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ABSTRACT. We introduce a general method to induce Bridgeland stability conditions on semiorthogonal
components of triangulated categories. In particular, we prove the existence of Bridgeland stability condi-
tions on the Kuznetsov component of the derived category of Fano threefolds and of cubic fourfolds. As an
application, in the appendix, written jointly with Xiaolei Zhao, we give a variant of the proof of the Torelli
theorem for cubic fourfolds by Huybrechts and Rennemo.
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1. INTRODUCTION

Main results. Let X be a smooth Fano variety and let Db(X) denote its bounded derived category of
coherent sheaves. Let E1, . . . , Em ∈ Db(X) be an exceptional collection in Db(X). We call its right
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orthogonal complement

Ku(X) = 〈E1, . . . , Em〉⊥

=
{
C ∈ Db(X) : Hom(Ei, C[p]) = 0, ∀i = 1, . . . ,m, ∀p ∈ Z

}
a Kuznetsov component of X . In a series of papers, Kuznetsov has shown that much of the geome-
try of Fano varieties, and their moduli spaces, can be captured efficiently by Ku(X), for appropriate
exceptional collections.

On the other hand, stability conditions on triangulated categories as introduced by Bridgeland in
[Bri07] and wall-crossing have turned out to be an extremely powerful tool for the study of moduli
spaces of stable sheaves. We connect these two developments with the following two results:

Theorem 1.1. Let X be a Fano threefold of Picard rank 1 over an algebraically closed field of charac-
teristic either zero or sufficiently large. Then the Kuznetsov semiorthogonal component Ku(X) has a
Bridgeland stability condition.1

The most interesting cases of Theorem 1.1 are Fano threefolds of index two, and those of index one
and even genus; in these case, the theorem holds over any algebraically closed field, independently on
the characteristic. We refer to Section 6 for an overview of the classification of Fano threefolds of Picard
rank one, and the exceptional collections appearing implicitly in Theorem 1.1.

Theorem 1.2. Let X be a cubic fourfold over an algebraically closed field k with char k 6= 2. Then
Ku(X) has a Bridgeland stability condition.

Here Ku(X) is defined by the semiorthogonal decomposition

Db(X) = 〈Ku(X),OX ,OX(H),OX(2H)〉,

where H is a hyperplane section. Here Ku(X) is a K3 category (i.e., the double shift [2] is a Serre
functor); conjecturally [Kuz10, Conjecture 1.1] it is the derived category of a K3 surface if and only if
X is rational. Our results also give the first stability conditions on Db(X) whenKu(X) is not equivalent
to the derived category of a twisted K3 surface.

Background and motivation. Wall-crossing for stability conditions on surfaces has had numerous
powerful applications, e.g., to the geometry of moduli spaces of stable sheaves [BM14b, CH16, LZ19],
or to questions of Brill-Noether type [Bay15, Fey20, CH18]. It is unrealistic to expect similarly system-
atic results for higher-dimensional varieties: as even Hilbert schemes of curves on P3 satisfy Murphy’s
law [Vak06], one should instead expect that wall-crossing lacks any generally effective control. How-
ever, Kuznetsov components of Fano varieties are homologically much better behaved than their entire
derived category (for example, they can be of Calabi-Yau or Enriques type of smaller dimension). Thus,

1In some case, we deduce Theorem 1.1 as an immediate consequence of an explicit description of the Kuznetsov component,
which however is stated in the literature only for characteristic zero (and so it also holds if the characteristic of the base field is
sufficiently large), see the tables in Section 6.
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one can expect that moduli spaces and wall-crossing for objects can be controlled much more effectively,
and are thus a natural starting point for extracting geometric results from categorical properties.

The study of Kuznetsov components of derived categories of Fano varieties started with [BO95], and
has seen a lot of recent interest, see e.g., [Kuz04, Kuz05, IKP14] for threefolds, and [Kuz10, AT14,
Add16] for the cubic fourfold, as well as [Kuz09a, Kuz14, Kuz16] for surveys. The interest in them
comes from various directions. They are part of Kuznetsov’s powerful framework of Homological Pro-
jective Duality [Kuz07]. They often seem to encode the most interesting and geometric information
about Db(X) and moduli spaces of sheaves on X; e.g., several recent constructions of hyperkähler va-
rieties associated to moduli spaces of sheaves on the cubic fourfold are induced by the projection to
the K3 category Ku(X) [KM09] (where moduli spaces naturally come with a holomorphic symplec-
tic structure, due to the fact that Ku(X) is a K3 category). In the case of Fano threefolds, there are a
number of unexpected equivalences (some conjectural) between Kuznetsov components of pairs of Fano
threefolds of index one and two, see [Kuz09a] for the theory, and [KPS18] for an application to Hilbert
schemes. In the case of cubic fourfolds, as mentioned above, they conjecturally determine rationality of
X . Finally, they are naturally related to Torelli type questions: on the one hand, they still encode much
of the cohomological information of X; on the other hand, one can hope to recover X from Ku(X)

(in some cases when equipped with some additional data); see [BMMS12] for such a result for cubic
threefolds, and [HR19] for many hypersurfaces, including cubic fourfolds.

Perhaps the most natural way to extract geometry from Ku(X) is to study moduli spaces of sta-
ble objects—hence the interest in the existence of stability conditions on Ku(X). This question was
first raised for cubic threefolds in [Kuz04], for cubic fourfolds by Addington and Thomas [AT14] and
Huybrechts [Huy17], and in the generality of our results by Kuznetsov in his lecture series [Kuz16].

Prior work. When X is a Fano threefold of Picard rank one, stability conditions on Db(X) have
been constructed in [Li19]. However, in general these do not descend to stability conditions on the
semiorthogonal componentKu(X), and due to their importance for moduli spaces, a direct construction
of stability conditions on Ku(X) is of independent interest.

For Fano threefolds of index two, our Theorem 1.1 is referring to the decomposition Db(X) =

〈Ku(X),OX ,OX(H)〉. Their deformation type is determined by d = H3 ∈ {1, 2, 3, 4, 5}. The result
is straightforward from prior descriptions of Ku(X) for d ≥ 4 in [Orl91, BO95], due to [BMMS12]
for cubic threefolds (d = 3) and new for d ∈ {1, 2}. The most interesting cases of index one are
those of even genus gX = 1

2H
3 + 1, for which Mukai [Muk92] constructed an exceptional rank two

vector bundle E2 of slope −1
2 ; in these cases our Theorem refers to the semiorthogonal decomposition

Db(X) = 〈Ku(X), E2,OX〉. The result is straightforward from previous descriptions of Ku(X) for
gX ∈ {10, 12} in [Kuz06, Kuz09a], due to [BMMS12] for gX = 8, and new for gX = 6.

For cubic fourfolds containing a plane, stability conditions on Ku(X) were constructed in [MS12],
and Gepner point stability conditions (invariant, up to rescaling, under the functor (1) in Theorem A.1)
in [Tod16]. In this case,Ku(X) is equivalent to the derived category of a K3 surface with a Brauer twist.
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Applications. Kuznetsov conjectured an equivalence between Ku(Yd) and Ku(X4d+2) for appropriate
pairs Yd and X4d+2, where Yd is a Fano threefold of Picard rank one, index two and degree d ≥ 2, and
X4d+2 is of index one and genus 2d+ 2 (degree 4d+ 2). Our results may be helpful in reproving known
cases, and proving new cases of these equivalences, by identifying moduli spaces of stable objects in
both categories. We illustrate this for d = 4, see Example 6.6.

For cubic fourfolds over the complex numbers, we show in the appendix, written jointly with Xiaolei
Zhao, that the existence of stability conditions on Ku(X) is already enough to reprove a categorical
Torelli theorem for very general cubic fourfolds (which is a special case of [HR19, Corollary 2.10]):

Theorem A.1. Let X and Y be smooth cubic fourfolds over C. Assume that H∗alg(Ku(X),Z) has no
(−2)-classes. Then X ∼= Y if and only if there is an equivalence Φ: Ku(X)→ Ku(Y ) whose induced
map H∗alg(Ku(X),Z)→ H∗alg(Ku(Y ),Z) commutes with the action of (1).

Here (1) denotes the autoequivalence of Ku(X) induced by ⊗ OX(1) on Db(X); the numerical
Grothendieck group of Ku(X) is denoted by H∗alg(Ku(X),Z).

The idea is quite simple: we show that the projection of ideal sheaves of lines on X to Ku(X) are
stable for all stability conditions on Ku(X); therefore, the Fano variety of lines can be recovered from
Ku(X). An additional argument based on the compatibility with (1) shows that the polarization coming
from the Plücker embedding is preserved. By a classical argument, this is enough to recover X .

We also show that, with the same arguments as in [HR19], Theorem A.1 is enough to reprove the
classical Torelli theorem for cubic fourfolds.

Approach. We establish methods for inducing t-structures and stability conditions on Ku(X) from
Db(X). The former, see Corollary 4.4, generalizes a construction that first appeared in [VdB00].
The latter, Proposition 5.1, gives in addition Harder-Narasimhan filtrations and the support property
on Ku(X) (and thus a stability condition), given an appropriate weak stability condition on Db(X).

The crucial assumption for both methods is that the relevant heart A in Db(X) contains the ex-
ceptional objects E1, . . . , Em, while its shift A[1] contains their Serre duals S(E1), . . . , S(Em). This
turns out to be a surprisingly subtle property. Already in the case of Fano threefolds, we have to go in
three steps. We start with ordinary slope-stability, tilt and deform to obtain a weak stability condition,
called tilt-stability in [BMT14], on a heart Cohβ(X) of two-term complexes. Then we have to move
essentially as far from the large-volume limit in the space of tilt-stability conditions as the Bogomolov-
Gieseker (BG) inequality allows us to; finally, we tilt a second time to obtain a weak stability condition
on Db(X) that induces one on Ku(X).

A similar approach for cubic fourfolds would be beyond current methods, as the required third tilt
would need a strong BG type inequality for the third Chern character (as proposed in [PT19]) that
is not currently known for any fourfold. Instead, we use the rational fibration in conics X 99K P3

and Kuznetsov’s theory of derived categories of quadric fibrations [Kuz08] to reinterpret Ku(X) as a
semiorthogonal component in the derived category Db(P3,B0) of modules over the associated sheaf of
Clifford algebras on P3, see Section 7. The key is now that on the one hand, Riemann-Roch along with
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a precise description of the K-group yields a strong BG inequality in Db(P2,B0|P2) for any hyperplane
P2 ⊂ P3 (stronger than the classical BG inequality); on the other hand, we adapt Langer’s machinery
of effective restriction theorems to extend this inequality to higher dimension, see Section 8. In other
words, Ku(X) ⊂ Db(P3,B0) still behaves somewhat like the Kuznetsov category of a Fano threefold
admitting a sufficiently strong BG inequality.

Updates. We conclude with a discussion of the significance of our recent work [BLM+19], joint also
with Howard Nuer and Alexander Perry, for the results in this article, as well as other recent work that
builds on this article. In [ibid.], we define and construct a notion of a stability condition for a family
of varieties, and appropriate semiorthogonal components in their derived categories; in particular, based
on the fiberwise construction in the present article we construct a stability condition for a family of
Kuznetsov categories of Fano threefolds, and cubic fourfolds, in the same generality as Theorem 1.1
and Theorem 1.2.

This in particular includes the construction of moduli spaces of semistable objects in the setting of the
present paper, which can then be studied by deformation to special threefolds or cubic fourfolds via a
relative moduli space of semistable objects. In the case of cubic fourfolds, this leads for example to the
non-emptiness of moduli spaces whenever the expected dimension is non-negative (thus extending the
deformation arguments of [GH96, O’G97, Yos01] from families of K3 surfaces to families of Kuznetsov
components of cubic fourfolds, as well as the basic existence result for moduli spaces of stable com-
plexes in [Tod08]); to the extension of results by Addington-Thomas [AT14] and Huybrechts [Huy17],
thereby giving a Hodge-theoretic characterisation of the locus where Ku(X) is derived equivalent to a
(twisted) K3 surface (and, conjecturally, whereX is rational); and to the construction of locally complete
unirational families of hyperkähler varieties of arbitrarily high dimension and degree. It also provides
the full strength of the results of [BM14b] on the birational geometry of moduli spaces in Ku(X).

Some interesting examples of such moduli spaces have already been studied in detail since the first
version of this article appeared. For example, in [LPZ18], the Fano variety of lines on a cubic fourfold
is described as a moduli space of stable objects in general (without the assumption on (−2)-classes
appearing in the proof of Theorem A.1), as well as the 8-dimensional hyperkähler variety associated to
cubic fourfolds via the Hilbert scheme of twisted cubics [LLSvS17] (thus extending [LLMS18], which
only holds for a very general cubic fourfold; this construction also behaves well in family over the moduli
space of cubic fourfolds, thus including the results in [Ouc17] when the cubic fourfold contains a plane).
In [PPZ19], the authors produce stability conditions on Kuznetsov components of Gushel-Mukai. Their
general approach is similar to ours, and in particular based on the inducing methods of Sections 4 and 5,
but their geometric setup is more involved than ours; they obtain many results analogous to the case of
cubic fourfolds.

In another direction, moduli spaces of stable objects on Fano threefolds of index two have been
studied in [APR19], with a categorical Torelli theorem in the case of index two and degree two as a
corollary.
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Base field. For most of the paper, we work over an algebraically closed field k of arbitrary characteristic.
In the case of Fano threefolds, we will assume the characteristic to be either zero or sufficiently large
when we need explicit semiorthogonal decompositions of the derived category (such as those in [Kuz06,
Kuz09a]), for which we do not know a reference in full generality. In the case of cubic fourfolds, we
need char k 6= 2 to apply the finite characteristic version given in [ABB14] of Kuznetsov’s description
of the derived category of quadric fibrations [Kuz08]. Finally, we assume k = C when we use the Mukai
lattice and Hodge-theory of the Kuznetsov component of cubic fourfolds introduced in [AT14].
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dix part of this paper. We are also indebted to Marcello Bernardara for very valuable help in a long dis-
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first two arXiv versions of this paper, along with the appropriate correction. We would also like to thank
the referee for the careful reading of the manuscript and detailed and thoughtful comments.
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been written: Institut des Hautes Études Scientifiques, Institut Henri Poincaré, Mathematical Sciences
Research Institute, Northeastern University, Università degli studi di Milano, Université Paris Diderot,
Université Paul Sabatier, and University of Edinburgh.

2. REVIEW ON TILT AND BRIDGELAND STABILITY

We begin with a quick review about weak and Bridgeland stability conditions. LetD be a triangulated
category and let K(D) denote the Grothendieck group of D. Fix a finite rank lattice Λ and a surjective
group homomorphism v : K(D)� Λ.

Weak stability conditions. A weak stability condition has two ingredients: a heart of a bounded t-
structure and a weak stability function.

Definition 2.1 ([Bri07, Lemma 3.2]). A heart of a bounded t-structure is a full subcategoryA ⊂ D such
that

(a) for E,F ∈ A and n < 0 we have Hom(E,F [n]) = 0, and
(b) for every E ∈ D there exists a sequence of morphisms

0 = E0
φ1−→ E1 → . . .

φm−−→ Em = E

such that the cone of φi is of the form Ai[ki] for some sequence k1 > k2 > · · · > km of integers
and objects Ai ∈ A.

We write H−kiA (E) = Ai for the cohomology objects of E with respect to the bounded t-structure.
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Definition 2.2. Let A be an abelian category. We say that a group homomorphism Z : K(A)→ C is a
weak stability function on A if, for E ∈ A, we have =Z(E) ≥ 0, with =Z(E) = 0⇒ <Z(E) ≤ 0. If,
moreover, for all 0 6= E ∈ A, =Z(E) = 0⇒ <Z(E) < 0, we say that Z is a stability function on A.

Definition 2.3. A weak stability condition onD is a pair σ = (A, Z) consisting of the heart of a bounded
t-structure A ⊂ D and a group homomorphism Z : Λ→ C such that (a)–(c) below are satisfied:

(a) The composition K(A) = K(D)
v−→ Λ

Z−→ C is a weak stability function on A. By abuse of
notation, we will write Z(E) instead of Z ◦ v([E]) for any E ∈ D.

The function Z allows one to define a slope for any E ∈ A by setting

µσ(E) :=

−
<Z(E)
=Z(E) if =Z(E) > 0

+∞ otherwise

and a notion of stability: An object 0 6= E ∈ A is σ-semistable if for every proper subobject F , we have
µσ(F ) ≤ µσ(E). We will often use the notation µZ as well.

(b) (HN filtrations) We require any objectE ofA to have a Harder-Narasimhan filtration in σ-semistable
ones.

(c) (Support property) There exists a quadratic form Q on Λ⊗ R such that Q|kerZ is negative definite,
and Q(E) ≥ 0, for all σ-semistable objects E ∈ A.

As usual, given a non-zero object E ∈ A, we will denote by µ+
σ (E) (resp. µ−σ (E)) the biggest (resp.

smallest) slope of a Harder-Narasimhan factor.

Remark 2.4. If in fact Z is a stability function on A, then the pair σ defines a Bridgeland stability
condition, see [Bri07, Proposition 5.3].

Remark 2.5. If Z has discrete image in C, and if A is noetherian, then the existence of Harder-
Narasimhan filtrations is automatic by [Bri07, Lemma 2.4] (see [BM11, Proposition B.2]).

Remark 2.6. If Λ has rank two, and if Z : Λ → C is injective, then the support property is trivially
satisfied for any non-negative quadratic form Q on Λ⊗ R ∼= R2.

Remark 2.7. For the purpose of Theorems 1.1 and 1.2, we will choose Λ to be the numerical K-group
Knum(D) of D: it is defined as the quotient of K(D) by the kernel of the Euler characteristic pairing
χ(E,F ) =

∑
i(−1)i dim Exti(E,F ).

