
NON-UNIQUENESS OF FOURIER–MUKAI KERNELS

ALBERTO CANONACO AND PAOLO STELLARI

Abstract. We prove that the kernels of Fourier–Mukai functors are not unique in general. On

the other hand we show that the cohomology sheaves of those kernels are unique. We also discuss

several properties of the functor sending an object in the derived category of the product of two

smooth projective schemes to the corresponding Fourier–Mukai functor.

1. Introduction

All functors that appeared so far in the geometric applications of the theory of derived categories

have a very special nature: they are Fourier–Mukai functors. Recall that if X1 and X2 are

projective schemes, an exact functor F : Perf (X1) → Db(X2) is of Fourier–Mukai type if there

exists E ∈ Db(X1 × X2) and an isomorphism of exact functors F ∼= ΦE , where, denoting by

pi : X1 ×X2 → Xi the natural projections, ΦE : Perf (X1)→ Db(X2) is the exact functor defined

by

ΦE := R(p2)∗(E
L
⊗ p∗1(−)).

Such a complex E is called a kernel of F. Recall that the category Perf (Xi) of perfect complexes

is the full triangulated subcategory of the bounded derived category of coherent sheaves Db(Xi) :=

Db(Coh(Xi)) consisting of complexes which are quasi-isomorphic to bounded complexes of locally

free sheaves of finite type over Xi. Notice that Perf (Xi) coincides with Db(Xi) if and only if Xi

is regular.

There are many advantages of having a functor which is described in terms of an object in

the derived category of the product. Among them is the study of the action of those functors

on cohomology leading, for example, to a description of the group of autoequivalences of special

projective varieties (see [12]). As Fourier–Mukai equivalences act also on Hochschild homology

and cohomology one may also study deformations of smooth projective varieties together with

deformations of equivalences between the corresponding bounded derived categories of coherent

sheaves.

Despite the relevance of these functors, two important and basic questions remain open:

(Q1) Are all exact functors between the bounded derived categories of coherent sheaves on smooth

projective varieties of Fourier–Mukai type?

(Q2) Is the kernel of a Fourier–Mukai functor unique (up to isomorphism)?

Obviously, the same questions may be reformulated more generally in terms of perfect complexes

on projective schemes.
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The best evidence that the answer to both questions could be positive is due to some beautiful

results of Toën concerning dg-categories. Indeed, in [14] it is shown that all dg (quasi-)functors

between the dg-categories of perfect complexes on smooth proper schemes are of Fourier–Mukai

type. This result, combined with the conjecture by Bondal, Larsen and Lunts in [3] saying that all

exact functors between the bounded derived categories of coherent sheaves on smooth projective

varieties should be liftable to dg (quasi-)functors between the corresponding dg-enhancements,

would answer positively (Q1).

Contrary to the exhaustive picture for dg-categories, the results concerning derived categories are

more fragmentary and essentially provide responses to (Q1) and (Q2) under some assumptions on

the functor. In the seminal paper [12] (together with [4]) Orlov solved completely the case of fully

faithful functors between the bounded derived categories of coherent sheaves on smooth projective

varieties. Indeed, he proves that these functors are all of Fourier–Mukai type with unique (up to

isomorphism) kernel. Various generalizations to quotient stacks and twisted categories were given

by Kawamata in [9] and by the authors in [6] respectively. In particular, in [6] a condition much

weaker than fully faithfulness is required for a functor to be of Fourier–Mukai type. More recently,

a new approach involving dg-categories has been proposed by Lunts and Orlov in [11], where they

deal with the case of fully faithful functors between the derived categories of perfect complexes on

projective schemes. This approach allows them to avoid some of the assumptions made by Ballard

in [2]. In [7], we extend further the results in [11] and study exact functors between supported

derived categories.

Back to the questions above, the main result in this paper shows that the answer to (Q2) cannot

be positive in general (see Section 3 for the proof).

Theorem 1.1. For every elliptic curve X over an algebraically closed field there exist E1, E2 ∈
Db(X ×X) such that E1 6∼= E2 but ΦE1

∼= ΦE2.

More precisely, we get the following picture. Given two smooth projective varieties X1 and X2,

denote by ExFun(Db(X1),Db(X2)) the category of exact functors between Db(X1) and Db(X2).

