
FANO VARIETIES OF CUBIC FOURFOLDS CONTAINING A PLANE
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Abstract. We prove that the Fano variety of lines of a generic cubic fourfold containing a plane

is isomorphic to a moduli space of twisted stable complexes on a K3 surface. On the other hand,

we show that the Fano varieties are always birational to moduli spaces of twisted stable coherent

sheaves on a K3 surface. The moduli spaces of complexes and of sheaves are related by wall-crossing

in the derived category of twisted sheaves on the corresponding K3 surface.

1. Introduction

In this paper we investigate the geometry of the Fano variety of lines on a cubic fourfold con-

taining a plane and its relation to moduli spaces of sheaves on K3 surfaces. Our approach is based

on techniques arising from recent work by Kuznetsov on semiorthogonal decompositions of the

derived category of coherent sheaves.

A cubic fourfold is a smooth complex hypersurface of degree 3 in P5. The moduli space C of

cubic fourfolds is a quasi-projective variety of dimension 20 ([14]). A way to produce divisors in

C is to consider special cubic fourfolds, namely cubic fourfolds containing an algebraic surface not

homologous to a complete intersection. More precisely, a cubic fourfold Y is special if H4(Y,Z)

contains a primitive rank-2 sublattice L generated by H2, the self-intersection of the hyperplane

section, and an algebraic surface T . If d is a positive integer, Y is contained in the divisor Cd ⊆ C if

there exists L as above and the matrix representing the intersection form on L has determinant d.

Under some assumptions on d, Cd is non-empty and irreducible (see [14]). The basic example we

deal with in this paper is C8, the divisor parametrizing cubic fourfolds containing a plane ([14, 36]).

The Fano variety of lines F (Y ) of a cubic fourfold Y is the variety parametrizing the lines in

Y . It is a projective irreducible symplectic complex manifold of dimension 4. A classical result of

Beauville and Donagi [4] says that F (Y ) is deformation equivalent to the Hilbert scheme Hilb2(S)

of length-2 0-dimensional subschemes of a K3 surface S of degree 14. In other words, F (Y ) can

be deformed to a moduli space of stable sheaves on S.

As the moduli space of smooth projective K3 surfaces is a countable union of 19-dimensional

varieties, F (Y ) cannot always be isomorphic to a moduli space of stable sheaves on a K3 surface.

Nevertheless, the following result was proved in [14]:

Theorem 1.1. (Hassett) Assume that d = 2(n2 + n + 2) where n is an integer ≥ 2 and let

Y be a generic cubic fourfold in Cd. Then F (Y ) is isomorphic to the Hilbert scheme of length-2

0-dimensional subschemes of a K3 surface and so, in particular, to a moduli space of stable sheaves.
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The case d = 8, corresponding to cubic fourfolds Y containing a plane P , is not covered by this

result. This happens despite the fact that a very natural K3 surface is related to the geometry

of Y . Indeed, consider the projection Y 99K P2 from P onto a plane in P5 disjoint from P . The

blow up of Y along P yields a quadric fibration π : Ỹ → P2 whose fibres degenerate along a plane

sextic C ⊆ P2. Assume that C is smooth (which is generically the case). The double cover S → P2

ramified along C is a smooth projective K3 surface.

This construction provides also a natural element β in the Brauer group of S which is either

trivial or of order 2. The geometric explanation for β goes essentially back to [36]. Indeed, the

K3 surface S can be thought of as the ‘moduli space of rulings’ of the quadrics in the fibration

π : Ỹ → P2. Hence, this provides a P1-fibration F → S parametrizing the lines l ⊆ Y contained

in the fibres of π. It turns out that F is actually the Brauer–Severi variety corresponding to the

twist β (see Section 3.1 for more details). It is worth mentioning that, by construction, the twist

β is trivial for all rational cubic fourfolds contained in the divisors of C8 described in [13].

As many interesting examples of cubic fourfolds with a rich geometry are not considered in

Hassett’s result, one may wonder whether Theorem 1.1 can be extended further. More precisely,

following [14] and [27], one can raise the following natural question.

Question 1.2. Are there other values of d for which a (generic) cubic fourfold Y has Fano variety

F (Y ) isomorphic to a moduli space of stable (twisted) sheaves or complexes on a K3 surface?

This paper may be considered as an attempt to answer this question in the case of cubic fourfolds

containing a plane. The interest of cubic fourfolds of this special type is mostly related to their

rich but rather mysterious geometry. For example, on one hand all new examples of rational cubic

fourfolds described in [13] are contained in C8 while, on the other hand, the very generic element

in this divisor is expected to be non-rational.

Kuznetsov recently proposed in [25] a conjectural interpretation of the rationality problem for

cubic fourfolds in terms of the non-trivial part TY of a semi-orthogonal decomposition of the

bounded derived category of coherent sheaves on Y (see Section 2.2 for more details about the

categorical setting). Although at the moment it is not completely understood how much this

approach can overcome the classical one via Hodge theory, it is certainly clear that Kuznetsov’s

idea sheds light on the possible use of the subcategory TY for geometric purposes.

For smooth cubic threefolds Y , this approach has been successfully investigated in [5] where we

prove that the category TY characterizes uniquely the isomorphism type of Y . In the same paper,

some further results concerning cubic fourfolds containing a plane are discussed (see [5]). This

paper follows precisely this direction and studies further the meaning of the category TY in this

geometric context.

Therefore, going back to the problem of describing the geometry of the Fano variety, let Y be a

cubic fourfold containing a plane P . The fact that, in general, F (Y ) is not isomorphic (and not

even birational) to a smooth projective moduli space of untwisted sheaves can be easily proved,

even for Y containing a plane (see, for example, Proposition 4.1). Nevertheless, remembering the

definition of the K3 surface S above and passing to β-twisted sheaves and complexes (see Section

3.1 for the precise definitions), we can state the first main result of the paper.
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Theorem 1.3. If Y is a generic cubic fourfold containing a plane, then F (Y ) is isomorphic to a

moduli space of stable objects in the derived category Db(S, β) of bounded complexes of β-twisted

coherent sheaves on S.

In the statement (an later on), a cubic fourfold Y with a plane is meant to be generic if it is

in the complement of a countable union of codimension-1 subvarieties of C8. Examples of cubic

fourfolds for which Theorem 1.3 holds are those that in Section 3.2 we call very generic. Roughly

speaking, a cubic fourfold Y with a plane is very generic if the algebraic part of H4(Y,Z) is the

smallest possible. As these cubic fourfolds are dense in C8, our result can be regarded as the

analogue of Theorem 1.1.

The proof of Theorem 1.3 will be carried out in Section 5. We will show that the result could

be stated in a more precise but less compact way. Indeed, the Mukai vector of the complexes

parametrized by the moduli space mentioned in the statement above and the Bridgeland’s stability

conditions for which they are stable can be explicitly described.

The other direction we follow in the paper consists in weakening Question 1.2. Indeed, one can

wonder if the Fano variety of lines of a cubic fourfold is birational to a smooth projective moduli

space of twisted sheaves on a K3 surface. The same dimension counting as at the beginning of the

introduction shows that this cannot be true for all cubic fourfolds in C.
One geometric condition that may give a hope for a positive answer to the previous question is

the presence of a K3 surface associated to the geometry of the fourfold. This guess is confirmed

by the second main result of the paper.

Theorem 1.4. For all cubic fourfolds Y containing a plane, the Fano variety F (Y ) is birational

to a smooth projective moduli space of twisted sheaves on a K3 surface. Moreover, if Y is very

generic, then such a birational map is either an isomorphism or a Mukai flop.

The plane sextic C is again the one presented at the beginning of the introduction while the

K3 surface mentioned in the statement is a special and explicit deformation of the double cover

of P2 introduced above. Also in this case, the Mukai vector of the stable twisted sheaves can be

explicitly described. Moreover, the Hodge (and lattice) structure of the second cohomology of the

moduli space will be made apparent in the course of the proof explained in Sections 3.2 and 3.3.

Let us spend a few words to clarify the relation between the results above. The Fano scheme

of lines on a cubic fourfold Y containing a plane P gives an explicit family of objects in the

derived category Db(S, β). A generic object in this family is a (twisted) sheaf, but some objects

are complexes (namely those corresponding to the lines contained in P ). So, there are two ways to

deal with this family. The first one consists in finding an appropriate t-structure and Bridgeland’s

stability conditions such that the base of this family (i.e., F (Y )) can be considered as a moduli

space of stable complexes. The other way is to consider the moduli space of sheaves, containing

the generic object of the family. This gives a moduli space of sheaves, which by construction is

birational to F (Y ). Moreover, for generic Y the birational transformation is shown to be a single

Mukai flop in the plane P∨ ⊆ F (Y ).

Notice that the moduli space of complexes in Theorem 1.3 can be regarded as a compactification

of an open subset of the moduli space of twisted stable sheaves in Theorem 1.4 via complexes.
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The two compactifications are related by a wall-crossing phenomenon in the derived category. In

geometric terms, as observed in Remark 5.10, this means that F (Y ) is the Mukai flop of a moduli

space of twisted sheaves, for generic cubic fourfolds containing a plane.

Theorem 4.2 shows that the condition of F (Y ) being birational to a moduli space of untwisted

sheaves on a K3 surface is equivalent to having an exact equivalence between TY and the bounded

derived category of coherent sheaves on a K3 surface. Under the light of Kuznetsov’s conjecture,

this provides a criterion for the rationality of cubic fourfolds containing a plane in terms of the

geometry of the Fano variety of lines.

Some words about the plan of the paper are in order here. Section 2 studies the semi-orthogonal

decomposition of the derived category of a cubic fourfold containing a plane defined in [25]. In

particular, we deal with some basic properties of the ideal sheaves of lines (and of complexes closely

related to them) which will be fundamental for the paper. Contrary to the order in the exposition

above, we first prove Theorem 1.4 in Section 3. This is motivated by the fact that the argument

descends directly from some easy properties studied in Section 3.1 and which will be used to prove

Theorem 1.3 as well. In Section 4 we characterize when the Fano variety of lines is birational

to a moduli space of untwisted sheaves on a K3 surface in terms of Kuznetsov’s component TY .

