 5. From this, we deduce all the results

concerning the triangulated categories Db(X) and Perf (X).

Finally, in Section 6, we study the problem of lifting exact functors by linking it to the quest of

a characterization of such functors in terms of Fourier–Mukai functors.

Notation. We assume that a universe containing an infinite set is fixed. Several definitions

concerning dg categories need special care because they may, in principle, require a change of

universe. All possible subtle logical issues in this sense can be overcome in view of [42, Appendix

A]. The careful reader should have a look at it. After these warnings and to simplify the notation,

we will not mention explicitly the universe we are working in any further in the paper, as it should

be clear from the context. The members of this universe will be called small sets. For example,

when we speak about small coproducts in a category, we mean coproducts indexed by a small set.

If not stated otherwise, we always assume that each Hom-space in a category forms a small set. A

category is called small if the isomorphism classes of its objects form a small set.

Given a category C and two objects C1 and C2 in C, we denote by C(C1, C2) the Hom-space

between C1 and C2. If F : C→ D is a functor and C1 and C2 are objects of C, then we denote by

FC1,C2 the induced map C(C1, C2)→ D(F(C1),F(C2)).

Unless otherwise stated, all categories and functors are assumed to be k-linear, for a fixed

commutative ring k. By a k-linear category we mean a category whose Hom-spaces are k-modules

and such that the compositions are k-bilinear, not assuming that finite coproducts exist. Moreover,

schemes and algebraic stacks are assumed to be defined over k.

If A is a small (k-linear) category, we denote by Mod(A) the (abelian) category of (k-linear)

functors A◦ → Mod(k), where A◦ is the opposite category of A and Mod(k) is the category of

k-modules. The Yoneda embedding of A is the functor YA : A → Mod(A) defined on objects by

A 7→ A(−, A).

If T is a triangulated category and S a full triangulated subcategory of T, we denote by T/S

the Verdier quotient of T by S. In general, T/S is not a category according to our convention

(namely, the Hom-spaces in T/S need not be small sets), but it is in many common situations, for

instance when T is small.

For a complex of objects in an abelian category

C = {· · · → Cj−1 dj−1

−−−→ Cj
dj−→ Cj+1 → · · · },
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and for every integer n, we define

τ≤n(C) := {· · · → Cj
dj−→ Cj+1 → · · · → Cn−1 → ker dn → 0→ · · · }.

1. Dg categories and dg enhancements

This section provides a quick introduction to dg categories and to their geometric incarnations.

The expert reader can certainly skip this section.

1.1. Generalities on dg categories. Very well-written surveys about dg categories are [32] and

[65]. Notice that ‘dg’ is an acronym for differential graded.

Dg categories, dg functors and quasi-functors. Starting from scratch, let us recall the following.

Definition 1.1. A dg category is a category C such that, for all A,B,C in C, the morphism spaces

C (A,B) are Z-graded k-modules with a differential d : C (A,B) → C (A,B) of degree 1 and the

composition maps C(B,C)⊗k C(A,B)→ C(A,C), g ⊗ f 7→ g ◦ f , are morphisms of complexes.

More explicitly, if f and g as above are homogeneous, then deg(g ◦ f) = deg(g) + deg(f) and

d(g ◦ f) = d(g) ◦ f + (−1)deg(g)g ◦ d(f). Moreover, it follows from the definition that the identity

of each object is a closed morphism of degree 0.

Example 1.2. (i) Any (k-linear) category has a trivial structure of dg category, with morphism

spaces concentrated in degree 0.

(ii) A dg category with one object is just a dg algebra.

(iii) For a dg category C, one defines the opposite dg category C◦ with the same objects as C

while C◦(A,B) := C(B,A). Observe that, for homogeneous elements, the composition f ◦ g in C◦

differs from the composition g ◦ f in C by a factor (−1)deg(f) deg(g).

(iv) If C is a dg category and B is a full subcategory of C (regarded as an ordinary category),

then B is in a natural way a dg category. Hence we will say that B is a full dg subcategory of C.

(v) Following [20], given a (small) dg category C and a full dg subcategory B of C, one can define

the quotient C/B which is again a dg category. The construction can be roughly summarized as

follows. Given B ∈ B, we formally add a morphism fB : B → B of degree −1 and we define d(fB) =

idB. To make this rigorous one would need to substitute C and B with cofibrant replacements.

Since this level of precision is not needed in this paper, we ignore this issue.

Given a dg category C we denote by Z0(C) its underlying category and by H0(C) its homotopy

category. To be precise, the objects of both categories are the same as those of C while the

morphisms from A to B are given, respectively, by Z0(C(A,B)) and H0(C(A,B)).

Example 1.3. If A is a (k-linear) category, we denote by Cdg(A) the dg category of complexes

in A. More precisely, its objects are complexes in A and morphisms are given (for all A,B in

Cdg(A)) by

Cdg(A)(A,B)n :=
∏
i∈Z

A(Ai, Bn+i)

with differential defined on homogeneous elements by d(f) := dB ◦ f − (−1)deg(f)f ◦ dA (the

composition is the obvious one). It is then straightforward to check that C(A) := Z0(Cdg(A)) is
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the usual category of complexes in A and K(A) := H0(Cdg(A)) is the usual homotopy category of

complexes in A.

Definition 1.4. A dg functor F : C1 → C2 between two dg categories is a functor such that the

map FA,B is a morphism of complexes of k-modules, for every A,B ∈ C1.

We denote by dgCat the category whose objects are small dg categories and whose morphisms

are dg functors. Clearly, a dg functor F : C1 → C2 induces a functor H0(F) : H0(C1)→ H0(C2).

Starting from two dg categories C1 and C2, one can construct two new dg categories C1 ⊗C2

and Hom(C1,C2) (see [32, Section 2.3]). The objects of C1 ⊗C2 are pairs (A,B) with A ∈ C1

and B ∈ C2. The morphisms are defined by

C1 ⊗C2((A1, B1), (A2, B2)) = C1(A1, A2)⊗k C2(B1, B2),

for all (Ai, Bi) ∈ C1 ⊗C2 and i = 1, 2. The objects of Hom(C1,C2) are dg functors from C1 to

C2 and morphisms are given by suitably defined (dg) natural transformations. Notice that here we

are slightly abusing the standard terminology. Indeed, one usually calls dg natural transformations

only the closed degree zero morphisms in Hom(C1,C2).

Notice that the tensor product defines a symmetric monoidal structure on dgCat. This means

that, up to isomorphism, the tensor product is associative, commutative and k acts as the identity.

Moreover, given three dg categories C1, C2 and C3, there is a natural isomorphism in dgCat

(1.1) Hom(C1 ⊗C3,C2) ∼= Hom(C1, Hom(C3,C2)).

By considering the objects of the two dg categories above, one obtains a natural bijection

dgCat(C1 ⊗C3,C2) ∼= dgCat(C1, Hom(C3,C2)),

which proves that the symmetric monoidal structure on dgCat is closed.

Definition 1.5. A dg functor F : C1 → C2 is a quasi-equivalence, if the maps FA,B are quasi-

isomorphisms, for every A,B ∈ C1, and H0(F) is an equivalence.

One can consider the localization Hqe of dgCat with respect to quasi-equivalences. Given a

dg functor F, we will denote by the same symbol its image in Hqe. We will adopt a rather non-

standard terminology and call quasi-functor any morphism in Hqe. Indeed, more appropriately

and according to [20, 42], a quasi-functor would be a suitable bimodule and any morphism in Hqe

would be an isomorphism class of quasi-functors. Any quasi-functor (in our sense) F : C1 → C2

induces a functor H0(F) : H0(C1) → H0(C2), which is well defined up to isomorphism. In the

rest of the paper, we will treat H0(F) as an actual functor rather than as an isomorphism class of

functors. We are allowed to do that because everything will be independent of the choice of the

representative in the isomorphism class.

Remark 1.6. It is worth mentioning here that dgCat is in a natural way a model category (see

[64]) and Hqe is its homotopy category.

Recall that a model category (see [26]) is a (not necessarily k-linear) category which has small

limits and colimits and which is endowed with three families of morphisms, called fibrations, cofi-

brations and weak equivalences, satisfying some axioms which we are not going to list here. The
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homotopy category of a model category C is the localization Ho(C) of C with respect to weak

equivalences.

The tensor product in dgCat can be appropriately derived (see [32] or [66]). We will denote

by C1

L
⊗ C2 the derived tensor product in Hqe of the dg categories C1 and C2. This defines a

symmetric monoidal structure on Hqe.

Dg modules and their relatives. Given a small dg category C, one can consider the dg category

dgMod(C) of (right) C-dg modules, which is defined as Hom(C◦,Cdg(Mod(k))). A C-dg module

is representable if it is contained in the image of the Yoneda dg functor

YC
dg : C→ dgMod(C) A 7→ C (−, A) .

It is known that H0(dgMod(C)) is, in a natural way, a triangulated category with small coproducts

(see, for example, [32]). Hence, we can give the following definition.

Definition 1.7. A dg category C is pretriangulated if the essential image of the functor

H0(YC
dg) : H0(C)→ H0(dgMod(C))

is a triangulated subcategory.

Remark 1.8. (i) As H0(YC
dg) is fully faithful, it is clear that H0(C) is a triangulated category if

C is a pretriangulated dg category. Moreover, given a quasi-functor F : C1 → C2 between two

pretriangulated dg categories, the induced functor H0(F) : H0(C1) → H0(C2) is an exact functor

between triangulated categories.

(ii) Let C be a pretriangulated dg category and let B be a full pretriangulated dg subcategory

of C. Then the dg quotient C/B is again pretriangulated and there is a natural exact equivalence

between the Verdier quotient H0(C)/H0(B) and H0(C/B) (see [20] or [42, Lemma 1.5]).

The full dg subcategory of dgMod(C) of acyclic dg modules is denoted by Ac(C). Here an

object N ∈ dgMod(C) is acyclic if N(C) is an acyclic complex, for all C ∈ C. The category

H0(Ac(C)) is a localizing subcategory of the homotopy category H0(dgMod(C)). Recall that,

given a triangulated category T with small coproducts, a full triangulated subcategory is localizing

if it is closed under small coproducts in T.

The derived category of the dg category C is the Verdier quotient

D(C) := H0(dgMod(C))/H0(Ac(C)),

which turns out to be a triangulated category with small coproducts. By Remark 1.8 (ii), there is

a natural exact equivalence

(1.2) D(C) = H0(dgMod(C))/H0(Ac(C)) ∼= H0(dgMod(C)/Ac(C)).

A C-dg module M ∈ dgMod(C) is h-projective if H0(dgMod(C))(M,N) = 0, for all N ∈ Ac(C).

We denote by h-proj(C) the full dg subcategory of dgMod(C) with objects the h-projective C-dg

modules. It is easy to see that h-proj(C) contains the full dg subcategory C of dgMod(C) whose

objects are those in the essential image of H0(YC
dg). Summing up, given a dg category C, we have

the following inclusions of full dg subcategories:

YC
dg(C) ↪→ C ↪→ h-proj(C) ↪→ dgMod(C).
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Remark 1.9. (i) There is also a notion of semi-free dg module, which we do not define here,

since we are not going to use it in the paper. It can be useful to know, however, that the full

dg subcategory SF(C) of dgMod(C) consisting of semi-free dg modules is contained in h-proj(C)

and the inclusion SF(C) ↪→ h-proj(C) is a quasi-equivalence (see, for example, [31]). Clearly this

means that it is essentially equivalent to work with SF(C) or h-proj(C). On the other hand,

sometimes one can prefer to use the former, because for some computations it can be easier to deal

with semi-free dg modules (this is the case in [42] and [17]).