Putting all together, we will see in Sections 2 and 3 that the natural functor

(1.1) ΦX1→X2
− : Db(X1 ×X2) −→ ExFun(Db(X1),Db(X2))

sending E to the functor ΦE = ΦX1→X2
E is, in general, neither essentially injective (Theorem 1.1)

nor faithful (see [5, Example 6.5]) nor full (Proposition 2.3). Moreover we cannot even expect that

ExFun(Db(X1),Db(X2)) has a triangulated structure making the above functor exact (Corollary

2.7). Such a negative picture puts the optimistic hope to answer question (Q1) positively a bit in

the shade.

On the positive side, in Section 4 we prove the following result, which provides our best substitute

for the uniqueness of Fourier–Mukai kernels.

Theorem 1.2. Let X1 and X2 be projective schemes and let F : Perf (X1)→ Db(X2) be an exact

functor. If F ∼= ΦE for some E ∈ Db(X1 × X2), then the cohomology sheaves of E are uniquely

determined (up to isomorphism) by F.



NON-UNIQUENESS OF FOURIER–MUKAI KERNELS 3

Notice that, as a consequence, the class in the Grothendieck group K(X1 × X2) of a Fourier–

Mukai kernel is uniquely determined by the functor.

After the final version of this paper was completed, we were informed that the example used in

the proof of Theorem 1.1 had already been circulating among some people. As we could not find

any mention of this result in the literature, we still believe that it is important to have it written

down.

Notation. In the paper, k is a field and all schemes are assumed to be over k. Notice that in

Sections 2 and 3, the field k is assumed to be algebraically closed. All additive (in particular,

triangulated) categories and all additive (in particular, exact) functors will be assumed to be k-

linear. An additive category will be called Hom-finite if the k-vector space Hom(A,B) is finite

dimensional for every objects A and B. If f : A → B is a morphism in a triangulated category,

the cone of f , denoted by C(f), is an object (well defined up to isomorphism) fitting into a

distinguished triangle A
f−→ B → C(f)→ A[1].

2. Properties of the functor ΦX1→X2
−

In this section we deal with some preliminary results concerning the functor defined in (1.1)

from the derived category of the product of two smooth projective varieties to the category of

exact functors between the corresponding derived categories of coherent sheaves. The base field k
is assumed to be algebraically closed.

2.1. Counterexamples to faithfulness and fullness. Following the notation in the introduc-

tion, if T1 and T2 are two triangulated categories, we denote by ExFun(T1,T2) the category

whose objects are the exact functors from T1 to T2 and whose morphisms are the natural trans-

formations compatible with shifts. Clearly ExFun(T1,T2) is additive and has a natural shift

functor, but, due to the non-functoriality of the cone, it is not known if in general it can be

endowed with any triangulated structure. In particular, it is not expected to possess a natural

one.

Now assume that Xi for i = 1, 2 are two smooth projective varieties of dimension di. It is easy

to see that the map E 7→ ΦE = ΦX1→X2
E extends to the functor (1.1), which is obviously additive

and compatible with shifts. It is natural to study properties of this functor, in particular one can

ask if it is faithful, full, essentially injective (i.e. if a kernel of a Fourier–Mukai functor is unique

up to isomorphism), essentially surjective (i.e. if every exact functor is of Fourier–Mukai type) or

if ExFun(Db(X1),Db(X2)) admits a triangulated structure such that ΦX1→X2
− is exact. We are

going to see that, at least for some choices of X1 and X2, the answers to most of these questions

are negative. Unfortunately we were unable to prove anything new about essential surjectivity,

which is certainly a very intriguing problem.

Remark 2.1. The functor ΦX2→X1
− satisfies one of the properties we are interested in if and

only if ΦX1→X2
− does: this follows from the fact that ΦX2→X1

− can be identified with the opposite

functor of ΦX1→X2
− under the equivalences Db(X1 ×X2)→ Db(X1 ×X2)◦ (defined on the objects

by E 7→ E∨ ⊗ p∗1ωX1 [d1]) and ExFun(Db(X1),Db(X2)) → ExFun(Db(X2),Db(X1))◦ (defined on
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the objects by F 7→ F∗, the right adjoint of F). Notice that we are using the fact that, in this

context, any exact functor has right and left adjoint by [4] (see also [6, Rmk. 2.1]).

Remark 2.2. The functor ΦX1→X2
− is an equivalence (hence it has all the good properties we are

investigating) if d1 or d2 is 0. Indeed, by Remark 2.1 we can assume d1 = 0 (so that X1 = Speck is

a point, being k algebraically closed), and then it is easy to see that a quasi-inverse is the functor

defined on objects by F 7→ F(k).