Example 2.8. To fix notation, we first recall slope-stability as a weak stability condition. Let X be an
n-dimensional smooth projective variety and letH be an hyperplane section. For j = 0, . . . , n, consider
the lattices ΛjH

∼= Zj+1 generated by vectors of the form(
Hn ch0(E), Hn−1 ch1(E), . . . ,Hn−j chj(E)

)
∈ Qj+1

together with the natural map vjH : K(X)→ ΛjH .
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Then the pair (A = Coh(X), ZH) with

ZH(E) = iHn ch0(E)−Hn−1 ch1(E)

defines slope-stability as a weak stability condition with respect to Λ1
H ; here, by Remark 2.6, we can

choose Q = 0. We write µH for the associated slope function.
Slope-semistable sheaves satisfy a further inequality, which will allow us in Proposition 2.12 to im-

prove our positivity condition, by changing the bounded t-structure. More precisely, by the Bogomolov-
Gieseker inequality, for any slope-semistable sheaf E, we have ∆H(E) ≥ 0, where

(1) ∆H(E) =
(
Hn−1 ch1(E)

)2 − 2Hn ch0(E)Hn−2 ch2(E).

Remark 2.9. In general, the Bogomolov-Gieseker inequality is known only in characteristic zero; how-
ever, it does hold for Fano threefolds of Picard rank one and arbitrary characteristic. Indeed, by the
induction arguments in [Lan04] (which we will use similarly in Section 8 for sheaves over certain Clif-
ford algebras) it is enough to prove (1) on a smooth hyperplane section S ∈ |KX |. Then S is a K3
surface, in which case (1) follows from χ(E,E) ≤ 2 and Hirzebruch-Riemann-Roch.

Tilting. Assume that we are given a weak stability condition σ = (A, Z), and let µ ∈ R. We can form
the following subcategories of A (where 〈. . . 〉 denotes the extension closure):

T µσ = {E : All HN factors F of E have slope µσ(F ) > µ}

= 〈E : E is σ-semistable with µσ(E) > µ〉,

Fµσ = {E : All HN factors F of E have slope µσ(F ) ≤ µ}

= 〈E : E is σ-semistable with µσ(E) ≤ µ〉.

It follows from the existence of Harder-Narasimhan filtrations that (T µσ ,Fµσ ) forms a torsion pair in A
in the sense of [HRS96]. In particular, we can obtain a new heart of a bounded t-structure by tilting:

Proposition and Definition 2.10 ([HRS96]). Given a weak stability condition σ = (Z,A) and a choice
of slope µ ∈ R, there exists a heart of a bounded t-structure defined by

Aµσ = 〈T µσ ,Fµσ [1]〉.

We will callAµσ the heart obtained by tiltingA with respect to the stability condition σ at the slope µ.
Now return to the setting of slope stability as in Example 2.8, and choose a parameter β ∈ R. Then

we can apply Proposition 2.10 and obtain:

Definition 2.11. We write CohβH(X) ⊆ Db(X) for the heart of a bounded t-structure obtained by tilting
Coh(X) with respect to slope-stability at the slope µ = β.

In particular, CohβH(X) contains slope-semistable sheaves F of slope µ(F ) > β, and shifts F [1] of
slope-semistable sheaves F of slope µ(F ) ≤ β. In our setting, the polarization will often be unique, in
which case we drop the subscript H from the notation.
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For a coherent sheaf E on X , we define the vector

chβ(E) = e−βH ch(E) =
(

chβ0 (E), chβ1 (E), . . . , chβn(E)
)
∈ H∗(X,R).

Proposition 2.12 ([BMT14, BMS16]). Given α > 0, β ∈ R, the pair σα,β = (Cohβ(X), Zα,β) with
Cohβ(X) as constructed above, and

Zα,β(E) := iHn−1 chβ1 (E) +
1

2
α2Hn chβ0 (E)−Hn−2 chβ2 (E)

defines a weak stability condition on Db(X) with respect to Λ2
H . The quadratic form Q can be given by

the discriminant ∆H as defined in (1).
These stability conditions vary continuously as (α, β) ∈ R>0 × R varies.

In particular, this means that the family of stability conditions σα,β satisfies wall-crossing: for every
fixed class v ∈ Λ2

H , there is a locally finite wall-and-chamber structure on R>0×R controlling stability
of objects of class v.

Geometry of walls. It is very helpful to visualize the structure of this family of stability conditions, and
the associated walls, via the cone associated to the quadratic form ∆H . Consider R3 = Λ2

H ⊗ R with
coordinates

(
Hn ch0, H

n−1 ch1, H
n−2 ch2

)
, and with the quadratic form of signature (2, 1) induced by

∆H . The map

(α, β) 7→ KerZα,β ⊂ R3

assigns to each point in the upper half plane R>0 × R a line contained in the negative cone of ∆H ; this
induces a homeomorphism between the upper half plane and the projectivization of the negative cone
of ∆H . The kernels KerZα,β with a fixed β = µ lie all in the same plane passing through (0, 0, 0)

and (0, 0, 1). The quadric ∆H( ) = 0 contains, of course, the vectors vH(L) for any line bundle L
proportional to H , as well as (0, 0, 1).

Now fix a Chern character v. Then the walls of tilt-stability correspond to hyperplanes W in R3

containing vH(v): a stability conditions σα,β is contained in the wall if and only if KerZα,β is contained
inW . Moreover, Proposition 2.13 below will translate into the statement that for KerZα,β near (0, 0, 1),
slope-stable vector bundles of a fixed class are σα,β-stable. In Figure 1, we draw a cross-section of the
negative cone.

Basic properties of tilt-stability. We recall here further properties of tilt-stability that we will use later.
The first is a well-known variant of [Bri08, Lemma 14.2].

Proposition 2.13. Let β ∈ R and let E be a slope-stable vector bundle. If µH(E) > β, then E ∈
Cohβ(X) is σα,β-stable for all α sufficiently large. If µH(E) ≤ β, then E[1] ∈ Cohβ(X) is σα,β-stable
for all α sufficiently large.

The next property is a consequence of Bogomolov-Gieseker inequality for tilt-stability.
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KerZα,β

(0, 0, 1)

∆H < 0

vH(v)

β = µ

α � 0

α & 0

FIGURE 1. Walls in the cross-section of the negative cone

Proposition 2.14 ([BMT14, Proposition 7.4.1] or [BMS16, Corollary 3.11]). Let E be a slope-stable
vector bundle with ∆H(E) = 0. Then E, respectively E[1], is σα,β-stable for all (α, β) ∈ R>0 ×
R<µH(E), respectively (α, β) ∈ R>0 × R≥µH(E).

Conversely, let E be a σα,β-stable object with ∆H(E) = 0 and β > µH(E). Then E = F [1] is the
shift of a slope-semistable vector bundle F .

We also need the following variant of Proposition 2.12, that appears implicitly, but not explicitly, in
[BMT14] for µ = 0. It is also a consequence of the general results in [PT19], which are, however,
depending on a conjectural Bogomolov-Gieseker type inequality involving ch3; we will give a proof
without such an assumption.

Choose a weak stability condition σα,β as in Proposition 2.12, and µ ∈ R. Following Proposi-
tion/Definition 2.10, we obtain a tilted heart, which we will denote by

Cohµα,β(X) := Aµσα,β .

Let u ∈ C be the unit vector in the upper half plane with µ = −<u=u . Then it is straightforward to see
that

Zµα,β :=
1

u
Zα,β

is a weak stability function on Cohµα,β(X).

Proposition 2.15. The pair (Cohµα,β(X), Zµα,β) is a weak stability condition on Db(X).

In the context of stability conditions, this statement would follow automatically from Proposition 2.12

via the G̃L+
2 (R)-action on the space of stability conditions. However, due to the special treatment of

objects E ∈ A with Z(E) = 0, there is no a priori reason for the existence of such action on the set of
weak stability conditions; in fact, Proposition 2.15 typically cannot be applied iteratively.

Proposition 2.15 will be a consequence of the following general result.
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Lemma 2.16. Let σ = (A, Z) be a weak stability condition. Let A0 ⊂ A be the abelian subcategory
whose objects have Z = 0. Assume the following:

(a) A0 is noetherian.
(b) For A ∈ A, there exists a maximal subobject Ã ↪→ A, Ã ∈ A0, such that Hom(A0, A/Ã) = 0.
(c) For A ∈ A with µ+

σ (A) < +∞, there exists A ↪→ Â ∈ A such that Hom(A0, Â[1]) = 0 and
Â/A ∈ A0.

Then, given µ ∈ R, we have

A0 = {E ∈ Aµσ : Z(E) = 0}

and, for allB ∈ Aµσ, there exists a maximal subobject B̃ ↪→ B, B̃ ∈ A0, such that Hom(A0, B/B̃) = 0.

Proof. First of all, note that A0 is closed under subobjects, quotients, and extensions in A.
To prove the first statement, note that A0 ⊂ T

µ
σ ⊂ Aµσ and so A0 ⊂ {E ∈ A

µ
σ : Z(E) = 0}.

For the reverse inclusion note that 1
uZ is a weak stability function on Aµσ, where u ∈ C is the unit

vector in the upper half plane with µ = −<u=u . Thus, for E ∈ Aµσ with 1
uZ(E) = 0, we must have

1
uZ(H−1

A (E)) = 1
uZ(H0

A(E)) = 0. By definition of Fµσ , this implies that H−1
A (E) = 0. Therefore,

E ∈ T µσ ⊂ A, and so E ∈ A0, proving the first claim.
We observe that A0 is therefore closed under subobjects, quotients, and extensions in Aµσ as well.
To prove the second statement, let B ∈ Aµσ, let K ∈ A0, and assume Hom(K,B) 6= 0. By the

previous observation, we can assume that K is a subobject of B. Let K̃ ⊂ H0
A(B) be the image of the

composition K ↪→ B � H0
A(B) and K̂ ⊂ H−1

A (B)[1] its kernel. Then K̃, K̂ ∈ A0. By property (b),

we have K̃ ⊂ H̃0
A(B) in A0. Similarly by property (c), we have K̂ ⊂ Ĥ−1

A (B)/H−1
A (B) in A0. Given

an increasing sequence of subobjects Kn ⊂ B with Kn ∈ A0, the corresponding sequences K̃n and
K̂n also form increasing sequences of subobjects; by noetherianity of A0, both terminate, and thus we
obtain the existence of a maximal subobject B̃ as we wanted. 2

Example 2.17. Let σ = (Coh(X), ZH) be the weak stability condition of Example 2.8. Then σ satisfies
the conditions of Lemma 2.16. Here Coh(X)0 are the torsion sheaves supported in codimension at least
2. For A ∈ Coh(X), Ã is the torsion part in codimension at least 2 of the torsion filtration, while Â is
the double-dual of a torsion-free sheaf.

The key fact is that the same holds for tilt-stability:

Proposition 2.18. The weak stability condition σα,β = (Cohβ(X), Zα,β) satisfies the hypothesis of
Lemma 2.16.

In [PT19, Definition 2.13], condition (c) of Lemma 2.16 is part of the definition of good very weak
stability condition. Proposition 2.18 can be deduced from the general result [PT19, Proposition 3.10];
the issue is that [PT19, Conjecture 3.8] is assumed as hypothesis. Our proof is unconditional and follows
closely [BMT14, Section 5]. More precisely, on the tilted category, there is a double-dual operation as



12 A. BAYER, M. LAHOZ, E. MACRÌ, AND P. STELLARI

well as for coherent sheaves. This was defined in [BMT14, Proposition 5.1.3] for threefolds, and an
analogous statement works in any dimension.

Let D( ) := RHom(−,OX)[1] denote the duality functor.

Lemma 2.19. Let E ∈ Cohβ(X) be such that µ+
σα,β

(E) < +∞.

(a) We have Hj

Coh−β(X)
(D(E)) = 0, for all j < 0, and Hj

Coh−β(X)
(D(E)) is a torsion sheaf supported

in codimension at least j + 2, for all j ≥ 1. We define E] as H0
Coh−β(X)

(D(E)).

(b) There exists an exact sequence in Cohβ(X)

0→ E → E]] → E]]/E → 0

where E]]/E is a torsion sheaf supported in codimension at least 3, and E]] is quasi-isomorphic to
a two term complex C−1 → C0 with C−1 locally-free and C0 reflexive.

Part (a) of Lemma 2.19 can be rephrased by saying that there exists an exact triangle

E] → D(E)→ Q,

with E] ∈ Coh−β(X), Hj
Coh(X)(Q) = 0 for all j ≤ 0, and Hj

Coh(X)(Q) a torsion sheaf supported in
codimension at least j + 2, for all j ≥ 1.

Proof. In this proof, we will write (D≤0,D≥0) for the standard t-structure on Db(X), and H i and
τ≤n, τ≥n for the associated cohomology and truncation functors.

We first recall that for a coherent sheaf F , the complex D(F ) satisfies

Hj(D(F )) =


0 for j < −1

Hom(F,OX) for j = −1

Extj+1(F,OX), a sheaf supported in codimension ≥ j + 1 for j ≥ 0.

Moreover, if F is supported in codimension k, then Hk−1(D(E)) is the smallest degree with a non-
vanishing cohomology sheaf.

(a) We dualize the triangle H−1(E)[1] → E → H0(E) and consider the long exact cohomology
sequence with respect to CohX . We first get an isomorphism

Hom(H0(E),OX) = H−1
(
D(H0(E))

) ∼= H−1(D(E)).

As H0(E) ∈ T β , i.e., µ−(H0(E)) < β, we get µ+(H−1(D(E))) > −β, i.e., H−1(D(E))) ∈ F−β .
We next get a long exact sequence

0→ Ext1(H0(E),OX)→ H0(D(E))→ Hom(H−1(E),OX)
δ−→ Ext2(H0(E),OX).

Since H−1(E) ∈ Fβ , we have µ+(H−1(E)) ≤ β. In case of equality, let F ⊂ H−1(E) be the first step
of its HN filtration; then the composition F [1]→ H−1(E)[1]→ E is a subobject of E in Cohβ X with
µσα,β (F [1]) = +∞; this is a contradiction to the assumption µ+

σα,β
(E) < +∞. Therefore, we have

strict inequality µ+(H−1(E)) < β, and so Hom(H−1(E),OX) ∈ T −β . Since Ext2(H0(E),OX) is
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supported in codimension at least two, the kernel of δ is also contained in T −β . Since Ext1(H0(E),OX)

is a torsion sheaf, this shows H0(D(E)) ∈ T −β .
We now define E] := τ≤0D(E) and Q := τ≥1D(E). The previous arguments show H−1(E]) =

H−1(D(E)) ∈ F−β and H0(E]) = H0(D(E)) ∈ T −β , and thus E] ∈ Coh−β X . It remains to show
for j > 0 that Hj(D(E)) = Hj(Q) is a torsion sheaf supported in codimension at least j + 2.

The continuation of the long exact cohomology sequence above shows that Hj(Q) is supported in
codimension ≥ j + 1. Therefore, D(Hj(Q)[−j]) ∈ D≥0, and Hj(Q) is supported in codimension
at least j + 2 if and only if D(Hj(Q)[−j]) ∈ D≥1. Assume for contradiction that there is a largest
possible j0 such that H0(D(Hj0(Q)[−j0])) 6= 0. By induction on the number of non-zero cohomology
objects, we see that D(τ≤kQ),D(τ≥kQ),D(Q) ∈ D≥0 for all k. Similarly, D(τ≥j0+1Q) ∈ D≥1, and
H1(D(τ≥j0+1Q)) is supported in codimension at least j0 + 3. Dualizing the exact triangle

Hj0(Q)[−j0]→ τ≥j0Q→ τ≥j0+1Q

and taking its long exact cohomology sequence give

0→ H0(D(τ≥j0Q))→ H0(D(Hj0(Q)[−j0]))→ H1(D(τ≥j0+1Q)).

Since the middle object is supported in codimension exactly j0 + 1, and the right object in codimension
≥ j0 + 3, this shows H0(D(τ≥j0Q)) 6= 0. Dualizing the exact triangle τ≤j0−1Q → Q → τ≥j0Q gives
an injective map

0 6= H0(D(τ≥j0Q)) ↪→ H0(D(Q)),

thus H0(D(Q)) is a non-zero torsion sheaf supported in codimension at least two. Now consider the
exact triangle

D(Q)→ D(D(E)) = E → D(E]).

The same arguments as before show H−1(D(E])) ∈ Fβ , and so Hom(H0(D(Q)),D(E])[−1]) =

Hom(H0(D(Q)), H−1(D(E]))) = 0. Therefore, the composition H0(D(Q)) → D(Q) → E (where
the first morphism exists due to D(Q) ∈ D≥0) is non-zero. This is a contradiction to µ+

σα,β
(E) < +∞.

(b) By part (a) we have two exact triangles

D(Q)→ E → D(E]) E]] → D(E])→ Q′

with D(Q), Q′ ∈ D≥1, and all their cohomology sheaves are supported in codimension at least 3,
whereas E,E]] ∈ Cohβ X . In particular, E ∈ D≤0, Q′ ∈ D≥1 and the definition of t-structures imply
Hom(E,Q′) = 0, so we have an induced morphism E → E]]. The cone C of this morphism fits into an
exact triangle Q′[−1]→ C → D(Q)[1] and therefore has only non-negative cohomologies with respect
to the t-structure Cohβ X . The long exact cohomology sequence of the exact triangle E → E]] → C

with respect to Cohβ X then shows that E → E]] is injective in Cohβ X , with cokernel a torsion sheaf
supported in codimension at least 3.
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To finish the proof, we consider a locally-free resolutionG• ofE]. By taking the functor D, we obtain
a morphism

E]] →
(
G∨0

φ−→ G∨1
ψ−→ · · · → G∨k

)
[1].