(ii) It is easy to see that the homotopy category H0(h-proj(C)) is a full triangulated subcategory

of H0(dgMod(C)). Moreover, by [31], there is an exact equivalence of triangulated categories

H0(h-proj(C)) ∼= D(C). We can actually be more precise about it. Indeed, the composition of

natural dg functors

H : h-proj(C) ↪→ dgMod(C)→ dgMod(C)/Ac(C)

is a quasi-equivalence. So, up to composing with (1.2), H0(H) provides the exact equivalence

H0(h-proj(C)) ∼= D(C) mentioned above.

For two dg categories C1 and C2, it follows from (1.1) that there is an isomorphism of dg cate-

gories dgMod(C◦1⊗C2) ∼= Hom(C1, dgMod(C2)), so in particular an object E ∈ dgMod(C◦1⊗C2)

corresponds to a dg functor Φdg
E : C1 → dgMod(C2). Conversely, for every dg functor F : C1 →

dgMod(C2) there exists a unique E ∈ dgMod(C◦1 ⊗ C2) such that Φdg
E = F. An object E ∈

h-proj(C◦1 ⊗ C2) is called right quasi-representable if Φdg
E (C1) ⊂ C2. The full dg subcategory

of h-proj(C◦1 ⊗ C2) consisting of all right quasi-representable dg modules will be denoted by

h-proj(C◦1 ⊗C2)rqr.

If we are given a dg functor F : C1 → C2, there exist dg functors

Ind(F) : dgMod(C1)→ dgMod(C2), Res(F) : dgMod(C2)→ dgMod(C1).

While Res(F) is simply defined by M 7→ M ◦ F◦, the reader can have a look at [20, Sect. 14] for the

explicit definition and properties of Ind(F). Let us just observe that Ind(F) preserves h-projective

dg modules and Ind(F) : h-proj(C1) → h-proj(C2) is a quasi-equivalence if F : C1 → C2 is such.

Moreover, Ind(F) commutes with the Yoneda embeddings, up to dg isomorphism.

Example 1.10. Let C be a dg category and let B be a full dg subcategory of C. If we denote by

I : B ↪→ C the inclusion dg functor, then the composition of dg functors

C
YC
dg−−→ dgMod(C)

Res(I)−−−→ dgMod(B)→ dgMod(B)/Ac(B)

yields, in view of Remark 1.9 (ii), a natural quasi-functor C→ h-proj(B).

Dg enhancements. Let us give now the key definition for this paper.

Definition 1.11. A dg enhancement (or simply an enhancement) of a triangulated category T is

a pair (C,E), where C is a pretriangulated dg category and E : H0(C)→ T is an exact equivalence.

When the equivalence E is not relevant, by abuse of notation, we will often simply say that C

is an enhancement of T if there exists an exact equivalence H0(C) ∼= T.

Definition 1.12. A triangulated category is algebraic if it has an enhancement.
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Remark 1.13. As we will see in Proposition 3.1, there are other equivalent definitions of algebraic

triangulated categories, which are used more often in the literature.

Let us discuss a few easy examples now and elaborate a bit more on the subject in Section 1.2.

Example 1.14. (i) By Remark 1.9 (ii), if C is a dg category, h-proj(C) is an enhancement of

D(C).

(ii) If C is a pretriangulated dg category and B is a full pretriangulated dg subcategory of C,

then, by Remark 1.8 (ii), C/B is an enhancement of H0(C)/H0(B).

(iii) If A is an additive category, then Cdg(A) is pretriangulated and it is naturally an enhance-

ment of the triangulated category K(A) (see Example 1.3).

The key point of this paper is that, in principle, one may have ‘different’ enhancements for

the same triangulated category. Let us start describing the weakest form of uniqueness of dg

enhancements.

Definition 1.15. An algebraic triangulated category T has a unique enhancement if, given two

enhancements (C,E) and (C′,E′) of T, there exists a quasi-functor F : C→ C′ such that H0(F) is

an equivalence (which implies that F is an isomorphism in Hqe).

In the definition, the equivalence E, which is a key ingredient in Definition 1.11, is not relevant.

Thus it makes sense to say that a triangulated category has a unique dg enhancement if all its

enhancements are isomorphic in Hqe. On the other hand, there are stronger versions of the notion

of uniqueness of dg enhancements.

Definition 1.16. An algebraic triangulated category T has a strongly unique (respectively, semi-

strongly unique) enhancement if moreover F can be chosen so that there is an isomorphism of exact

functors E ∼= E′ ◦H0(F) (respectively, there is an isomorphism E(C) ∼= E′(H0(F)(C)) in T, for every

C ∈ C).

1.2. Enhancements in geometric contexts. For simplicity, we will assume that X is a smooth

projective scheme defined over a field k. These assumptions will be weakened along the paper. We

denote by Qcoh(X) and Coh(X) the abelian categories of quasi-coherent and coherent sheaves

on X. We use the short hand notation Db(X) for Db(Coh(X)).

Category of complexes. Let us first describe a rather general procedure. Assume that A is an

abelian category with the additional requirement that D(A) is a category (notice that this is not

always the case, as pointed out in [37, Section 4.15]).

Now, one can consider the (pretriangulated) full dg subcategory Acdg(A) of Cdg(A) whose

objects are the acyclic complexes. Then, in view of Example 1.14 (ii) and (iii), the dg quotient

category Ddg(A) := Cdg(A)/Acdg(A) is an enhancement of D(A). Clearly, one could also work

with the dg categories Cb
dg(A) and Acbdg(A) of bounded complexes, obtaining an enhancement

Db
dg(A) of Db(A).

In conclusion, Ddg(Qcoh(X)) and Db
dg(Coh(X)), together with the corresponding natural exact

equivalences with D(Qcoh(X)) and Db(X), are enhancements of the latter triangulated categories.
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Injective resolutions. On a smooth projective scheme, one can consider the dg category Inj(X)

of bounded below complexes of injective quasi-coherent sheaves on X with bounded coherent

cohomologies (see, for example, [9]). One can check that Inj(X) is pretriangulated and it is rather

simple to see that there is a natural exact equivalence H0(Inj(X)) ∼= Db(X).

Čech resolutions. For X as above, consider the pretriangulated dg category C(X) of bounded

below complexes of quasi-coherent sheaves on X with bounded and coherent cohomology. Clearly,

Inj(X) is a full dg subcategory of C(X). Let moreover P(X) be the full dg subcategory of C(X)

whose objects are bounded complexes of locally free sheaves of finite rank.

We fix now a finite affine open cover U = {U1, . . . Ur} of X. Thus for any

P := {. . .→ 0→ Pn → . . .→ P j → . . .→ Pn+m → 0 . . .}

in P(X), with m ≥ 0, we can take its Čech resolution ČU (P ). Recall that this resolution is a

complex of quasi-coherent sheaves which are coproducts of sheaves of the form

P jU := i∗i
∗(P j),

where U is the intersection of some of the open subsets in U and i : U ↪→ X is the inclusion.

Define P(U) to be the smallest full pretriangulated subcategory of C(X) containing the Čech

resolutions of all P ∈ P(X). Again, one can show that there is an exact equivalence H0(P(U)) ∼=
Db(X) (see [9, Lemma 5.6]). Moreover, it is not too difficult to show that there is an isomorphism

in Hqe between P(U) and Inj(X).

This construction has been extended and considerably improved in [43]. The expert reader may

also have a look at [57] where the results in [43] have been strengthened.

Dolbeault enhancement. Let us illustrate a more analytic situation. For this, assume that X is

a complex manifold. We can then define a dg category TDol(X) whose objects are the complex

holomorphic vector bundles on X. Given two such vector bundles E1 and E2 we define the complex

of morphism between them as the Dolbeault complex

TDol(X) (E1, E2) := A•(E1, E2),

where Aq(E1, E2) := A0,q(X,Hom(E1, E2)) is the space of (0, q)-forms on X with coefficients in

the holomorphic bundle Hom(E1, E2) of morphisms from E1 to E2. The differential

∂ : Aq(E1, E2)→ Aq+1(E1, E2)

is defined by

∂(ω ⊗ f) := ∂(ω)⊗ f + (−1)qω ⊗ ∂(f)

where ∂(f) := ∂(f)E2 ◦ f − (f ⊗ id) ◦ ∂(f)E1 and ∂Ei is the natural operator induced by the

holomorphic structure on Ei.

It turns out that there is a natural exact equivalence between H0(TDol(X)) and the exact

category of holomorphic vector bundles on X (see, for example, Example 9 in [65, Section 2.3] for

more details). The reader can have a look at Section 3.1 for the definition of exact category.

Of course, one would like to extract from this an enhancement of Db(X). One possibility

would be to take finite locally free resolutions of coherent sheaves and try to imitate the argument

above. Unfortunately, as explained in [8], this is problematic for several reasons. One of them
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is that such locally free resolutions do not always exist (see [68]). Hence, to get an enhancement

of Db(X), we need to take a slightly different perspective. Assume that X is compact and let

A := TDol(X) (OX ,OX) be the dg algebra defined above. According to [8, Definition 2.3.1] one

defines a dg category PA with the property that, by [8, Theorem 4.1.3], we have a natural exact

equivalence H0(PA) ∼= Db(X). It should be noted that here by Db(X) we mean the full subcategory

of D(Mod(OX)) consisting of complexes with bounded and coherent cohomology (which is not

equivalent to Db(Coh(X)), in general).

The objects of PA are pairs (E,E), where E is a finitely generated and projective Z-graded

(right) module over A0 = A0(OX ,OX) which is bounded above and below as a complex. The

additional piece of data E is a C-linear map

E : E ⊗A0 A→ E ⊗A0 A

of total degree 1 such that

E(eω) = E(e⊗ 1)ω + (−1)deg(e)e∂(ω) and E ◦ E(e) = 0,

for all e ∈ E and all ω ∈ A. The reader is encouraged to have a look to [8, Section 2.3] for a

detailed description of the morphisms in PA.

2. Well generated triangulated categories and localizations

In this section, we review some selected material concerning well generated categories. The

focus is on Verdier quotients.

2.1. Well generated triangulated categories. In this section we review some basic facts about

well generated triangulated categories. The interested reader can find a very nice survey in [37],

where Neeman’s original theory (see [48]) is revisited with the point of view of [36].

In this section, we assume T to be a triangulated category with small coproducts. For a cardinal

α, an object S of T is α-small if every map S →
∐
i∈I Xi in T (where I is a small set) factors

through
∐
i∈J Xi, for some J ⊆ I with |J | < α. We are then ready to state the main definition.

Definition 2.1. The category T is well generated if there exists a small set S of objects in T

satisfying the following properties:

(G1) An object X ∈ T is isomorphic to 0, if and only if T(S,X[j]) = 0, for all S ∈ S and all

j ∈ Z;

(G2) For every small set of maps {Xi → Yi}i∈I in T, the induced map T(S,
∐
iXi)→ T(S,

∐
i Yi)

is surjective for all S ∈ S, if T(S,Xi)→ T(S, Yi) is surjective, for all i ∈ I and all S ∈ S;

(G3) There exists a regular cardinal α such that every object of S is α-small.

Recall that a cardinal α is called regular if it is not the sum of fewer than α cardinals, all of

them smaller than α. A full triangulated subcategory of T is α-localizing if it is closed under α-

coproducts and under direct summands (the latter condition is automatic if α > ℵ0). By definition,

an α-coproduct is a coproduct of strictly less than α summands. Notice that a full triangulated

subcategory of T is localizing if and only if it is α-localizing for every regular cardinal α.

When the category T is well generated and we want to put emphasis on the cardinal α in (G3)

and on S, we say that T is α-well generated by the set S. In this situation, following [36], we
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denote by Tα the smallest α-localizing subcategory of T containing S. It is explained in [36, 48]

that the category Tα does not depend on the choice of the set S which well generates T.