Finally, in Section 5, we use Bridgeland’s stability conditions to prove Theorem 1.3. For sake of

simplicity, all derived functors will be denoted as if they were underived, e.g. for a morphism of

varieties f : X → Z, we will denote f∗ for the derived pull-back, f∗ for the derived push-forward,

and so on. We work over the complex numbers.

2. The categorical setting and the ideal sheaves of lines

In this section we study the semi-orthogonal decomposition of Db(Y ) given in [25], for Y a cubic

fourfold. When Y contains a plane, some basic properties of the relevant piece of this decomposition

have been analyzed in [5]. Here we continue this study considering some special objects in it which

are used in the rest of the paper.

2.1. The geometric setting. Suppose that Y is a cubic fourfold containing a plane P . As

explained in the introduction and following [25], consider the diagram

D //

��

Ỹ := BlPY

σ
��

π // P2

P // Y ⊆ P5,

where σ : Ỹ → Y is the blow-up of Y along P , D is the exceptional divisor, and π : Ỹ → P2 is the

quadric fibration induced by the projection from P onto a plane.

Denote by P̃5 the blow-up of P5 along P , by h a hyperplane in P2, and by H (with a little abuse

of notation) both a hyperplane in P5 and its pull-backs to Ỹ and to P̃5. If q : P̃5 → P2 is the

induced projection from P , then the calculation in [25, Lemma 4.1] yields O
Ỹ

(D) ∼= OỸ (H − h)

and P̃5 ∼= PP2(O⊕3
P2 ⊕ OP2(−h)). Moreover, the relative ample line bundle is OP̃5(H), and the

relative canonical bundle is OP̃5(h− 4H).
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As in [26, Sect. 3], to the quadric fibration π, one can associate a sheaf B0 (resp. B1) of even

(resp. odd) parts of the Clifford algebra. Explicitly, as sheaves of OP2-modules, we have

B0
∼= OP2 ⊕OP2(−h)⊕3 ⊕OP2(−2h)⊕3 ⊕OP2(−3h)

B1
∼= O⊕3

P2 ⊕OP2(−h)⊕2 ⊕OP2(−2h)⊕3,

where h denotes, by abuse of notation, both the class of a line in P2 and its pull-back via π. Denote

by Coh(P2,B0) the abelian category of right coherent B0-modules and by Db(P2,B0) its bounded

derived category. As observed in [25], the Serre functor of Db(P2,B0) is the shift by 2. A category

with this property is sometimes called 2-Calabi–Yau category.

Remark 2.1. Notice that Bi is spherical in the category Db(P2,B0), for i = 0, 1. Recall that an

object A in a C-linear 2-Calabi–Yau category C is spherical if HomC(A,A) ∼= HomC(A,A[2]) ∼= C
and HomC(A,A[j]) = 0, when j 6= 0, 2.

To prove the claim observe that, by adjunction, Hom(B0,B0[j]) ∼= Hj(P2,OP2 ⊕ OP2(−h)⊕3 ⊕
OP2(−2h)⊕3⊕OP2(−3h)) and the functor (−)⊗B0 B1 is an autoequivalence of Coh(P2,B0) sending

B0 to B1 (see [26, Cor. 3.9]).

Let Y be a cubic fourfolds containing a plane P and denote by C the sextic curve in P2 over

which the fibres of π degenerate. If C is smooth, then the double cover of P2 ramified along C

f : S −→ P2

is a smooth K3 surface. Furthermore, by [26, Prop. 3.13], there exists an Azumaya algebra A0 on

the K3 surface S, such that

(2.1) f∗A0 = B0 f∗ : Coh(S,A0)
∼−→ Coh(P2,B0).

(See, for example, [31] for the basic properties of Azumaya algebras, but also [8, Chapter 1].)

Remark 2.2. An easy observation shows that the fact that C is smooth coincides with the

assumption in [25]. More precisely, the cubic fourfold Y with a plane P has smooth plane sextic

C if and only if the fibres of π : Ỹ → P2 have at most one singular point. Indeed, by [2, Prop.

1.2], the curve C can have at most ordinary double points. This is because we are assuming that

Y (and thus Ỹ ) is smooth. Moreover a fibre of π is union of two distinct planes if and only if it is

projected to a singular point of C.

Denote by h a hyperplane in P2. We will often need to restrict ourselves to the case where Y

satisfies the following additional requirement:

(∗) The cubic fourfold Y contains a plane P , the sextic C is smooth, and f∗h is indecomposable.

The divisor f∗h is indecomposable if OS(f∗h) is not linearly equivalent to OS(C1 +C2), where Ci

is an effective (non-trivial) divisor on S, for i = 1, 2.

Remark 2.3. The easiest case in which f∗h is indecomposable is when S is generic, i.e., Pic(S) =

Z f∗h. These K3 surfaces are generic in the moduli space of degree-2 K3 surfaces and they are the

main examples to have in mind throughout this paper.
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2.2. The semi-orthogonal decomposition. Let Y be a cubic fourfold and let Db(Y ) be its

bounded derived category of coherent sheaves. Define OY (iH) := OP5(iH)|Y and

TY := 〈OY ,OY (H),OY (2H)〉⊥

=
{
A ∈ Db(Y ) : HomDb(Y )(OY (iH),A[p]) = 0, for all p and i = 0, 1, 2

}
.

Since the collection {OY ,OY (H),OY (2H)} is exceptional in Db(Y ), we have a semi-orthogonal

decomposition of Db(Y ) as

Db(Y ) = 〈TY ,OY ,OY (H),OY (2H)〉.

(For details about semi-orthogonal decompositions and exceptional collections, see, for example,

[25, Sect. 2.1].)

By [26, Sect. 4], we can define a fully faithful functor Φ := ΦE ′ : Db(P2,B0)→ Db(Ỹ ),

ΦE ′(A) := π∗A⊗π∗B0 E ′,

for all A ∈ Db(P2,B0), where E ′ ∈ Coh(Ỹ ) is a rank-4 vector bundle on Ỹ with a natural structure

of flat left π∗B0-module. We will not need the actual definition of E ′ (for which the reader is

referred to [26, Sect. 4]) but only the presentation

0→ q∗B0(−2H)→ q∗B1(−H)→ α∗E ′ → 0,

where α : Ỹ ↪→ P̃5 is the natural embedding and q : P̃5 → P2 is the induced projection as in Section

2.1.

The results of [26] and [33] give, respectively, two semi-orthogonal decompositions:

(2.2)
Db(Ỹ ) = 〈Φ(Db(P2,B0)),O

Ỹ
(−h),O

Ỹ
,O

Ỹ
(h),O

Ỹ
(H),O

Ỹ
(h+H),O

Ỹ
(2h+H)〉

Db(Ỹ ) = 〈σ∗(TY ),O
Ỹ
,O

Ỹ
(H),O

Ỹ
(2H), i∗OD, i∗OD(H), i∗OD(2H)〉.

Theorem 4.3 in [25] yields an equivalence

Db(P2,B0) ∼= TY .

The way this is achieved is performing a sequence of mutations which allow Kuznetsov to compare

the two semi-orthogonal decompositions in (2.2). The details will not be needed in the rest of this

paper but we just recall the two fundamental mutations in the construction of the equivalence:

(A) The right mutation of Φ(Db(P2,B0)) through O
Ỹ

(−h) leading to the semi-orthogonal de-

composition

Db(Ỹ ) = 〈O
Ỹ

(−h),Φ′(Db(P2,B0)),O
Ỹ
,O

Ỹ
,O

Ỹ
(h),O

Ỹ
(H),O

Ỹ
(h+H),O

Ỹ
(2h+H)〉,

where Φ′ is the functor obtained composing Φ with the right mutation. Namely,

Φ′ := RO
Ỹ

(−h) ◦ Φ : Db(P2,B0) −→ Db(Ỹ ).

(B) The left mutation of Φ′(Db(P2,B0)) through O
Ỹ

(h − H). Composing Φ′ with this left

mutation, yields a functor Φ′′ := LO
Ỹ

(h−H) ◦ Φ′ : Db(P2,B0)→ Db(Ỹ ).
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As explained in the proof of [25, Thm. 4.3], the equivalence Db(P2,B0) ∼= TY is provided by the

functor σ∗ ◦ Φ′′. (For details and basic results about mutations, see, for example, [25, Sect. 2.2].)

Recall that the left adjoint functor of Φ is

Ψ(−) := π∗((−)⊗O
Ỹ

(h)⊗ E [1]),

where E ∈ Coh(Ỹ ) is another rank-4 vector bundle on Ỹ with a natural structure of right π∗B0-

module (see [26, Sect. 4]). The main property we will need is the presentation

(2.3) 0→ q∗B1(−h− 2H)→ q∗B0(−H)→ α∗E → 0.

The following result will be used to control the compatibilities with the mutations (A) and (B)

above.

Lemma 2.4. (i) For any integer m and for a = 0,−1, we have Ψ(O
Ỹ

(mh+ aH)) = 0.

(ii) We have

Ψ(O
Ỹ

(−h+H)) ∼= B0[1]

Ψ(O
Ỹ

(h− 2H)) ∼= B1[−1].

Proof. By the projection formula and the fact that π = q ◦ α, we have

Ψ(O
Ỹ

(mh+ aH)) ∼= Ψ(α∗(OP̃5(mh+ aH)))

∼= q∗(OP̃5((m+ 1)h+ aH)⊗ α∗E [1]),

for all m and all a. Furthermore, since P̃5 → P2 is a projective bundle and OP̃5/P2(1) ∼= OP̃5(H),

then q∗(OP̃5(bH)) = 0, for b = −1,−2,−3.