So the interesting case to study is when d1, d2 > 0, but we can prove something only when d1 or d2

is 1. The reason for this is that if X is a smooth projective curve, then the abelian category Coh(X)

is hereditary (i.e. Exti(F ,G) = 0 for every i > 1 and for every F ,G ∈ Coh(X)), which implies that

every object of Db(X) is isomorphic to the direct sum of its cohomology sheaves. Being X proper,

by [1, Thm. 2], the Krull–Schmidt theorem holds for the abelian category Coh(X). Namely, each

object in Coh(X) can be written in a unique way (up to reordering and isomorphism) as a finite

direct sum of indecomposable objects. Moreover, being X a smooth curve, every indecomposable

object in Coh(X) is either a vector bundle or a torsion sheaf of the form Onp with n a positive

integer and p a closed point of X. Since a natural transformation between additive functors is

always additive in the obvious sense, we see in particular that a natural transformation of exact

functors from Db(X) is determined by its values on the indecomposable objects of Coh(X). This

property is essential in the proof of the following result, whose statement about non-faithfulness is

a generalization of [5, Example 6.5] (where only the particular case in which X1 = X2 is an elliptic

curve is considered).

Proposition 2.3. If min{d1, d2} = 1, then ΦX1→X2
− is neither faithful nor full.

Proof. By Remark 2.1 we can assume that 1 = d1 ≤ d2. Choose a finite morphism f : X1 → Pd2

and a finite and surjective (hence flat) morphism g : X2 → Pd2 . Then F := g∗ ◦ f∗ : Coh(X1) →
Coh(X2) is an exact functor, which trivially extends to an exact functor again denoted by

F : Db(X1)→ Db(X2). Clearly there exists 0 � E ∈ Db(X1 ×X2) such that F ∼= ΦE .

In order to prove that ΦX1→X2
− is not faithful, notice that, by Serre duality,

HomDb(X1×X2)(E , E) ∼= HomDb(X1×X2)(E , E ⊗ ωX1×X2 [1 + d2])∨,

so there exists 0 6= α ∈ HomDb(X1×X2)(E , E ⊗ ωX1×X2 [1 + d2]). Since ωX1×X2
∼= p∗1ωX1 ⊗ p∗2ωX2 ,

this induces for any F ∈ Coh(X1) a morphism

Φα(F) : ΦE(F) ∼= F(F)→ ΦE⊗ωX1×X2
[1+d2](F) ∼= F(F ⊗ ωX1)⊗ ωX2 [1 + d2].

As F(F) and F(F ⊗ ωX1) are objects of Coh(X2), it follows that Φα(F) = 0, whence Φα = 0.

Now we are going to show that ΦX1→X2
− is not full. We start by observing that for every closed

point p ∈ X1 we can define a natural transformation ζp : id →[1] of exact functors on Db(X1)

by setting ζp(F) := 0 for every indecomposable object of Coh(X1) not isomorphic to Op and

taking ζp(Op) 6= 0 (note that the latter is an element of Hom(Op,Op[1]) ∼= Hom(Op,Op)∨ ∼= k
by Serre duality), and then extending additively and by shifts in the obvious way. It is easy to

see that in this way ζp is really a natural transformation, namely that φ[1] ◦ ζp(F) = ζp(G) ◦ φ
for every morphism φ : F → G in Db(X): indeed, it is enough to assume that F ,G ∈ Coh(X) are

indecomposable, in which case the required equality follows from Lemma 3.3 below if F and G are
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supported at p, and is otherwise trivial. (Indeed, we use Lemma 3.3 identifying Fn with Onp, as

it is explained in the paragraph before the lemma.)

Composing with F clearly defines a natural transformation from F ∼= ΦE to F[1] ∼= ΦE[1], hence

an element ζ ′p ∈ HomExFun(Db(X1),Db(X2))(ΦE ,ΦE[1]). It is not difficult to see that ζ ′p(Op) 6= 0,

which implies that

dimk HomExFun(Db(X1),Db(X2))(ΦE ,ΦE[1]) =∞,

thereby proving that ΦX1→X2
− is not full. �

2.2. Projective line. We start by proving the uniqueness (up to isomorphism) of Fourier–Mukai

kernels for the projective line. This has to be compared with the more interesting case of elliptic

curves (Section 3).

Proposition 2.4. If X1 or X2 is P1, then ΦX1→X2
− is essentially injective.