The objects in Tα are called α-compact. Thus we will sometimes say that T is α-compactly

generated by the set of α-compact generators S. A very interesting case is when α = ℵ0. Indeed,

with this choice, Tα = Tc, the full triangulated subcategory of compact objects in T. Recall that

an object C in T is compact if the functor T(C,−) commutes with small coproducts. Notice that

the compact objects in T are precisely the ℵ0-small ones.

It is very easy to see that T is ℵ0-compactly generated by a small set S ⊆ Tc if (G1) holds.

Indeed (G2) and (G3) are automatically satisfied. In this situation, we simply say that T is

compactly generated by S.

Remark 2.2. There is yet another notion of generation which is of interest in this paper. Indeed,

given a small set S of objects in T, we say that S generates T if T is the smallest localizing

subcategory of T containing S. If T is a well generated triangulated category, then a small set S

of objects in T satisfies (G1) if and only if S generates T (see, for example [50, Proposition 5.1]).

Remark 2.3. Following [48], we say that a small set of objects S in a triangulated category T

with small coproducts satisfies (G4) if the following condition holds true.

(G4) For any small set of objects {Xi}i∈I in T and any map f : S →
∐
i∈I X with S ∈ S, there

are objects {Si}i∈I of S and maps fi : Si → Xi and g : S →
∐
i∈I Si making the diagram

S
f
//

g ""

∐
i∈I Xi

∐
i∈I Si.

∐
fi

OO

commutative.

By [36, Lemma 4], if S is a small set of α-small objects which is closed under α-coproducts, for

some regular cardinal α, then S satisfies (G2) if and only if it satisfies (G4). It is an easy exercise

to show that (G4) implies (G2) in complete generality.

It is worth pointing out that (G1), (G3) and (G4) provide the original axiomatization for well

generated triangulated categories given in [48].

Example 2.4. Clearly, not all triangulated categories which are closed under small coproducts

are well generated. This is the case of the homotopy category K(Mod(Z)) of the abelian category

Mod(Z) of abelian groups. This is proved in [48, Appendix E].

2.2. Taking Verdier quotients. Given a triangulated category T with small coproducts and a

localizing subcategory L of T, the Verdier quotient T/L might not have small Hom-sets. But if it

has, then T/L is a category (according to our convention) with small coproducts and the natural

quotient functor

Q : T −→ T/L

commutes with small coproducts by [48, Corollary 3.2.11]. Hence, in view of Theorem 5.1.1 and

Proposition 2.3.1 in [37], the exact functor Q has a fully faithful right adjoint QR. Obviously, if

T/L is well generated then, by definition, it has small Hom-sets.
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The behavior of well generation under taking Verdier quotients is clarified by the following

result due to Neeman (see [48] but also [37, Theorem 7.2.1]). It generalizes the seminal result [46,

Theorem 2.1].

Theorem 2.5. Let T be a well generated triangulated category and let L be a localizing subcategory

which is generated by a small set of objects. Fix a regular cardinal α such that T is α-compactly

generated and L is generated by α-compact objects. Then

(i) The localizing subcategory L and the quotient T/L are α-compactly generated;

(ii) Lα = L ∩Tα;

(iii) The quotient functor Q : T→ T/L sends Tα to (T/L)α;

(iv) The induced functor F : Tα/Lα → (T/L)α if fully faithful and identifies (T/L)α with the

idempotent completion of Tα/Lα. If α > ℵ0, then F is an equivalence.

When we say that (T/L)α is the idempotent completion of Tα/Lα we mean that any object in

(T/L)α is isomorphic to a summand of an object in Tα/Lα.

Example 2.6. Let G be a Grothendieck category. Recall that this means that G is an abelian

category which is closed under small coproducts, has a small set of generators S and the direct

limits of short exact sequences are exact in G. The objects in S are generators in the sense that,

for any C in G, there exists an epimorphism S � C in G, where S is a small coproduct of objects

in S. Without loss of generality, by taking the coproduct of all generators, we can assume that G

has a single generator G.

In this case, we can take A := G(G,G) to be the endomorphism ring of G. By [2, Proposition

5.1] (see also [37, Example 7.7]), there is an exact equivalence D(G) ∼= D(Mod(A))/L, for a

localizing subcategory L of D(Mod(A)). Here Mod(A) denotes the category of right A-modules.

It was observed in [45, Theorem 0.2] that D(G) is well generated.

We can use this to show that there are triangulated categories which are well generated but not

compactly generated. The following example is due to Neeman.

Example 2.7 ([45]). Let X be a non-compact connected complex manifold of dimension greater

than or equal to 1. Consider the Grothendieck category Sh(X) of sheaves of abelian groups on X.

The derived category D(Sh(X)) is well generated by Example 2.6. But, on the other hand, by [45,

Theorem 0.1], we have that D(Sh(X))c = {0} and thus D(Sh(X)) is not compactly generated.

We want now to discuss a curious phenomenon that marks a difference between compactly

generated and α-compactly generated triangulated categories, for α > ℵ0. More precisely, we

exhibit a triangulated category T with a set S of compact generators and a Verdier quotient

Q : T→ T/S such that Q(S) satisfies (G1) and (G3) but not (G2).

Let T be a well generated triangulated category and let S be a set of α-compact generators for

T. Assume further that L is a localizing subcategory of T which is generated by a small set of

α-compact objects.

Proposition 2.8. For T, S and L as above, the set Q(S) satisfies (G1) and (G3) in T/L. In

particular, if α = ℵ0, then Q(S) compactly generates T/L.
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Proof. By Theorem 2.5, the Verdier quotient T/L is α-compactly generated. Hence, the fact that

(G1) and (G3) hold true follows from [17, Proposition 1.7]. By the discussion in Section 2.1, the

set Q(S) satisfies (G2) as well, if α = ℵ0. �

On the other hand, if α > ℵ0, then we cannot expect that Q(S) satisfies (G2). To see this,

consider a commutative non-noetherian ring R and take the Grothendieck category C := Mod(R)

of R-modules. By Example 2.6, the triangulated category D(C) is well generated.

By [22], we have a filtration

(2.1) C =
⋃
α

Cα,

where α runs over all sufficiently large regular cardinals and Cα is the full subcategory of C

consisting of α-presentable objects. Recall that an object A in C is α-presentable if the functor

C(A,−) : C → Mod(k) preserves α-filtered colimits (see [37, Section 6.4], for the definition of

α-filtered colimit).

It is explained in the proof of [35, Theorem 5.10] that D(C) can be realized as a Verdier

quotient Q : D(Mod(Cα)) → D(C) such that the kernel of Q is generated by a small set of α-

compact objects, for all sufficiently large regular cardinals α. Moreover, it is an easy exercise to

show that D(Mod(Cα)) is compactly generated by the set S of objects in the image of YCα : Cα →
Mod(Cα) ⊂ D(Mod(Cα)).

Remark 2.9. If Q is the quotient functor mentioned above, then it is a general fact that the

composition Q ◦ YCα is isomorphic to the inclusion Cα ⊆ C ⊂ D(C) (see [17, Corollary 5.3]).

Hence Q(S) can be identified with Cα.

By Proposition 2.8 the objects of Q(S) satisfy (G1) and (G3). On the other hand, we have the

following.

Proposition 2.10. In the above setting and for a sufficiently large regular cardinal α, the objects

in Q(S) do not satisfy (G2).

Proof. For a contradiction, assume that Q(S) satisfies (G2). Let then {Xi}i∈I be a small set of

objects in D(C) with the property that D(C) (S,Xi) = 0, for all S ∈ Q(S) and all i ∈ I. Then we

claim that D(C) (S,
∐
iXi) = 0, for all S ∈ S.

Indeed, it is obvious that the set of maps {0→ Xi}i∈I is such that the induced maps

D(C) (S, 0) −→ D(C) (S,Xi) ∼= 0

are surjective, for all S ∈ Q(S). Since Q(S) satisfies (G2), the induced map

D(C) (S, 0) −→ D(C)
(
S,
∐
i

Xi

)
is surjective for all S ∈ Q(S) and so D(C) (S,

∐
iXi) = 0, for all S ∈ Q(S).

Take now a small set {Ji}i∈I of injective R-modules whose direct sum J is not injective. Note

that such a set exists by Bass–Papp Theorem (see [19]) which states that every small coproduct

of injective R-modules is injective if and only if R is noetherian. As a consequence, there is an

R-module M such that D(C)(M,J [1]) 6= 0.
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Let α be a large enough regular cardinal so that M ∈ Cα. Such an α exists because of (2.1).

Then, for every i ∈ I and every N ∈ Cα ⊆ C, we have D(C)(N, Ji[1]) = 0, because Ji is an

injective module. By the discussion above, and taking into account Remark 2.9, this would imply

D(C)(N, J [1]) = 0, for all N ∈ Cα. But M ∈ Cα and this is a contradiction. �

If C is a Grothendieck category then there is a natural choice for a set of α-compact generators.

Indeed, if α is a sufficiently large regular cardinal, then, by [35, Theorem 5.10], we have a natural

exact equivalence

(2.2) D(C)α ∼= D(Cα)

and Cα is an abelian category. As an easy consequence of [35, Corollary 5.11], the triangulated

subcategory D(C)α forms a set of α-compact generators for D(C). By Proposition 2.10, the

category D(C)α cannot be replaced by Cα. Nevertheless, the following result shows that one can

get a set of α-compact generators by taking a full subcategory of D(C)α.

Proposition 2.11. Let C be a Grothendieck category and take a sufficiently large regular cardinal

α. Then D-(Cα) is a set of α-compact generators for D(C).

Proof. Since D-(Cα) is a full subcategory of D(Cα) and the latter satisfy (G3), then the former

satisfies (G3) as well. To prove (G1), let X ∈ D(C) be such that

(2.3) D(C)(A′, X) = 0,

for all A′ ∈ D-(Cα). On the other hand, if A is any complex in D(Cα), then, by [63, Tags 093W

and 0949], we have an exact triangle∐
i∈Z

τ≤iA→
∐
i∈Z

τ≤iA→ A.

Since for α sufficiently large Cα is an abelian category, we have τ≤iA ∈ D-(Cα) and

D(C)
(∐
i∈Z

τ≤iA,X
)
∼=
∏
i∈Z

D(C)
(
τ≤iA,X

)
∼= 0,

by (2.3). Hence D(C)(A,X) ∼= 0, for all A ∈ D(Cα). Since we observed above that the objects in

D(Cα) satisfy (G1), we conclude that X ∼= 0.

We know that D(Cα) satisfies (G2) and thus, by Remark 2.3, it satisfies (G4). Take a small set

of objects {Xi}i∈I in T and a map f : S →
∐
i∈I Xi with S ∈ D-(Cα). Clearly, there are objects

{Si}i∈I of D(Cα) and maps fi : Si → Xi making the diagram

S
f
//

g ""

∐
i∈I Xi

∐
i∈I Si.

∐
fi

OO

commutative, for some g : S →
∐
i∈I Si. Since S is bounded above, the morphism g factors through

τ≤n
(∐

i∈I Si
) ∼= ∐

i∈I τ≤n(Si), for some n ∈ Z. This implies that D-(Cα) satisfies (G4). Again by

Remark 2.3, the triangulated category D-(Cα) satisfies (G2). �
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3. Bad news: enhancing triangulated categories

In this section we explain the known examples of triangulated categories without enhancements

or with non-unique enhancements. In the algebro-geometric setting it will be explained later that

the quite disheartening scenery pictured in this section cannot appear.

3.1. Preliminaries: algebraic triangulated categories. According to [52], an exact category

is an additive category A with a distinguished class of sequences

(3.1) 0 // A
i // B

p
// C // 0,

which are called exact and satisfy some axioms which we do not need to list here. In particular i is

a kernel of p and p is a cokernel of i. For example, every abelian category, and more generally every

full and extension-closed subcategory of an abelian category, is an exact category with respect to

the class of short exact sequences. In fact it can be proved that every small exact category is of

this form, up to equivalence (see, for example, [34, Section 7.7]). Many common constructions of

homological algebra can be extended from abelian to exact categories. For instance, an object A

in an exact category A is injective (respectively projective) if the functor A(−, A) (respectively

A(A,−)) preserves exact sequences. Then one says that A has enough injectives (respectively

enough projectives) if for every object A (respectively C) of A there is an exact sequence as in

(3.1) such that B is injective (respectively projective).