By part (a), E]] is quasi-isomorphic to the complex G∨0
φ−→ Ker(ψ), and Ker(ψ) is reflexive since it is

the kernel of a morphism of locally-free sheaves. 2

Proof of Proposition 2.18. First of all note that by construction of σα,β , the objects of Cohβ(X)0 are
the objects in Coh(X)0—i.e., torsion sheaves supported in codimension at least two—that additionally
satisfy Hn−2 ch2 = 0; in other words, torsion sheaves supported in codimension at least three. This
shows property (a).

Regarding (b), by Lemma 2.16 applied to (Coh(X), ZH), we know that for any A ∈ Cohβ(X)

there exists a maximal subobject Ã′ which is a torsion sheaf supported in codimension at least 2. Since
Cohβ(X)0 ⊂ Coh(X)0, for any subobject K ⊂ A such that K ∈ Cohβ(X)0 we have K ⊂ Ã′. Since
Coh(X)0 is noetherian, we find a maximal subobject Ã ⊂ Ã′ ⊂ A satisfying property (b).

To prove property (c), by Lemma 2.19(b), we have an exact sequence in Cohβ(X)

0→ A→ A]] → A]]/A→ 0

with A]]/A ∈ Cohβ(X)0 and A]] is quasi-isomorphic to a two-term complex C−1 → C0 with
Ext1(Cohβ(X)0, C

0) = Ext2(Cohβ(X)0, C
−1) = 0. Then Â := A]] satisfies property (c). Indeed,

this follows immediately by using the exact triangle

C0 → A]] → C−1[1]. 2

Proof of Proposition 2.15. By Lemma 2.16 and Proposition 2.18, everyE ∈ Cohµα,β(X) has a subobject

Ẽ ⊂ E with Ẽ ∈ Cohβ(X)0 and Hom(Cohβ(X)0, E/Ẽ) = 0.
Let (T µ,Fµ) denote the torsion pair in Cohβ(X) from which we construct Cohµα,β(X); by definition,

(Fµ[1], T µ) is a torsion pair in Cohµα,β(X). If an object E ∈ T µ is σα,β-semistable, then E/Ẽ is σµα,β-
semistable; similarly for objects E ∈ Fµ up to the shift [1]. Conversely, any stable object in Cohµα,β(X)

is, up to shift, a σα,β-stable object in Cohβ(X).
Any object E fits into a short exact sequence

0→ F [1]→ E → T → 0

with F ∈ Fµσα,β and T ∈ T µσα,β . The objects F and T have Harder-Narasimhan filtrations with respect
to σα,β , such that all quotients and subobjects in the filtration lie in Fµσα,β and T µσα,β , respectively. Com-
bined, they give a finite filtration of E. Let E � Q be the quotient of E corresponding to the last
filtration step of E. Then the composition E � Q� Q/Q̃ gives the maximal destabilizing quotient of
E with respect to σµα,β; continuing this process produces the Harder-Narasimhan filtration of E. 2
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3. REVIEW ON SEMIORTHOGONAL DECOMPOSITIONS

The second main ingredient in this paper consists in semiorthogonal decompositions. We begin with
a very general and quick review, by following [BO95]. To this extent, let D be a triangulated category.

Definition 3.1. A semiorthogonal decomposition of D is a sequence of full triangulated subcategories
D1, . . . ,Dm ⊆ D such that HomD(Di,Dj) = 0, for i > j and, for all G ∈ D, there exists a chain of
morphisms in D

0 = Gm → Gm−1 → . . .→ G1 → G0 = G

with cone(Gi → Gi−1) ∈ Di, for all i = 1, . . . ,m.

We will denote such a decomposition by D = 〈D1, . . . ,Dm〉. The semiorthogonality condition
implies that G 7→ cone(Gi → Gi−1) ∈ Di defines a functor pri : D → Di, called the i-th projection
functor.

Definition 3.2. (a) An object E ∈ D is exceptional if HomD(E,E[p]) = 0, for all p 6= 0, and
HomD(E,E) ∼= C.

(b) A collection {E1, . . . , Em} of objects inD is called an exceptional collection if Ei is an exceptional
object, for all i, and HomD(Ei, Ej [p]) = 0, for all p and all i > j.

An exceptional collection {E1, . . . , Em} in D provides a semiorthogonal decomposition

D = 〈D′, E1, . . . , Em〉,

where we have denoted by Ei the full triangulated subcategory of D generated by Ei and

D′ = 〈E1, . . . , Em〉⊥ = {G ∈ D : Hom(Ei, G[p]) = 0, for all p and i} .

Similarly, one can define ⊥〈F1, . . . , Fm〉 = {G ∈ D : Hom(G,Fi[p]) = 0, for all p and i}.
Let E ∈ D be an exceptional object. We can define the left and right mutation functors, LE ,RE :

D → D in the following way

LE(G) := cone

(
ev :

⊕
p

HomD(E,G[p])⊗ E[−p]→ G

)
∈ E⊥ ⊂ D

RE(G) := cone

(
ev∨ : G→

⊕
p

HomD(G,E[p])∨ ⊗ E[p]

)
[−1] ∈ ⊥E ⊂ D.

We will use the following properties of mutations and semiorthogonal decompositions, where E,F
are exceptional objects, and S is a Serre functor of D.

(a) Given a semiorthogonal decomposition

D = 〈D1, . . . ,Dk, E,Dk+1, . . . ,Dn〉,

with E exceptional, we can apply left and right mutations and get

D = 〈D1, . . . ,Dk,LE(Dk+1), E,Dk+2, . . . ,Dn〉 = 〈D1, . . . ,Dk−1, E,RE(Dk),Dk+1, . . . ,Dn〉.
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(b) If (E,F ) is an exceptional pair, then RELEF = F .
(c) RS(E) is right adjoint to LE while RE is left adjoint to LE .
(d) If D = 〈D1,D2〉 is a semiorthogonal decomposition, then so are

D = 〈S(D2),D1〉 = 〈D2, S
−1(D1)〉.

4. INDUCING T-STRUCTURES

Let D be a triangulated category admitting a Serre functor S, and with a semiorthogonal decompo-
sition D = 〈D1,D2〉. In this section, we give a general criterion for inducing a bounded t-structure on
D1 from a bounded t-structure on D. While in this paper, we are only interested in the case where D2 is
generated by an exceptional collection in D, we state our criterion in a more general setting in terms of
a spanning class of D2.

Definition 4.1. A spanning class of a triangulated category D is a set of objects G such that if F ∈ D
satisfies Hom(G,F [p]) = 0 for all G ∈ G and all p ∈ Z, then F = 0.

The following observation is immediate:

Lemma 4.2. Let G be a spanning class of D2. Then for an object F ∈ D we have F ∈ D1 if and only if
Hom(G,F [p]) = 0 for all G ∈ G and all p ∈ Z.

The key ingredient of our entire construction is the following observation, slightly generalizing
[VdB00, Theorem 4.1] and [BMMS12, Lemma 3.4].

Lemma 4.3. Let A ⊂ D be the heart of a bounded t-structure. Assume that the spanning class G of D2

satisfies G ⊂ A, and Hom(G,F [p]) = 0 for all G ∈ G, F ∈ A, and all p > 1. Then A1 := D1 ∩ A is
the heart of a bounded t-structure on D1.

Proof. Clearly A1 satisfies the first condition of Definition 2.1, and we only need to verify the second.
Consider F ∈ D1. For every G ∈ G there is a spectral sequence (see e.g., [Oka06, Proposition 2.4])

Ep,q2 = Hom(G,Hq
A(F )[p])⇒ Hom(G,F [p+ q]).

By the assumptions, these terms vanish except for p = 0, 1, and thus the spectral sequence degenerates
at E2. On the other hand, since G ∈ D2 and F ∈ D1 we have Hom(G,F [p + q]) = 0. Therefore,
Hom(G,Hq

A(F )[p]) = 0 for all G ∈ G and all p ∈ Z; by Lemma 4.2 we conclude Hq
A(F ) ∈ A∩D1 =

A1. This proves the claim. 2

We will always apply this lemma via the following consequence:

Corollary 4.4. Let A ⊂ D be the heart of a bounded t-structure such that G ⊂ A and S(G) ⊂ A[1].
Then A1 := A ∩D1 ⊂ D1 is the heart of a bounded t-structure.
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Proof. Given G ∈ G and F ∈ A, as well as p > 1 we have

Hom(G,F [p]) = Hom(F, S(G)[−p])∨ = 0

as S(G)[−p] ∈ A[1− p]. Therefore, the assumptions of Lemma 4.3 are satisfied. 2

Example 4.5. Let X be a smooth projective surface with canonical divisor KX , and let H be an ample
divisor. Assume that there exists a semiorthogonal decomposition

Db(X) = 〈D1,D2〉

and a set of generators G of D2 such that G consists of slope-semistable torsion-free sheaves with

µH(G⊗KX) ≤ β < µH(G),

for β ∈ Q and for all G ∈ G; these assumptions often hold for exceptional collections of vector bundles.
Then one can use Corollary 4.4 to prove the existence of a heart on D1 as follows.

Consider the tilted heart CohβH(X) of Definition 2.11. For G ∈ G, we have G ∈ CohβH(X) and
S(G) = G ⊗KX [2] ∈ CohβH(X)[1]. So the assumptions of Corollary 4.4 are satisfied, and we obtain
an induced heart of a bounded t-structure A1 = CohβH(X) ∩ D1 on D1.

Moreover, the results of the following section will give a Bridgeland stability condition on D1 with
heart A1, constructed as follows. Let ZH(E) := iH2 rk(E) − H ch1(E) be the weak central charge
on Coh(X) inducing slope-stability for coherent sheaves, and let uβ be the unit vector in the upper half
plane with slope −<uβ=uβ = β. The stability condition is defined by (A1, Z1) with

Z1(E) :=
1

uβ
ZH(E).

We note that Z1 is a weak stability function on CohβH(X), with Z1(E) = 0 for E ∈ CohβH(X) if
and only if E = H0(E) is a 0-dimensional torsion sheaf. However, if E = H0(E) is a 0-dimensional
torsion sheaf, then Hom(G,E) 6= 0 for any G ∈ G, and hence E /∈ D1. This shows that Z1 is a stability
function for A1.

The assumption β ∈ Q implies that the category CohβH(X) is noetherian (see e.g. [BMT14, Proof of
Lemma 3.2.4]), and thus the same holds for its subcategory A1; β ∈ Q also implies that the stability
function Z1 is discrete. By [BM11, Proposition B.2] this shows that (A1, Z1) satisfies the Harder-
Narasimhan property. Proposition 5.1 will both show the existence of HN filtrations more generally, and
establish the support property for (A1, Z1).

5. INDUCING STABILITY CONDITIONS

The goal of this section is to enhance the method of the previous section, and show that when D2

is generated by an exceptional collection, then we can use the same procedure to induce a stability
condition on D1 from a stability condition on D, such that the underlying hearts are related by the
construction of Lemma 4.3 and Corollary 4.4.
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Result. Let E1, . . . , Em be an exceptional collection in a triangulated category D. We let D2 =

〈E1, . . . , Em〉 be the category generated by the exceptional objects, and we write

D = 〈D1,D2〉

for the resulting semiorthogonal decomposition of D. We continue to write S for the Serre functor on
D. The main result of this section is the following:

Proposition 5.1. Let σ = (A, Z) be a weak stability condition on D with the following properties for
all i = 1, . . . ,m:

(a) Ei ∈ A,
(b) S(Ei) ∈ A[1], and
(c) Z(Ei) 6= 0.

Assume moreover that there are no objects 0 6= F ∈ A1 := A∩D1 with Z(F ) = 0 (i.e., Z1 := Z|K(A1)

is a stability function on A1). Then the pair σ1 = (A1, Z1) is a stability condition on D1.

Inducing Harder-Narasimhan filtrations. We start with some easy observations about the category
A1. If F,G ∈ A1 are objects with a morphism f : F → G, then f is injective (resp. surjective) as a
morphism in A1 if and only if it is injective (resp. surjective) as a morphism in A. In other words, the
inclusion A1 ↪→ A is an exact functor.

We will prove the existence of Harder-Narasimhan filtrations on A1 in this setting:

Lemma 5.2. Let (A, Z) be a weak stability condition. LetA1 ⊂ A be an abelian subcategory such that
the inclusion functor is exact. Assume moreover that Z restricted to K(A1) is a stability function. Then
Harder-Narasimhan filtrations exist in A1 for the stability function Z.

We break up the proof of this result into several steps. We will deduce the existence of Harder-
Narasimhan filtrations for objects F ∈ A1 from the existence of Harder-Narasimhan polygons and the
concept of mass. We recall all the necessary definitions and basic facts here; see [Bay19, Section 3] for
some context.

Let B be an abelian category, and Z : K(B)→ C a weak stability function on B (see Definition 2.2).

Definition 5.3. The Harder-Narasimhan polygon HNZ
B(F ) of an object F ∈ B is the convex hull in the

complex plane of the set

{Z(A) : A ⊂ F} .

We say that the Harder-Narasimhan polygon HNZ
B(F ) is finite polyhedral on the left if the intersection

of HNZ
B(F ) with the closed half-plane to the left of the line through 0 and Z(F ) is a polygon. The

following Proposition is a variant of a well-known statement.

Proposition 5.4. If F ∈ B admits a Harder-Narasimhan filtration, then HNZ
B(F ) is finite polyhedral on

the left. If moreover Z is a stability function, then the converse holds.
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Proof. When Z is a stability function, then both directions are well-known, see e.g., [Bay19, Proposition
3.3]. When Z is only a weak stability function, the first statement is proved easily with the same
arguments as in the case of a stability function. 2

The support property as defined here is equivalent to the one originally appearing in [Bri07]:

Proposition 5.5 ([BMS16, Lemma A.4]). A pair (B, Z) of an abelian category with a weak stability
function satisfies the support property if and only if there is a metric ‖ · ‖ on Λ ⊗ R, and a constant
C > 0 such that for all Z-semistable objects F ∈ A, we have

|Z(F )| ≥ C‖v(F )‖.

We now return to the setting of Lemma 5.2, and assume that (A, Z) is a weak stability condition.

Definition 5.6. The mass mZ
A(F ) of an object F ∈ A is the length of the boundary of the Harder-

Narasimhan polygon HNZ
A(F ) on the left, between 0 and Z(F ); equivalently, if Fi are the HN filtration

steps of F , then mZ
A(F ) =

∑
|Z(Fi/Fi−1)|.

The triangle inequality gives:

Proposition 5.7. With a metric ‖ · ‖ and C > 0 as in Proposition 5.5, any object F satisfies

mZ
B(F ) ≥ C‖v(F )‖.

Lemma 5.8. Let F ∈ A1. Then the Harder-Narasimhan polygon HNZ
A1

(F ) (with respect to subobjects
in A1) is finite polyhedral on the left.

Proof. For any subobject A ⊂ F,A ∈ A1 we have HNZ
A(A) ⊂ HNZ

A(F ) by defintion. When we
additionally assume µZ(A) > µZ(A), a simple picture shows that the mass of A is bounded (see also
[Bay19, Lemma 5.5]).

By Proposition 5.7, this implies a uniform bound for ‖v(A)‖. Therefore, there are only finitely many
possibilities for the class v(A) in Λ; therefore, the left-hand side of HNZ

A1
(F ) is the convex hull of

finitely many points. 2

By Proposition 5.4, this concludes the proof of Lemma 5.2.

Inducing support property. It remains to show that (A1, Z1) has the support property. By induction,
we may assume for the rest of the section that D2 is generated by a single exceptional object E.

Lemma 5.9. Any G ∈ A fits into a five term short exact sequence in A

0→ H−1
A (G1)→ E ⊗Hom(E,G)→ G→ H0

A(G1)→ E ⊗ Ext1(E,G)→ 0

with G1 ∈ D1.
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Proof. This is the long exact cohomology sequence with respect to A of the exact triangle

E ⊗RHom(E,G)
ev−→ G→ G1

where G1 = LEG ∈ D1 = E⊥ is the mutation of G at E. 2

Lemma 5.10. Consider a short exact sequence

(2) 0→ A→ F → B → 0

in A with F ∈ A1. Then there is an exact sequence

0→ H−1
A (B1)→ A1 → F → H0

A(B1)→ 0

in A1, together with exact sequences

0→ A→ A1 → E ⊗ V → 0, 0→ H−1
A (B1)→ E ⊗ V → B → H0

A(B1)→ 0

in A where V = Hom(E,B).

Proof. As in Corollary 4.4 we know that Exti(E,A) = Exti(E,B) = 0 for i ≥ 2. The long exact Hom-
sequence shows Hom(E,A) = 0 = Ext1(E,B) and V = Hom(E,B) = Ext1(E,A). Therefore, the
five term exact sequences of Lemma 5.9 for A and B behave as claimed. The long exact cohomology
sequence of the projection of (2) to D1 completes the proof. 2

Proof of Proposition 5.1. We now fix a norm ‖ · ‖ on Λ ⊗ R and a constant C such that the weak
stability conditions (A, Z) satisfies the support property in the formulation given in Proposition 5.5.
Assume that F ∈ A1 is semistable within the category A1, and consider a quotient F � B as in
Lemma 5.10. Since µZ(H0

A(B1)) ≥ µZ(F ) (by semistability of F in A1), it follows from the last
exact sequence of Lemma 5.10 that µZ(B) ≥ min{µZ(F ), µ−Z (E)}. In particular, if µZ(F ) ≤ µ−Z (E),
then F is also semistable as an object of A, and thus satisfies the support property with respect to
the same constant C. Otherwise, the left-hand side of the Harder-Narasimhan polygon HNZ

A(F ) is
contained in the triangle with vertexes 0, z, Z(F ) where z is the point on the negative real line such that
Z(F )−z has slope corresponding to µ−Z (E) (see Figure 2 for the case where E is semistable); therefore
mZ
A(F ) ≤ |z|+ |Z(F )− z|.
By Lemma 5.11, there is a constant D > 0, depending only on µ−Z (E), such that

mZ
A(F ) ≤ |z|+ |Z(F )− z| ≤ D |Z(F )| .