Proof. As usual, by Remark 2.1 we can assume that X1 = P1. Since on P1×P1 there is a resolution

of the diagonal of the form

0→ O(−1,−1)
x0�x1−x1�x0−−−−−−−−−→ O → O∆ → 0,

the argument in [6, Sect. 4.3] shows that, for every exact functor F : Db(P1)→ Db(X2), any object

E in Db(P1 ×X2) such that F ∼= ΦE is necessarily a convolution of the complex

O(−1) � F(O(−1))
ϕ:=x0�F(x1)−x1�F(x0)−−−−−−−−−−−−−−−→ O � F(O),

hence it is uniquely determined up to isomorphism as the cone of ϕ. �

We conclude this section showing that, in some cases, the category ExFun(Db(X1),Db(X2))

cannot have a suitable triangulated structure. For this we need some preliminary results.

Lemma 2.5. Let T be a Hom-finite triangulated category and let f : A→ B be a morphism of T.

Then C(f) ∼= A[1]⊕B if and only if f = 0.

Proof. The other implication being well-known, we assume that C(f) ∼= A[1] ⊕ B. Applying the

cohomological functor Hom(−, B) to the distinguished triangle A
f−→ B → A[1] ⊕ B → A[1], one

gets an exact sequence of finite dimensional k-vector spaces

Hom(A[1], B)→ Hom(A[1]⊕B,B)→ Hom(B,B)
(−)◦f−−−→ Hom(A,B).

For dimension reasons, the last map must be 0, hence f = 0. �

Lemma 2.6. Let F : T→ T′ be an exact functor between triangulated categories, and assume that

T is Hom-finite. If F is essentially injective, then F is faithful, too.

Proof. Let f : A→ B be a morphism of T such that F(f) = 0. Then

F(C(f)) ∼= C(F(f)) ∼= F(A)[1]⊕ F(B) ∼= F(A[1]⊕B)

in T′, whence C(f) ∼= A[1]⊕B in T because F is essentially injective. It follows from Lemma 2.5

that f = 0. �

Corollary 2.7. If d1, d2 > 0 and X1 or X2 is P1, then ExFun(Db(X1),Db(X2)) does not admit a

triangulated structure such that ΦX1→X2
− is exact.



6 ALBERTO CANONACO AND PAOLO STELLARI

Proof. This follows from Lemma 2.6, since we know that in this case ΦX1→X2
− is essentially injective

by Proposition 2.4, but not faithful by Proposition 2.3. �

3. Elliptic curves and non-uniqueness

In this section we provide the proof of Theorem 1.1, so we assume that k is algebraically closed

and that X is an elliptic curve. Up to replacing Db(X) with an equivalent category, we can assume

that there is exactly one object in every isomorphism class, and more precisely, as explained in

Section 2.1, that every object is a finite direct sum of shifts of coherent sheaves and that every

object of Coh(X) is uniquely (up to reordering) a finite direct sum of indecomposable sheaves.

Recall that the indecomposable objects of Coh(X) are either vector bundles or torsion sheaves

of the form Onp with n > 0 and p a closed point of X. The following result summarizes some

properties of indecomposable vector bundles over an elliptic curve.

Proposition 3.1. ([15]) For every r > 0 and d ∈ Z there is an indecomposable vector bundle Er,d

of rank r and degree d on X such that:

(i) All indecomposable vector bundles of rank r and degree d are those of the form Er,d ⊗ L
with L ∈ Pic0(X), and they are all distinct;

(ii) If k > 0,then Fk := Ek,0 is the only indecomposable vector bundle of rank k and degree 0

having global sections (in particular, F1 = OX), and if k > 1 there is an exact sequence

(3.1) 0→ F1 → Fk → Fk−1 → 0;

(iii) If n = gcd(r, d), Er,d = Er/n,d/n ⊗ Fn;

(iv) Er,d (hence also Er,d ⊗ L for every L ∈ Pic0(X)) is semistable, and it is stable if and only

if gcd(r, d) = 1.

Corollary 3.2. Let Ei (for i = 1, 2) be indecomposable vector bundles of rank ri and degree di

on X with the property that Hom(E1, E2) 6= 0 6= Hom(E2, E1). Then, setting ni := gcd(ri, di),

there exists a stable vector bundle E of rank r1/n1 = r2/n2 and degree d1/n1 = d2/n2 such that

Ei = E ⊗ Fni for i = 1, 2.