Hence, to prove (i), it is enough to unravel (2.3) and use again the projection formula. The

proof of (ii) is similar, by using relative Grothendieck-Serre duality and the fact that the relative

canonical bundle is OP̃5(h− 4H). �

2.3. Ideal sheaves of lines and their relatives. Let l be a line in Y and let Il be its ideal

sheaf. As remarked in [28], while Il 6∈ TY , the (stable) sheaf Fl ∈ Coh(Y ) defined by the short

exact sequence

(2.4) 0→ Fl → O⊕4
Y → Il(H)→ 0

is in TY . This means that, given the semi-orthogonal decomposition

Db(Y ) = 〈T′Y ,OY (−H),OY ,OY (H)〉,

the sheaf Fl(−H) is in T′Y . Right-mutating T′Y with respect to OY (−H), one gets the semi-

orthogonal decompositions

Db(Y ) = 〈OY (−H),T′′Y ,OY ,OY (H)〉 = 〈T′′Y ,OY ,OY (H),OY (2H)〉.

In particular, the right mutation

(2.5) Pl := cone(ev∨ : Fl(−H)→ RHom(Fl(−H),OY (−H))∨ ⊗OY (−H))[−1]
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is contained in T′′Y . Being TY and T′′Y right orthogonals in Db(Y ) of the same full subcategory,

they can be naturally identified and so Pl is an object of TY . Notice that we have an exact triangle

OY (−H)[1] −→ Pl −→ Il.

Remark 2.5. Due to [28, Prop. 5.5], the Fano variety F (Y ) is identified with the connected

component of the moduli space of stable sheaves containing the objects Fl, for any line l in Y .

Since the objects Pl are obtained by tensoring Fl and applying a right mutation (which yield an

autoequivalence of TY ), F (Y ) can be also identified with the moduli space of the objects Pl.

The following result which calculates the preimage

(2.6) Ll := (σ∗ ◦ Φ′′)−1(Pl)[1]

in Db(P2,B0) is particularly relevant for the proof of Theorems 1.3 and 1.4.

Proposition 2.6. If l is not contained in P then Ll is a pure torsion sheaf supported on a line in

P2. If l ⊆ P , then there exists an exact triangle

B0[1] −→ Ll −→ B1,

where the extension map B1 → B0[2] is uniquely determined by the line l. Moreover, there exists

a bijective correspondence between the Fano variety P∨ of lines in P and the isomorphism classes

of extensions B1 → B0[2].

Proof. Before going into the rather technical details of the proof, let us briefly outline the strategy.

First observe that, as σ∗ ◦ Φ′′ is an equivalence onto its image, its quasi-inverse is given by its

left adjoint functor Ψ′′ ◦ σ∗, where Ψ′′ is the left adjoint of Φ′′. Since Φ′′ is the composition of Φ

with two mutations and the adjoint of these mutations are again appropriate mutations, we can

conclude that Ψ′′ is the composition Ψ with mutations functors. Now Lemma 2.4 tells us that the

latter functors do not effect the calculations.

Let us now be more precise and give the details of the above discussion. First observe that

(σ∗ ◦ Φ′′)−1(Il) ∼= Ψ(σ∗Il). Indeed, by Lemma 2.4, the mutations (A) and (B) by O
Ỹ

(−h) and

O
Ỹ

(h−H) have no effect. Applying σ∗ to (2.4) (tensored by O
Ỹ

(−H)) and to (2.5) and observing

that, again by Lemma 2.4, Ψ(O
Ỹ

(−H)) = 0, we have

Ll = (σ∗ ◦ Φ′′)−1(Fl(−H))[1] = (σ∗ ◦ Φ′′)−1(Il).

The easiest case is when l ∩ P = ∅. Since the rational map Y 99K P2 is well-defined on l and

map it to another line, denote by j the embedding l ↪→ Ỹ
π−→ P2. Pulling back via σ the exact

sequence

0 −→ Il −→ OY −→ Ol −→ 0,

yields

0 −→ σ∗Il −→ OỸ −→ σ∗Ol = Ol −→ 0.
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By Lemma 2.4, we have Ψ(O
Ỹ

) = 0 and so

Ψ(σ∗Il) ∼= Ψ(Ol)[−1]

= π∗(Ol[−1]⊗O
Ỹ

(h)⊗ E [1]))

∼= j∗(j
∗O

Ỹ
(h)⊗ E|l)

∼= j∗(E|l)⊗OP2(h),

which is precisely the claim.

Assume now l ∩ P = {pt}. A local computation shows that σ∗Il is a sheaf, sitting in an exact

sequence

0 −→ σ∗Il −→ OỸ −→ Ol∪γ −→ 0,

where γ := σ−1(pt) and l denotes, by abuse of notation, the strict transform of l inside Ỹ . Now,

by Lemma 2.4, we have

Ll ∼= Ψ(σ∗Il) ∼= Ψ(Ol∪γ)[−1] ∼= π∗(E|l∪γ ⊗OỸ (h)).

By using the exact sequence

0 −→ Oγ(−h) −→ Ol∪γ −→ Ol −→ 0,

and observing that O
Ỹ

(h)|l ∼= Ol, we have an exact triangle

π∗(E|γ) −→ Ll −→ π∗(E|l),(2.7)

where π∗(E|γ) is a torsion sheaf supported on the line π(γ) in P2, since π is a closed embedding on

γ. On the other side, the sheaf E|l has no higher cohomology: indeed, by (2.3), E|l is a quotient

of Ol(−1)⊕8. Hence π∗(E|l) is a torsion sheaf supported on a point, and so Ll is a torsion sheaf

supported on a line in P2. It is not too hard to see that Ll is actually a pure sheaf of dimension

1: indeed, this follows directly from Hom(Ll,Ll) ∼= C.

Finally, let us consider the case l ⊆ P and denote by C ′ the preimage of l via σ. By Lemma 2.4,

applied to

σ∗Il −→ OỸ −→ σ∗Ol,

we know Ll ∼= Ψ(σ∗Ol)[−1]. By [18, Prop. 11.12], we have an exact triangle

OC′(D)[1] −→ σ∗(Ol) −→ OC′ ,

where, as before, D denotes the exceptional divisor of Ỹ . By the fact that OD(−C ′) ∼= OD(−H)

and by Lemma 2.4 applied to the short exact sequence

0 −→ O
Ỹ

(h−H) = O
Ỹ

(−D) −→ O
Ỹ
−→ OD −→ 0,

we get Ψ(OD) = 0. Moreover, the short exact sequence

0 −→ OD(−H) −→ OD −→ OC′ −→ 0,

yields Ψ(OC′) ∼= Ψ(OD(−H))[1]. On the other hand, again Lemma 2.4 shows that Ψ(OD(−H))[1] ∼=
Ψ(O

Ỹ
(h−2H))[2] ∼= B1[1]. This gives the morphism Ll → B1. The argument to show Ψ(OC′(D)) ∼=

B0 is similar and it is left to the reader.

To prove the last claim, observe that each line l ⊆ P determines uniquely the (isomorphism

class of the) object Pl and hence the extension B1 → B0[2] in the above constuction. This yields an
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injection P∨ ↪→ P(Hom(B1,B0[2])). But now, by Serre duality and adjunction, Hom(B1,B0[2]) ∼=
Hom(B0,B1)∨ ∼= Hom(OP2 ,B1)∨ ∼= C⊕3. Here we used the fact that the Serre functor of TY is the

shift by 2. �

3. Birationality and moduli spaces of sheaves

In this section we prove Theorem 1.4. To make clear how the proof goes, let us explain in some

detail the structure of this section. In Section 3.2 we deal with the case of cubic fourfolds satisfying

(∗). In this case the computation can be carried out explicitly and a direct computation provides

a description of the birational map. Section 3.3 completes the proof studying the general case.

Here we use a deformation argument based on Hodge theory. Along the way, we recall in Section

3.1 some facts about twisted sheaves and twisted K3 surfaces.

3.1. Twisted K3 surfaces. Let X be a smooth projective variety and let Br(X) be its Brauer

group, i.e., the torsion part of the cohomology group H2(X,O∗X) in the analytic topology. (For

more details about Brauer groups, see [31].)

Recall that any β ∈ Br(X) can be represented by a Čech cocycle on an open analytic cover

{Ui}i∈I of X using the sections βijk ∈ Γ(Ui ∩Uj ∩Uk,O∗X). A β-twisted coherent sheaf F consists

of a collection ({Fi}i∈I , {ϕij}i,j∈I), where Fi is a coherent sheaf on Ui and ϕij : Fj |Ui∩Uj → Fi|Ui∩Uj

is an isomorphism satisfying the following conditions:

ϕii = id; ϕji = ϕ−1
ij ; ϕij ◦ ϕjk ◦ ϕki = βijk · id.

By Coh(X,β) we denote the abelian category of β-twisted coherent sheaves on X, while Db(X,β)

is the bounded derived category Db(Coh(X,β)). A twisted variety is a pair (X,β), where X is a

smooth projective variety and β ∈ Br(X). (For more details about twisted sheaves, see [8].)

If now S is a K3 surface, one can lift β to a B-field B ∈ H2(S,Q). More precisely, using that

H3(S,Z) = 0, the long exact sequence in cohomology associate to the exponential short exact

sequence on S, allows us to lift β ∈ H2(S,O∗S) to an element B ∈ H2(S,Q) (see, for example, [21,

Sect. 1]).

For σ a generator of H2,0(S), let σB := σ + σ ∧ B ∈ H∗(S,C) be the twisted period of (S, β).

Let T (S,B) ⊆ H∗(S,Z) be the twisted transcendental lattice, i.e., the minimal primitive sublattice

of H∗(S,Z) such that σB ∈ T (S,B) ⊗ C. (The lattice structure is given by the Mukai pairing on

H∗(S,Z) as explained in [18, Sect. 5.2].) Moreover, we denote by Pic(S,B) := T (S,B)⊥ the twisted

Picard lattice, where the orthogonal is taken in H∗(S,Z) with respect to the Mukai pairing. Recall

that the Mukai pairing is defined, in terms of cup product, as

〈v, w〉 := −v0 ∪ w4 + v2 ∪ w2 − v4 ∪ w0,

for every v = (v0, v2, v4) and w = (w0, w2, w4) in H∗(S,Z).

In [21], it was also defined a twisted weight-2 Hodge structure on the total cohomology of S

which, together with the Mukai pairing, is then denoted by H̃(X,B,Z).