A Frobenius category is an exact category with enough injectives, enough projectives and such

that an object is injective if and only if it is projective. The stable category S(F) of a Frobenius

category F has the same objects as F, whereas morphisms are stable equivalence classes of mor-

phisms of F. Here two morphisms f, g : A → B of F are defined to be stably equivalent if f − g
factors through an injective (or projective) object. There is a natural way to put a triangulated

structure on S(F). Indeed, the shift is defined by choosing, for every object A, an exact sequence

0 // A // I // A[1] // 0

in F with I injective. Moreover, the distinguished triangles are those isomorphic to the images in

S(F) of the sequences in F of the form (i, p, e), where (i, p) defines an exact sequence as in (3.1)

and e is part of a commutative diagram

0 // A

id
��

i // B

��

p
// C

e
��

// 0

0 // A // I // A[1] // 0.

Proposition 3.1. The following conditions are equivalent for a triangulated category T.

(1) There is an exact and fully faithful functor T→ S(F) for some Frobenius category F.

(2) There is an exact equivalence T→ S(F) for some Frobenius category F.

(3) There is an exact and fully faithful functor T→ K(A) for some additive category A.

(4) T is algebraic.
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Proof. If F is a Frobenius category and F : T→ S(F) is an exact and fully faithful functor, let F′

be the full subcategory of F whose objects are those in the essential image of F (when regarded as

objects of S(F)). It is easy to see that also F′ is a Frobenius category, hence (1) implies (2).

On the other hand, let Kai(F) be the full subcategory of K(F) whose objects are acyclic com-

plexes with injective components. It is not difficult to prove that there is an exact equivalence

Kai(F)→ S(F) defined on objects by C 7→ Z0(C). This shows that (2) implies (3).

As Cdg(A) is an enhancement of K(A) for every additive category A by Example 1.14 (iii), it

is clear that (3) implies (4).

If C is an enhancement of T, then H0(YC
dg) : H0(C) → H0(dgMod(C)) is an exact and fully

faithful functor. Hence the fact that (4) implies (1) follows easily from [32, Lemma 2.2], where it is

proved that Z0(dgMod(C)) is a Frobenius category such that S(Z0(dgMod(C))) = H0(dgMod(C)).

�

Remark 3.2. It is clear that any full triangulated subcategory S of an algebraic triangulated

category T is algebraic. If the quotient T/S is a category in our sense, then, by Example 1.14 (ii),

it is algebraic as well.

The following concerns a sort of converse of the above remark.

Question 3.3. Let S be a full triangulated subcategory of a triangulated category T. Assume

that S and T/S are algebraic. Is T algebraic as well?

Example 3.4. If A is an abelian category such that D(A) is a category, then, by the discussion

in Section 1.2 (see also Remark 3.2), the triangulated category D(A) is algebraic. One instance

where this is certainly true is when A is a Grothendieck category. Indeed, in this situation, D(A)

is well generated by Example 2.6. On the other hand, in this case there is an exact equivalence

between D(A) and the full subcategory of K(A) with objects the h-injective complexes (see [62]).

Recall that I ∈ K(A) is called h-injective (or K-injective, as in [62]) if K(A)(A, I) = 0 for every

acyclic complex A ∈ K(A). It follows that, when A is a Grothendieck category, a more explicit

enhancement of D(A) is given by the full dg subcategory of Cdg(A) with objects the h-injective

complexes. Clearly, the full subcategory D(A)c of D(A) is algebraic as well.

This applies, in particular, when A = Qcoh(X) and X is an algebraic stack. Under additional

assumptions on X (see Corollary 5.6), D(Qcoh(X))c is the category Perf (X) of perfect complexes

on X.

3.2. Counterexample to the existence of dg enhancements. We start by highlighting the

following construction inspired by algebraic topology. A spectrum is a sequence E of pointed

topological spaces En and pointed continuous maps σn : ΣEn → En+1, called structural morphisms,

with an additional property which we describe below. For a topological space X with basepoint

x0, ΣX stands for the reduced suspension of X, i.e. the pointed topological space obtained from

X × [0, 1] by collapsing X × {0} and X × {1} to two different points and further collapsing

{x0}× [0, 1] to a point which is then the basepoint of ΣX. More precisely, the reduced suspension

defines a functor Σ in the category of topological spaces with a right adjoint Ω. Indeed, for a

topological space X, we denote by ΩX the loop space of X. We then require that σn becomes a

homeomorphism under this adjunction.
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Example 3.5. If we take En to be the n-dimensional (pointed) sphere Sn with the obvious

identification map ΣSn → Sn+1, we get the so called sphere spectrum.

A morphism of spectra E → F is a sequence of pointed continuous maps En → Fn strictly

compatible with the structural homeomorphisms. Denote by Spectra the category of spectra.

The homotopy groups of a spectrum E are the groups

πn(E) := colim
i≥max{0,−n}

πn+i(Ei),

where the colimit is computed with respect to the natural maps

πn+i(Ei)→ πn+i+1(ΣEi) ∼= πn+i+1(Ei+1).

Now, one can check that the above composition of morphisms is actually an isomorphism, for

i ≥ 0 and n + i ≥ 0 (see [70, Definition 10.9.4]). In other words, we have a natural isomorphism

πn(E) ∼= πn+i(Ei), for i ≥ 0 and n+ i ≥ 0.

A morphism between spectra is a weak equivalence if it induces an isomorphism on the homotopy

groups. As it is customary, the stable homotopy category Ho(Spectra) is obtained from the

category Spectra by formally inverting the weak equivalences. Notice that Spectra can be seen

as a model category and Ho(Spectra) is its homotopy category (see Remark 1.6). It is well-known

that Ho(Spectra) is a Z-linear triangulated category (see [1, 51]).

The following argument is taken from [34, Section 7.6].

Proposition 3.6. The triangulated category Ho(Spectra) is not algebraic.

Proof. By Proposition 3.1 it is enough to show that there is no exact and fully faithful functor

F : Ho(Spectra)→ K(A),

where A is an additive category.

Suppose that such a functor exists and let S ∈ Ho(Spectra) be the sphere spectrum defined in

Example 3.5. Let moreover S′ be an object sitting in a distinguished triangle

S
2·idS // S // S′

in Ho(Spectra). It is possible to show, using the Steenrod operations, that 2 · idS′ 6= 0 (see, for

example, [58]).

On the other hand, let X := F (S) and X ′ := F(S′). As F is exact, X ′ is isomorphic in K(A) to

the mapping cone X ′′ of 2 · idX . It is now a simple exercise to show that the induced morphism

2 · idX′′ of complexes is null-homotopic. Hence 2 · idX′ = 0 in K(A). This contradicts the fact that

F is faithful. �

Remark 3.7. A triangulated category T is topological if there is an exact equivalence between T

and the homotopy category of a stable cofibration category C (see [60] for a detailed discussion).

In this case C can be regarded as a sort of ‘topological enhancement’ of T. It is important to

observe that every algebraic triangulated category is topological (see [61, Proposition 3.2]), but the

converse is not true. Indeed, as the reader may suspect, the triangulated category Ho(Spectra) is

topological. On the other hand, the main result of [44] shows that there is a Z-linear triangulated

category which is not topological.
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Nevertheless, the following is still a challenging problem.

Question 3.8. Is there a triangulated category, linear over a field k, which is not algebraic?

3.3. Counterexample to the uniqueness of dg enhancements. We assume k = Z. If R

is a quasi-Frobenius ring (meaning that Mod(R) is a Frobenius category), then Mod(R) has a

model structure defined as follows (see [21] or [26, Section 2.2]): cofibrations are monomorphisms,

fibrations are epimorphisms and weak equivalences are morphisms which become isomorphisms in

S(Mod(R)). Moreover, the homotopy category Ho(Mod(R)) coincides with S(Mod(R)).

Let p be a prime number and Fp = Z/pZ the field with p elements. It is well known that R1 :=

Z/p2Z and R2 := Fp[ε] (where ε2 = 0) are quasi-Frobenius rings (in both cases a module is injective

if and only if it is projective if and only if it is free). We denote by Tp the category Mod(Fp) endowed

with the triangulated structure defined by [1] = id (and, necessarily, distinguished triangles given

by triangles inducing long exact sequences). We recall the following important result (see [56],

[21]).

Theorem 3.9. The model categories Mod(R1) and Mod(R2) are not Quillen equivalent, but there

is an exact equivalence between Ho(Mod(Ri)) and Tp, for i = 1, 2.

Recall that a Quillen adjunction between two model categories C1 and C2 is given by two

adjoint functors F : C1 � C2 : G such that F preserves cofibrations and trivial cofibrations (or,

equivalently, G preserves fibrations and trivial fibrations). By definition, a trivial (co)fibration is

a morphism which is both a (co)fibration and a weak equivalence. A Quillen adjunction as above

induces two adjoint functors LF : Ho(C1) � Ho(C2) : RG between the homotopy categories, and

it is called a Quillen equivalence if LF (or RG) is an equivalence of categories. Finally, two model

categories are Quillen equivalent if they are related by a zigzag of Quillen equivalences.

Back to the statement of Theorem 3.9, it is easy to see that there are exact equivalences between

the homotopy categories and Tp. On the other hand, the fact that the two model categories are not

Quillen equivalent is a deep result, whose original proof in [56] uses rather involved K-theoretical

computations. Also the simpler proof in [21] is far from trivial and uses homotopy endomorphism

ring spectra.

Denoting by Cai
dg(Mod(Ri)) the full dg subcategory of Cdg(Mod(Ri)) with objects the acyclic

complexes with injective components (for i = 1, 2), we obtain the following counterexample to the

uniqueness of enhancements (mentioned in [59, Remark 2.3]).

Corollary 3.10. The pretriangulated dg categories Cai
dg(Mod(R1)) and Cai

dg(Mod(R2)) are not

isomorphic in Hqe, but both of them are enhancements of Tp.

Proof. For i = 1, 2, Cai
dg(Mod(Ri)) is naturally an enhancement of Kai(Mod(Ri)). Since there

are exact equivalences Kai(Mod(Ri))
∼−→ S(Mod(Ri)) (see the proof of Proposition 3.1) and

S(Mod(Ri)) ∼= Ho(Mod(Ri))
∼−→ Tp (by Theorem 3.9), it follows that Cai

dg(Mod(Ri)) is an en-

hancement of Tp, for i = 1, 2.