Proof. The hypothesis, together with the fact that E1 and E2 are semistable, implies that d1/r1 =

d2/r2, from which it is immediate to deduce that r1/n1 = r2/n2 and d1/n1 = d2/n2. Set r := r1/n1

and d := d1/n1. As Ei = Eri,di ⊗Li for some Li ∈ Pic0(X), we get Ei = Er,d⊗Li⊗Fni for i = 1, 2

(see parts (i) and (iii) of Proposition 3.1). It remains to prove that L1 = L2, because then we

can conclude setting E := Er,d ⊗ Li (which, due to part (iv) of Proposition 3.1, is stable since

gcd(r, d) = 1). Assuming instead that L1 6= L2, we will reach a contradiction by showing that

Hom(E1, E2) = 0. We proceed by induction on n1 +n2: the case n1 = n2 = 1 follows from the fact

Ei = Er,d ⊗ Li for i = 1, 2 are distinct stable vector bundles (see parts (i) and (iv) of Proposition

3.1). As for the inductive step, we suppose n2 > 1 (the case n1 > 1 is similar) and apply the

functor Hom(E1, Er,d ⊗ L2 ⊗−) to (3.1) with k = n2. This yields an exact sequence

Hom(E1, Er,d ⊗ L2 ⊗ F1)→ Hom(E1, Er,d ⊗ L2 ⊗ Fn2)→ Hom(E1, Er,d ⊗ L2 ⊗ Fn2−1).

By induction, the first and the third terms in the sequence are 0, whence the second one is 0 as

well. But Er,d ⊗ L2 ⊗ Fn2 = E2 and this provides the desired contradiction. �



NON-UNIQUENESS OF FOURIER–MUKAI KERNELS 7

We will denote by TE for E a stable vector bundle on X (respectively Tp for p a closed point of

X) the full triangulated subcategory of Db(X) classically generated by E (respectively Op), namely

the smallest strictly full triangulated subcategory of Db(X) containing E (respectively Op) and

closed under direct summands. Since RHom(E,E) ∼= RHom(Op,Op) ∼= k ⊕ k[1] (so that E and

Op are 1-spherical objects), it follows from [10, Thm. 2.1] that these categories are all equivalent;

it is also clear that the indecomposable sheaves of TE (respectively Tp) are E ⊗ Fn (respectively

Onp) for n > 0. In the following we will also denote by T any of the equivalent categories TE or

Tp, but for simplicity of notation we will identify it with TOX
. As T is equivalent to a (derived)

category of k[x]–modules, Fn corresponding to k[x]/(xn) (this is perhaps easier to see regarding

T as Tp), it is clear that dimk Hom(Fm, Fn) = min{m,n}, for m,n > 0, and there are (non-split)

distinguished triangles in T (the second one is induced by (3.1) with k = n+ 1)

Fn
π′n+1,1−−−−→ Fn+1

πn+1,1−−−−→ F1

π′′n+1,1−−−−→ Fn[1](3.2)

F1

π′n+1,n−−−−→ Fn+1
πn+1,n−−−−→ Fn

π′′n+1,n−−−−→ F1[1](3.3)

where πm,n : Fm → Fn for m > n denotes the natural projection.

Lemma 3.3. If 0 < m ≤ n, every morphism Fm → Fn+1 factors through π′n+1,1 and every

morphism Fn+1 → Fm factors through πn+1,n. Moreover, every morphism Fn+1 → Fn+1 is uniquely

the sum of λid for some λ ∈ k and of a morphism which factors through π′n+1,1 and πn+1,n.

Proof. By (3.2) the map Hom(Fm, Fn)
π′n+1,1◦(−)
−−−−−−−→ Hom(Fm, Fn+1) is injective for every m > 0. In

particular, if m ≤ n the map is also surjective because both spaces have dimension m, whereas if

m = n+ 1 the first space has dimension n, the second n+ 1 and clearly id is not in the image of

the map. This proves both statements involving π′n+1,1, and those involving πn+1,n can be proved

in a similar way using (3.3) instead of (3.2). �

Since Hom(O∆[−1],O∆[1]) ∼= Hom(O∆,O∆)∨ ∼= k by Serre duality, an object E of Db(X ×X)

obtained as the cone of a nonzero morphism O∆[−1] → O∆[1] is well defined up to isomorphism.

Notice that such a morphism is the same as the one considered in [5, Example 6.5]. Setting also

E0 := O∆ ⊕O∆[1], we have E � E0 by Lemma 2.5. We are going to prove that

ΦE
∼= ΦE0 : Db(X)→ Db(X).

To this purpose, we start by observing that ΦE0 is just id⊕ [1] and that ΦE coincides with ΦE0 on

objects. As explained in the following example, in general, this is not enough to conclude that the

two functors are isomorphic.