Using the B-field lift of β ∈ Br(S), the twisted Chern character chB : Coh(S, β) → H̃(S,B,Z)

is defined in [21, Sect. 1]. The Mukai vector of F ∈ Db(S, β) is vB(F) := chB(F) ·
√

td(S) ∈
H̃(S,B,Z). For F ∈ Coh(S, β) we denote by rk(F) and cB1 (F) the degree 0 and 2 parts of chB(F).

Besides the presence of several definition of Chern characters (i.e., twisted or not), in the rest of
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the paper the Picard group Pic(S) will be always meant to be embedded in H2(S,Z) by taking the

untwisted Chern class c1(= c0
1).

Lemma 3.1. If β ∈ Br(S) has order d, the lattice Pic(S,B) is generated by Pic(S) and the vectors

w1 = (d, dB, 0) and w2 = (0, 0, 1) in H∗(S,Z) = H0(S,Z)⊕H2(S,Z)⊕H4(S,Z).

Proof. Let c be the discriminant of Pic(S). Recall that the discriminant of a lattice is the deter-

minant of the matrix representing the corresponding symmetric bilinear form (see [32, Sect. 1] for

more details about it). By [32, Prop. 1.6.1], the discriminants of Pic(S) and T (S) coincide, up to

sign. For the same reason, this happens for the discriminants of Pic(S,B) and T (S,B) as well.

Now T (S,B) can be realized as a (non-primitive) sublattice of T (S) of index d and so, up to sign,

the discriminant of T (S,B) and of Pic(S,B) is d2c (see, for example, [21, Remark 3.1]).

Obviously the two vectors w1, w2 and the elements of Pic(S) are orthogonal to σB and thus

belong to Pic(S,B). Let L be the sublattice of Pic(S,B) generated by those elements. An easy

calculation shows that d2c is the discriminant of L. Therefore Pic(S,B) and L have the same

discriminant and so they coincide. �

The following is a straightforward consequence of the result above.

Corollary 3.2. If β ∈ Br(S) has order d, then the rank of any A ∈ Coh(S, β) is divisible by d.

Moving to the geometric situation we are interested in, assume now that Y is a cubic fourfold

satisfying (∗). We have observed in Section 2.2 that there exists an Azumaya algebra A0 on S,

the K3 surface which is the double cover of P2 ramified along C, such that Db(S,A0) ∼= Db(P2,B0)

and f∗A0 = B0. Such an Azumaya algebra corresponds to the choice of the element β in the 2-

torsion part of the Brauer group Br(S) of S which, in turn, corresponds to the P1-fibration F → S

parametrizing the lines contained in the fibres of π : Ỹ → P2. Therefore Db(S, β) ∼= Db(P2,B0)

and this equivalence is realized by the following composition of equivalences

(3.1) Ξ : Coh(S, β)
(−)⊗OS

E∨0 // Coh(S,A0)
f∗ // Coh(P2,B0),

where E0 is a rank-2 locally free β-twisted sheaf such that A0
∼= End(E0). Obviously, Ξ(E0) = B0.

For sake of simplicity we denote by Ξ the induced functor on the level of derived categories. Set

E1 ∈ Coh(S, β) and, for l ⊆ Y a line, Jl ∈ Db(S, β) to be such that

B1 = Ξ(E1) and Ll = Ξ(Jl).

Notice that E1 is locally-free of rank 2. Also, for a line l ⊆ Y not contained in the plane P , the

sheaf Jl is pure of dimension 1. Indeed, by Proposition 2.6, Ll is a vector bundle (of rank 4)

supported on a line in P2. (See (2.6) for the definition of Ll.)

Lemma 3.3. Let Y be a cubic fourfold satisfying (∗). If l is a line in Y , then vB(Jl) = (0, f∗h, s),

for some integer s. Moreover, vB(Ej) = (2, ` + jf∗h + 2B, sj), for some ` ∈ Pic(S), sj ∈ Z and

j = 0, 1.

Proof. Take a line l ⊆ Y such that l 6⊆ P . Then Jl is a pure torsion-free sheaf supported on a

curve in the linear system of f∗h. Assuming l generic with the above property, we necessarily have
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that vB(Jl) is as required. As the Mukai vector does not depend on the choice of the line, this

holds for any line l ⊆ Y .

To prove the second assertion in the statement, we use this and the fact that, by Proposition

2.6, for l ⊆ P ⊆ Y , the complex Jl is extension of E0[1] and E1. Thus it is enough to prove that

vB(E0) = (2, `+ 2B, s0) ∈ Pic(S,B), for ` ∈ Pic(S). This follows directly from Lemma 3.1. �

For simplicity, we will use the same symbol Ξ: Db(S, β)→ Db(P2,B0) for the derived functor of

the one in (3.1). We denote by ΞL the left adjoint of Ξ. We will also denote by Θ the composition

of functors

Θ := ΞL ◦ (σ∗ ◦ Φ′′)−1 ◦ROY (−H) ◦ ((−)⊗OY (−H)),

where (σ∗ ◦ Φ′′)−1 is the functor defined in Section 2.2, and ROY (−H) is the right mutation in

OY (−H). The functor Θ : TY → Db(S, β) is an equivalence.

For the convenience of the reader, we put all the functors defined so far and providing different

incarnations of the triangulated category TY in the following diagram

TY

Θ

��

ROY (−H)◦((−)⊗OY (−H))
// TY

(σ∗◦Φ′′)−1

// Db(P2,B0)

ΞL

tt

Db(S, β)

Ξ

44

(−)⊗OS
E∨0 // Db(S,A0),

f∗

OO

where the upper and lower triangles commute.

3.2. Birationality I. Following for example [37], a notion of stability for twisted sheaves can be

introduced and the moduli spaces of twisted stable sheaves can be constructed. For a K3 surface

S, given a primitive v ∈ Pic(S,B) with 〈v, v〉 ≥ 2, we denote by

M(S, v,B)

the moduli space of β-twisted stable (with respect to a generic polarization) sheaves on S with

twisted Mukai vector v (here we specify the lift B of β). By [37], M(S, v,B) is a smooth projective

holomorphic symplectic manifold and, as lattices,

H2(M(S, v,B),Z) ∼= v⊥,

where the orthogonal is taken in H̃(S,B,Z). The weight-2 Hodge structure on v⊥, which is compat-

ible with this isometry, is the one induced by the twisted period σS +σS ∧B, for C ·σS = H2,0(S).

In other words, the H2,0-part of the weight-2 Hodge structure on v⊥ is given by C(σS + σS ∧ B),

as 〈v, σS + σS ∧B〉 = 0.

The following proposition proves the second statement in Theorem 1.4. We keep the same

notation as before and denote by P∨ ⊆ F (Y ) the dual plane of lines contained in the plane P .

Proposition 3.4. Let Y be a cubic fourfold satisfying (∗). Then there exists a birational map

F (Y ) 99K M(S, v,B), where v = (0, f∗h, s) ∈ Pic(S,B) for some s ∈ Z, which is either an

isomorphism or a Mukai flop in the plane P∨.
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Proof. By Remark 2.5, F (Y ) is identified with the moduli space of the stable sheaves Fl, for l ⊆ Y
a line. By definition, Θ(Fl) = Jl. On the other hand, by Proposition 2.6, if l 6⊆ P , then the pure

torsion sheaf Jl ∈ Coh(S, β) is stable, since its Mukai vector is primitive (see Lemma 3.3) and, by

(∗), the divisor f∗h is indecomposable.

Let P∨ ⊆ F (Y ) be the plane dual to P ⊆ Y and parametrizing the lines in P . The above

remarks show that Θ yields an isomorphism between the open subset U = F (Y ) \P∨ and an open

subset U ′ ⊆ M(S, v,B), where v = (0, f∗h, s). Therefore, we have a birational map γ : F (Y ) 99K

M(S, v,B).

Fix h′ ∈ Pic(M(S, v,B)) an ample polarization. Suppose that γ does not extend to an isomor-

phism. Hence, by [19, Prop. 2.1 and Cor. 2.2], for all rational curves D ⊆ P∨, we have γ∗h′ ·D < 0

(see also [19, Cor. 2.6]). Consider the Mukai flop γ′ : M 99K F (Y ) of F (Y ) in the plane P∨ and

let P ′ ⊆M be the corresponding dual plane in M . Let γ′′ : M 99KM(S, v,B) be the composition

γ ◦ γ′. Since a Mukai flop reverses the sign of the intersection with the rational curves contained

in the exceptional locus, the above remarks give that (γ′′)∗h′ ·D′ > 0, for any rational curve D′ in

P ′. Again by [19, Prop. 2.1 and Cor. 2.2], this means that γ′′ extends to an isomorphism yielding

the desired conclusion. �

The fact that we have to deal with moduli spaces of twisted sheaves with (in general) non-trivial

twists is quite relevant. This is made clear by Proposition 4.1. Moreover, we will see in Remark

5.10 that, if β is non-trivial, then the birational map in Proposition 3.4 is actually a Mukai flop.

The following easy corollary is a specialization of the previous result to a dense subset of the

moduli space C of cubic fourfolds (see [14, Sect. 2.2] for more details about the GIT construction

of C). A cubic fourfold Y containing a plane P is very generic if

NS2(Y ) := H4(Y,Z) ∩H2,2(Y ) = 〈H2, P 〉,

where, for simplicity, we denote by H2 the self-intersection of the ample line bundle OY (H). It is

easy to see that a very generic Y satisfies (∗) (see, for example, [5] and Remark 2.3).

Corollary 3.5. If Y is very generic, then there exists a birational morphism F (Y ) 99KM(S, v,B),

where v = (0, f∗h, 0), which is either an isomorphism or a Mukai flop in the plane P∨.

Proof. By Proposition 3.4 and by tensoring with an appropriate power of f∗h ∈ Pic(S), one

deduces that there exists a birational morphism F (Y ) 99K M(S, v,B), where v = (0, f∗h, ε) and

ε ∈ {0, 1}. Indeed, the tensor product with f∗h changes v in v+(0, 0, 2). By [4], Pic(F (Y )) contains

a line bundle L with self-intersection 6 with respect to the Beauville–Bogomolov quadratic form.