Assume now that Cai
dg(Mod(R1)) ∼= Cai

dg(Mod(R2)) in Hqe. Let Ci ∈ Cai
dg(Mod(Ri)) be the

complex of Ri-modules with Ri in each degree and whose differential is multiplication by p for

i = 1 and by ε for i = 2. It is not difficult to show that any equivalence between Kai(Mod(Ri))
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and Tp must send Ci to Fp, up to isomorphism (this can be seen, for instance, by checking

that Kai(Mod(Ri))(Ci, Ci) is a one-dimensional Fp-vector space). Hence C1 corresponds to C2,

up to isomorphism, in the equivalence between Kai(Mod(R1)) and Kai(Mod(R2)) induced by the

given isomorphism in Hqe. Denoting by Ci the full dg subcategory of Cai
dg(Mod(Ri)) whose

only object is Ci (so that Ci is actually a dg algebra), it follows that C1
∼= C2 in Hqe. This

implies that Z0(dgMod(C1)) and Z0(dgMod(C2)) with their standard model structures (namely,

weak equivalences are quasi-isomorphisms and fibrations are surjections) are Quillen equivalent

(see, for instance, [66, Corollary 3.4]). On the other hand, by [21, Theorem 3.5], for i = 1, 2

there is a Quillen equivalence between Z0(dgMod(Ci)) and Mod(Ri) (taking into account that the

complex of Ri-modules denoted by P•M in [21] is just Ci when M = Fp as Ri-module). Thus we

conclude that Mod(R1) and Mod(R2) are Quillen equivalent, contradicting Theorem 3.9. Therefore

Cai
dg(Mod(R1)) 6∼= Cai

dg(Mod(R2)) in Hqe. �

Remark 3.11. The above argument can be clearly adapted to prove that also the full (triangu-

lated) subcategory T′p of Tp whose objects are finite dimensional Fp-vector spaces does not admit

a unique enhancement (the two different enhancements are of course given by the full dg subcat-

egories of Cai
dg(Mod(Ri)) whose objects correspond to those of T′p under the equivalence between

Kai(Mod(Ri)) and Tp). Setting X := Spec(R2), it is easy to see that there is an exact equivalence

between T′p and Db(X)/Perf (X). This is easy to show using the classification of indecomposable

objects in Db(X) (see [3] and Remark 6.4 for the definition of indecomposable objects). As Db(X)

and Perf (X) have a unique enhancement (see Remark 5.8 and Corollary 5.6, respectively), this

example proves that the property of admitting a unique enhancement is not stable under passage

to Verdier quotients.

Remark 3.12. The category Tp is not only Z-linear, but also Fp-linear. Clearly the same is true

for Cai
dg(Mod(R2)), but not for Cai

dg(Mod(R1)), and for this reason we had to take k = Z.

As in Question 3.8, it makes then sense to formulate the following.

Question 3.13. Are there examples of triangulated categories, linear over a field k, with non-

unique k-linear enhancement?

Let S be a full triangulated subcategory of a triangulated category T . We can then formulate

the following additional question.

Question 3.14. Does S have unique enhancements if T does? What if S is a localizing (in case

T has small coproducts) or an admissible subcategory of T?

Recall that a full triangulated subcategory S of a triangulated category T is admissible if the

inclusion functor S ↪→ T has right and left adjoints.

Example 3.15. There is a rather simple series of geometric examples where the question above

can be answered positively, in the case of admissible subcategories. Indeed, let C be a smooth

projective curve over an algebraically closed field k and let Db(C) be the bounded derived category

of coherent sheaves on C. Let S be an admissible subcategory of Db(C).

It is known (see, for example, the proof of [12, Proposition 6.11]) that, if S is not trivial or

the whole Db(C), then C = P1 and there is an exact equivalence S ∼= Db(Spec(k)). As a simple
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consequence of what we will prove later (see Corollary 5.6), we conclude that S has a unique

enhancement.

4. Uniqueness of enhancements in the unbounded case

In this section we start analyzing the positive side of the story concerning the enhancements of

triangulated categories. In particular, we focus on the enhancements of the unbounded derived

category of a Grothendieck category. The result in this context follows almost directly from a

rather general criterion which we discuss first. We spend some time explaining some geometric

applications and some open problems.

4.1. The statement. All the results about the uniqueness of enhancements for the unbounded

derived categories which will be discussed in this paper are simple consequences of a rather abstract

result. But for this, we need the following.

Definition 4.1. Let T be a triangulated category with small coproducts. An exact functor

F : D(A)→ T is right vanishing if it preserves small coproducts and there exists a full subcategory

R of T with the following properties:

(R1) R is closed under small coproducts;

(R2) R is closed under extensions (meaning that, if X → Y → Z is a distinguished triangle in

T with X,Z ∈ R, then Y ∈ R, as well);

(R3) F(YA(A))[k] ∈ R for every A ∈ A and every integer k < 0;

(R4) T
(
F(YA(A)), R

)
= 0 for every A ∈ A and every R ∈ R.

Here we can regard YA as a functor A→ D(A) thanks to the natural identification D(Mod(A)) ∼=
D(A). The statement is as follows.

Theorem 4.2 ([17, 18], Theorem C). Let A be a small category which we consider as a dg category

concentrated in degree zero and let L be a localizing subcategory of D(A) such that:

(a.1) The quotient D(A)/L is a well generated triangulated category;

(b.1) The quotient functor Q : D(A)→ D(A)/L is right vanishing.

Then D(A)/L has a unique enhancement.

Theorem 4.2 appeared in [17] with (b.1) replaced by the weaker assumption

D(A)/L

(
Q(YA(A)),

∐
i∈I

Q(YA(Ai))[ki]

)
= 0,

for all A,Ai ∈ A (with I a small set) and all integers ki < 0. The original proof contains a gap

and the statement has been changed to the one above in [18] where a complete proof is provided.

It should be noted that the statement of Theorem 4.2 and its proof (both the old one in [17] and

the new one in [18]) are very much inspired by the following weaker result due to Lunts and Orlov.

Theorem 4.3 ([42], Theorem 1). Let A be a small category which we consider as a dg category

concentrated in degree zero and let L be a localizing subcategory of D(A) such that the Verdier

quotient D(A)/L is a category and:

(a.2) The functor Q sends D(A)c to (D(A)/L)c;
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(b.2) D(A)/L
(
Q(YA(A)),Q(YA(A′))[k]

)
= 0, for all A,A′ ∈ A and all integers k < 0.

Then D(A)/L has a unique enhancement.

A comparison between the two results is in order here.

Lemma 4.4. Let A be a small category and let L be a localizing subcategory of D(A) such that

the Verdier quotient D(A)/L is a category and (a.2) holds. Then D(A)/L is compactly generated

and so (a.1) holds true.

Proof. The objects in YA(A) form a set of compact generators for D(A). Thus, we just need to

show that, under the hypotheses, the category D(A)/L is compactly generated by the compact

objects in Q◦YA(A). For this, assume that B in D(A)/L is such that D(A)/L(Q(YA(A)), B[j]) =

0, for all A ∈ A and all integers j ∈ Z. As Q has a fully faithful right adjoint QR (see the discussion

at the beginning of Section 2.2), we have

D(A)/L(Q(YA(A)), B[j]) ∼= D(A)(YA(A),QR(B)[j]) = 0,

for all A ∈ A and all integers j ∈ Z. Since YA(A) is a set of compact generators for D(A), we

have QR(B) ∼= 0. Hence B ∼= 0. �

Let us now observe that (a.2) and (b.2) together imply (b.1). Indeed, it is easy to see that Q

is right vanishing, taking R to be the full subcategory of D(A)/L consisting of those R such that

D(A)/L
(
Q(YA(A)), R

)
= 0 for every A ∈ A. Hence Theorem 4.2 implies Theorem 4.3.

To conclude that the first result really improves the second one, we just need to exhibit a

triangulated category of the form D(A)/L, with A and L as above, which satisfies (a.1) and (b.1)

but not (a.2).

To this end, consider the triangulated category D(G), with G a Grothendieck category. We

know that there is an exact equivalence

(4.1) D(G) ∼= D(Mod(A))/L,

where A is the endomorphism ring of a generator G of G, and that the quotient category is well

generated (see Example 2.6). As D(Mod(A)) ∼= D(A), where we think of A as a category with one

object, we see that (a.1) holds. As explained in Remark 2.9, up to isomorphism, Q(YA(A)) is sent

precisely to G under (4.1). Thus, since there are no negative Hom’s between objects of G, (b.2)

holds. Moreover, take R to be the full subcategory of D(A)/L ∼= D(Mod(A))/L whose objects are

sent, under the equivalence (4.1), to objects of D(G) with cohomologies in strictly positive degree.

With this choice, Q is right vanishing and (b.1) holds true. On the other hand, (a.2) does not

hold, by Lemma 4.4, whenever D(G) is not compactly generated (for instance, when G = Sh(X)

as in Example 2.7).

4.2. The idea of the proof of Theorem 4.2. Roughly speaking, the proof of Theorem 4.2

consists of two main steps, which are very much inspired by the approach in [42], with some major

changes. The first one is of pure dg flavor and makes use both of (a.1) and (b.1). The second one,

much more technical, has a triangulated nature and uses the hypothesis (b.1). Here we will mainly

concentrate on the first step.
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Defining the functor. Let E : D(A)/L→ H0(C) be an exact equivalence, for some pretriangulated

dg category C and take the composition

H : A
YA
// D(A)

Q // D(A)/L
E // H0(C)

of functors. Let us denote by B0 the full dg subcategory of C such that the objects of B0 are

those in the image of H. Hence we can clearly regard H as a dg functor A → H0(B0), where A

and H0(B0) are thought of as dg categories concentrated in degree zero.

The truncation. Let τ≤0(B0) be the dg category with the same objects as B0, while

τ≤0(B0) (B1, B2) := τ≤0 (B0 (B1, B2)) .

for every B1 and B2 in B0. There are obvious dg functors τ≤0(B0)→ H0(B0) and τ≤0(B0)→ B0.

Lemma 4.5. The dg functor τ≤0(B0)→ H0(B0) is a quasi-equivalence.

Proof. It is enough to show that H0(C) (B1, B2[j]) = 0, for all B1, B2 ∈ B0 and all j < 0. This

follows from (b.1) and the fact that E is an equivalence. �

In conclusion, we get a quasi-functor H0(B0)→ B0.

Using that D(A)/L is well generated. Since E is an exact equivalence and we assume (a.1), we

have that H0(C) is a well generated triangulated category. By [17, Theorem 2.8], there exist a

regular cardinal α and a small and full dg subcategory B of C containing B0 such that H0(B) is

closed under α-coproducts and an exact equivalence

(4.2) Y′ : H0(C)→ Dα(B)

which is induced by the natural quasi-functor C→ h-proj(B) (see Example 1.10), whose image is

actually contained in the enhancement h-projα(B) of Dα(B).

Let us give a bit more details about this. Recall that, following [50], we denote by Dα(B) the

α-continuous derived category of B. By definition, it is the full subcategory of D(B) with objects

those M ∈ dgMod(B) such that the natural map

(H∗(M))
(∐
i∈I

Ci

)
−→

∏
i∈I

(H∗(M))(Ci)

(where the coproduct is intended in H0(B)) is an isomorphism, for all objects Ci ∈ B, with

|I| < α. Clearly, Dα(B) has an obvious enhancement h-projα(B) given as the full dg subcategory

of h-proj(B) whose objects correspond to those in Dα(B), under the equivalence H0(h-proj(B)) ∼=
D(B). Analyzing more carefully [50] (see [17, Section 2.2]), one sees that there is a natural quasi-

functor

(4.3) h-proj(B)→ h-projα(B).

In conclusion, we compose H : A → H0(B0) with the quasi-functor H0(B0) → B0 and the

natural inclusion B0 ↪→ B. This provides a quasi-functor H′ : A → B which induces yet another

quasi-functor

G : h-proj(A)
Ind(H′)

// h-proj(B) // h-projα(B),
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where the arrow on the right is just (4.3). By passing to the homotopy categories, we finally have

also the exact functor

F := H0(G) : D(A) −→ Dα(B).

The triangulated side of the story. Once the quasi-functor is constructed, there is some hard work

to be done to solve two a priori non-trivial issues involving F.

(1) One first proves that F factors through the quotient D(A)→ D(A)/L. This is done in [17,

Lemma 4.4] and the proof heavily depends on the assumption (b.1). The output is another

exact functor

F′ : D(A)/L −→ Dα(B)

which is again induced by a quasi-functor h-proj(A)/L′ → h-projα(B). Here L′ is the full dg

subcategory of h-proj(A) corresponding to L under the equivalence H0(h-proj(A)) ∼= D(A).