Example 3.4. An easy calculation shows that, on P1 × P1, there is an isomorphism of k-vector

spaces Hom(∆∗OP1 [−1],∆∗(ω
⊗2
P1 )[1]) ∼= k. Take 0 6= f ∈ Hom(∆∗OP1 [−1],∆∗(ω

⊗2
P1 )[1]) and con-

sider the objects F0 := ∆∗OP1 ⊕∆∗(ω
⊗2
P1 )[1] and F := C(f) in Db(P1 × P1). Obviously ΦF0

and

ΦF coincide on objects because G ⊕ (G ⊗ ω⊗2
P1 )[1] ∼= ΦF0

(G) ∼= ΦF (G), for every G ∈ Db(P1). On

the other hand F0 6∼= F (use again Lemma 2.5) and so, by Proposition 2.4, the functors ΦF0
and

ΦF are not isomorphic.
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Back to the genus 1 case, to prove that ΦE
∼= ΦE0 we have to take care of morphisms as well.

To this end observe that ΦE is defined on every morphism f : A → B of Db(X) by

ΦE(f) =

(
f 0

ε(f) f [1]

)
: A⊕A[1]→ B ⊕ B[1]

for some ε(f) : A → B[1]. Notice that ε is k–linear in the obvious sense (because ΦE is k–linear),

ε(idA) = 0 for every objectA of Db(X) (because ΦE(idA) = idΦE(A)) and ε(g◦f) = ε(g)◦f+g[1]◦ε(f)

for every pair of composable morphisms f and g of Db(X) (because ΦE(g ◦ f) = ΦE(g) ◦ ΦE(f)).

It is also evident that if A and B are sheaves and f ∈ Hom(A,B[1]), then ε(f) = 0.

Proposition 3.5. With the above notation, there is an isomorphism ΦE
∼= ΦE0.

Proof. We will show that there is an isomorphism η : ΦE0
∼−→ ΦE such that

η(A) =

(
id 0

β(A) id

)
: A⊕A[1]→ A⊕A[1]

for every object A of Db(X). It is clearly enough to define η(A) for every indecomposable sheaf A
(and then extend additively and by shifts in the obvious way) so that ΦE(f)◦η(A) = η(B)◦ΦE0(f)

for every morphism of indecomposable sheaves f : A → B. Now, this equality is equivalent to ε(f) =

β(B)◦f−f [1]◦β(A), so it is certainly satisfied if either Hom(A,B) = 0 or Hom(A,B[1]) = 0. On the

other hand, if the indecomposable sheaves A and B are such that Hom(A,B) 6= 0 6= Hom(A,B[1]),

then A and B belong to the same subcategory TE (E a vector bundle) or Tp (p a closed point).

This follows from Corollary 3.2 if both A and B are vector bundles (taking into account that

Hom(A,B[1]) ∼= Hom(B,A)∨ by Serre duality), whereas it is trivial in the other cases.

So, setting F := ΦE |T and F0 = ΦE0 |T, it is enough to prove that there is an isomorphism

η : F0 → F of the above form. In order to do that, we are going to define inductively for every

n > 0 (exact) functors Fn : T→ T and morphisms of T

αn =

(
id 0

βn id

)
: Fn ⊕ Fn[1]→ Fn ⊕ Fn[1]

with the following properties:

(a) F1 = F and α1 = id;

(b) for every n > 0 the functor Fn coincides with F0 on objects, Fn(f) =

(
f 0

εn(f) f [1]

)
for

every morphism f of T and Fn|Tn = F0|Tn , where Tn denotes the full additive and closed

under shifts (but not triangulated) subcategory of T generated by Fi for 0 < i ≤ n;

(c) for every n > 1 the morphisms ηn(Fm) : Fm ⊕ Fm[1]→ Fm ⊕ Fm[1] (for m > 0) defined by

ηn(Fn) = αn and ηn(Fm) = id if m 6= n, extend to an isomorphism ηn : Fn
∼−→ Fn−1.

Once this is done, it is then straightforward to check that the morphisms η(Fn) := αn (for n > 0)

extend to an isomorphism η : F0
∼−→ F as wanted.