Moreover, by [37] and the existence of the above birational map, we have a sequence of isometries

of lattices

(3.2) Pic(F (Y )) ∼= Pic(M(S, v,B)) ∼= Pic(S,B) ∩ v⊥.

Therefore, it is enough to show that, if ε = 1, then Pic(M(S, v,B)) does not contain an element of

self-intersection 6. For this we use the calculations in [10]. Indeed, denote by e1, e2 the two natural

generators of the first copy of the hyperbolic lattice in the K3 lattice Λ := U⊕3⊕E8(−1)⊕2 (see [32]

for the definition of the lattices U and E8). We can identify H2(S,Z) to Λ in such a way that f∗h is

represented by the vector e1 +e2. By [11] and using this identification, the lift B of β has the form
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B = e2+λ
2 , for some λ ∈ U⊕2⊕E8(−1)⊕2 and (λ, λ) = 2. If ε = 1, then, by the last isometry in (3.2),

an easy calculation (using Lemma 3.1) shows that Pic(M(S, v,B)) ∼= 〈(0, 0, 1), (4, 2λ+e1 +2e2, 1)〉.
Hence the intersection form on Pic(M(S, v,B)) would not represent 6 when ε = 1. �

3.3. Birationality II: end of the proof of Theorem 1.4. Let us now consider the general case

of Y any cubic fourfold containing a plane P . In particular, we prove that, for all cubic fourfolds

Y containing a plane, the Fano variety F (Y ) is birational to a smooth projective moduli space of

twisted sheaves on a K3 surface which, together with the generic case in the previous section, is

precisely the content of Theorem 1.4. The argument is divided into a few steps.

3.3.1. Cohomologies of cubic fourfolds and Fano varieties. Let us start by recalling some lattice

theoretic properties of the cohomologies of the cubic fourfolds containing a plane, their Fano

varieties of lines and the associated K3 surfaces. A detailed explanation of what we are about to

discuss is in [14] (see also [36]).

If Y is a cubic fourfold, by [4, Prop. 6], there exists a Hodge isometry

(3.3) ϕ : H2(F (Y ),Z)prim
∼−→ H4(Y,Z)prim(−1),

where (−1) just reverses the signature. Here H4(Y,Z)prim is the orthogonal complement (with

respect to the cup-product) of the self-intersection H2 of OY (H). Analogously, H2(F (Y ),Z)prim is

the orthogonal complement (with respect to the Beauville–Bogomolov form) of the natural ample

polarization coming from the embedding F (Y ) ↪→ Gr(2, 6) into the Grassmannian of lines in P5.

Let L be the lattice (1)⊕21⊕(−1)⊕2 with the choices of a distinguished class l2 of self-intersection

3 and of an isometry ψ : H4(Y,Z) → L sending H2 to l2. Notice that all the vectors in L of self-

intersection 3 are permuted by the isometries in the orthogonal group O(L). Set L0 := (l2)⊥ =

ψ(H4(Y,Z)prim), K := ψ(〈H2, P 〉) and L1 := K⊥ ⊆ L0, where the orthogonals are taken in L. As

explained in [14, Prop. 3.2.4], we have the following fact.

Lemma 3.6. The primitive embedding of L1 into L is unique, up to isometries of L acting as the

identity on l2.

Let Y ′ be a very generic cubic fourfold with a plane with an isometry ψ : H4(Y ′,Z) → L as

above. Then

(3.4) L1 = ψ(T (Y ′)) = ψ(ϕ(T (F (Y ′)))(−1)),

where T (Y ′) ↪→ H4(Y ′,Z) and T (F (Y ′)) ↪→ H2(F (Y ′),Z) are the smallest primitive sublattices

with the property that σY ∈ T (Y ′) ⊗ C and σF (Y ′) ∈ T (F (Y ′)) ⊗ C. Here CσY ′ = H3,1(Y ′) and

CσF (Y ′) = H2,0(F (Y ′)). In other words, T (Y ′) = (σ⊥Y ′ ∩ H4(Y,Z))⊥ and similarly for T (F (Y ′))

(here the orthogonality is in H4(Y ′,Z) and H2(F (Y ′),Z) respectively).

3.3.2. Associated twisted K3 surfaces. Take Y ′ to be again a fixed very generic cubic fourfold with

a plane P . At the same time, we fix an isometry ψ : H4(Y ′,Z) → L such that ψ(H2) = l2 which,

by (3.3), gives isometries ψ′ : H2(F (Y ′),Z)prim → L0(−1) and ψ′′ : T (F (Y ′))→ L1(−1).

By [36, Sect. 1] (use, in particular, [36, Prop. 2] and the fact that T (Y ′) is orthogonal to H2

and P in H4(Y ′,Z)), there exists an index-2 embedding

(3.5) ξ : T (F (Y ′)) ∼= T (Y ′)(−1) ↪→ T (S) ∼= H2(S,Z)prim,
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where S is the double cover of P2 ramified along the smooth sextic associated to Y ′ and P . Here

H2(S,Z)prim is the orthogonal complement of f∗h in H2(S,Z). Here and for the rest of the section,

we keep the same notation as in Section 2.1.

By Corollary 3.5, there exists a birational map

(3.6) γ : F (Y ′) // M(S, v,B) ,

where M(S, v,B) is the moduli space of β-twisted sheaves with Mukai vector v := (0, f∗h, 0).

Hence, there is a Hodge isometry γ∗ : H2(M(S, v,B),Z)
∼−→ H2(F (Y ′),Z). In particular,

T (M(S, v,B))) = (γ∗)−1(T (F (Y ′))),

where T (M(S, v,B)) is the minimal primitive sublattice of H2(M(S, v,B),Z) whose tensorization

by C contains H2,0(M(S, v, b)). The lattice H2(M(S, v,B),Z) is naturally identified to v⊥, with

the orthogonal taken in H̃(S,Z) with respect to the Mukai pairing (see [37, Thm. 3.19]). More

precisely, there is a natural Hodge isometry

κ : H2(M(S, v,B),Z)→ v⊥,

where the Hodge structure on v⊥ is the one induced by T (S,B) ⊆ v⊥. In particular, we have

κ(T (M(S, v,B))) = T (S,B).

Denote by Λ0 ↪→ Λ := U⊕3 ⊕E8(−1)⊕2 the orthogonal complement of a (primitive) vector k in

the K3 lattice Λ with (k, k) = 2. Notice that we can choose any such k as they are all conjugate

under the action of the group O(Λ) of isometries of Λ (this is essentially because, due to [32], the

primitive embedding of a rank-1 lattice in Λ is unique, up to the action of O(Λ)). Hence, there is

an isometry η : H2(S,Z)→ Λ such that η((f∗h)⊥) = Λ0. If we define Λ̃ := Λ⊕U , then there exists

an isometry η̃ : H̃(S,Z)→ Λ̃ such that η̃|H2(S,Z) = η and w := η̃(v) can be written as w = (0, k, 0)

as a vector in Λ̃. Here the trivial coordinates refer to the vectors e1 and e2 in the standard basis

of the additional copy of U .

Let us now define two primitive embeddings i1 : L1(−1) ↪→ w⊥ and i2 : L0(−1) ↪→ w⊥ as

follows. Take the isometry φ := η̃ ◦ κ ◦ (γ∗)−1 : H2(F (Y ′),Z)→ w⊥ and put

i1 := φ ◦ (ψ′′)−1 : L1(−1) ↪→ w⊥ and i2 := φ ◦ (ψ′)−1 : L0(−1) ↪→ w⊥.

It is clear that i1(L1(−1)) ⊆ i2(L0(−1)) ⊆ w⊥.

Lemma 3.7. Let Y be a cubic fourfold with a plane. Then there is an isometry φ : H2(F (Y ),Z)→
w⊥ such that φ(T (F (Y ))) ⊆ i1(L1(−1)) ⊆ w⊥.

Proof. By the above discussion there is already a very generic cubic fourfold Y ′ for which such

a φ exists. Using this case and since all Fano varieties F (Y ) of cubic fourfolds Y containing a

plane belong to the same irreducible component of the moduli space of (primitively polarized)

irreducible holomorphic symplectic manifolds, one gets an isometry φ′ : H2(F (Y ),Z) → w⊥ such

that φ′(H2(F (Y ),Z)prim) = i2(L0(−1)) ⊆ w⊥, for all cubic fourfolds Y with a plane. This follows,

for example, from [23, Thm. 1.5] (see also [10]).

By Lemma 3.6, there is a isometry ξ1 ∈ O(L0(−1)) such that ξ1(φ′(T (F (Y )))) ⊆ i1(L1(−1)).

Moreover ξ1 acts trivially on the discriminant group AL0(−1) := L0(−1)∨/L0(−1) and so, by
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Sections 1.14 and 1.15 of [32], there is ξ2 ∈ O(w⊥) such that ξ2|i2(L0(−1)) = ξ1. Thus define

φ = ξ2 ◦ φ′. �

3.3.3. The end of the proof of Theorem 1.4. Let us begin with the following result.

Lemma 3.8. Let Y be a cubic fourfold with a plane. Then there exist a K3 surface S′, a Mukai

vector v′ ∈ H̃(S′,Z) and B′ ∈ H2(S′,Q) such that there is a Hodge isometry H2(F (Y ),Z) ∼=
H2(M(S′, v′, B′),Z).

Proof. Using Lemma 3.7, fix an isometry φ : H2(F (Y ),Z) → w⊥ such that φ(T (F (Y ))) ⊆
i1(L1(−1)). Put σ1 := φC(σF (Y )) ∈ i1(L1(−1)) ⊗ C, where φC is the C-linear extension of φ,

and set σ2 to be the component of σ1 contained in Λ⊗C. Notice that, as σ1 ∈ w⊥⊗C, the vector

σ2 is orthogonal to k ∈ Λ and therefore σ2 ∈ Λ0 ⊗ C ⊆ Λ⊗ C.