Combined with Proposition 5.7, it follows that ‖v(F )‖ ≤ D
C |Z(F )| for all semistable objects F ∈ A1,

i.e., the pair (A1, Z) satisfies the support property. 2

Lemma 5.11. Let 0 < φ < π be a fixed angle. Then there is a constantD > 0 such that for all triangles
with one angle given by φ, and with adjacent side lengths a1, a2 and b the side length opposite of φ, we
have a1 + a2 ≤ Db.
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<

=
Z(E)

Z(F )

z

a1

a2

b

φ φ

0

FIGURE 2. The left-hand side of HNZ
A(F ) is contained in the triangle 0, z, Z(F ).

Proof. With D =
√

2
1+cosφ , this follows from

b2 = a2
1 + a2

2 − 2a1a2 cosφ =
1 + cosφ

2
(a1 + a2)2 +

1− cosφ

2
(a1 − a2)2. 2

We note the following observation made in the proof:

Remark 5.12. An object F ∈ A1 with µZ(F ) ≤ µ−Z (E) is semistable as an object in A1 if and
only if it is semistable as an object in A. More generally, any object F ∈ A1 satisfies µ−Z (F ) ≥
min{µ−Z1

(F ), µ−Z (E)}, where µ−Z (F ) is computed by the HN filtration of F as an object of A, and
µ−Z1

(F ) by HN filtration in A1.

When combined with the results in [CP10], Proposition 5.1 has the following consequence:

Proposition 5.13. Given the same assumptions as in Proposition 5.1, there exists a stability conditions
σ′ = (A′, Z ′) on D with

A′ = 〈A1, E1[1], E2[2], . . . , Em[m]〉
and Z ′ determined by

Z ′|D1 = Z|D1 , Z ′(Ei) = (−1)i+1

for i = 1, . . . ,m.

Proof. LetA2 := 〈E1[1], . . . , Em[m]〉; by [CP10, Section 2],A2 is the heart of a bounded t-structure in
D2, that together with A1 produce a heart A′ ⊂ D with description as in the claim; moreover, the pair
(A2,A1) is a torsion pair in A.

By construction, the objects A2 ⊂ A′ have maximal slope; thus, the existence of the torsion pair,
combined with the existence of HN filtrations in A1 with respect to Z1, gives HN filtrations in A′

(similar to the proof of [CP10, Proposition 3.3]). Finally, σ′-stable objects are either σ1-stable objects
of A1, or of the form Ei[i]. By Proposition 5.5, this shows that the support property for σ1 implies the
support property for σ′. 2

In other words, a weak stability condition on D with the assumptions of Proposition 5.1 produces an
actual stability condition on D—at the cost of making the associated heart more implicit.
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6. FANO THREEFOLDS

In this section we apply the results of the previous sections in order to construct stability conditions
on the Kuznetsov component of all but one deformation type of Fano threefolds of Picard rank one. We
assume the base field is algebraically closed and has characteristic either zero or sufficiently large.2

Review. We begin by reviewing Kuznetsov’s semiorthogonal decompositions for the Fano threefolds
appearing in Theorem 1.1. We follow the overview in [Kuz09a] of semiorthogonal decompositions of
Fano threefolds of Picard rank one.

Deformation types of Fano threefolds of Picard rank one are classified by their index iX and their
degree d; this classification holds similarly over algebraically closed fields of characteristic p by [S-B97].
The index iX ∈ {1, 2, 3, 4} is given by KX = −iX H , where KX is the canonical divisor, and H is a
primitive ample divisor; the degree is given by d = H3.

We ignore the cases of index four (projective space) and three (quadric), as they admit full exceptional
collections. In the case of index two, there are five deformation types classified by 1 ≤ d ≤ 5. Our
definition of the Kuznetsov component is straightforward in this case:

Definition 6.1 ([Kuz09a]). LetX be a Fano threefold of index two over an algebraically closed field, and
let H = −1

2KX . The Kuznetsov component Ku(X) is defined by the semiorthogonal decomposition

Db(X) = 〈Ku(X),OX ,OX(H)〉.

For index one and Picard rank one, the degree is even and can thus by written asH3 = 2g−2 in terms
of its genus g. There are 10 deformation types, corresponding to 2 ≤ g ≤ 12, g 6= 11. The definition of
Kuznetsov components depends on the genus, and relies on the existence of exceptional vector bundles
due to Mukai.

Theorem 6.2 ([Muk92, Kuz09a]). Let X be a Fano threefold of Picard rank one, index one, and even
genus g = 2s > 2 over any algebraically closed field. Then there exists a stable vector bundle E2 on X
of rank 2, with c1(E2) = −H and ch2(E2) = (s− 2)L, where L is the class of a line on X .

Proposition and Definition 6.3 ([Kuz09a]). Let X be a Fano threefold of Picard rank one, index one,
and even genus g > 4 over any algebraically closed field. Then the pair (E2,OX) is exceptional, and
the Kuznetsov component of X is defined by the semiorthogonal decomposition

Db(X) = 〈Ku(X), E2,OX〉.

The existence of these vector bundles follow from the classification of Fano threefolds. However, as
the argument sketched in [Muk92] seems incomplete3, and as they are stated only for char(k) = 0 by
both Mukai and Kuznetsov, we provide here a proof that is also independent of the characteristic.

2Our own constructions, in Theorems 6.8, 6.7 and 6.9, work for arbitrary characteristic; this is due to Remark 2.9. Where
we refer to prior explicit descriptions of Kuznetsov components, this typically require the characteristic to be sufficiently large.

3The assumptions for Fujita’s extension theorem in [Fuj81] can never be satisfied on a surface.
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Proof of Theorem 6.2 and Proposition and Definition 6.3. Consider a generic pencil of hyperplane sec-
tions in |H|, and let X̃ → P1 be the induced K3 fibration of the blowup of X at its base locus Cg, a
smooth curve of genus g. Each K3 fiber S admits a unique stable spherical vector bundle ES with Mukai
vector (2,−H, s); in other words, the corresponding relative coarse moduli space is isomorphic to P1.
By Tsen’s theorem, the Brauer group of P1 vanishes, see [GS06, Theorem 6.2.8 and Proposition 6.2.3];
therefore, the obstruction to the existence of a universal family vanishes, i.e., there is a vector bundle
E
X̃

whose restrictions are the given spherical vector bundles on the fibers. We claim that the restriction
of E

X̃
to the exceptional divisor Cg × P1 is of the form ECg � OP1(k): indeed, this can be checked

infinitesimally from the fact that the unique deformation class Ext1
X̃

(iS∗ES , iS∗ES) is induced by the
unique deformation class of iS∗OS , which induces the trivial deformation after restriction to Cg.

After tensoring E
X̃

with the pull-back of OP1(−k) it is thus the pull-back of a vector bundle EX on
X , whose restriction to the hyperplane section S is still given by ES . This proves Theorem 6.2.

For the Proposition, since s > 1, Langer’s version of Bogomolov’s restriction theorem (which applies
with no correction terms for K3 surfaces in characteristic p, [Lan04, Theorem 5.2]) shows that ECg is
stable. Therefore Hom(ES , ECg) = k, and the long exact Hom-sequence implies Ext1(ES , ES(−1)) =

Ext1(ES , ES), which vanishes by construction. From this one deduces Ext1(ES , ES(n)) = 0 for all
n ∈ Z, using again the long exact Hom-sequence and Serre duality. The analogous long exact Hom-
sequence on X then implies Ext1(EX , EX) = Ext1(EX , EX(−1)) = · · · = Ext1(EX , EX(−n)) for all
n > 0, which of course vanishes for n � 0. Therefore, 0 = Ext1(EX , EX) = Ext1(EX , EX(−1)) =

Ext2(EX , EX). Since the required Ext3-vanishing is immediate from Serre duality, this finally shows
that EX is exceptional.

That (OX , EX) is an exceptional pair can similarly be deduced from the corresponding cohomology
vanishing of ES : the key initial observation is H1(ES) = 0, which holds as otherwise the corresponding
extension ES ↪→ F � OS would be a stable vector bundle with v(F )2 < −2, a contradiction. 2

A previous version of this paper incorrectly claimed Proposition 6.3 also for genus 4, the case of a
complete intersection of a quadric and a cubic in P5. However, in this case there exist either exactly two
(when the quadric is smooth) or no (when the quadric is singular) exceptional bundles of rank two.

The remaining cases of index one are covered by the following two definitions.

Proposition and Definition 6.4 ([Muk92, Kuz06]). LetX be a Fano threefold of Picard rank one, index
one, and genus 7 (resp. 9). Then there exists a rank 5 (resp. 3) vector bundle E5 (resp. E3) such that the
pair (E5,OX) (resp. (E3,OX)) is exceptional. The Kuznetsov component of X is defined to be its right
orthogonal component.

Definition 6.5. Let X be a Fano threefold of Picard rank one, index one, and genus 2, 3, 4 or 5 over any
algebraically closed field. Then the Kuznetsov component of X is the right orthogonal to 〈OX〉.
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Let X be a Fano threefold. We consider the lattice Λ2
H
∼= Z3 as in Example 2.8 and the natural map

v2
H : K(X)→ Λ2

H . For an admissible subcategory D ⊂ Db(X), we denote by

(3) Λ2
H,D := Im

(
K(D)→ K(X)→ Λ2

H

)
.

the image of the composite map and, by abuse of notation, the induced morphism v2
H : K(D)→ Λ2

H,D.

Result and context. The goal of this section is to prove Theorem 1.1. We will split the statement into
various cases and we summarize the results in the following two tables of Fano threefolds of Picard rank
one (if the base field has characteristic either zero or sufficiently large):

ρX = 1 & iX = 2

deg Semiorthogonal decomposition ∃ stability conditions
5 Db(Y5) = 〈F2(−H),O(−H),F2,O〉 [Orl91] expl. descr.4 or Thm. 6.8
4 Db(Y4) =

〈
Db(C2),O(−H),O

〉 5 [BO95, Thm. 2.9] expl. descr.4 or Thm. 6.8
3 Db(Y3) = 〈Ku(Y3),O(−H),O〉 [BMMS12] or Thm. 6.8
2 Db(Y2) = 〈Ku(Y2),O(−H),O〉 Thm. 6.8
1 Db(Y1) = 〈Ku(Y1),O(−H),O〉 Thm. 6.8

ρX = 1 & iX = 1

gX Semiorthogonal decomposition ∃ stability conditions
12 Db(X22) = 〈E4, E3, E2,O〉 [Kuz09a, Thm. 4.1] expl. descr.4 or Thm. 6.9
10 Db(X18) =

〈
Db(C2), E2,O

〉 5 [Kuz06, §6.4] expl. descr.4 or Thm. 6.9
9 Db(X16) =

〈
Db(C3), E3,O

〉 5 [Kuz06, §6.3] expl. descr.4

8 Db(X14) = 〈Ku(X14), E2,O〉 [Kuz04] [BMMS12] or Thm. 6.9
7 Db(X12) =

〈
Db(C7), E5,O

〉 5 [Kuz06, §6.2] expl. descr.4

6 Db(X10) = 〈Ku(X10), E2,O〉 [Kuz09a, Lem. 3.6] Thm. 6.9
5 Db(X8) = 〈Ku(X8),O〉 Thm. 6.7
4 Db(X6) = 〈Ku(X6),O〉 Thm. 6.7
3 Db(X4) = 〈Ku(X4),O〉 Thm. 6.7
2 Db(X2) = 〈Ku(X2),O〉 Thm. 6.7

For Fano threefolds of Picard rank one, there is a conjectural relation between the index two case
of degree d ≥ 2 and the index one and genus 2d + 2, due to Kuznetsov (see [Kuz09a, Conjecture
3.7]). This is proved in the case d = 3, 4, 5 and asserts there the equivalence between the respective
Kuznetsov components. In fact, our result may turn useful in understanding this conjecture, as explained
in Example 6.6 below. For d = 2 the conjecture in loc. cit. needs to be modified as remarked in

4By explicit description (expl. descr.), we mean that the explicit description of the Kuznetsov component (according to the
reference in the middle column), combined with the construction of stability conditions for curves and categories of quiver
representations, implies the existence of stability conditions, for characteristic zero or sufficiently large.

5We denote by Cg a smooth genus g curve.
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[BT16, Theorem 7.2]. A modified version does not ask the maps to be dominant, so the two Kuznetsov
components would only be deformation equivalent [Kuz16].

Example 6.6 (d = 4). The space of Bridgeland stability conditions on Ku(X18) ∼= Db(C2) consists of

a unique orbit, with respect to the G̃L+
2 (R)-action, containing (Coh(C2), i rk−deg) (see [Mac07]). In

particular, the stability condition σ constructed in Theorem 1.1 lies in the same orbit.
The curve C2 can be reconstructed as moduli space of skyscraper sheaves, which are stable with

respect to any stability condition on Db(C2). Hence, C2 can be identified with the moduli space of
σ-stable objects in Ku(X18) with Chern character 3− 2H + 9L− 1

2pt, which is the image of the Chern
character of a skyscraper sheaf via the inclusion Knum(C2) ∼= Knum(Ku(X18)) ⊂ Knum(X18) (see
[Kuz09a, Proposition 3.9]). The equivalence Ku(X18) ∼= Db(C2) can then be reinterpreted as the one
coming from the universal family on such a moduli space.

The Fano threefold Y4 can then be reconstructed as the moduli space of rank 2 vector bundles on C2

with fixed determinant of odd degree (see [New68, Theorem 1] or [NR69, Theorem 4]). The equivalence
Db(C2) ∼= Ku(Y4) can again be reinterpreted as the one coming from the universal family (see [BO95,
Theorem 2.7] and [Nar17, Remark 5]).

Proof of Theorem 1.1, case index one and low genus. We divide the proof of the Theorem 1.1 in three
cases, according to the index and the genus. We begin with the easiest case. We will prove the following
more general statement, which holds for all Fano threefolds, of any Picard number and index.

Theorem 6.7. Let X be a Fano threefold over any algebraically closed field. Consider the semiorthog-
onal decomposition Db(X) = 〈O⊥X ,OX〉. Then O⊥X has a Bridgeland stability condition with respect
to the lattice Λ2

H
∼= Z3.6

In particular, if X has index 1 and genus g ∈ {2, 3, 4, 5}, then Ku(X) has a stability condition.

Proof. We want to apply Proposition 5.1 to the exceptional collection of length one given by OX .
For Coh(X), we have OX ∈ Coh(X), but S(OX) = OX(KX)[3] ∈ Coh(X)[3]. We need a weak

stability condition whose heart still contains OX , but also OX(KX)[2] = OX(−iXH)[2] instead of
OX(KX), i.e., we will need to tilt Coh(X) twice.

Let β = −1
2 iX . Then clearly OX ,OX(KX)[1] ∈ CohβH(X). Now consider the weak stability

condition σα,β =
(

CohβH(X), Zα,β

)
of Proposition 2.12, for β as above and for α sufficiently small.

By Proposition 2.14, both OX and OX(KX)[1] are σα,β-stable. Since α is sufficiently small, we have

<Zα,β(OX) =
α2

2
H3 −H · 1

2

(
KX

2

)2

< 0 < <Zα,β(OX(KX)[1]) = −α
2

2
H3 +H · 1

2

(
KX

2

)2

and so µα,β(OX(KX)[1]) < 0 < µα,β(OX).(4)

Therefore, if we tilt a second time to obtain the weak stability condition σ0
α,β of Proposition 2.15, then

its heart Coh0
α,β(X) contains both OX and OX(KX)[2].

6Note that in this case the lattice Λ2
H,O⊥

X
defined in (3) coincides with Λ2

H .
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By Lemma 2.16, we have Coh0
α,β(X)0 = Cohβ(X)0, which is the category of zero-dimensional

torsion sheaves; as any such sheaf has global sections, the intersection O⊥X ∩ Coh0
α,β(X)0 is empty.

Hence all assumptions of Proposition 5.1 are satisfied, and we obtain a stability condition on O⊥X . 2

Proof of Theorem 1.1, case index two. In this section we prove the following case of Theorem 1.1
without the Picard rank one assumption.

Theorem 6.8. Let X be a Fano threefold of index two over any algebraically closed field. Then the
Kuznetsov component Ku(X) has a Bridgeland stability condition with respect to Λ2

H,Ku(X)
∼= Z2.

Proof. The proof goes along the exact same lines as the proof of Theorem 6.7, by applying Proposi-
tion 5.1 to the exceptional collection 〈OX ,OX(H)〉. We set β = −1

2 ; then again G,G(KX)[1] ∈
CohβH(X) for G ∈ {OX ,OX(H)}. The exact same computation leading to (4) shows that, for α small,
we have

µα,− 1
2
(G(KX)[1]) < 0 < µα,− 1

2
(G)

for the same G. With the same arguments as before, we apply Proposition 5.1 to show that the weak
stability condition σ0

α,− 1
2

of Proposition 2.15 induces a stability condition on Ku(X). 2

Proof of Theorem 1.1, case index one and high genus. The remaining non-trivial cases of Theorem 1.1
are covered by the following result:

Theorem 6.9. Let X be a Fano threefold of Picard rank one, index one, and even genus g ≥ 6 over any
algebraically closed field. Then the Kuznetsov component Ku(X) has a Bridgeland stability condition
with respect to the lattice Λ2

H,Ku(X)
∼= Z2.

We want to apply the same proof as in the previous cases. Note that E2 is slope-stable with µH(E2) =

−1
2 , whereas S(OX) = OX(−H)[3], S(E2) = E2(−H)[3] are shifts of slope-stable sheaves of slope−1

and −3
2 , respectively. Therefore, the first step works exactly as before: for any β with −1 < β < −1

2 ,
the abelian category Cohβ(X) contains OX , E2 as well as OX(−H)[1] and E2(−H)[1].