In order to perform the inductive step from n to n+1, notice that for an arbitrary choice of βn+1

(hence of αn+1 and of ηn+1) and setting Fn+1(f) := ηn+1(B)−1◦Fn(f)◦ηn+1(A) for every morphism

f : A → B of T, all the required properties are satisfied, except possibly Fn+1|Tn+1 = F0|Tn+1 .
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Since Fn+1|Tn = Fn|Tn by construction and Fn|Tn = F0|Tn by the inductive hypothesis, in view of

Lemma 3.3 this last condition holds if and only if the diagram

F(Fn)
F0(π′n+1,1)

//

Fn(π′n+1,1) ((

F(Fn+1)

αn+1

��

F0(πn+1,n)
// F(Fn)

F(Fn+1)

Fn(πn+1,n)

66

commutes. Clearly this is true if and only if

εn(π′n+1,1) = βn+1 ◦ π′n+1,1,(3.4)

εn(πn+1,n) = −πn+1,n[1] ◦ βn+1.(3.5)

As εn(π′n+1,1) ◦ π′′n+1,1[−1] ∈ Hom(F1[−1], Fn+1[1]) = 0, from the distinguished triangle (3.2) we

deduce that there exists βn+1 : Fn+1 → Fn+1[1] such that (3.4) is satisfied, and we claim that then

(3.5) is automatically true, namely that γ := εn(πn+1,n) +πn+1,n[1] ◦βn+1 = 0. Indeed, using (3.4)

and the fact that εn|Tn = 0,

γ ◦ π′n+1,1 = εn(πn+1,n) ◦ π′n+1,1 + πn+1,n[1] ◦ βn+1 ◦ π′n+1,1

= εn(πn+1,n) ◦ π′n+1,1 + πn+1,n[1] ◦ εn(π′n+1,1) = εn(πn+1,n ◦ π′n+1,1) = 0.

It follows again from (3.2) that γ = γ′ ◦ πn+1,1 for some γ′ : F1 → Fn[1]. Now, by Serre duality,

Hom(F1, Fn[1]) ∼= Hom(Fn, F1)∨ ∼= k, so there exists λ ∈ k such that γ′ = λπ′′n+1,1, whence

γ = λπ′′n+1,1 ◦ πn+1,1 = 0. �

Corollary 3.6. For every elliptic curve X the functor ΦX→X
− is not essentially injective.

4. The uniqueness of the cohomology sheaves

In this section we prove Theorem 1.2, hence we assume that X1 and X2 are projective schemes

with ample divisors H1 and H2 on X1 and X2 respectively. For l ∈ Z, denote by Cl the full

subcategory with objects {OX1(mH1) : m > l} ⊂ Coh(X1). Consider Fourier–Mukai functors

ΦE1 ,ΦE2 : Perf (X1) −→ Db(X2)

where E1, E2 ∈ D(Qcoh(X1 ×X2)), and such that there exists an isomorphism

(4.1) β : ΦE1 |Cl

∼−→ ΦE2 |Cl
,

for some integer l.

The following easy lemma shows that we can be more precise about the Fourier–Mukai kernels

above.

Lemma 4.1. Under the above assumptions, Ei ∈ Db(X1 × X2), for i = 1, 2. Conversely, any

E ∈ Db(X1 ×X2) yields a Fourier–Mukai functor ΦE : Perf (X1)→ Db(X2).

Proof. The second part of the statement is clear. For the first one, we can apply the argument in

[11, Cor. 9.13 (4)] where the assumption that ΦEi is fully faithful is not used.
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For the convenience of the reader, we provide a different easy argument. Indeed, due to [13,

Lemma 7.47], Ei ∈ Db(X1 ×X2) if and only if, for all F ∈ Perf (X1 ×X2), we have

dim
⊕
j

Hom(F , Ei[j]) <∞.

Let Gi be a compact generator of D(Qcoh(Xi)), for i = 1, 2. By [4, Lemma 3.4.1], G1 � G2 is

a compact generator of D(Qcoh(X1 × X2)) (see [4, 13] for the definition of compact generator).

As
⊕

j Hom(G1 � G2, Ei[j]) ∼=
⊕

j Hom(G2,ΦEi(G
∨
1 )[j]) is finite dimensional because ΦEi(G

∨
1 ) ∈

Db(X2), we can conclude using the fact that G1 �G2 classically generates Perf (X1×X2) (see, for

example, [4, Thm. 2.1.2]). �

The first step in the proof of of Theorem 1.2 is the following.

Lemma 4.2. If E1, E2 ∈ Coh(X1 ×X2), then E1
∼= E2.

Proof. By [8, Thm. 3.4.4], for i = 1, 2, there is an isomorphism between Ei and the sheaf associated

to Mi :=
⊕

m∈Z(p2)∗(Ei ⊗ p∗1OX1(mH1)), where (p2)∗ is not derived. Since for m � 0 there are

functorial isomorphisms

(p2)∗(Ei ⊗ p∗1OX1(mH1)) ∼= ΦEi(OX1(mH1)),

by (4.1) the graded modules M1 and M2 are isomorphic in sufficiently high degrees. Hence, taking

the associated sheaves, we get E1
∼= E2. �

If the Fourier–Mukai kernels are not sheaves, we have the following result concerning their

cohomologies. Notice that due to the weaker assumptions on the functors ΦE1 and ΦE2 in (4.1),

this may be seen as a stronger version of Theorem 1.2.