(2) Finally, one proves that F′ is an equivalence (see [17, Proposition 4.5]). The details cannot

be provided here. One key feature that we would like to bring to the attention of the reader

is that the objects in the image S of the exact functor F′ ◦Q ◦YA do not form, in general,

a set of α-compact generators for Dα(B) (see the discussion before Proposition 2.10). But

the objects of S generate Dα(B) (see Proposition 2.8 and Remark 2.2).

At this point, one has an invertible quasi-functor h-proj(A)/L′ → h-projα(B) which, composed

with the inverse of the invertible quasi-functor inducing (4.2), yields an invertible quasi-functor

h-proj(A)/L′ → C. Hence the dg enhancement C is isomorphic in Hqe to the ‘standard’ dg

enhancement h-proj(A)/L′.

4.3. The applications. The last paragraph of Section 4.1 shows that Theorem 4.2 has the fol-

lowing consequence.

Theorem 4.6 ([17], Theorem A). If G is a Grothendieck category, then D(G) has a unique

enhancement.

The geometric implications of this result are then easy to guess:

• If X is an algebraic stack, the triangulated category D(Qcoh(X)) has a unique enhance-

ment (see [17, Corollary 5.4]);

• If, in addition, X is quasi-compact and with quasi-finite affine diagonal (this is true, in

particular, if X is a quasi-compact and semi-separated scheme), then the full triangulated

subcategory Dqc(X) of D(Mod(OX)) consisting of complexes with quasi-coherent cohomol-

ogy has a unique enhancement (see, again, [17, Corollary 5.4]);

• If X is scheme and α is an element in the Brauer group Br(X) of X, then the twisted

derived category D(Qcoh(X,α)) has a unique enhancement (see [17, Corollary 5.7]).

Indeed, under the above assumptions, Qcoh(X) and Qcoh(X,α) are Grothendieck categories (see,

for example, [63, Tag 06WU]).

The non-expert reader can have a look at [40] for the general theory of stacks and at [11] for the

theory of schemes endowed with a twist from their Brauer groups. Nevertheless, recall that if X is a
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scheme and α is an element inH2
ét(X,O∗X) (i.e. an element in the Brauer group Br(X) ofX), we may

see α as a Čech 2-cocycle {αijk ∈ Γ(Ui∩Uj∩Uk,O∗X)} with X =
⋃
i∈I Ui an appropriate open cover

in the étale topology. An α-twisted quasi-coherent sheaf E consists of pairs ({Ei}i∈I , {ϕij}i,j∈I)
such that the Ei are quasi-coherent sheaves on Ui and ϕij : Ej |Ui∩Uj → Ei|Ui∩Uj are isomorphisms

satisfying the following conditions:

• ϕii = id;

• ϕji = ϕ−1
ij ;

• ϕij ◦ ϕjk ◦ ϕki = αijk · id.

The abelian category of such α-twisted quasi-coherent sheaves on X is denoted by Qcoh(X,α).

If the sheaves Ei in the above definition are coherent rather than just quasi-coherent, we get the

notion of an α-twisted coherent sheaf and the corresponding abelian category Coh(X,α).

4.4. Open questions. There is another interesting triangulated category which is associated to a

Grothendieck category G. Let Inj(G) be the full subcategory of G consisting of injective objects.

By Proposition 3.1, the triangulated category K(Inj(G)) is algebraic.

Question 4.7. Does K(Inj(G)) have a unique enhancement?

To motivate our interest in K(Inj(G)), observe that such a category played an import role in

[5], which deals with modular representations of finite groups. On the other hand, K(Inj(G)) has

been used to reformulate Grothendieck duality in [47].

It is rather clear that major improvements could come by removing or rather weakening (b.1)

in Theorem 4.2. Indeed, it is very likely that if this can be done, then one could hope to get

interesting results about uniqueness of enhancements of some localizing subcategories of categories

with unique enhancements. Thus we would get interesting answers to Question 3.14.

There are other interesting full subcategories of D(Qcoh(X)), for X an algebraic stack, which

are not included in the previous discussion. The first one is Db(Qcoh(X)), which is clearly not

closed under small coproducts. Moreover, by (2.2) and for any sufficiently large regular cardinal

one can take D(Qcoh(X)α) ∼= D(Qcoh(X))α. Recall that Qcoh(X)α is an abelian category for

this choice of α.

Clearly the problem of the uniqueness of the enhancement of these categories cannot be treated

using Theorem 4.2. Thus it makes sense to ask the following.

Question 4.8. If X is an algebraic stack, do Db(Qcoh(X)) and D(Qcoh(X))α have unique

enhancements, for α a sufficiently large regular cardinal?

One key property that makes Db(Qcoh(X)) interesting for our purposes is that there is a natural

exact equivalence Db(Qcoh(X))c ∼= Db(X), if X is a noetherian separated scheme (see [55, Corol-

lary 6.17]). Notice that, in this setting, Db(Qcoh(X))c is the full subcategory of Db(Qcoh(X))

consisting of those objects C such that Db(Qcoh(X))(C,−) commutes with small coproducts ex-

isting in Db(Qcoh(X)).

Question 4.7 and Question 4.8 will be addressed in a separate paper.
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5. Uniqueness of enhancements for compact objects

Let us now consider the full subcategory of compact objects in the derived category of a

Grothendieck category. One of the main aims of this section is to try to clarify why this new

situation is a bit more intricate and illustrate some open problems.

5.1. The statements. The analogue of Theorem 4.2 in the context of this section is the following.

Theorem 5.1 ([42], Theorem 2). Let A be a small category which we consider as a dg category

concentrated in degree zero and let L be a localizing subcategory of D(A) such that:

(a.3) Lc = L ∩ D(A)c and Lc satisfies (G1) in L;

(b.3) D(A)/L(Q(YA(A)),Q(YA(A′))[k]) = 0, for all A,A′ ∈ A and all integers k < 0.

Then (D(A)/L)c has a unique enhancement.

Remark 5.2. Notice that (b.3) is exactly the same as (b.2) in Theorem 4.3. Moreover, (a.3) could

be replaced by the following weaker assumption: L∩D(A)c satisfies (G1) in L. But the argument

in the proof of [17, Corollary 6.7] shows that, if this is true, then automatically Lc = L ∩ D(A)c.

Suppose now that we want to deal with the enhancements of D(G)c, where G is a Grothendieck

category. We already know that we can pick a small set of generators A of G such that one gets

an exact equivalence D(G)c ∼= (D(A)/L)c, for some localizing subcategory L of D(A).

The discussion at the end of Section 4.2 should have clarified that (b.3) is automatically satisfied

in this situation. Unfortunately, (a.3) is not easily verified and this is the reason why A has to be

chosen carefully. In conclusion, the following is the result that can be deduced from Theorem 5.1.

Theorem 5.3 ([17], Theorem B). Let G be a Grothendieck category with a small set A of gener-

ators such that

(1) A is closed under finite coproducts;

(2) Every object of A is a noetherian object in G;

(3) If f : A′ � A is an epimorphism of G with A,A′ ∈ A, then ker f ∈ A;

(4) For every A ∈ A there exists N(A) > 0 such that D(G) (A,A′[N(A)]) = 0 for every

A′ ∈ A.

Then D(G)c has a unique enhancement.

Showing that L satisfies (a.3), under the assumptions (1)–(4), requires a big amount of quite

technical work that cannot be summarized here. Nonetheless, in Section 5.2 we will explain why

some assumptions on A are very plausible.

Remark 5.4. We observed in [17, Remark 6.8] that Theorem 5.3 can be refined a bit and conclude

that, under the same assumptions, D(G)c has as a semi-strongly unique enhancement. For this,

one use [42, Theorem 6.4] instead of Theorem 5.1.

Remark 5.5. It is easy to deduce directly from Theorem 5.3 that D(G) has a unique enhancement,

if G is a Grothendieck category satisfying the assumptions (1)–(4). Indeed, assume that (C1,E1)

and (C2,E2) are enhancements of D(G) and define Di to be the full dg subcategory of Ci consisting

of the objects in H0(Ci)
c. Set Fi := Ei|Di . It is clear that (D1,F1) and (D2,F2) are enhancements
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of D(G)c. Since, by Theorem 5.3, the latter category has a unique enhancement, there exists an

isomorphism F ∈ Hqe(D1,D2). By the discussion in Section 1, we get an isomorphism F′ :=

Ind(F) ∈ Hqe(h-proj(D1),h-proj(D2)).

Finally, we observed above that (1)–(4) in Theorem 5.3 imply (a.3) in Theorem 5.1. By The-

orem 2.5, the triangulated category D(G) is generated by the objects in D(G)c. Hence, by [42,

Proposition 1.17], we get an isomorphism Gi ∈ Hqe(h-proj(Di),Ci), for i = 1, 2. Thus G2◦F′◦G−1
1

is the isomorphism in Hqe(C1,C2) we were looking for.

Unfortunately we do not know any strategy to deduce from Theorem 4.6 the uniqueness of the

enhancement of D(G)c.

Back to the geometric situation, recall that, given a commutative ring R, a complex P ∈
D(Mod(R)) is perfect if it is quasi-isomorphic to a bounded complex of finitely generated projective

R-modules. According to the terminology in [25], a complex P ∈ Dqc(X), where X is an algebraic

stack, is perfect if for any smooth morphism Spec(R) → X, where R is a commutative ring,

the complex of R-modules RΓ(Spec(R), P |Spec(R)) is perfect. We set Perf (X) to be the full

subcategory of Dqc(X) consisting of perfect complexes.

Now, a quasi-compact and quasi-separated algebraic stack X is concentrated if Perf (X) ⊆
Dqc(X)c (notice that this is always the case if X is a scheme). On the other hand, by [25, Lemma

4.4], the other inclusion Dqc(X)c ⊆ Perf (X) holds as well. Moreover, if X has also quasi-finite

affine diagonal, then the natural functor D(Qcoh(X)) → Dqc(X) is an exact equivalence (this

follows from [25, Theorem A] and [24, Theorem 1.2]). Therefore, if X is a concentrated algebraic

stack with quasi-finite affine diagonal, then there is a natural exact equivalence

Perf (X) ∼= D(Qcoh(X))c.

Finally, if an algebraic stack X has the property that Qcoh(X) is generated, as a Grothendieck

category, by a small set of objects contained in Coh(X) ∩ Perf (X), we say that X has enough

perfect coherent sheaves.

We observed in Section 4.3 that Qcoh(X) is a Grothendieck category. Hence, it is easy to guess

that the main geometric application of the general results above is:

Corollary 5.6 ([17], Proposition 6.10). If X is a noetherian concentrated algebraic stack with

quasi-finite affine diagonal and with enough perfect coherent sheaves, then Perf (X) has a semi-

strongly unique enhancement.

Here we are using Remark 5.4 to strengthen the result [17, Proposition 6.10] and prove semi-

strongly uniqueness rather than uniqueness. To give an idea of how the proof goes, we just mention

that we can take A to be the full subcategory of Qcoh(X) whose set of objects is obtained by

taking a representative in each isomorphism class of objects in Coh(X) ∩Perf (X). Since X has

enough perfect coherent sheaves, A is a set of generators of Qcoh(X), as a Grothendieck category.

The reader which feels a bit uneasy with the language of stacks can be reassured by the simpler

case where X is a noetherian scheme with enough locally free sheaves. In this case, Perf (X) has

a unique enhancement (see [17, Corollary 6.11]). A scheme has enough locally free sheaves if, for

any finitely presented sheaf F , there is an epimorphism E � F in Qcoh(X), where E is locally

free of finite type.
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Remark 5.7. It should be clarified that no example of a quasi-compact and semi-separated scheme

without enough locally free sheaves is known. Actually, in [67] the existence of enough locally free

sheaves under these assumptions is left as an open question.

Remark 5.8. The same circle of ideas applies to Db(X), the bounded derived category of coherent

sheaves on a scheme X. Indeed, if X is a noetherian scheme with enough locally free sheaves, then

Db(X) has a unique enhancement (see [17, Corollary 7.2]).