To continue as before, we need to show tilt-stability of E2; the corresponding statement was automatic
in the previous cases by Proposition 2.14. We start with an auxiliary observation. Recall from Section 2
that we have a quadratic form ∆H on Λ2

H ⊗ R ∼= R3.

Lemma 6.10. Consider the tangent planes to the quadric ∆H = 0 in R3 at v2
H(OX) and v2

H(OX(−H)),
and the corresponding open half-spaces containing (0, 0, 1). If g ≥ 6 is an even genus, then v2

H(E2) lies
in the intersection of these two half-spaces.

In terms of visualisations of the negative cone via cross-sections of R3 as in Figure 1, this means that
E2 lies above the tangent lines at OX(−H) and OX in Figure 3.

Proof. By the symmetry of R3 induced by Hom( ,O(−H)), which leaves the quadratic form ∆H

invariant, the intersection of these two tangent planes is also contained in the plane µH( ) = −1
2

containing v2
H(E2); therefore, it is enough to prove the claim for one of the two planes.
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∆H = 0

µH = − 1
2

OX

OX(−H)

E2

(0, 0, 1)

FIGURE 3. The location of vH(E2)

∆H = 0

µH = −1 + ε

OX

OX(−H)

E2

(0, 0, 1)

µH = −1

FIGURE 4. (Lack of) Walls for E2

The tangent plane to ∆H = 0 at v2
H(OX) is given by H ch2( ) = 0, and thus the claim follows from

H ch2(E2) = H
(g

2 − 2
)
L > 0, see Theorem 6.2. 2

Lemma 6.11. For ε > 0 small, the objects E2 and E2(−H)[1] are σα,−1+ε-stable for all α > 0.

Proof. We first observe that both objects are σα,−1-stable for all α > 0. Indeed, for α� 0, this follows
from slope-stability of E2 and Proposition 2.13. Moreover, since

=Zα,−1(E2) = H2 ch−1
1 (E2) = H3 = −H2 ch−1

1 (E2(−H)) = =Zα,−1(E2(−H)[1]),

and since =Zα,−1(F ) ∈ Z≥0 ·H3 for all objects F ∈ Coh−1(X), neither object can be strictly σα,−1-
semistable for any α > 0; by the existence of the wall-and-chamber structure for tilt-stability, this means
they must be σα,−1-stable for all α > 0.

In the case of E2(−H)[1], we apply the previous Lemma 6.10 analogously to E2(−H) instead of
E2: the projection of v2

H(E2(−H)[1]) in Figure 4 lies above the dotted tangent line to ∆H = 0 at
v2
H(O(−H)), but further to the left on the line µ = −3

2 . Therefore, any wall intersecting the line
segment of slope µH = −1 + ε would also intersect the line segment µH = −1.

Now consider the location of possible walls for σα,β-semistability of E2, as in Figure 4; in this picture,
they are given as the intersection of lines through v2

H(E2) with the interior of the negative cone ∆H( ) <

0. By the argument in the previous paragraph, no such wall can be in the interior of the triangle with
vertices v2

H(E2), v2
H(OX(−H)) and (0, 0, 1). By the local finiteness of walls, it suffices to prove that

the line segment connecting v2
H(E2) and v2

H(OX(−H)) is not a wall: any wall strictly below that one
would not intersect the line segment corresponding to β = −1 + ε for ε� 1.
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Assume otherwise. Then there is a short exact sequence A ↪→ E2 � B such that when (α, β) lies
on the wall, then Zα,β(A) and Zα,β(B) lie on the open line segment connecting 0 and Zα,β(E) in the
complex plane. By continuity, this still holds at the end point (α, β) = (0,−1); with the same integrality
argument as before, we conclude either Z0,−1(A) = 0 or Z0,−1(B) = 0; in particular, v2

H(A) or v2
H(B)

are proportional to v2
H(OX(−H)), respectively. By Proposition 2.14, we must have A ∼= OX(−H)[1]

or B ∼= OX(−H)[1]. But both of these are impossible: we clearly have Hom(OX(−H)[1], E2) = 0,
and, by Serre duality and the fact that (OX , E2) is an exceptional pair, also Hom(E2,OX(−H)[1]) =

Hom(OX , E2[2])∨ = 0. 2

Proof of Theorem 6.9. We have all the ingredients in place to apply Proposition 5.1. Indeed, for β =

−1 + ε and α > 0 sufficiently small, the objects OX , E2,OX(−H)[1], E2(−H)[1] of Cohβ(X) are
σα,β-stable; one also easily checks with a computation, or a picture using Lemma 6.10, that

µσα,β (E2(−H)[1]) < µσα,β (OX(−H)[1]) < µσα,β (E2) < µσα,β (OX) .

Indeed, for the “proof by picture” note that for α � 0, the objects ordered by slope are E2, OX ,
E2(−H)[1], O(−H)[1]; as α decreases, the order of two objects A,B changes whenever the point
corresponding to KerZα,β crosses the line between vH(A) and vH(B). Regarding E2(−H)[1], recall
from above that vH(E2(−H))[1] lies above the tangent line at OX(−H), and on the line µH = −3

2

further to the left.
Therefore, for µ in between the second and the third slope in these inequalities, the tilted category

Cohµα,β(X) contains all of OX , E2,OX(−H)[2] and E2(−H)[2]. Thus the weak stability condition
(Cohµα,β(X), Zµα,β) of Proposition 2.15 satisfies all the assumptions of Proposition 5.1. 2

Relation to Bridgeland stability on Db(X). In [Li19], stability conditions have been constructed
on the whole category Db(X), when X is a Fano threefold of Picard rank one (and in general in
[Piy17, BMSZ17]). In particular, the category Cohµα,β(X) in Theorems 6.7, 6.8, and 6.9 is the heart
of a Bridgeland stability condition on Db(X). While this much stronger result is not needed for our
construction, it may be useful to compare stable objects in Db(X) versus stable objects in Ku(X), in
a similar fashion as what has been done in [LMS15, Section 3]. More precisely, in [BMMS12], the
Kuznetsov component Ku(Y3) is realized as an admissible subcategory in Db(P2,B0) orthogonal to the
right of an exceptional object (see also Section 7 below). In [LMS15] the comparison is between stable
objects in Ku(Y3) and Bridgeland stable objects in Db(P2,B0).

7. CONIC FIBRATIONS ASSOCIATED TO CUBIC FOURFOLDS

In this section, we start the study of the Kuznetsov component Ku(X) of a cubic fourfold X . In
principle, we would like to apply a similar argument as in the Fano threefold case above. To this end,
we would need to tilt three times starting from Coh(X). The issue is the lack of a positivity result,
generalizing Bogomolov inequality for stable sheaves to tilt-stable objects, which prevents us to tilt a
third time. The key idea then is to realize Ku(X) as an admissible subcategory of a derived category of
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modules over P3 with respect to an algebra vector bundle B0. By choosing a line in X not contained in
a plane in X , the induced conic fibration provides B0 as the even part of the associated Clifford algebra
vector bundle.

After a brief recall on Kuznetsov’s result on semiorthogonal decompositions for quadric fibrations,
the goal of this section is to describe such an embedding (see Proposition 7.7).

Modules over algebra vector bundles. Let Y be a smooth projective variety, and let B be a sheaf of
OY -algebras over Y ; we will always assume that B is a locally free sheaf of finite rank over Y , and call
such B an algebra vector bundle. We denote by Coh(Y,B) the category of coherent sheaves on Y with a
right B-module structure, and denote its derived category by Db(Y,B). The forgetful functor is denoted
by Forg : Db(Y,B) → Db(Y ). We now review some basic properties of Coh(Y,B) and Db(Y,B), see
[Kuz06, arXiv:v1 Appendix D/published version Section 10] and [Kuz08, Section 2.1].

Consider a morphism f : Y ′ → Y , and let B′ := f∗B. Then the usual pull-back and push-forward
for coherent sheaves directly induce functors f∗ : Db(Y,B) → Db(Y ′,B′) and, when f is projective,
f∗ : Db(Y ′,B′) → Db(Y,B); in other words, these functors commute with the forgetful functors on Y
and Y ′, and the ordinary pull-back and push-forward for coherent sheaves, respectively.

Let E ∈ Db(Y,B). By abuse of notation and language, we will write ch(E) = ch(Forg(E)) for
the Chern character of the underlying complex of coherent sheaves, and call it the Chern character of
E. By the observation in the previous paragraph, the behavior of this Chern character behaves exactly
as the Chern character of coherent sheaves under pull-backs and push-forwards whenever we are in the
situation above (in particular, with B′ = f∗B).

Since we assume Y to be smooth and B to be a vector bundle, we can also write the Serre functor
on Db(Y,B) explicitly as S( ) = ωY ⊗OY ( ) ⊗B B∨[dim(Y )], where B∨ denotes the dual of B as a
coherent sheaf, together with its canonical structure as a B-bimodule. This follows from Serre duality
on Y together with the standard adjunctions for the forgetful functor (see also [Kuz06, arXiv:v1 eq. (70)
/published version eq. (10.1)]).

Conic fibrations. We now recall Kuznetsov’s description of the derived category of quadric fibrations,
specialized to the case of relative dimension one, and extended to positive characteristic in [ABB14].
So let π : X → Y be a fibration in conics over a smooth projective variety Y over k, where k is an
algebraically closed field with char k 6= 2. There is a rank three vector bundle F on Y and a line bundle
L such that X embeds into the P2-bundle PY (F) as the zero locus of a section

sX ∈ H0(Y, Sym2F∨ ⊗ L∨) = H0(PY (F),OPY (F)(2)⊗ L∨),

where, to simplify the notation, we write L∨ both for the line bundle on Y and its pull-back to PY (F).
The even part of the Clifford algebra of π as a sheaf is

(5) Forg(B0) = OY ⊕
(∧2F ⊗ L

)
.
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The algebra structure on its fiber F|y at a point y ∈ Y is determined by

vi ∧ vk · vk ∧ vj = sX(vk ⊗ vk) vi ∧ vj , vi ∧ vk · vi ∧ vk = sX(vi ⊗ vi) sX(vk ⊗ vk),

for an orthogonal basis (v1, v2, v3) of F|y with respect to the quadratic form sX and i 6= j 6= k 6= i.
The odd part of the Clifford algebra of π is denoted by B1. Furthermore, we define the following

B0-bimodules, for j ∈ Z:

B2j := B0 ⊗ L−j and B2j+1 := B1 ⊗ L−j .

In positive characteristic we rely on [ABB14, Proposition A.1], which identifies, for char(k) 6= 2, the
Clifford algebra constructed in [Kuz08, Section 3.3] and described above for the case of conics, with the
construction in [ABB14, Section 1.5] that works in arbitrary characteristic.

The fundamental result on the derived categories of quadric fibrations is the following.

Theorem 7.1 ([Kuz08], [ABB14, Theorem 2.2.1]). There is a semiorthogonal decomposition

Db(X) = 〈Φ(Db(Y,B0)), π∗Db(Y )〉.

We describe the fully faithful functor Φ: Db(Y,B0)→ Db(X) and its left adjoint Ψ explicitly below.
Consider a base change f : Y ′ → Y . Then there are two algebras on Y ′: the Clifford algebra B′0 of

the conic fibration π′ : Y ′ ×Y X → Y ′, and the pull-back f∗B0.

Lemma 7.2. In the above situation, we have a natural isomorphism B′0 ∼= f∗B0.

Proof. This is observed in the proof of [Kuz08, Lemma 3.2]. 2

Cubic hypersurfaces and conic fibrations. Let N ≥ 1 and let X ⊂ PN+2 be a smooth cubic hy-
persurface of dimension N + 1 over an algebraically closed field of char(k) 6= 2. We can associate
to X a conic fibration as follows. Let L0 ⊂ X be a line not contained in a plane in X . Consider the
blow-up σ : X̃ → X along L0, and denote by i : D ↪→ X̃ its exceptional divisor. Then the projection
from L0 onto the projective space PN induces a conic fibration π : X̃ → PN whose discriminant locus
is a hypersurface of degree 5. We denote by α : X̃ ↪→ P̃ the embedding into the P2-bundle q : P̃→ PN ,
where P̃ is the blow-up of PN+2 along L0. Summarizing, we have the following diagram:

(6) D
i //

p

��

X̃

σ

}}
π

((

α // P̃

}}

q

��
L0

// X // PN+2 PN .

Remark 7.3. Take a generic hyperplane PN−1 ↪→ PN . The restriction of the conic fibration π to PN−1

is the conic fibration obtained by blowing up along L0 the smooth cubic hypersurface of dimension N
obtained by intersecting X with the PN+1 spanned by L0 and PN−1.
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We will abuse notation and denote by H (resp. by h) both the class of the hyperplane in PN+2

(resp. PN ) and the pull-back to X̃ and to P̃.
In the notation of the previous section, we then have P̃ = P(F), where F = O⊕2

PN ⊕ OPN (−h);
the line bundle L is OPN (−h). The forgetful sheaf Forg(B0) in (5) of the even part B0 of the Clifford
algebra of π is

Forg(B0) ∼= OPN ⊕OPN (−h)⊕OPN (−2h)⊕2,

while the odd part B1 is

Forg(B1) ∼= F ⊕
∧3F ⊗ L ∼= O⊕2

PN ⊕OPN (−h)⊕OPN (−2h).

We can now define the functors Φ and Ψ of Theorem 7.1. There is a canonical map of left q∗B0-
modules q∗B0 → q∗B1(H), which is injective and its cokernel is supported on X̃ . Twisting by
OP̃(−2H), we obtain an exact sequence

0→ q∗B0(−2H)→ q∗B1(−H)→ α∗E ′ → 0,

where E ′ is a sheaf of left π∗B0-modules on X̃ and Forg(E ′) is a vector bundle of rank 2. The functor
Φ: Db(PN ,B0)→ Db(X̃) is defined as:

Φ( ) = π∗( )⊗π∗B0 E ′.

The left adjoint functor of Φ is

Ψ( ) := π∗( ⊗O
X̃

(h)⊗ E [1]),

where E is a sheaf of right π∗B0-modules on X̃ and Forg(E) is a vector bundle of rank 2, defined by the
following short exact sequence of q∗B0-modules:

(7) 0→ q∗B−1(−2H)→ q∗B0(−H)→ α∗E → 0.

The Kuznetsov component of a cubic fourfold. We can now describe the Kuznetsov component of a
cubic fourfold as an admissible subcategory in Db(P3,B0).

Definition 7.4. Let X be a cubic fourfold. The Kuznetsov component Ku(X) of X is defined by the
semiorthogonal decomposition

Db(X) = 〈Ku(X),OX ,OX(H),OX(2H)〉 .

Assume now that X is defined over an algebraically closed field with char(k) 6= 2. We fix a line
L0 ⊂ X not contained in a plane in X and keep the notation as in the previous section. We start by
describing a fully faithful functor Ξ: Ku(X) → Db(P3,B0). The semiorthogonal complement is then
described in Proposition 7.7.

In the proof of Lemma 7.6 we will use several times the following elementary lemma, whose state-
ment and proof are analogous to [Kuz10, Lemma 4.1].
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Lemma 7.5. We have linear equivalences in X̃:

D = H − h, K
X̃

= −3H + 2D = −H − 2h.

Theorem 7.1 gives the following semiorthogonal decomposition:

(8) Db(X̃) = 〈Φ(Db(P3,B0)),O
X̃

(−h),O
X̃
,O

X̃
(h),O

X̃
(2h)︸ ︷︷ ︸

π∗Db(P3)

〉.

Set Φ′ := RO
X̃

(−h) ◦Φ.

Lemma 7.6. The admissible subcategory Φ′(Db(P3,B0)) ⊂ Db(X̃) has a semiorthogonal decomposi-
tion

Φ′(Db(P3,B0)) =
〈
σ∗Ku(X),O

X̃
(h−H),LO LO(h)OX̃(H),LO LO(h) i∗OD(h)

〉
.

Proof. In view of (8), the derived category Db(X̃) has the following semiorthogonal decompositions

Db(X̃) = 〈O
X̃

(−h),Φ′(Db(P3,B0)),O
X̃
,O

X̃
(h),O

X̃
(2h)〉

= 〈Φ′(Db(P3,B0)),O
X̃
,O

X̃
(h),O

X̃
(2h),O

X̃
(H + h)〉,

(9)

where the second one is obtained via Serre duality.
Since X̃ is the blow-up of X along L0, we can apply [Orl92] and get the following semiorthogonal

decomposition of Db(X̃) (here we use the notation in (6))

(10) 〈

σ∗Db(X)︷ ︸︸ ︷
O
X̃

(−H), σ∗Ku(X),O
X̃
,O

X̃
(H),

Db(P1)=〈O,O(1)〉︷ ︸︸ ︷
i∗OD, i∗OD(H),

Db(P1)=〈O(1),O(2)〉︷ ︸︸ ︷
i∗OD(H −D), i∗OD(2H −D)〉

We claim that the pair (O
X̃

(H), i∗OD) is completely orthogonal. To show this, by using the short
exact sequence

0→ O
X̃

(−H + h)→ O
X̃
→ i∗OD → 0

and applying Ext•(O
X̃

(H), ), we only have to show the vanishings

Ext•(O
X̃
,O

X̃
(−2H + h)) = 0 and Ext•(O

X̃
,O

X̃
(−H)) = 0.

The second is clear, while for the first one we observe that, since σ∗OX̃(−D) = IL0 and D = H − h,
we have

Ext•(O
X̃
,O

X̃
(−2H + h)) = Ext•(O

X̃
,O

X̃
(−H −D)) = Ext•(OX , IL0(−H)) = 0.