By construction σ2 induces a weight-2 Hodge structure on Λ0 and, by the surjectivity of the

period map for K3 surfaces, there is a K3 surface S′ and an isometry η̃′ : H̃(S′,Z)→ Λ̃ as explained

in Section 3.3.2 (indeed, to define η̃ for the K3 surface S, we did not use that Pic(S) ∼= Z). In

particular, η̃′(T (S′)) is a primitive sublattice of Λ0.

We then have a commutative diagram

(3.7) T (S′)
� _

η̃′|T (S′)
��

〈−,B′〉
// Z/2Z

Λ0

(−,B̃)
// Z/2Z // 0,

where (−,−) denotes the bilinear pairing on Λ and 〈−,−〉 is the Mukai pairing. Notice that the

bottom line is obtained by applying η̃ to the surjection

(3.8) T (S)
〈−,B〉

// Z/2Z // 0,

whose existence is due to [8], being B a B-field lift of β ∈ Br(S). In particular, in (3.7), we put

B̃ := (η̃Q)(B) and B′ := (η̃′Q)−1(B̃).

Set v′ := (η̃′)−1(w) and consider the moduli space M(S′, v′, B′) with the natural identification

κ′ : H2(M(S′, v′, B′))
∼−→ (v′)⊥ as discussed in Section 3.3.2. By [37, Thm. 3.19], there is c ∈ C

such that (η̃′ ◦ κ′)C(cσM(S′,v′,B′)) = η̃′C(σS′ + σS′ ∧B′) = σ2 + σ2 ∧ B̃ = σ1.

Thus the isometry (κ′)−1 ◦ (η̃′)−1 ◦ φ : H2(F (Y ),Z)
∼−→ H2(M(S′, v′, B′),Z) preserves the Hodge

structures. This is precisely what we want. �

To conclude the proof of Theorem 1.4, observe that the Fano varieties F (Y ) of cubic fourfolds Y

containing a plane and the moduli spaces of twisted sheaves on a K3 surface are both deformations

of Hilbert schemes of 0-dimensional subschemes of length-2 on a K3 surface (see [4] and [37]). Thus

we can apply the birational Torelli theorem for those manifolds. More precisely, given a cubic

fourfold Y containing a plane P and the Hodge isometry H2(F (Y ),Z) ∼= H2(M(S′, v′, B′),Z) as in

Lemma 3.8, by the main result in [35] (see also [17]), we get a birational map F (Y ) 99KM(S′, v′, B′)

as required. Notice that here the monodromy calculations in [29, 30] are crucial.

Remark 3.9. As suggested by one of the referees, one may give a different geometric argument

to construct the family of K3 surfaces associated to the family of cubic fourfolds with a plane.
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Indeed, take a family Y → D of cubic fourfolds containing a plane. Let π : Ỹ → P2
D be the map

induced by the projection from PD onto P2
D, blown-up in PD. Note that the Stein factorization of

the relative Hilbert scheme of lines of Ỹ → P2
D gives a family S0 → D of K3 surfaces over D with

singular fibres over the points of D corresponding to nodal sextics.

Passing to a double cover of D, one gets a family S ′ with a locus of ordinary double points along

the set of singular points in the singular fibres (i.e., in codimension 3). Therefore, choosing a small

analytic resolution of singularities S ′′ → S ′ we get a family S ′′ → D′ of smooth K3 surfaces. The

fibres of this family are double covers of P2 blown-up in the nodes of the sextic.

4. Rationality and moduli spaces

In this section we relate the fact that F (Y ) is birational to a moduli spaces of untwisted sheaves

to the existence of exact equivalences between the category TY and the bounded derived category

of untwisted sheaves on some K3 surface. According to Kuznetsov’s conjecture mentioned in the

introduction, this would provide a comparison between two points of view on rationality of a cubic

fourfold with a plane: one given by looking at the birational geometry F (Y ) and the other at the

category TY .

We start with the following result that is certainly well-known to the experts.

Proposition 4.1. If Y is a very generic cubic fourfold containing a plane P , then there is no

smooth projective K3 surface S′ and no primitive Mukai vector v′ such that F (Y ) is birational to

the smooth projective moduli space of stable untwisted sheaves on S′ with Mukai vector v′.

Proof. Assume, by contradiction, that there exists a K3 surface S′ and a primitve Mukai vector

v ∈ H̃(S′,Z) := H̃(S′, 0,Z) such that F (Y ) is birational to the moduli space M(S′, v) of stable

untwisted sheaves with Mukai vector v. Then there would be a Hodge isometry T (F (Y )) ∼=
T (M(S′,Z)) ∼= T (S′) (see [37]). Hence T (F (Y )) would admit a primitive embedding in the K3

lattice Λ.

Now, due to (3.5), (3.8) and [36], we have a short exact sequence

(4.1) 0 // T (F (Y )) // T (S)
〈−,B〉

// Z/2Z // 0,

where S is again the K3 surface double cover of P2 and B is the lift of the special non-trivial

β ∈ Br(S) in Section 2.1. But, due to either [11, Cor. 9.4 and Sect. 9.7] or to the appendix of [25],

the kernel of the morphism (−, B) in (4.1) does not admit a primitive embedding in Λ. �

Nevertheless F (Y ) may be birational to a moduli space of untwisted sheaves. As explained

in the following proposition, which answers a question by Hassett in the case of cubic fourfolds

containing a plane, this is reflected by the category TY .

Theorem 4.2. Let Y be a cubic fourfold satisfying (∗). There exists a K3 surface S′ such that

F (Y ) is birational to a fine moduli space M(S′, v) of untwisted stable sheaves on S′ and with Mukai

vector v if and only if TY
∼= Db(S′).

Proof. By assumption TY
∼= Db(S, β), where S and β ∈ Br(S) are as the previous sections.

Under the assumption that F (Y ) and M(S′, v) are birational, there exists a Hodge isometry
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T (F (Y )) = Pic(F (Y ))⊥ ∼= T (M(S′, v)) := Pic(M(S′, v))⊥, where the orthogonal is taken with

respect to the Beauville–Bogomolov form on the second cohomology group. Moreover, there are

Hodge isometries T (M(S′, v)) ∼= T (S′) (see, for example, [37] or the beginning of Section 3.2) and,

as a consequence of Proposition 3.4, T (F (Y )) ∼= T (S, β). Putting the isometries together, we get

a Hodge isometry T (S′) ∼= T (S, β).

By [32, Thm. 1.14.4], this isometry extends to a Hodge isometry ϕ : H̃(S′,Z) ∼= H̃(S,B,Z), where

B is a B-field lift of β. Hence, up to composing ϕ with the isometry −idH0(S′,Z)⊕H4(S′,Z)⊕idH2(S′,Z),

we can apply the main result in [22] obtaining an equivalence Db(S′) ∼= Db(S, β). In conclusion,

Db(S′) ∼= TY .

Conversely, assume that there exist a K3 surface S′ and an exact equivalence Db(S′) ∼= TY . Due

to (∗), there is a an equivalence Φ : Db(S, β)
∼−→ Db(S′) which, in view of [9], is a Fourier–Mukai

functor ΦE . By [21], this equivalence induces a Hodge isometry ΦH
E : H̃(S,B,Z) → H̃(S′,Z) for a

B-field lift B of β.

Due to Proposition 3.4, F (Y ) is birational to a moduli space M(S, v,B), for a primitive vector

v ∈ H̃(S,B,Z). Set v′ := ΦH
E (v). Up to composing ΦE with the shift by 1, we can assume that

the degree zero part of v′ is greater or equal to 0 and so we can consider the (non-empty) moduli

space M(S′, v′) of stable untwisted sheaves on S′. By [37], there are Hodge isometries

H2(M(S, v,B),Z) ∼= v⊥ ∼= (v′)⊥ ∼= H2(M(S′, v′),Z).

Notice that both M(S, v,B) and M(S′, v′) are deformation equivalent to a Hilbert scheme of

length-2 subschemes of dimension 0 on a K3 surface ([37]). Hence, applying the Torelli theorem

for hyperkähler manifolds (see [35] and [17]), we get a birational map M(S, v,B) 99K M(S′, v′).

Putting all together, we get a birational map F (Y ) 99KM(S′, v′), as required. �

Remark 4.3. (i) A special but interesting case of the previous proposition occurs if Y satisfies

(∗) and the moduli space is actually isomorphic to Hilb2(S′), the Hilbert scheme of length-2 0-

dimensional subschemes of a K3 surface S′. The main conjecture in [25] asserts that a cubic

fourfold with a plane Y is rational if and only if there exists a K3 surface S′ and an equivalence

TY
∼= Db(S′). Thus, conjecturally, if F (Y ) is birational to a Hilbert scheme as above, then Y is

rational.

It would be certainly interesting to remove the assumption (∗) but this would require a different

approach exceeding the scope of this paper.

(ii) Assuming rk(NS2(Y )) > 12 and using [35], the statement of Theorem 4.2 can be extended

further. Indeed, due to our assumption on the rank of NS2(Y ), by [21, Prop. 7.3] there exist a K3

surface S′ and an equivalence TY
∼= Db(S′). Again, conjecturally, this would mean that all cubic

fourfolds with a plane and such that rk(NS2(Y )) > 12 are rational.

From [21, Thm. 0.4] we deduce the sequence of Hodge isometries T (F (Y )) ∼= T (S,B) ∼= T (S′).

By [3] there is a Hodge isometry T (S′) ∼= T (Hilb2(S′)) and such an isometry extends to a Hodge

isometry H2(F (Y ),Z) ∼= H2(Hilb2(S′),Z). For this use [32] with our assumption on the rank of

T (Y ) (and so of T (S′)) and the fact that H2(F (Y ),Z) and H2(Hilb2(S′),Z) contain a copy of the

K3 lattice Λ into which T (F (Y )) and T (S′) embed (for this use [3]).

Using the main result of [35] (see also [17]), the Hodge isometry H2(F (Y ),Z) ∼= H2(Hilb2(S′),Z)

would yield a birational map between F (Y ) and Hilb2(S′).
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5. Isomorphisms and moduli spaces of complexes

In the course of this section, unless clearly specified, we will always assume that all cubic fourfolds

Y have the restrictive property

(∗∗) Y satisfies (∗) and β ∈ Br(S) is non-trivial.