Proposition 4.3. For any j ∈ Z, we have isomorphisms Hj(E1) ∼= Hj(E2) in Coh(X1 ×X2).

Proof. We first prove that, given j ∈ Z, we have Hj(E1) = 0 if and only if Hj(E2) = 0. Indeed,

observe that Hj(Ei) = 0 if and only if Hom(OX1(mH1) �OX2(mH2), Ei[j]) = 0 for m� 0. But

Hom(OX1(mH1) �OX2(mH2), E1[j]) ∼= Hom(OX2(mH2),ΦE1(OX1(−mH1))[j])

∼= Hom(OX2(mH2),ΦE2(OX1(−mH1))[j]) ∼= Hom(OX1(mH1) �OX2(mH2), E2[j]).

We are now ready to prove the statement by induction on the number of non-trivial cohomologies.

If E1 and E2 are the shift of a sheaf, we can just apply Lemma 4.2. Thus assume that Ei has at

least two non-trivial cohomologies and that the last non-trivial one is in degree n while the first

non-trivial one is in degree n′ < n. In particular, we have distinguished triangles

(4.2)
E ′1 −→ E1 −→ Hn(E1)[−n]

E ′2 −→ E2 −→ Hn(E2)[−n],

where E ′1 and E ′2 have cohomologies concentrated in the interval [n′, n− 1] which is strictly smaller

than the one of E1 and E2.

Now observe that if E ∈ Db(X1 × X2) is such that Hj(E) = 0 if j 6∈ [a, b], then we have

Hj(ΦE(OX1(mH1))) = 0 if j 6∈ [a, b] and m� 0. Indeed,

0 = Hom(OX1(−mH1) �OX2(−m′H2), E [j]) ∼= Hom(OX2(−m′H2),ΦE(OX1(mH1))[j]),
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if m′ � 0 and under the above assumptions on m and j.

For m� 0 from (4.2) we get the diagram

(4.3) ΦE ′1
(OX1(mH1)) // ΦE1(OX1(mH1)) //

βm

��

ΦHn(E1)(OX1(mH1))[−n]

ΦE ′2
(OX1(mH1)) // ΦE2(OX1(mH1)) // ΦHn(E2)(OX1(mH1))[−n],

where the two rows are distinguished triangles and βm := β(OX1(mH1)) is the isomorphism induced

by (4.1).

Using the remark above, we get that ΦE ′1
(OX1(mH1)) has non-trivial cohomologies concentrated

in degrees [n′, n− 1] while ΦHn(E2)(OX1(mH1))[−n] is a sheaf in degree n. Hence

Hom(ΦE ′1
(OX1(mH1))[k],ΦHn(E2)(OX1(mH1))[−n]) = 0,

for m � 0 and k = 0, 1. It follows that (4.3) can be completed to a commutative diagram in

a unique way. Thus, for some l′ > l, we get natural transformations α : ΦE ′1
|Cl′

∼−→ ΦE ′2
|Cl′

and γ : ΦHn(E1)|Cl′
∼−→ ΦHn(E2)|Cl′ , which are easily seen to be isomorphisms (applying the same

argument to β−1
m ). By Lemma 4.2, we have Hn(E1) ∼= Hn(E2) and, by induction, Hj(E ′1) ∼= Hj(E ′2),

for all j ∈ Z. This is enough, as Hj(Ei) ∼= Hj(E ′i), for j < n. �

Denoting by K(X1 × X2) the Grothendieck group of the abelian category Coh(X1 × X2), we

clearly get the following result.

Corollary 4.4. Let X1 and X2 be projective schemes. Consider two isomorphic Fourier–Mukai

functors

ΦE1
∼= ΦE2 : Perf (X1) −→ Db(X2)

Then Hj(E1) ∼= Hj(E2) for all j ∈ Z. In particular, [E1] = [E2] in K(X1 ×X2).

Notice that, if k = C, it is well-known and very easy to see, under the assumptions of Corollary

4.4, that ch(E1) = ch(E2) ∈ H∗(X1 × X2,Q). Indeed ΦEi induces a correspondence between

H∗(X1,Q) and H∗(X2,Q) given by the object ch(Ei) ·
√

td(X1 ×X2) (see [12]). The Künneth

decomposition for the cohomology of the product yields then ch(E1) = ch(E2).
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