From the orthogonality of the pair (O
X̃

(H), i∗OD) and (10), we get

(11) Db(X̃) = 〈O
X̃

(−H), σ∗Ku(X),O
X̃
, i∗OD,OX̃(H), i∗OD(H), i∗OD(h), i∗OD(H + h)〉.

Observe now that we have the following equalities

LO
X̃

(i∗OD) ∼= OX̃(h−H)[1] and RO
X̃

(h−H)(i∗OD) ∼= OX̃ .(12)
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Indeed, note that Extk(O
X̃
,O

X̃
(H−h)) = 0 if k 6= 0 and Hom(O

X̃
,O

X̃
(H−h)) ∼= C. By definition

of right mutation, we have the following distinguished triangle

RO
X̃

(O
X̃

(h−H))→ O
X̃

(h−H)→ O
X̃
.

SinceH−h = D, the last map in this triangle is given by the equation ofD. Thus RO
X̃

(O
X̃

(h−H)) ∼=
i∗OD[−1]. Equivalently, LO

X̃
(i∗OD) ∼= OX̃(h−H)[1]. For the second isomorphism in (12), note that

Extk(i∗OD,OX̃(h − H)) = 0 if k 6= 1 and Ext1(i∗OD,OX̃(h − H)) ∼= C. Again, we consider the
distinguished triangle

RO
X̃

(h−H)(i∗OD)→ i∗OD → OX̃(h−H)[1].

Since H − h = D, we can argue as above and conclude that RO
X̃

(h−H)(i∗OD) ∼= OX̃ .
Thus, by using LO

X̃
(i∗OD) ∼= OX̃(h − H)[1] in (12) and its tensorization by O

X̃
(H), we obtain

from (11)

(13) Db(X̃) = 〈O
X̃

(−H), σ∗Ku(X),O
X̃

(h−H),O
X̃
,O

X̃
(h),O

X̃
(H), i∗OD(h)︸ ︷︷ ︸

D

, i∗OD(H + h)〉.

By applying mutations in D, we get the semiorthogonal decomposition

(14) D = 〈LO
X̃
LO

X̃
(h)OX̃(H),LO

X̃
LO

X̃
(h) i∗OD(h),O

X̃
,O

X̃
(h)〉.

By plugging (14) into (13), we get

Db(X̃) = 〈O
X̃

(−H), σ∗Ku(X),O
X̃

(h−H),D, i∗OD(H + h)〉.

We apply Serre duality, and we can rewrite it as

(15) Db(X̃) = 〈σ∗Ku(X),O
X̃

(h−H),D, i∗OD(H + h),O
X̃

(2h)〉.

Finally, we apply to (15) the isomorphism RO
X̃

(2h)(i∗OD(H + h)) ∼= OX̃(H + h) which is obtained
from (12) by tensoring by O

X̃
(H + h). Thus we get the semiorthogonal decomposition

(16) Db(X̃) = 〈σ∗Ku(X),O
X̃

(h−H),D,O
X̃

(2h),O
X̃

(H + h)〉.

Comparing the two semiorthogonal decompositions (9) and (16), i.e., comparing

〈O
X̃
,O

X̃
(h),O

X̃
(2h),O

X̃
(H + h)〉⊥

inside them, we get the desired equivalence. 2

Consider the functor

(17) Ξ = Ψ ◦ σ∗ : Ku(X) −→ Db(P3,B0).

We are now ready to prove the main result of this section.

Proposition 7.7. The functor Ξ is fully faithful. Moreover,

Db(P3,B0) = 〈Ξ(Ku(X)),B1,B2,B3〉 .
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Proof. The projection formula, the fact that π = q ◦ α, and (7) show that

(18) Ψ(O
X̃

(mh)) = 0,

for all m. This implies immediately that

(19) Ψ ◦ LO
X̃

(mh) = Ψ ◦RO
X̃

(mh) = Ψ.

In particular, we get

(20) Ψ ◦ LO
X̃

(−h) ◦σ∗|Ku(X) = Ψ ◦ σ∗|Ku(X) = Ξ.

Since Φ is fully faithful, Ψ ◦ Φ ∼= id. By using (20) and by applying Ψ to the decomposition of
Lemma 7.6, we get that Ξ is fully faithful and we obtain the semiorthogonal decomposition

Db(P3,B0) =
〈
Ξ(Ku(X)),Ψ(O

X̃
(h−H)),Ψ(O

X̃
(H)),Ψ(O

X̃
(2h−H))

〉
,

where we have used the short exact sequence O
X̃

(2h−H) ↪→ O
X̃

(h)� i∗OD(h) and (19).
We deduce the claim with a direct computation based on relative Grothendieck-Serre duality for the

P2-fibration q with relative dualizing complex ωq = OP̃(h− 3H)[2] and (18):

Ψ(O
X̃

(mh−H)) = q∗α∗E((m+ 1)h−H)[1] = q∗(q
∗B−1((m+ 1)h− 3H)[2])

= q∗(q
∗B−1+2m ⊗ ωq) = B−1+2m

Ψ(O
X̃

(mh+H)) = q∗(q
∗B0((m+ 1)h))[1] = B0((m+ 1)h)[1] = B2+2m[1]. 2

8. A BOGOMOLOV INEQUALITY

To construct stability conditions on the Kuznetsov component of a cubic fourfold, we need to define
tilt-stability on the category Db(P3,B0) introduced in the previous section. This requires a Bogomolov
inequality for slope-stable torsion-free sheaves in Coh(P3,B0). This is the content of this section.

Slope-stability. Let Y be a smooth projective variety of dimension n, and let B be an algebra vector
bundle on Y . Let D = {D1, . . . , Dn−1} be nef divisor classes on Y such that D2

1D2 · · ·Dn−1 > 0, and
consider the lattice

Λ1
D = 〈D2

1D2 · · ·Dn−1 ch0, D1D2 · · ·Dn−1 ch1〉 ∼= Z2.

By Remark 2.5, since Coh(Y,B) is noetherian, the following slight generalization of Example 2.8 holds:

Proposition and Definition 8.1. The pair σD = (Coh(Y,B), ZD), where

ZD = iD2
1D2 · · ·Dn−1 ch0−D1D2 · · ·Dn−1 ch1

defines a weak stability condition on Db(Y,B), which we still call slope stability. We write µD for the
associated slope function.

When D1 = · · · = Dn−2 = D, we use the notation ZD,Dn−1 and µD,Dn−1 . When moreover
Dn−1 = D, we also use the notation ZD and µD, compatibly with Example 2.8.
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The main theorem. Let N ≥ 2. Let X be a smooth cubic hypersurface in PN+2 and let L ⊆ X

be a line not contained in a plane in X; as above we assume that X is defined over an algebraically
closed field with char(k) 6= 2. Consider the blow-up X̃ of X along L and the natural conic bundle
π : X̃ → PN . According to the discussion in Section 7, this yields an algebra vector bundle B0 on PN .

Definition 8.2. Let V = (V1, . . . , Vm) be an ordered configuration of linear subspaces of codimension
2 in PN . We say that ψ : Y → PN is a blow-up along V if ψ is the iterated blow-up along the strict
transforms of the Vj’s.

Theorem 8.3. Let ψ : Y → PN be a blow-up along an ordered configuration of codimension 2 linear
subspaces. Let h = ψ∗OPN (1). Assume that E ∈ Coh(Y, ψ∗B0) is a µh-slope semistable torsion-free
sheaf. Then

∆ψ∗B0(E) := hN−2

(
ch1(E)2 − 2 rk(E)

(
ch2(E)− 11

32
rk(E)

))
≥ 0.

The result will be proved in the rest of this section. It is mainly based on the induction on the rank
of E, which is a variant of an argument by Langer (see [Lan04, Section 3]). This basically allows a
reduction to the case N = 2 where we provide the estimate using Grothendieck-Riemann-Roch.

While a general Bogomolov inequality can be proved along the lines of [Lie07, Section 3.2.3] (after
reinterpreting B0-modules as modules over an Azumaya algebra on a root stack over Y , see [Kuz08,
Section 3.6]), this will not be strong enough for our argument. In particular, we will need that our
inequality is sharp for Bj , for all j ∈ Z:

Remark 8.4. The rank of an object in Coh(Y, ψ∗B0) is always a multiple of 4: this is part of [BMMS12,
Proposition 2.12] for Y = P2; using Remark 7.3, the general case follows by pushing forward along
ψ, followed by restricting to a generic plane P2 ⊂ PN . In particular ψ∗Bj is µh-stable, for all j ∈ Z.
Moreover, observe that ∆ψ∗B0(ψ∗Bj) = 0.

Blow-ups and the surface case. Let Y be a smooth projective variety of dimension n, and let B be an
algebra vector bundle on Y . Let h be a big and nef divisor class on Y .

Lemma 8.5. Let q : Ỹ → Y be the blow up of Y at a smooth codimension 2 subvariety S. Let E ∈
Coh(Ỹ , q∗B) be a torsion-free object.

(a) The complex q∗E ∈ Db(Y,B) has two cohomology objects; the sheaf R0q∗E is torsion-free while
R1q∗E is topologically supported on S.

(b) ch0(q∗E) = ch0(R0q∗E) = ch0(E).
(c) hn−1 ch1(q∗E) = hn−1 ch1(R0q∗E) = (q∗h)n−1 ch1(E).
(d) If E is µq∗h-semistable, then R0q∗E is µh-semistable.

Proof. This follows immediately from the case B ∼= OY , since the forgetful functor commutes with
push-forward and pull-back. For example, observe that a subsheaf A ↪→ R0q∗E induces a non-zero
morphism L0q∗A → E; the image of this map will give a contradiction to E being torsion-free in (a)
when A is torsion, and to E being µq∗h-semistable when A destabilizes R0q∗E with respect to µh. 2
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Assume now that Y has dimension 2.

Lemma 8.6. Assume that, for any F ∈ Coh(Y,B) which is µh-semistable, we have ∆B(F ) ≥ 0 and
let q : Ỹ → Y be the blow-up at a point. Then, for any E ∈ Coh(Ỹ , q∗B) which is µq∗h-semistable, we
have ∆q∗B(E) ≥ 0.

Proof. Consider a µq∗h-semistable q∗B-module E on Ỹ . We want to apply Lemma 8.5(d). We write
ch1(E) = q∗l + ae, where e is the class of the exceptional divisor, and l a divisor class on Y . After
tensoring with an appropriate power of O

Ỹ
(e), we may assume that 0 ≤ a < rk(E). The relative Todd

class of q is given by 1− e
2 . We obtain

0 ≤ ∆B(R0q∗E) ≤ ∆B(q∗E)

= l2 − 2 rk(E)

(
ch2(E) +

a

2
− 11

32
rk(E)

)
≤ l2 − a2 − 2 rk(E)

(
ch2(E)− 11

32
rk(E)

)
= ∆q∗B(E),

where the first inequality used the assumption; the second inequality follows from Lemma 8.5(a), the
next equality follows from Grothendieck-Riemann-Roch, and the last inequality is due to 0 ≤ a <

rk(E). 2

We can now prove Theorem 8.3 for N = 2. Let B0 be the Clifford algebra bundle associated to a
cubic threefold, as in the statement.

Proposition 8.7. Let Y be a smooth projective surface with a birational morphism ψ : Y → P2. Let E
be a µψ∗h-semistable ψ∗B0-module on Y . Then ∆ψ∗B0(E) ≥ 0.

Proof. In view of Lemma 8.6, it is enough to prove the result for ψ = id. In this situation, we have (see
[LMS15, Equation (2.2.2)])

χ(E,E) = − 7

64
rk(E)2 − 1

4
ch1(E)2 +

1

2
rk(E) ch2(E).

Since E is µh-semistable, Ext2(E,E) = Hom(E,E ⊗B0 B−1)∨ = 0, where for the first equality we
use Serre duality (see [BMMS12, Proposition 2.9(ii)]) while the second one follows from [BMMS12,
Lemma 2.16]. By considering the Jordan-Hölder factors, we can assume thatE is µh-stable, by [BMS16,
Lemma A.6] (see also Lemma 8.8 below for a more general statement). Thus we have χ(E,E) ≤ 1 ≤
r2

16 , where we have used that the rank of E is always divisible by 4, as already observed in Remark 8.4
(see [BMMS12, Proposition 2.12]).

Thus, we have

− 7

64
rk(E)2 − 1

4
ch1(E)2 +

1

2
rk(E) ch2(E) ≤ r2

16
,

which is what we claimed. 2
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Deformation of stability. Let ψ : Y → PN be a blow-up along an ordered configuration of codimension
2 linear subspaces, and let h = ψ∗OPN (1). Set Π ⊂ |h| a general pencil and let

(21) Ỹ = {(D, y) ∈ Π× Y | y ∈ D}

be the incidence variety with projections p : Ỹ → Π and q : Ỹ → Y . Note that q is the blow-up of Y
along the base locus of Π which is a smooth codimension 2 subvariety. Moreover, since Π is a general
pencil, the composition ψ̃ := ψ ◦ q : Ỹ → PN is again a blow-up along an ordered configuration of
codimension-2 linear subspaces.

Let f be the class of a fiber of p and, by abuse of notation, we also denote by h the class of ψ̃∗OPN (1)

in Ỹ . We consider slope-stability on Coh(Ỹ , ψ̃∗B0) with respect to the divisor classes h,N−2. . . , h, ht,
where B0 is the Clifford algebra in Theorem 8.3, and ht := th+ f , for t ∈ R≥0.

To apply Langer’s argument [Lan04, Section 3], we want deduce the positivity of the discriminant of
µh,f -stable sheaves from the analogous positivity for µh-stable objects with smaller rank. We prove this
by deforming the slope function µh,ht .

Lemma 8.8. Let t0 ∈ R≥0. Let E ∈ Coh(Ỹ , ψ̃∗B0) be a µh,ht0 -semistable torsion-free sheaf and let
E1, . . . , Em be its Jordan-Hölder µh,ht0 -stable factors. If ∆

ψ̃∗B0(Ej) ≥ 0, for all j = 1, . . . ,m, then
∆
ψ̃∗B0(E) ≥ 0.

Proof. This follows immediately from [BMS16, Lemma A.6]. Indeed, first of all we observe that the
lemma in loc. cit. still holds for weak stability conditions, with the same proof. Then, the only thing to
check is that KerZh,ht0 is negative semi-definite with respect to the quadratic form ∆

ψ̃∗B0 . Explicitly,

this means the following. Let D be a divisors class on Ỹ such that hN−2htD = 0. We need to show that
hN−2D ≤ 0, which follows immediately from the Hodge Index Theorem. 2

Proposition 8.9. Let E ∈ Coh(Ỹ , ψ̃∗B0) be a µh,f -semistable torsion-free sheaf. If ∆
ψ̃∗B0(A) ≥ 0 for

all µh-semistable torsion-free sheavesA ∈ Coh(Ỹ , ψ̃∗B0) with ch0(A) ≤ ch0(E), then ∆
ψ̃∗B0(E) ≥ 0.

Proof. To start with, by Lemma 8.8, we can assume that E is µh,f -stable. By arguing as in [Lan04, Sec-
tion 3.6], if a sheaf F ∈ Coh(Ỹ , ψ̃∗B0) is µh,ht0 -stable, then it is µh,ht-stable, for t ∈ R≥0 sufficiently
close to t0.

We now have two possible situations. If E is µh,ht-stable for all t ≥ 0, then E is µh-stable. Hence
we can take A = E and apply the assumption, getting the desired inequality.

Otherwise, E is strictly µh,ht-semistable for some t > 0. Let E1, . . . , Em be its Jordan-Hölder
factors. For each of them we can apply the same argument. Since whenever we replace E with its
Jordan-Hölder factors the rank drops, in a finite number of steps we get to a situation where all Jordan-
Hölder factors are µh,ht-stable, for all t large. Hence they are µh-stable and, by assumption, they all
satisfy the inequality ∆

ψ̃∗B0 ≥ 0. By applying Lemma 8.8 again, we conclude the proof. 2
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Induction on the rank. Let ψ : Y → PN be a blow-up along an ordered configuration of codimension
2 linear subspaces, let h = ψ∗OPN (1). We want to prove Theorem 8.3 by induction on the rank. To this
end, as in [Lan04], we consider the following version of Theorem 8.3 with fixed rank:

Theorem 8.3 (rk(E) = r). Let E ∈ Coh(Y, ψ∗B0) be a µh-slope semistable torsion-free sheaf of rank
r. Then ∆ψ∗B0(E) ≥ 0.

We also consider the following statement, again with fixed rank:

Theorem 8.10 (rk(E) = r). Let E ∈ Coh(Y, ψ∗B0) be a rank r µh-slope semistable torsion-free sheaf.
Assume that the restriction E|D ∈ Coh(D, ψ∗B0|D) of E to a general divisor D ∈ |h| is not slope
semistable with respect to h|D. Then∑

i<j

rirj(µi − µj)2 ≤ ∆ψ∗B0(E),

where µi (resp., ri) denote the slopes (resp., the ranks) of the Harder-Narasimhan factors of E|D.

Note that, since h is a linear hyperplane section, ψ|D : D → PN−1 is again a blow-up along an
ordered configuration of codimension 2 linear subspaces in PN−1, and ψ∗B0|D = ψ|∗D (B0|h). By
Remark 7.3, B0|h on PN−1 is still the sheaf of even parts of the Clifford algebra associated to smooth
cubic hypersurface of dimension N .

We will use induction on N , and, in each induction step, induction on the rank (which is divisible by
4 as observed in Remark 8.4). The idea is then to show that Theorem 8.10(r) implies Theorem 8.3(r),
and Theorem 8.3(≤ r − 4) implies Theorem 8.10(≤ r), for all Y at once. The case in which Y is a
surface corresponds to Proposition 8.7, while Theorem 8.10(r = 4) is clear.