For this, we use the notion of compactly approximated object in D(Qcoh(X)) rather than the

one of compact object. We do not define it here.

5.2. The importance of being compact. Let us go back to the general setting where T is a

compactly generated triangulated category with small coproducts.

Definition 5.9. A localizing subcategory L of T is a smashing subcategory if the inclusion functor

ι : L ↪→ T has a right adjoint ιR which commutes with small coproducts.

Lemma 5.10. Let T be a compactly generated triangulated category with small coproducts and let

L be a localizing subcategory of T. If Lc = L∩Tc and Lc satisfies (G1) in L, then L is a smashing

subcategory of T.

Proof. First notice that, L being compactly generated, ιR exists by Brown representability (see,

for example, [48, Section 8.2]).

Given {Xi : i ∈ I} a small set of objects in T and L ∈ Lc, there is a sequence of natural

isomorphisms

L

(
L, ιR

(∐
i∈I

Xi

))
∼= T

(
ι(L),

∐
i∈I

Xi

)
∼=
∐
i∈I

T
(
ι(L), Xi

) ∼= ∐
i∈I

L
(
L, ιR(Xi)

) ∼= L
(
L,
∐
i∈I

ιR(Xi)
)
.

Here the second isomorphism uses that Lc = L ∩Tc.

Since Lc satisfies (G1) in L, we deduce from Remark 2.2 that

L

(
L, ιR

(∐
i∈I

Xi

))
∼= L

(
L,
∐
i∈I

ιR (Xi)

)
,

for all L ∈ L. Hence ιR
(∐

i∈I Xi

) ∼= ∐i∈I ι
R (Xi) by Yoneda’s lemma. �

It follows that L in Theorem 5.1 is a smashing subcategory. The converse of Lemma 5.10 is the

content of the following.

Conjecture 5.11 (Telescope Conjecture). If T is a compactly generated triangulated category

with small coproducts and L is a smashing subcategory of T, then Lc = L ∩ Tc and Lc satisfies

(G1) in L.

Remark 5.12. It should be noted that the original formulation of the above conjecture would be:

If T is a compactly generated triangulated category with small coproducts and L is a smashing

subcategory of T, then L is generated by a small set of objects in L ∩ Tc. The conjecture is

presented in this form in [39] (and it is based on conjectures by Ravenel [53, 1.33]).

Now it is clear that it is equivalent to take the whole L ∩ Tc as a set of generators. On the

other hand, if the objects in L ∩Tc generate L, then they satisfy (G1) in L as well. We want to
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prove that if L ∩ Tc satisfies (G1) in L, then it generates L as well. Indeed, if N is the smallest

localizing subcategory of T containing L ∩Tc, then, by Theorem 2.5, it is well generated. Hence

Brown representability holds for N. At this point, one copies verbatim the same argument as in

the proof of [50, Proposition 5.1].

In conclusion, if L ∩ Tc satisfies (G1) in L, then it is easy to show that Lc = L ∩ Tc (see the

proof of [17, Corollary 6.7]). In other words, the classical version of the Telescope Conjecture is

equivalent to Conjecture 5.11.

Long ago, Keller produced a simple counterexample to this conjecture [30]. Hence we cannot

expect that verifying (a.3) can be an easy task, in general. In a sense, this motivates the fact that

the presence of the assumptions (1)–(4) in Theorem 5.3 should not be surprising.

Anyway, we do not feel that (1)–(4) are the sharpest assumptions to make. In particular, we

believe that the following is a rather natural problem to consider.

Question 5.13. Is a result like Theorem 5.1 true if we change (a.3) to the assumption that L is

a smashing subcategory?

If this were true, then in Corollary 5.6 one could replace ‘noetherian’ with ‘quasi-compact, semi-

separated’. Indeed, with the above choice of A, the quotient functor Q : D(A) → D(A)/L sends

D(A)c to (D(A)/L)c (this follows quite easily from [17, Corollary 5.3]). It is an exercise with the

definition of compact objects to prove that, if this is true, then L is smashing.

An approach to Question 5.13 could be via [38] and [39].

5.3. Strong uniqueness. We finish this section recalling that a result similar to Corollary 5.6

can be proven for the strong uniqueness of enhancements.

Theorem 5.14 ([42], Theorem 2.14). Let X be a projective scheme over a field k such that the

maximal 0-dimensional torsion subsheaf T0(OX) of OX is trivial. Then Perf (X) and Db(X) have

strongly unique enhancements.

In a sense, Theorem 5.14 can be deduced from Corollary 5.6 (and Remark 5.8) using two

main additional ingredients: ample sequences and convolutions. Indeed, assume that X is as in

Theorem 5.14 and that we are given a pretriangulated dg category C and an exact equivalence

F : Perf (X)→ H0(C).

Corollary 5.6 provides an isomorphism f ∈ Hqe(Perf dg(X),C), for any enhancement Perf dg(X)

of Perf (X). How do we show that, roughly speaking, there is an isomorphism of exact functors

F ∼= H0(f)? As we mentioned, this is achieved by a sort of standard procedure initiated in [49]

which uses ample sequences and convolutions.

These two techniques are reviewed in some detail in Sections 5.2.2 and 5.2.3 of [12]. The expert

reader can also guess from [12] how they are used to carry out the proof of Theorem 5.14. Here

we just recall that, given an abelian category A with finite dimensional Hom-spaces, a subset

{Pi}i∈Z ⊂ A is an ample sequence if, for any B ∈ A, there exists an integer N(B) such that, for

any i ≤ N(B),

(1) The natural morphism A(Pi, B)⊗ Pi → B is surjective;
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(2) If j 6= 0 then Db(A)(Pi, B[j]) = 0;

(3) A(B,Pi) = 0.

If X is a smooth projective scheme of positive dimension with an ample line bundle L, then

{L⊗n : n ∈ Z} is an ample sequence in Coh(X). If X is singular, this is still true if we make the

further technical assumption that the maximal 0-dimensional torsion subsheaf T0(OX) of OX is

trivial.

Remark 5.15. (i) There is another situation where strong uniqueness can be proven. Indeed,

assume that X is a smooth projective scheme over a field k and α is an element in the Brauer

group Br(X) of X. Then, by [16, Lemma 2.3], the abelian category Coh(X,α) has an ample

sequence. Then the same argument as in the proof of Theorem 5.14 shows that Db(X,α) has a

strongly unique enhancement.

(ii) In [13, Theorem 1.2], we considered the category PerfZ(X) consisting of perfect complexes

on a quasi-projective scheme X with topological support on a projective subscheme Z. More

specifically, we proved that if OiZ ∈ Perf (X), for all i > 0 and T0(OZ) = 0, then PerfZ(X)

has a strongly unique enhancement. We let the interested reader consult [12, 13] for the correct

definition of the triangulated category PerfZ(X).

6. Bad news again: lifting functors

In this section we give a quick update of [12]. In particular, we explain some recent results

showing that the existence (and uniqueness) of dg lifts of exact functors in geometric contexts is

not always available.

6.1. The triangulated case. Following [12], let us remind the reader of a very simple way to

summarize the complete picture concerning Fourier–Mukai functors between ‘geometric’ categories.

To be more precise, if X1 and X2 are smooth projective schemes over a field k, we consider the

exact functor

ΦE(−) := R(p2)∗(E
L
⊗ p∗1(−)) : Db(X1)→ Db(X2),

where pi : X1 ×X2 → Xi is the natural projection and E ∈ Db(X1 ×X2).

Definition 6.1. An exact functor F : Db(X1)→ Db(X2) is a Fourier–Mukai functor (or of Fourier–

Mukai type) if there exists E ∈ Db(X1 ×X2) and an isomorphism of exact functors F ∼= ΦE . The

object E is called Fourier–Mukai kernel.

Remark 6.2. The relevance of these functors has been explained in [12] (see also [27] for a

systematic analysis of their main geometric applications).

Moreover, it was conjectured by Kawamata [28, Conjecture 1.5] that, given a smooth projective

variety X over a field, there are, up to isomorphism, only a finite number of smooth projective

varieties Y with an exact equivalence Db(X) ∼= Db(Y ). Later, in [4], it was shown that, again up to

isomorphism, the smooth projective varieties Y as above are at most countably many. In [41], the

author shows a countable family of non-isomorphic threefolds with equivalent derived categories.

This falsifies Kawamata’s conjecture and updates our discussion in [12, Section 2.2].
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Here we stick to some more foundational questions related to the subject of this survey. Indeed,

it makes sense to consider the category ExFun(Db(X1),Db(X2)) of exact functors between Db(X1)

and Db(X2) (with morphisms the natural transformations compatible with shifts) and to define

the functor

(6.1) ΦX1→X2
− : Db(X1 ×X2) −→ ExFun(Db(X1),Db(X2)).

It sends E ∈ Db(X1 ×X2) to the Fourier–Mukai functor ΦE .

The behavior of this functor is as bad as possible. To be more precise, in [15] we proved the

following:

(a) ΦX1→X2
− is not essentially injective ([15, Theorem 1.1]). In particular, for any elliptic curve

E over an algebraically closed field there are non-isomorphic objects E1, E2 ∈ Db(E × E)

such that ΦE1
∼= ΦE2

.

(b) ΦX1→X2
− is neither full nor faithful ([15, Proposition 2.3]).

(c) ExFun(Db(X1),Db(X2)) does not have a triangulated structure making ΦX1→X2
− exact

([15, Corollary 2.7]).

Remark 6.3. A partial repair to (a) is provided in [15, Theorem 1.2] where it is proved that the

cohomology sheaves of a Fourier–Mukai functor are uniquely determined, up to isomorphism. More

precisely, let X1 and X2 be projective schemes defined over a field and let E1, E2 ∈ Db(X1 ×X2)

be such that they define exact functors ΦEi
: Perf (X1) → Db(X2), for i = 1, 2. If there is an

isomorphism of exact functors ΦE1
∼= ΦE2

, then Hj(E1) ∼= Hj(E2), for all j ∈ Z.

6.2. The counterexamples: non-liftable exact functors. The most interesting question con-

cerns the essential surjectivity of ΦX1→X2
− . This has been investigated during the last years and it

has been recently clarified that the answer has to be negative. We discuss here the only two known

examples of exact functors between the derived categories of smooth projective schemes which are

not of Fourier–Mukai type.

Quadrics in P4 (Rizzardo and Van den Bergh, [54]). If k is an algebraically closed field of charac-

teristic 0 and X is a smooth quadric in Y = P4, then Rizzardo and Van den Bergh proved that

there exists an exact functor Db(X)→ Db(Y ) which is not of Fourier–Mukai type. Unfortunately,

not only the proof of this result, but even the definition of the functor is rather involved, as it uses

sophisticated techniques from deformation theory. So we will limit ourselves to give a rough idea

of their construction, inviting the interested reader to consult directly [54] for more details.

Consider more generally a closed immersion f : X → Y between smooth projective varieties and

choose a finite affine open cover {V1, . . . , Vr} of Y . Denoting by I the set of non-empty subsets

of {1, . . . , r}, we define as usual VI := ∩i∈IVi for every I ∈ I. To this cover one can associate a

(k-linear) category Y with the same objects as I and such that Y(I, J) (for I, J ∈ I) is OY (VJ)

if I ⊆ J and 0 otherwise. It is easy to see that there is a natural exact and fully faithful functor

ε∗ : Qcoh(Y )→ Mod(Y◦), which sends E ∈ Qcoh(Y ) to the functor which associates to any I ∈ I
the sections E(VI). This induces an exact equivalence between D(Qcoh(Y )) and Dqc(Y). Here

Dqc(Y) is the full subcategory of D(Mod(Y◦)) with objects the complexes whose cohomologies are

in the essential image of ε∗. Similarly, to the induced (finite affine) cover {f−1(V1), . . . , f−1(Vr)}
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of X one can associate a category X , and f naturally yields a (k-linear) functor, again denoted by

f : Y → X , by abuse of notation. Indeed, f is the identity on objects, whereas on morphisms it is

given by the structure maps f#(VJ) : OY (VJ)→ (f∗OX)(VJ) ∼= OX(f−1(VJ)).