As observed in the appendix to [25], the very generic cubic fourfolds containing a plane satisfy the

additional condition about β. Moreover, as it follows from [25, Prop. 4.7], the cubic fourfolds for

which (∗∗) does not necessarily hold true are precisely those in the codimension-1 subvarieties of

the divisor C8 consisting of rational cubic fourfolds with a plane studied in [13].

Although relative to a different setting, most of the arguments here are inspired by [1].

5.1. A family of stability conditions. Given the twisted Chern character chB, for any torsion-

free F ∈ Coh(S, β) define its slope in the following way:

µB(F) :=
cB1 (F) · f∗h

rk(F)
.

In particular a torsion-free F ∈ Coh(S, β) is µB-semistable (resp. µB-stable) if, for all non-zero

G ↪→ F in Coh(S, β), µB(G) ≤ µB(F) (resp. < and rk(G) < rk(F)). Notice that, in the definition

of slope, the ample polarization has been fixed to be equal to f∗h.

The following result could be proved for cubic fourfolds satisfying (∗) instead of (∗∗). Since we

will not need this generality, we just consider (∗∗) for which the proof is straightforward.

Lemma 5.1. The sheaves E0 and E1 are µB-stable. Moreover, any morphism E0 → E1 is injective.

Proof. Since, by assumption, β is non-trivial, the two claims follow directly from Corollary 3.2. �

As we observed in [20], the notion of twisted Chern character allows one to generalize Bridge-

land’s construction in [6] to the case of twisted K3 surfaces.

We skip all the details about the definition of stability conditions which are not relevant in this

paper and for which we refer to [7, 20]. So we just recall that, by [7, Prop. 5.3] giving a stability

condition on a triangulated category D is equivalent to giving a bounded t-structure on D with

heart A and a group homomorphism Z : K(A) → C such that Z(G) ∈ H, for all 0 6= G ∈ A, and

with Harder–Narasimhan filtrations (see [7, Sect. 5.2]). Here H := {z ∈ C∗ : z = |z| exp(iπφ), 0 <

φ ≤ 1}. More precisely, any 0 6= G ∈ A has a well-defined phase φ(G) := arg(Z(G)) ∈ (0, 1]. For

φ ∈ (0, 1], we denote by P(φ) the category of φ-semistable objects in A of phase φ: more precisely,

an object 0 6= G ∈ A is then in P(φ) if and only if, for all G � G′ 6= 0 in A, φ = φ(G) ≤ φ(G′). If

φ ∈ R, then there is a unique n ∈ Z and φ′ ∈ (0, 1] such that φ = φ′ + n. So set P(φ) := P(φ′)[n].

A stability condition is called locally-finite if there exists some ε > 0 such that, for all φ ∈ R,

each (quasi-abelian) subcategory P((φ − ε, φ + ε)) (i.e., the category generated by extensions by

all semistable objects with phases in the interval (φ − ε, φ + ε)) is of finite length. In this case

P(φ) has finite length so that every object in P(φ) has a finite Jordan–Hölder filtration into stable

factors of the same phase.

Assume from now on that Y is a cubic fourfold containing a plane P and satisfying (∗∗). We

want to produce a family of stability conditions on the derived category Db(S, β), where (S, β) is

the twisted K3 surface associated to Y . Observe that, by the definition of a lift of a Brauer class,
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we can assume further that the B-field lift of β is such that B · f∗h = 1
2 (see [25, Lemma 6.4]). By

Lemma 3.3, we can write vB(E0) = (2, `+ 2B, s0) ∈ H̃(S,B,Z). Define

Zm : Pic(S,B) −→ C v 7−→
〈

exp

(
`

2
+

(
1

4
+m
√
−1

)
f∗h+B

)
, v

〉
,

where 〈−,−〉 denotes the Mukai pairing and m ∈ R>0. Explicitly, if v = (r, c, d), we have

(5.1) Zm(v) =
(
−d+ U · c− rU2/2 + rm2

)
+m
√
−1 (c− rU) · f∗h,

where U := `/2 + f∗h/4 +B. If r 6= 0, we can also write the real part as

ReZm(v) =
1

2r

(
〈v, v〉+ 2m2r2 − (c− rU)2

)
.

Remark 5.2. Notice that, for any line l ⊆ Y , we have

Re(Zm(vB(Jl))) = Re(Zm((0, f∗h, s))) = 0

Im(Zm(vB(Jl))) = 2m.

Indeed, by applying the equivalence Ξ−1 to the triangle in Proposition 2.6, we get that Jl is an

extension of E0[1] and E1:

(5.2) E0[1] −→ Jl −→ E1.

By Remark 2.1, E0 and E1 are both spherical, namely, for j = 0, 1, we have 〈vB(Ej), vB(Ej)〉 = −2.

Therefore, for j = 0, 1,

Re(Zm(vB(Ej))) =
1

4

(
8m2 − 5

2

)
Im(Zm(vB(Ej))) = (−1)j+1m.

Let us spell out this explicit calculation for j = 0, as the case of E1 is completely analogous. By

Lemma 3.3, we have

vB(E0) = (2, `+ 2B, s0).

Thus set c = ` + 2B, r = 2 and, as above, U = 1
2` + 1

4f
∗h + B. Hence, we have (c − rU) =

`+2B−2
(

1
2`+ 1

4f
∗h+B

)
= −1

2f
∗h. In particular, we have (c−rU)2 = 1

2 and (c−rU)·f∗h = −1.

Plugging these in (5.1), we get

Zm(vB(E0)) =
1

2r

(
〈vB(E0), vB(E0)〉+ 2m2r2 − (c− rU)2

)
+m
√
−1 (c− rU) · f∗h

=
1

4

(
−2 + 8m2 − 1

2

)
−m
√
−1 =

1

4

(
8m2 − 5

2

)
−m
√
−1.

We also observe that, for m0 :=
√

5
4 , Re(Zm0(vB(Ej))) = 0.

To define an abelian category which is the heart of a bounded t-structure on Db(S, β), fix the

rational number

µ :=

(
B +

`

2
+

1

4
f∗h

)
· f∗h.

By the previous remark, we have that µ = s, where s is the degree-4 part of vB(Jl).
Let T,F ⊆ Coh(S, β) be the following two full additive subcategories: The non-trivial objects

in T are the twisted sheaves A such that their torsion-free part have Harder–Narasimhan factors
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(with respect to µB-stability) of slope µB > µ. A non-trivial twisted sheaf A is an object in F if

A is torsion-free and every µB-semistable Harder–Narasimhan factor of A has slope µB ≤ µ. It is

easy to see that (T,F) is a torsion theory (see [12] for more details).

Following [6], we define the heart of the induced t-structure as the abelian category

A :=

A ∈ Db(S, β) :

• Hi(A) = 0 for i 6∈ {−1, 0},
• H−1(A) ∈ F,

• H0(A) ∈ T

 .

Remark 5.3. A direct computation shows that

µB(E0) =
(`+ 2B) · f∗h

2
< µ <

(`+ f∗h+ 2B) · f∗h
2

= µB(E1).

Being E0 and E1 µ
B-stable (Lemma 5.1), we have E0[1], E1 ∈ A. Hence, by (5.2), Jl ∈ A, when

l ⊆ P . On the other side, if l 6⊆ P , then Jl is in T ⊆ A, being a torsion sheaf. Summing up,

Jl ∈ A, for all lines l ⊆ Y .

Lemma 5.4. The pair σm := (Zm,A) defines a locally-finite stability condition for all m > 1/2.

Proof. Let A ∈ Coh(S, β) be a torsion-free µB-stable sheaf with µB(A) = µ, so that

Im(Zm(vB(A))) = m

(
c− r

(
`

2
+

1

4
f∗h+B

))
· f∗h = 0,

where vB(A) = (r, c, d).

To prove that the pair σm defines a stability condition, we have now to analyze more in detail

the real part of Zm(vB(A)). As r > 0, by Lemma 3.1, we have F :=
(
c− r

(
1
2`+ 1

4f
∗h+B

))
∈

Pic(S) ⊗ Q. Thus, by the Hodge Index theorem, F · F ≤ 0. Since A is µB-stable, we have

χ(A,A) ≤ 2. By definition,

Re(Zm(vB(A))) =
1

2r
(−χ(A,A) + 2r2m2 − F · F ).

If A is not spherical (which implies, since χ is even, that χ(A,A) ≤ 0), then Re(Zm(vB(A))) > 0

and so Zm(vB(A[1])) ∈ H. If A is spherical, then −2 + 2r2m2 − F · F > 0, because, by Corollary

3.2, r ≥ 2, and by assumption m > 1/2.

As in [6, Lemma 6.2], this suffices to show that Zm(A) ∈ H, for any A ∈ A and m > 1/2. The

existence of the Harder–Narasimhan filtrations (which is what we need to conclude that the pair

(Zm,A) is a locally-finite stability condition) follows now from the same argument as in [6, Prop.

7.1 and Sect. 11] adapted to the twisted setting according to [20, Sect. 3.1]. �

We leave it to the reader to verify that, omitting (∗∗), the previous result does not hold anymore.

5.2. Proof of Theorem 1.3. We keep the same assumptions as in the previous section.

Lemma 5.5. The objects E0[1] and E1 are σm-stable for any m > 1/2.

Proof. Suppose E1 is not σm-stable, for some m > 1/2. Then there exists a short exact sequence

in A

(5.3) 0 −→ A −→ E1 −→ B −→ 0,
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where A 6= 0 is σm-semistable and it has phase φm(A) ≥ φm(E1). It is not hard to see that A
is a sheaf. By Remark 5.2, Im(Zm(vB(E1))) = m and, by Corollary 3.2, 1

m Im(Zm(vB(−))) is an

integral function which is additive on triangles. Hence, Im(Zm(vB(A))) is either 0 or m. The

former is impossible because E1 is locally free and A would then be supported on points. If the

latter holds true, then Im(Zm(vB(B))) = 0, and so (5.3) does not destabilizes E1.