Theorem 8.10(r) implies Theorem 8.3(r). Let us assume that E is µh-semistable but ∆ψ∗B0(E) < 0.
Theorem 8.10 implies that the restriction of E|D is semistable, for any general divisor D ∈ |h|.

By induction on dimension, the restriction of E to a general complete intersection Y ′ = |h|∩ N−2. . .

∩|h| of dimension 2 is semistable. Then, Proposition 8.7 implies the result. 2

The second implication follows line-by-line the argument in [Lan04, Section 3.9]. The only difference
is that we cannot do a complete induction as in loc. cit., since such a strong inequality is not necessarily
true for arbitrary surfaces. Therefore, we have to use the deformation argument in Proposition 8.9 to
reduce to blow-ups of P2.

Theorem 8.3(≤ r − 4) implies Theorem 8.10(≤ r). As in the previous section, let Π denote a general
pencil in |h| and consider the incidence variety Ỹ in (21) with projections p : Ỹ → Π and q : Ỹ → Y .
We denote by e the class of the exceptional divisor of q and, as before, f the class of the fiber of p. Note
that the center of the blow-up q is smooth and connected (for N = 2 we use hN = 1).

Note that the Harder-Narasimhan filtration of q∗E with respect to µh,f corresponds to the relative
Harder-Narasimhan filtration ([HL10, Theorem 2.3.2], generalized to B-modules, with a similar proof)
ofE with respect to p. Hence, since E|D is not µh|D -semistable, q∗E is not µh,f -semistable. Therefore,
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we consider 0 ⊂ E0 ⊂ E1 ⊂ · · · ⊂ Em = q∗E the (non-trivial) Harder-Narasimhan filtration with
respect to µh,f and let Fi = Ei/Ei−1 be the corresponding µh,f -semistable factors.

There exist integers ai and divisor classes li in Y such that ch1(Fi) = q∗li+aie. Then, since f = h−e
and hN−2e2 = −1, we have

(22) µi = µh,f (Fi) =
hN−1li + ai

ri
.

On the other hand, since R0q∗Ei ⊂ E and E is µh-semistable, by Lemma 8.5(b),(c), we have

(23)

∑
j≤i h

N−1lj∑
j≤i rj

≤ µh(E).

Hence, by (22) and (23), we deduce

(24)
∑
j≤i

rj (µj − µh(E)) ≤
∑
j≤i

aj .

Since rk(Fj) ≤ r− 4, by Theorem 8.3(≤ r− 4) and Proposition 8.9, we have ∆
ψ̃∗B0(Fj) ≥ 0 for all

j. Therefore,

∆ψ∗B0(E)

r
=
∑
i

∆
ψ̃∗B0(Fi)

ri
− 1

r

∑
i<j

rirj h
N−2

(
ch1(Fi)

ri
− ch1(Fj)

rj

)2

≥ 1

r

∑
i<j

rirj

((
ai
ri
− aj
rj

)2

− hN−2

(
li
ri
− lj
rj

)2
)

≥ 1

r

∑
i<j

rirj

((
ai
ri
− aj
rj

)2

−
(
hN−1li
ri

− hN−1lj
rj

)2
)
,

where the last inequality follows from the Hodge Index Theorem. By using (22) and simplifying, we
see that the last expression in the above inequality is equal to

2
∑
i

aiµi −
1

r

∑
i<j

rirj(µi − µj)2.

By (24), we have

∑
i

aiµi =
∑
i

∑
j≤i

aj

 (µi − µi+1) ≥
∑
i

∑
j≤i

rj(µj − µh(E))

 (µi − µi+1)

=
∑
i

riµ
2
i − rµh(E)2 =

∑
i<j

rirj
r

(µi − µj)2.

Therefore, we obtain
∆ψ∗B0(E)

r
≥
∑
i<j

rirj
r

(µi − µj)2,

as we wanted. 2
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9. CUBIC FOURFOLDS

The goal of this section is to prove the existence of Bridgeland stability conditions on the Kuznetsov
component Ku(X) of a cubic fourfold X .

We use the Bogomolov inequality of Section 8 to extend the notion of tilt-stability to Db(P3,B0).
Theorem 1.2 will follow by the general method described in Sections 4 and 5 as in the case of Fano
threefolds. Finally, we identify the central charge of the associated stability condition with the natural
A2-lattice associated to any cubic fourfold. This allows us to prove a stronger version of the support
property, and to obtain an open subset of the space of full numerical stability conditions on Ku(X).

Weak stability conditions on the twisted projective space. Let N ≥ 2. Let X be a smooth cubic
hypersurface in PN+2 and let L0 ⊂ X be a line not contained in a P2 contained in X . Let B0 be the
sheaf of even parts of the Clifford algebra on PN associated to the conic fibration induced by projection
from L0, as in Section 7. Let H be an hyperplane section.

We modify the Chern character as follows.

Definition 9.1. For E ∈ Db(PN ,B0), we set

chB0(E) := ch(Forg(E))

(
1− 11

32
H2

)
,

where H2 denotes the class of a codimension 2 linear subspace in PN .

In particular, note that chB0 differs from the usual Chern character only in degree ≥ 2. We will only
care about chB0,2. The Bogomolov inequality in Theorem 8.3 assumes the following more familiar form.
For any µ-semistable object E ∈ Coh(PN ,B0), we have

∆B0(E) = chB0,1(E)2 − 2 rk(E) chB0,2(E) ≥ 0,

where, as usual, we used h to identify the Chern characters on PN with rational numbers.

Definition 9.2. We write Cohβ(PN ,B0) for the heart of a bounded t-structure obtained by tilting
Coh(PN ,B0) with respect to slope-stability at the slope µ = β.

The following result, generalizing Proposition 2.12, can be proved analogously by using Theorem 8.3.
We define first a twisted Chern character chβB0 := e−β chB0 and a lattice Λ2

B0
∼= Z3, as in Example 2.8.

Proposition 9.3. Given α > 0, β ∈ R, the pair σα,β = (Cohβ(PN ,B0), Zα,β) with

Zα,β(E) := i chβB0,1(E) +
1

2
α2 chβB0,0(E)− chβB0,2(E)

defines a weak stability condition on Db(P3,B0) with respect to Λ2
B0 . The quadratic form Q can be

given by the discriminant ∆B0; these stability conditions vary continuously as (α, β) ∈ R>0×R varies.

Remark 9.4. By Remark 8.4, for all j ∈ Z, Bj is slope-stable with slope µ(Bj) = −5+2j
4 and

∆B0(Bj) = 0. Hence, Bj ∈ Cohβ(PN ,B0) (resp. Bj [1] ∈ Cohβ(PN ,B0)), for β < −5+2j
4 (resp. β ≥

−5+2j
4 ), and by Proposition 2.14, it is σα,β-stable, for all α > 0.
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Proof of Theorem 1.2. Let X be a cubic fourfold and let us fix a line L0 ⊂ X not contained in a plane
inX . By Proposition 7.7, we can realize its Kuznetsov component in the semiorthogonal decomposition

Db(P3,B0) = 〈Ku(X),B1,B2,B3〉 .

Since we have defined tilt-stability for Db(P3,B0) in Proposition 9.3, the proof of Theorem 1.2 now goes
along the exact same lines as the proof of Theorem 6.7, by applying Proposition 5.1 to the exceptional
collection 〈B1,B2,B3〉.

We set β = −1. The Serre functor S on Db(P3,B0) is given by S( ) = ⊗B0 B−3[3]. By [Kuz08,
Corollary 3.9], Bi ⊗B0 Bj ∼= Bi+j , and so S(Bj) = Bj−3[3]. Hence, by Remark 9.4, B1,B2,B3,
B−2[1],B−1[1],B0[1] ∈ Coh−1(P3,B0), and they are σα,−1-stable for all α > 0.

An easy computation shows that, for α sufficiently small,

µα,−1(B−2[1]) < µα,−1(B−1[1]) < µα,−1(B0[1]) < 0 < µα,−1(B1) < µα,−1(B2) < µα,−1(B3).

Therefore, if we tilt a second time to obtain the weak stability condition σ0
α,−1 (exactly in the same way

as in Proposition 2.15), then its heart Coh0
α,−1(P3,B0) contains B1,B2,B3,B−2[2],B−1[2],B0[2], for α

sufficiently small.
By Lemma 2.16, F ∈ (Coh0

α,−1(P3,B0))0 implies that Forg(F ) is a torsion sheaf supported in
dimension 0. But then F /∈ Ku(X): indeed, by construction B2 = B0(H), and so HomB0(B2, F ) =

HomP3(OP3(H),Forg(F )) 6= 0, as ⊗ B0 is the left adjoint to the forgetful functor Forg. Therefore,
all assumptions of Proposition 5.1 are satisfied, and we obtain a stability condition σKu(X) on Ku(X).

By Proposition 5.1, we know that the stability condition σKu(X) in Ku(X) just constructed only
satisfies the support property with respect to the lattice Λ2

B0,Ku(X)
∼= Z2 (defined analogously as in (3)).

This concludes the proof Theorem 1.2.
To describe (a subset of) the space of stability conditions in more detail, we need the full the support

property, for which we will assume k = C. The numerical Grothendieck group of the Kuznetsov
component is larger for any special cubic fourfold, and we will prove that σKu(X) satisfies the support
property for the full numerical Grothendieck group.

The Mukai lattice of the Kuznetsov component of a cubic fourfold. Let X be a cubic fourfold over
C. The Kuznetsov component Ku(X) can be considered as a non-commutative K3 surface. Its Serre
functor is equal to the double shift functor [2] (see [Kuz04, Lemma 4.2]) and there is an analogue of
“singular cohomology” (and Hochschild (co)homology) for Ku(X) which is isomorphic to the one of a
K3 surface (e.g., [Kuz09b, Kuz10, AT14]).

We summarize the basic properties of the Mukai structure on Ku(X) in the statement below. The
proofs and some context can be found in [AT14, Section 2].

Proposition and Definition 9.5. Let X be a smooth cubic fourfold over C.

(a) The singular cohomology of Ku(X) is defined as

H∗(Ku(X),Z) := {κ ∈ Ktop(X) : χtop ([OX(i)], κ) = 0, for i = 0, 1, 2} ,
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where Ktop(X) denotes the topological K-theory of X and χtop the topological Euler character-
istic7. It is endowed with a bilinear symmetric non-degenerate unimodular even form ( , ) =

−χtop( , )8 called the Mukai pairing, and with a weight-2 Hodge structure

H∗(Ku(X),C) := H∗(Ku(X),Z)⊗ C =
⊕
p+q=2

H̃p,q(Ku(X)).

As a lattice H∗(Ku(X),Z) is abstractly isomorphic to the extended K3 lattice U4 ⊕ E8(−1)2.
(b) The Mukai vector v : K(Ku(X)) → H∗(Ku(X),Z) is the morphism induced by the natural mor-

phism K(X)→ Ktop(X).
(c) The algebraic Mukai lattice of Ku(X) is defined as

H∗alg(Ku(X),Z) := H∗(Ku(X),Z) ∩ H̃1,1(Ku(X)).

It coincides with the image of v, and it is isomorphic with Knum(Ku(X)). Moreover, given E,F ∈
Ku(X), we have

(25) χ(E,F ) = −(v(E),v(F )).

The signature of the Mukai pairing on H∗alg(Ku(X),Z) is (2, ρ), where 0 ≤ ρ ≤ 20.
When Ku(X) ∼= Db(S), where S is a K3 surface, then this coincides with the usual Mukai structure

on S. For a very general cubic fourfold (ρ = 0) its Kuznetsov component is never equivalent to the
derived category of a K3 surface.

The algebraic Mukai lattice always contains two special classes:

λ1 := v(prOL(H)) and λ2 := v(prOL(2H)),

where L ⊂ X denotes a line and pr : Db(X)→ Ku(X) is the natural projection functor. They generate
the primitive positive definite sublattice

A2 =

(
2 −1

−1 2

)
⊂ H∗alg(Ku(X),Z)

which agrees with the image of the restriction Ktop(P5)→ Ktop(X) followed by projection. We think
of this primitive sublattice as the choice of a polarization on Ku(X). We make this precise in Proposi-
tion 9.10: the central charge of the stability condition constructed in Theorem 1.2 exactly corresponds
to this sublattice (see also [KS08, Section 1.2]). A first instance of this is given by the following result.

Let F (X) denote the Fano variety of lines contained in X endowed with the natural polarization g
coming from the Plücker embedding F (X) ↪→ Gr(2, 6).

Proposition 9.6 ([AT14, Proposition 2.3]). There exist Hodge isometries

〈λ1,λ2〉⊥ ∼= H4
prim(X,Z)(−1) ∼= H2

prim(F (X),Z)

where 〈λ1,λ2〉⊥ ⊂ H∗(Ku(X),Z).
7See, e.g., [AT14, Section 2.1] for the basic definitions; but note that our notation H∗(Ku(X),Z) is different.
8Our pairing is the opposite of the one in [AT14], to be coherent with the usual Mukai structure on K3 surfaces.
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Bridgeland stability conditions on the Kuznetsov component. Let X be a cubic fourfold. We now
review the basic theory of Bridgeland stability conditions for K3 categories [Bri08] applied to Ku(X).

Let Λ be a lattice together with a surjective map v : K(Ku(X)) � Λ. Assume that v factors via
the surjections K(Ku(X))

v
−� H∗alg(Ku(X),Z)

u
−� Λ. Let σ = (A, Z) be a stability condition with

respect to such Λ and let η(σ) ∈ H∗alg(Ku(X),C) be such that

(Z ◦ u)( ) = (η(σ), ).

As in [Bri08], we define P ⊂ H∗alg(Ku(X),C) as the open subset consisting of those vectors whose
real and imaginary parts span positive-definite two-planes in H∗alg(Ku(X),R), and P0 as

P0 := P \
⋃
δ∈∆

δ⊥,

where ∆ :=
{
δ ∈ H∗alg(Ku(X),Z) : χ(δ, δ) = 2

}
.

Lemma 9.7. Let σ = (A, Z) be a stability condition with respect to such Λ. If η(σ) ∈ P0, then
σ′ := (A, Z ◦ u) is a stability condition with respect to H∗alg(Ku(X),Z).

Proof. By Proposition 5.5, this follows immediately from [Bri08, Lemma 8.1]: the generalization to the
case of the Kuznetsov component is straight-forward, since the Mukai pairing has the correct signature
(2, ρ) and, by Serre duality and (25), for any σ-stable object E in Ku(X), we have v(E)2 ≥ −2. 2

Motivated by the above lemma, we can then make the following definition.

Definition 9.8. A full numerical stability condition on Ku(X) is a Bridgeland stability condition on
Ku(X) whose lattice Λ is given by the Mukai lattice H∗alg(Ku(X),Z) and the map v is given by the
Mukai vector v.

We denote by Stab(Ku(X)) the space of full numerical stability conditions on Ku(X). The map
η : Stab(Ku(X)) → H∗alg(Ku(X),C) defined above is then a local homeomorphism, by Bridgeland’s
Deformation Theorem [Bri07, Theorem 2.1]. If η(σ) ∈ P0, then we have a more precise result.

Proposition 9.9. The map η : η−1(P0) ⊂ Stab(Ku(X))→ P0 is a covering map.

Proof. This can be proved exactly as in [Bri08, Proposition 8.3] (see also [Bay19, Corollary 1.3]). 2

The support property. Let X be a cubic fourfold over C and let us fix a line L0 ⊂ X not contained in
a plane in X . We can now show that the stability condition in Theorem 1.2 is a full numerical stability
condition on Ku(X).

Consider the fully faithful functor Ξ: Ku(X) → Db(P3,B0) in (17), and the composition Forg ◦ Ξ.
The composition of the induced morphism (Forg ◦ Ξ)∗ at level of numerical Grothendieck groups and
the truncated Chern character chB0,≤2 gives a surjective morphism H∗alg(Ku(X),Z) −� Λ2

B0,Ku(X),
where Λ2

B0 is the lattice generated by chB0,0, chB0,1, chB0,2 (see Proposition 9.3) and Λ2
B0,Ku(X) ⊂ Λ2

B0
is nothing but the image of K(Ku(X)) (see (3)).
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Consider the stability condition σKu(X) = (A, Z) defined in the proof of Theorem 1.2. By the above
discussion, we can then define η(σKu(X)) ∈ H∗alg(Ku(X),Z). To prove that σKu(X) is a full numerical
stability condition on Ku(X) we only need to check the condition of Lemma 9.7, namely the following
proposition:

Proposition 9.10. We have η(σKu(X)) ∈ (A2)C ∩ P ⊂ P0.

Proof. We consider the subspace V in H∗alg(Ku(X),R) generated by the real and imaginary part of
η(σKu(X)). We claim that V = A2.

To prove the claim, we freely use the notation from Section 7. First of all, by definition of Zα =

Z0
α,−1, it is straightforward to check that V has real dimension 2. Indeed, chB0,≤2(Ξ(pr(OL(H)))) =

(4,−1,−15
8 ) and chB0,≤2(Ξ(pr(OL(2H)))) = (−8, 8,−18

8 ). Since

Zα = ch−1
B0,1 +i

(
−1

2α
2 ch−1

B0,0 + ch−1
B0,2

)
,

we have Zα(pr(OL(H))) = 3+ i(−2α2− 7
8) and Zα(pr(OL(2H))) = i(4α2 + 7

4), and they are linearly
independent.

Hence, to prove the claim V = A2 it remains to show that η(σKu(X)) ∈ (A2)C; equivalently, we have
to show that for F with v(F ) ∈ A⊥2 = H4

prim(X,Z)(−1) (see Proposition 9.6), we have Zα(F ) = 0.
Let j : P2 ↪→ P3 be the inclusion of a hyperplane, and let jX : XH ↪→ X be the inclusion of the

corresponding hyperplane section of X containing L0. Let ΞH : Db(XH) → Db(P2,B0|P2) be the
restriction of the functor Ξ.