Now, given a line bundle M on X and η ∈ HHn(X,M) := ExtnX×X(∆∗OX ,∆∗M), they introduce

an A∞-deformation of X , given by an A∞-category Xη together with an A∞-functor Xη → X . It

has the property that there exists an A∞-functor f̃ : Y → Xη such that the diagram

Xη

  

Y
f̃

oo

f��
X

commutes, up to isomorphism, if f∗(η) = 0 ∈ HHn(Y, f∗(M)). Moreover, under the additional

assumption n ≥ dim(X) + 3, there is a suitable exact functor L : Db(Qcoh(X))→ Dqc(Xη) (where

the latter category can be defined in analogy with Dqc(Y) above). Actually the proof of the

existence of L, which is obtained as an extension of a natural functor defined on Inj(Qcoh(X)), is

the more technical part of the paper. Finally, they show that the composition

Db(Qcoh(X))
L−→ Dqc(Xη)

f̃∗−→ Dqc(Y) ∼= D(Qcoh(Y ))

restricts to the desired exact functor not of Fourier–Mukai type Db(X) → Db(Y ) when X is a

smooth quadric in Y = P4, M = ω⊗2
X and 0 6= η ∈ HH6(X,ω⊗2

X ) ∼= k (in which case the condition

f∗(η) = 0 is satisfied).

Flag varieties (Vologodsky, [69]). Quite recently, Vologodsky proposed a different (and, in a sense,

simpler) example of an exact functor which is not of Fourier–Mukai type. His example is completely

of geometric nature and very natural. Thus, it puts a bit in the shade the general (too) optimistic

belief that even though ΦX1→X2
− is not essentially surjective, algebraic geometers are safe: all exact

functors appearing in their life are of Fourier–Mukai type.

For an integer n > 2 and a prime p, consider the general linear group GLn(Zp) over the p-adic

numbers and take B to be a Borel subgroup of GLn(Zp). The quotient Fln := GLn(Zp)/B is a flag

variety over Zp. Set Y := Fln ×Spec(Zp) Fln.

Now, let k = Fp and let X := Y ×Spec(Zp) Spec(k). In this situation, we have a natural closed

embedding ι : X ↪→ Y and a k-linear exact functor G : Db(X)→ Db(X) defined as

G := Lι∗ ◦ ι∗.

The claim is that G is not of Fourier–Mukai type if regarded as a k-linear functor. Notice that, on

the other hand, it is of Fourier–Mukai type as a Zp-linear functor.

Life after the counterexamples. In view of the negative answer to the possibility of describing all

exact functors between Db(X1) and Db(X2) as Fourier–Mukai functors, it becomes an interesting

and challenging problem to characterize all exact functors which are of Fourier–Mukai type.

There has been a lot of work in this direction in recent years showing that interesting classes of

exact functors are of this form. More precisely, a (non-exhaustive) list of results is as follows (a

survey of these results is already contained in [12]):
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(1) Smooth projective schemes: In [49], it was proved that all fully faithful exact functors

between Db(X1) and Db(X2), with X1 and X2 smooth projective schemes over a field k,

are of Fourier–Mukai type with unique (up to isomorphism) Fourier–Mukai kernel. The

result has been generalized to the twisted setting under milder assumptions on the functor

in [16]. A generalization of Orlov’s result to smooth stacks, which are obtained as global

quotients, is proved in [29].

(2) The singular case: In [42], the case of projective (non-necessarily smooth) schemes is

treated. Among other things, the authors show that all fully faithful exact functors between

Perf (X1) and Perf (X2), with Xi projective over a field and such that the maximal 0-

dimensional torsion subsheaf T0(OX1) of OX1 is trivial, are of Fourier–Mukai type. The

uniqueness of the Fourier–Mukai kernel is proved in [13, Remark 5.7]. One of the major

contributions of [42] consists in showing that a fruitful approach involves the use of dg lifts.

(3) The supported case: In [13], the techniques introduced in [42] are enforced and extended to

deal with exact functors (with some special assumptions) between the categories of perfect

complexes with cohomologies supported on projective schemes.

Remark 6.4. (i) All the results in (1)–(3) use in a key way the notion of ample sequence (see

Section 5.3 for a quick discussion about this). Inevitably, this implies that, using these techniques,

one can hope to work only with projective schemes. A different approach may consist in using

indecomposable objects rather than ample sequences. An object C in a triangulated category T is

indecomposable if it is not isomorphic to a direct sum C1 ⊕ C2 with C1 and C2 non-trivial. This

was successfully pursued in [3] for the special case of fully faithful functors F : Perf (X)→ Db(Y ),

where X = Spec (k[ε]) (as in Remark 3.11) and Y is a noetherian separated scheme defined over a

field k. There is a chance that this viewpoint can be fruitful in other geometric situations involving

schemes which are not projective.

(ii) Understanding the uniqueness of Fourier–Mukai kernels is an interesting problem in itself.

In [23] it is suggested that one can study it by lifting exact functors to A∞-functors.

6.3. The dg case. The bad picture described in the previous sections should be compared to the

idyllic situation we encounter when we move to the dg context.

In principle, there are two different contexts where one can try to define an appropriate notion

of dg Fourier–Mukai functor. The first one consists in taking the category dgCat of small dg

categories which are k-linear, for a commutative ring k. Having in mind the idea of comparing

the dg and triangulated worlds it is rather clear that this is not the right perspective to take.

Indeed, in this process, we need to invert quasi-equivalences and thus we are forced to work with

the localization Hqe rather than with dgCat.

The second context, where all these problems are overcome, is Hqe. This is what we are going

to investigate in the rest of this section. The main result in this sense is the following one which

is due to Toën.
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Theorem 6.5 ([66]). Let C1, C2 and C3 be three dg categories over a commutative ring k. Then

there exists a natural bijection

(6.2) Hqe(C1,C2) oo
1:1 // Isom(H0(h-proj(C◦1

L
⊗C2)rqr)).

Moreover, the dg category RHom(C3,C2) := h-proj(C◦3
L
⊗C2)rqr yields a natural bijection

Hqe(C1

L
⊗C3,C2) oo

1:1 // Hqe(C1,RHom(C3,C2))

proving that the symmetric monoidal structure on Hqe is closed.

The result has been reproved in a rather elementary way in [14]. Here we take this perspective

to illustrate how the bijection (6.2) is defined. To see this, consider first the bijection

Hqe(C1,C2) oo
1:1 // Hqe(C1,C2).

The inclusion C2 ↪→ h-proj(C2) induces a natural injection

(6.3) Hqe(C1,C2) �
� // Hqe(C1, h-proj(C2)).

To conclude, observe that there is a natural bijection

(6.4) Isom(H0(h-proj(C◦1 ⊗C2))) oo
1:1 // Hqe(C1, h-proj(C2))

which, roughly speaking sends the isomorphism class of an h-projective bimodule E to the cor-

responding quasi-functor Φdg
E . Observe that, in principle, the tensor product in (6.4) should be

derived. But this is just a minor technical problem which, without loss of generality, we can ignore

in this presentation.

It is not difficult to see that the image of the injection (6.3) consists of all the morphisms

f ∈ Hqe(C1,h-proj(C2)) with the property that im(H0(f)) ⊆ H0(C2). Hence, (6.4) provides

a bijection between the image of (6.3) and the set of isomorphism classes of the objects E ∈
H0(h-proj(C◦1⊗C2)) such that H0(Φdg

E ) : H0(C1)→ H0(h-proj(C2)) factors through H0(C2). Thus

we get (6.2).

Remark 6.6. The choice of the notation Φdg
E , for an h-projective dg module E ∈ h-proj(C◦1⊗C2)

clearly suggests that the bijections (6.2) should be thought of as the correct way to define a dg

version of the notion of Fourier–Mukai functor discussed above. Indeed, it shows that we can

naturally associate a(n isomorphism class of a) bimodule to a morphism in Hqe. This should

also be compared to the standard Morita theory which shows that any colimit preserving functor

between the categories of modules over associative algebras (over a field k) is realized by a bimodule.

Hence, Theorem 6.5 shows that the analogue of (6.1) at the level of objects exists and, contrary

to the triangulated case, the natural bijection has all possible nice properties.

Let us now move to the geometric reinterpretation of Theorem 6.5 and, for simplicity, let us

assume for the rest of this section that X1 and X2 are smooth projective schemes over a field k.

Let F : Db(X1) → Db(X2) be an exact functor and let (Ci,Ei) be an enhancement of Db(Xi), for

i = 1, 2.
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Definition 6.7. A morphism f ∈ Hqe(C1,C2) is a dg lift (or simply a lift) of F if there is an

isomorphism of exact functors F ∼= E2 ◦H0(f) ◦ E−1
1 .

Remark 6.8. It is quite easy to see that, in view of the strong uniqueness of the enhancements of

Db(X1) and Db(X2) (see Theorem 5.14), the existence and uniqueness of a lift of F do not depend

on the choice of the enhancements of the triangulated categories.

So, in the above situation, denote by (Perf dg(Xi),Ei) any dg enhancement of Db(Xi) = Perf (Xi).

We then get the following result (originally proved under milder assumptions).

Theorem 6.9 ([66], Theorem 8.15). If X1 and X2 are as above, then there is an isomorphism

(6.5) RHom(Perf dg(X1),Perf dg(X2))→ Perf dg(X1 ×X2)

in Hqe.

Remark 6.10. The proof of this fact involves the deep results in [10] about generation of derived

categories of smooth projective schemes. This theorem was variously generalized in [6] and [7],

covering the more general setting of derived stacks.

Theorem 6.9 and Theorem 6.5 clarify even better the relation to the functor (6.1) discussed in

Remark 6.6. Indeed, the morphisms in Hqe between any two enhancements of Db(X1) and Db(X2)

are in natural bijection with the isomorphism classes of objects in Db(X1 ×X2). More precisely,

consider the image f ∈ Hqe(Perf dg(X1),Perf dg(X2)) of the object E ∈ Db(X1 × X2) under the

bijection (6.2) and the bijection induced by (6.5). It is then natural to ask whether f is a dg lift of

ΦE . A positive answer is claimed in [66] without a precise proof. A complete argument has been

recently provided in [43], under more general assumptions than the ones in this paper (see also

[57]). Putting altogether, we get the following result (see also Section 7 of [9] for another proof of

the ‘if’ part).

Proposition 6.11. Let X1 and X2 be smooth projective schemes over a field k and let F : Db(X1)→
Db(X2) be an exact functor. Then F is of Fourier–Mukai type if and only if F has a dg lift.

Remark 6.12. The discussion in Section 6.1 shows that, even when a dg lift of an exact functor

exists, it need not be unique. The counterexamples in Section 6.2 show that the lift may not exist.
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its Applications (Budva, 1972), Savez Društava Mat. Fiz. i Astronom. (1973), 200–212.

[52] D. Quillen, Higher algebraic K-theory, I, in: Algebraic K-theory, Lecture Notes in Math. 341, Springer (1973),

85–147.

[53] D.C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. 105 (1984), 351–

414.

[54] A. Rizzardo, M. Van den Bergh, An example of a non-Fourier–Mukai functor between derived categories of

coherent sheaves, arXiv:1410.4039.

[55] R. Rouquier, Dimensions of triangulated categories, J. K-theory 1 (2008), 193–258.

[56] M. Schlichting, A note on K-theory and triangulated categories, Invent. Math. 150 (2002), 111–116.
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