The same argument works for E0[1], by using Lemma 5.1. �

Fix a (non-canonical) isomorphism u : Hom(E1, E0[2])
∼−→ Hom(E0, E1). For l a line in Y , consider

the following sheaves in Coh(S, β)

Kl :=

{
Jl if l 6⊆ P
Coker(sl : E0 → E1) otherwise,

where sl = u(sl) and sl : E1 → E0[2] is the morphism associated to the line l ⊆ P , according

to Proposition 2.6. Notice that the choice of the isomorphism u is of no importance for our

construction. Moreover, by Lemma 5.1, all morphisms E0 → E1 are injective.

Lemma 5.6. For any line l ⊆ Y , the sheaf Kl is pure of dimension 1.

Proof. If l 6⊆ P , this was already observed in Section 3.1. If l ⊆ P , then Kl has a locally free

resolution of length 1 and so it cannot have torsion supported on points. �

The following is the first step in the proof of Theorem 1.3.

Lemma 5.7. (i) If m > m0 =
√

5
4 , then Kl is σm-stable, for any line l ⊆ Y .

(ii) Assume m = m0. If l 6⊆ P is a line in Y , then Kl is σm-stable. If l ⊆ P , then Kl is

σm0-semistable and

(5.4) E1 −→ Kl −→ E0[1]

is the Jordan–Hölder filtration of Kl.

Proof. Suppose that there is a line l ⊆ Y and m ≥ m0 such that Kl is not σm-stable. This means

that there is a destabilizing short exact sequence in A

(5.5) 0 −→ A −→ Kl −→ B −→ 0,

with A 6= 0 and σm-stable (and so χ(A,A) ≤ 2). Also in this case, this implies that A ∈ Coh(S, β).

Set vB(A) = (r, c, d).

By Remark 5.2 we have Im(Zm(vB(Jl))) = 2m and so J := Im(Zm(vB(A))) ∈ {0,m, 2m}. If

J = 0, then A is a torsion sheaf supported on points, and this contradicts Lemma 5.6. If J = 2m,

then B has phase 1 and (5.5) would not destabilize Kl. Hence J = m. Due to (∗∗), since f∗h is

indecomposable, r > 0. By Corollary 3.2, r ≥ 2.

As A destabilizes Kl, we have

(5.6) Re(Zm(vB(A))) =
1

2r
(−χ(A,A) + 2r2m2 − F · F ) ≤ 0,

where, by Lemma 3.1,

F :=

(
c− r

(
1

2
`+

1

4
f∗h+B

))
∈ Pic(S)⊗Q.
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Since J = m, the Hodge Index theorem yields F · F ≤ 1
2 . In particular, by Remark 5.2,

(5.7) Re(Zm(vB(A))) ≥ 1

4

(
8m2 − 5

2

)
= Re(Zm(vB(E1))) ≥ 0,

for m ≥ m0. Therefore, (5.6) is not verified unless m = m0. This proves (i).

If m = m0, the only possibility for (5.5) to destabilize Kl is that r = 2, χ(A,A) = 2 and

Re(Zm0(vB(A))) = Re(Zm0(vB(E1))) = 0. Under these assumptions,

E := cB1 (A)− cB1 (E1) = c− `− f∗h− 2B

is in Pic(S) (use again Lemmas 3.1 and 3.3) and F = E + 1
2f
∗h. As Im(Zm0(vB(A))) =

Im(Zm0(vB(E1))) = m0, we have E · f∗h = 0. Then, either E is trivial, or E · E < 0. The

latter cannot be true because
1

2
= F · F = E · E +

1

2
<

1

2
.

If E is trivial, then the fact that χ(A,A) = χ(E1, E1) = 2 implies that vB(A) = vB(E1) and

vB(B) = vB(E0[1]). Thus, by Lemma 5.5, A ∼= E1 and B ∼= E0[1]. Therefore, by Serre duality and

Proposition 2.6, (5.5) destabilizes Kl if and only if l ⊆ P . In this situation,

Re(Zm0(vB(E0[1]))) = Re(Zm0(vB(E1))) = 0,

Im(Zm0(vB(E0[1]))) = Im(Zm0(vB(E1))) = m0.

So, due to Lemma 5.5, (5.4) is the Jordan–Hölder filtration of Kl. �

By the discussion in [6, Sect. 9] and by Lemma 5.7 (ii), for ε sufficiently close to m0, with

1/2 < ε < m0, and for a line l 6⊆ P , we have that Jl(= Kl) is σm-stable, for all m > ε (use that

vB(Jl) is primitive).

Let now l ⊆ Y be a line contained in P . By Lemma 5.5, the triangle

E0[1] −→ Jl −→ E1

is the Harder–Narasimhan filtration of Jl for m > m0. This means that Jl is σm0-semistable

with Jordan–Hölder factors E0[1] and E1. As a consequence, up to choosing ε closer to m0, Jl is

σm-stable, for all m ∈ (ε,m0). Indeed, if not, by [6, Prop. 9.3], the Harder–Narasimhan factors

of Jl in the stability condition σm, for m ∈ (ε,m0), would survive in the stability condition σm0 .

This would contradict the σm0-semistability of Jl.

To finish the proof of Theorem 1.3, first of all we observe that all the arguments in [34] generalize

to the twisted setting. In particular, for all m > ε, it makes sense to speak about the moduli space

Mσm(S, v,B) of σm-stable objects in A with Mukai vector v := vB(Jl) as algebraic space over C.

Moreover, by the results in [24, Sect. 3], Mσm(S, v,B) is smooth symplectic of dimension 4. Hence,

the only thing we need to prove is that, for m ∈ (ε,m0), the objects Jl are the only σm-semistable

objects in A with Mukai vector v.

Let G ∈ A be a σm-semistable object, for some m ∈ (ε,m0), with v(G) = v. By [6, Prop. 9.3],

up to replacing ε, we can assume that all such objects G are σm0-semistable.

Lemma 5.8. Let m1 ≥ m0 and let G be a σm1-stable object with Mukai vector v. Then G is

σm-stable, for all m ≥ m1.
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Proof. We use a similar argument as in the proof of Lemma 5.7. Assume, for a contradiction, that

G is properly semistable at m > m1 (i.e., it is not stable). Then we have an exact sequence in A

0 −→ A −→ G −→ B −→ 0,

where A 6= 0 is σm-stable and Re(Zm(vB(A))) = 0. Let vB(A) = (r, c, d) be the Mukai vector of A.

First of all, we observe that r 6= 0. Indeed, if r = 0, then Re(Zm1(vB(A))) = Re(Zm(vB(A))) = 0,

which would contradict the stability of G at m1.

As before, if we let J := Im(Zm(vB(A))), then J ∈ {0,m, 2m}. The case J = 2m does not

destabilize. Since G is σm1-stable, then the case J = 0 is not possible. Hence, we are left with

J = m. But then, the same argument as in Lemma 5.7, given that r 6= 0 and m > m1, shows that

Re(Zm(vB(A))) 6= 0, which is again a contradiction. �

Proceeding with the proof of Theorem 1.3, we have two possibilities for G. Either G is σm0-

stable, or it is properly σm0-semistable. If G is σm0-stable, then, by Lemma 5.8, G is σm-stable,

for all m ≥ m0.

Lemma 5.9. Let G ∈ A be a σm-stable object, for all m ≥ m0, with Mukai vector v. Then G is a

β-twisted stable sheaf, pure of dimension 1.

Proof. The proof is very similar to [6, Prop. 14.2]. Assume first that G is not a sheaf, namely

H−1(G) 6= 0. Since r(G) = 0, then H0(G) 6= 0. Also, by definition, Re(Zm(vB(H−1(G)))) < 0, for

m� 0. Hence, the exact sequence in A

0 −→ H−1(G)[1] −→ G −→ H0(G) −→ 0

would destabilize G, when m� 0, a contradiction.

We deduce that G ∼= H0(G) is a sheaf. Assume then that G is not pure of dimension 1. Then its

torsion part G0 of dimension 0 would have Zm(G0) ∈ R<0, and would destabilize G, a contradiction.

Hence, G is a pure β-twisted sheaf of dimension 1, and cB1 (G) = f∗h. Since f∗h is indecomposable,

G is stable, as we wanted. �

Thus, if G is σm0-stable, then G is an element of M(S, v,B), by Lemma 5.9. By Proposition 3.4,

since the moduli space M(S, v,B) is irreducible, G is then isomorphic to Kl, for some l ⊆ Y . Since

G is σm0-stable, we deduce that G ∼= Jl.
Assume now that G is properly σm0-semistable. Since Im(Zm0(G)) = 2m0, G must have two

σm0-stable factors A0 and A1 with

0 −→ A0 −→ G −→ A1 −→ 0

an exact sequence in A and Im(Zm0(A0)) = Im(Zm0(A1)) = m0. By the same argument as above,

we have an extension

0 −→ A1 −→ G̃ −→ A0 −→ 0

which is σm1-stable, for some m1 > m0. By Lemma 5.8, G̃ is isomorphic to Kl, for some l ⊆ Y and

is properly σm0-semistable. By Lemma 5.7, G̃ is then isomorphic to the cokernel of a map E0 → E1.

In particular, A0
∼= E0[1], A1

∼= E1 and so G is isomorphic to Jl, for some l ⊆ Y , as wanted. This

completes the proof of Theorem 1.3.
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Remark 5.10. (i) As in [1], we can be more precise about the relation between Mσm(S, v,B) ∼=
F (Y ), for m ∈ (ε,m0), and M(S, v,B). Indeed, we can show that F (Y ) is the Mukai flop of

M(S, v,B) in the plane P(Hom(E0, E1)). More precisely, if M̃ denotes the Mukai flop of M(S, v,B)

in the plane P(Hom(E0, E1)), then, by mimicking [1, Sect. 5], we can construct a universal family

Ũ on M̃ so that the pair (M̃, Ũ) represents the functor parametrizing σm-stable objects in A with

Mukai vector v. Hence, by Theorem 1.3, M̃ is isomorphic to Mσm(S, v,B) and so to F (Y ).

(ii) Questions related to the geometry of the birational models of F (Y ) are addressed in [16].

See also [15] for the study of the birational automorphisms of the Fano varieties of lines of some

special cubic fourfolds.
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