The assumption v(F ) ∈ H4
prim(X,Z) implies that ch (jX∗j

∗
XF ) = 0, since the class [F ] − [F ⊗

OX(−H)] in the topological K-group is zero. On the other hand, since our formula for the central
charge only depends on chi(Forg(Ξ(F ))) for 0 ≤ i ≤ 2, it is determined by the Chern character of

j∗j
∗Forg

(
Ξ(F )

)
= j∗Forg

(
ΞH(j∗XF )

)
= Forg ◦ Ξ

(
jX∗j

∗
XF
)
,

where we used base change in the first equality, and projection formula in the second. By the observation
above, the class of this object in the K-group of P3 vanishes, and thus its central charge Zα( ) is zero.
Therefore η(σKu(X)) ∈ (A2)C as claimed.

By [Voi86, Proposition 1, page 596] the primitive cohomology H4
prim(X,Z)(−1) cannot contain

algebraic classes δ with square δ2 = −2; in other words, (A2)C ∩ P ⊂ P0 completing the proof. 2

Remark 9.11. Combining Propositions 9.9 and 9.10, we obtain an open subset Stab†(Ku(X)) ⊂
Stab(Ku(X)) with a covering to P0. However, at this point we cannot prove that it forms a con-
nected component. A proof would follow from the existence of semistable objects for every primitive
class v ∈ H∗alg(Ku(X),Z) and for every stability condition σ in this open subset.

Finally, let us point out that Proposition 5.13 and its proof give:

Corollary 9.12. There are stability conditions σ′ on Db(X). They satisfy the support property with
respect to the image Λ ⊂ H∗(X,Q) of the Chern character.
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APPENDIX A. THE TORELLI THEOREM FOR CUBIC FOURFOLDS

by A. BAYER, M. LAHOZ, E. MACRÌ, P. STELLARI, X. ZHAO

In the recent inspiring paper [HR19], Huybrechts and Rennemo gave a new proof of the Torelli
Theorem for cubic fourfolds by first proving a categorical version of it. The aim of this appendix is to
present a different proof, based on Theorem 1.2, of their categorical Torelli Theorem; our proof works
for very general cubic fourfolds.

Theorem A.1. Let X and Y be smooth cubic fourfolds over C. Assume that H∗alg(Ku(X),Z) has no
(−2)-classes. Then X ∼= Y if and only if there is an equivalence Φ: Ku(X)→ Ku(Y ) whose induced
map H∗alg(Ku(X),Z)→ H∗alg(Ku(Y ),Z) commutes with the action of (1).

In the above statement, we denote by (1) the natural autoequivalence of the Kuznetsov component
induced by ⊗OX(1) followed by projection; it is called the degree shift functor. Note that the algebraic
Mukai lattice is isomorphic to the numerical Grothendieck group, hence the action induced by Φ can be
defined without assuming that it is of Fourier-Mukai type.

Theorem A.1 is a very general version of [HR19, Corollary 2.10] in the cubic fourfold case (with
the minor improvement that we do not need to assume that the equivalence is given by a Fourier-Mukai
functor, and that we only need compatibility with (1) on the level of algebraic Mukai lattice). It is still
enough to deduce the classical Torelli Theorem, as we briefly sketch in Section A.3. Particular cases
of it also appeared as [BMMS12, Proposition 6.3] (for generic cubics containing a plane) and [Huy17,
Theorem 1.5, (iii)] (for cubics such that A2 is the entire algebraic Mukai lattice); however, both proofs
rely on the classical Torelli Theorem for cubic fourfolds.

The main idea of the proof of Theorem A.1 is to use the existence of Bridgeland stability conditions
on Ku(X). As observed in [KM09, Section 5], the Fano variety of lines F (X) of a cubic fourfold X
is isomorphic to a moduli space of torsion-free stable sheaves on X which belong to Ku(X). Given
a line LX ⊂ X , we denote by FX,LX ∈ Ku(X) the corresponding sheaf. If H∗alg(Ku(X),Z) has no
(−2)-classes, we show in Proposition A.6 that the objects FX,LX are also Bridgeland stable in Ku(X)

for any stability condition. Moreover, an argument by Mukai implies that any object with the same
numerical class and the same Ext-groups must be one of them (up to shift), see Proposition A.7. Given
an equivalence of triangulated categories Φ: Ku(X)

'−→ Ku(Y ), we consider the images Φ(FX,LX ). If
the induced homomorphism between the algebraic Mukai lattice commutes with the degree shift functor
(1), then we can assume that all objects Φ(FX,LX ) and FY,LY have the same numerical class up to
composing Φ with the shift functor [1]. We use this to obtain an isomorphism between F (X) and F (Y ).
Finally, by [BM14a], moduli spaces of Bridgeland stable objects come equipped with a natural line
bundle. If we choose a stability condition with central charge in the A2-lattice, as the one we construct
in Theorem 1.2, the induced line bundle is exactly the Plücker polarization on the Fano variety of lines
(up to constant). Hence the isomorphism between F (X) and F (Y ) preserves the Plücker polarization.
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This is enough to recover an isomorphism X ∼= Y , by an elementary argument by Chow [Cho49], see
[Cha12, Proposition 4].

This argument should hold without the assumption on (−2)-classes, and so prove Theorem A.1 with-
out assumptions, as originally stated in [HR19]. This would also directly imply the strong version of
the classical Torelli theorem, as originally stated in [Voi86]. The two issues are to prove that the objects
FX,LX are Bridgeland stable with respect to the stability conditions we constructed in Theorem 1.2, and
that we can change the equivalence Φ by autoequivalences of Ku(Y ) until it preserves such stability
conditions. A proof of this generalized version has been recently given in [LPZ18].

A.1. Classification of stable objects. Let X be a cubic fourfold. We freely use the notation in Sec-
tion 9. We start by recalling the following elementary but very useful result due to Mukai, which
allows us to control (in)stability of objects with small Ext1. It first appeared in [Muk87]; see [BB17,
Lemma 2.5] for the version stated here:

Lemma A.2 (Mukai). Let A→ E → B be an exact triangle in Ku(X) with Hom(A,B) = 0. Then

dimC Ext1(A,A) + dimC Ext1(B,B) ≤ dimC Ext1(E,E).

As first corollary, we show that under our assumption there are no objects with Ext1 = 0.

Lemma A.3. Assume that H∗alg(Ku(X),Z) has no (−2)-classes. Then there exists no non-zero object
E ∈ Ku(X) with Ext1(E,E) = 0.

Proof. Let E ∈ Ku(X) be a non-zero object such that Ext1(E,E) = 0. Let σ ∈ Stab(Ku(X)).
By Lemma A.2, we can assume that E is σ-semistable and that it has a unique σ-stable factor E0.
Therefore, v(E)2 < 0. But then v(E0)2 < 0 as well. Since Hom(E0, E0) ∼= C, we have 0 >

v(E0)2 = ext1(E0, E0)− 2 6= −2; this is a contradiction as Ext1(E0, E0) is even-dimensional. 2

Using Lemma A.3, we can show that objects with Ext1 ∼= C2 are always stable.

Lemma A.4. Assume that H∗alg(Ku(X),Z) has no (−2)-classes. Let E ∈ Ku(X) be an object with
Ext1(E,E) ∼= C2. Then, for all σ ∈ Stab(Ku(X)), E is σ-stable. In particular, v(E)2 = 0.

Proof. Let E ∈ Ku(X) be an object with Ext1(E,E) ∼= C2. Let σ ∈ Stab(Ku(X)). By Lemma A.2
and Lemma A.3, we deduce that E is σ-semistable with a unique σ-stable object E0. Therefore,
v(E)2 ≤ 0. But then −2 ≤ v(E0)2 ≤ 0, and so v(E0)2 = 0, by assumption. We deduce that
v(E)2 = 0 and so that Hom(E,E) ∼= C. This implies that E = E0, as we wanted. 2

Finally, we can study stability of objects with Ext1 ∼= C4, the case of interest for us.

Lemma A.5. Assume that H∗alg(Ku(X),Z) has no (−2)-classes. Let E ∈ Ku(X) be an object with
Ext<0(E,E) = 0, Hom(E,E) ∼= C, and Ext1(E,E) ∼= C4. Then, for all σ ∈ Stab(Ku(X)), E is
σ-stable.
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Proof. By assumption, v(E)2 = 2. Therefore, v(E) is a primitive vector in H∗alg(Ku(X),Z). By
Lemma A.2, Lemma A.3, and Lemma A.4, ifE is not σ-stable, then there exists a triangleA→ E → B,
whereA andB are both σ-stable with ext1 = 2. Hence, v(A)2 = v(B)2 = 0 and (v(A)+v(B))2 = 2.
But then (v(A)− v(B))2 = −2, a contradiction. 2

Before stating the main result, we recall a construction by Kuznetsov and Markushevich. Given a
line L ⊂ X , we define a torsion-free sheaf FL := Ker

(
O⊕4
X � IL(1)

)
as the kernel of the evaluation

map. Then by [KM09, Section 5], FL is a torsion-free Gieseker-stable sheaf on X which has the same
Ext-groups as IL, and which belongs to Ku(X). By definition of λ1, one easily verifies v(FL) = λ1.
By letting L vary, the sheaves FL span a connected component of the moduli space of Gieseker-stable
sheaves which is isomorphic to F (X) [KM09, Proposition 5.5]. We denote by FL the universal family.

Proposition A.6. Assume that H∗alg(Ku(X),Z) has no (−2)-classes. Let L ⊂ X be a line. Then, for
all σ ∈ Stab(Ku(X)), the sheaf FL is σ-stable.

Proof. This is now immediate from Lemma A.5. 2

The last result we need is about moduli spaces, by generalizing an argument by Mukai [Muk87] (see
[KLS06, Theorem 4.1]). Let σ = (Z,A) be a Bridgeland stability condition on Ku(X). Let us also fix
a numerical class v ∈ H∗alg(Ku(X),Z). We denote by M spl(Ku(X)) the space parameterizing simple
objects in Ku(X), which is an algebraic space locally of finite-type over C by [Ina02]. We also denote
by M st

σ (v) ⊂M spl(Ku(X)) the subset parameterizing σ-stable objects in A with Mukai vector ±v.

Proposition A.7. Assume there exists a smooth integral projective variety M ⊂ M st
σ (v) of dimension

v2 + 2. Then M = M st
σ (v).

Proof. The proof works exactly as in [KLS06, Theorem 4.1]. For simplicity, we assume the existence
of a universal family F on M . Note that this is the case in our situation where M = F (X). The general
case, in which only a quasi-universal family exists, can be treated similarly as in [KLS06, Lemma 4.2].

Suppose that M st
σ (v) 6= M , and consider objects F ∈ M and G ∈ M st

σ (v) \M . We consider the
product M ×X , and we denote by p : M ×X →M and q : M ×X → X the two projections. We will
implicitly treat all objects in Ku(X) as objects in Db(X) without mentioning. The idea is to look at the
following objects in Db(M): F := p∗Hom(q∗F,F) and G := p∗Hom(q∗G,F).

To apply the argument in [KLS06, Theorem 4.1], we need to show that F is quasi-isomorphic to a
complex of locally free sheaves on M of the form A0 → A1 → A2 and G[−1] is a locally-free sheaf.
By [BM02, Proposition 5.4], it suffices to show that, for all closed points y ∈M , the complex F⊗ k(y)

is supported in degrees 0, 1, 2. Since the projection p is flat, by the Projection Formula and Cohomology
and Base Change (see [BO95, Lemma 1.3]), we have Tor−j(F, k(y)) ∼= Extj(F, (iy × id)∗F), where
iy × id : {y} ×X →M ×X denotes the inclusion. But F and (iy × id)∗F both belong to a heart of a
bounded t-structure in Ku(X). Hence, Extj(F, (iy × id)∗F) = 0, for all j 6= 0, 1, 2, as we wanted.

A similar computation gives that G⊗k(y) is supported only in degree 1, and so G[−1] is a locally-free
sheaf on M . The rest of the argument can be carried out line-by-line following [KLS06]. 2
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Recall that, when M st
σ (v) is a proper algebraic space over C, by [BM14a, Section 4], we can define a

nef divisor class `σ on M st
σ (v). Proposition A.6 and Proposition A.7 give a complete description of the

moduli space M st
σ (λ1). When η(σ) ∈ (A2)C ∩ P ⊂ H∗alg(Ku(X),Z), we can also describe `σ.

Theorem A.8. Let X be a cubic fourfold such that H∗alg(Ku(X),Z) has no (−2)-classes. Then
M st
σ (λ1) ∼= F (X) is a fine moduli space, for any σ ∈ Stab(Ku(X)). Moreover, if η(σ) ∈ (A2)C ∩ P ,

then `σ is a positive multiple of the divisor class g = λ1 + 2λ2 of the Plücker embedding9.

Proof. By Proposition A.6, the Fano variety of lines is a smooth integral projective variety of dimension
4 = λ2

1 + 2 which is contained in M st
σ (λ1). Hence, by Proposition A.7, we have F (X) = M st

σ (λ1).
The universal family FL is also a universal family for objects in Ku(X). Hence F (X) is a fine moduli
space of Bridgeland stable objects inKu(X). Finally, it is a straightforward computation, as in [BM14a,
Lemma 9.2], to see that `σ is proportional to λ1 + 2λ2. The fact that this is the Plücker polarization on
F (X) can be found, for example, in [Add16, Equation (6)]. 2

A.2. Proof of Theorem A.1. Clearly only one implication is non-trivial. Let us pick any stability
condition σ on Ku(X) such that η(σ) ∈ (A2)C ∩ P and consider the fine moduli space M st

σ (λ1). By
Theorem A.8, M st

σ (λ1) is isomorphic to F (X) and carries a universal family FX,LX .
We recall from [Huy17, Proposition 3.12] that the action of (1) on the cohomology H∗(Ku(X),Z)

leaves A⊥2 invariant, whereas it cyclically permutes the roots λ1,λ2 and −λ1 − λ2 in A2.
Now consider an equivalence Φ: Ku(X) → Ku(Y ) as in Theorem A.1, and let σ′ := Φ(σ). By the

previous paragraph, it sends the distinguished sublattice A2 ⊂ H∗alg(Ku(X),Z) to the corresponding
sublattice for Y . Since the group generated by (1) and [1] acts transitively on the roots of A2, we can
replace Φ by a functor with Φ∗(λ1) = λ1 and Φ∗(λ2) = λ2. Then it automatically induces a bijection
between M st

σ (λ1) and M st
σ′(λ1). We need to show that this bijection is actually an isomorphism.

Consider the composition Ψ: Db(X) → Ku(X)
Φ→ Ku(Y ) ↪→ Db(Y ), of Φ with the natural

projection and inclusion. If this is of Fourier-Mukai type, then it makes sense to consider the functor
Ψ×id : Db(X×M st

σ (λ1))→ Db(Y ×M st
σ (λ1)). Then the object (Ψ×id)(FX,LX ) provides a universal

family on Y ×M st
σ (λ1). Arguing as in [BMMS12, Section 5.3], this gives a morphism f : M st

σ′(λ1)→
M st
σ (λ1). Since it is induced by Φ, this is an isomorphism.
If Ψ is not of Fourier-Mukai type, we can proceed as in [BMMS12, Section 5.2]. While the functor

Ψ× id may not be well-defined, it still makes sense to define (Ψ× id)(FX,LX ), and then argue as before.
By construction, we have f∗(`σ′) = `σ. By Theorem A.8, `σ is the Plücker polarization; by the

compatibility with Φ and the distinguished sublattice A2, the same holds for `σ′ . Hence we get an
isomorphism F (X) → F (Y ) which preserves the Plücker polarization. By [Cha12, Proposition 4], we
get an isomorphism X ∼= Y .

A.3. The classical Torelli theorem. We are now ready to deduce the classical Torelli theorem for cubic
fourfolds, by using the same argument as in [HR19].

9Here we use [Add16, Proposition 7] to identify NS(F (X)) with λ⊥1 ; see also Proposition 9.6.
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Theorem A.9 (Voisin). Two smooth complex cubic fourfolds X and Y over C are isomorphic if and
only if there exists a Hodge isometry H4

prim(X,Z) ∼= H4
prim(Y,Z) between the primitive cohomologies.

This result was originally proved in [Voi86]. Later Loojienga provided another proof in [Loo09]
while describing the image of the period map. Charles [Cha12] gave an elementary proof relying on the
Torelli theorem for hyperkähler manifolds [Ver13].

Proof. We briefly sketch the argument in [HR19, Section 4.2]. Let φ : H4
prim(X,Z)

'−→ H4
prim(Y,Z)

be a Hodge isometry. By [HR19, Proposition 3.2], it induces a Hodge isometry φ′ : H∗(Ku(X),Z)
'−→

H∗(Ku(Y ),Z) that preserves the natural orientation.
A general deformation argument based on [Huy17] shows that φ′ extends over a local deformation

Def(X) ∼= Def(Y ). The set D ⊂ Def(X) of points corresponding to cubic fourfolds X ′ such that
Ku(X ′) ∼= Db(S, α), where S is a smooth projective K3 surface and α is an element in the Brauer
group Br(S), and H∗alg(Ku(X ′),Z) has no (−2)-classes is dense (see [HMS08, Lemma 3.22]). More-
over, as argued in [HR19, Section 4.2], for any t ∈ D there is an orientation preserving Hodge isometry
φt : H

∗(Ku(Xt),Z)
'−→ H∗(Ku(Yt),Z) which commutes with the action on cohomology of the degree

shift functor (1) and which lifts to an equivalence Φt : Ku(Xt) → Ku(Yt). Now we can apply Theo-
rem A.1 and get an isomorphism Xt

∼= Yt, for any t ∈ D. Since the moduli space of cubic fourfolds is
separated, this yields X ∼= Y . 2
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