
TWISTED FOURIER-MUKAI FUNCTORS

ALBERTO CANONACO AND PAOLO STELLARI

Abstract. Due to a theorem by Orlov every exact fully faithful functor between the bounded
derived categories of coherent sheaves on smooth projective varieties is of Fourier-Mukai type. We
extend this result to the case of bounded derived categories of twisted coherent sheaves and at
the same time we weaken the hypotheses on the functor. As an application we get a complete
description of the exact functors between the abelian categories of twisted coherent sheaves on
smooth projective varieties.

1. Introduction

If X and Y are smooth projective varieties, an exact functor F : Db(X)→ Db(Y ) between the
corresponding bounded derived categories of coherent sheaves is of Fourier-Mukai type if there
exists E ∈ Db(X×Y ) and an isomorphism of functors F ∼= ΦE , where, denoting by p : X×Y → Y
and q : X × Y → X the natural projections, ΦE : Db(X)→ Db(Y ) is the exact functor defined by

ΦE := Rp∗(E
L
⊗ q∗(−)).(1.1)

Such a complex E is called a kernel of F .
The importance of functors of this type in geometric contexts cannot be overestimated. Indeed,

all meaningful geometric functors are of Fourier-Mukai type and conjecturally the same is true for
every exact functor from Db(X) to Db(Y ). As a first evidence for the truth of this conjecture,
in the fundamental paper [14], Orlov proved that any exact fully faithful functor from Db(X)
to Db(Y ) which admits a left adjoint is of Fourier-Mukai type. Moreover its kernel is uniquely
determined up to isomorphism.

Since the publication of [14], some significant improvements were obtained. The main one is
due to Kawamata ([11]), who extended this result to the case of smooth quotient stacks. His proof
partially follows Orlov’s original one but at some crucial points new deep ideas are needed. It is
also worth noticing that, due to the results in [2], every exact functor F : Db(X)→ Db(Y ) admits
a left adjoint (see Remark 2.1 below).

In recent years some attention was paid to the case of twisted varieties (i.e. pairs (X,α), where
X is a smooth projective variety and α is an element in the Brauer group of X). Since [3] appeared,
it has been proved that some results from the untwisted setting can be generalized to the case of
twisted derived categories. For example, if M is a K3 surface and a moduli space of stable sheaves
on a K3 surface X, then there exist α in the Brauer group of M and an equivalence between
Db(X) and Db(M,α), the bounded derived category of α-twisted coherent sheaves on M . This
was first proved by Căldăraru ([3, 4]) and then generalized in [12, 13, 17] and [9, 10]. Nevertheless
a question remained open:

Are all equivalences between the bounded derived categories of twisted
coherent sheaves on smooth projective varieties of Fourier-Mukai type?

As before, given two twisted varieties (X,α) and (Y, β), a functor F : Db(X,α) → Db(Y, β) is of
Fourier-Mukai type if there exist E ∈ Db(X×Y, α−1�β) and an isomorphism of functors F ∼= ΦE ,
where ΦE is again defined as in (1.1).
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A complete answer to the previous question comes as an easy corollary of the following theorem
which is the main result of this paper:

Theorem 1.1. Let (X,α) and (Y, β) be twisted varieties and let F : Db(X,α) → Db(Y, β) be an
exact functor such that, for any F ,G ∈ Coh(X,α),

HomDb(Y,β)(F (F), F (G)[j]) = 0 if j < 0.(1.2)

Then there exist E ∈ Db(X × Y, α−1 � β) and an isomorphism of functors F ∼= ΦE . Moreover, E
is uniquely determined up to isomorphism.

Few comments about the relevance of the previous result are in order here. First of all observe
that any full functor satisfies (1.2). This means that Theorem 1.1 gives a substantial improvement
of Orlov’s result. As a consequence, we will observe that also the hypotheses in Kawamata’s result
([11]) can be weakened (see Remark 4.1).

Our proof of Theorem 1.1 was inspired by [11] and [14] although different approaches are needed
in many crucial points. In particular, the idea to use extensively convolutions of bounded complexes
comes from [14].

In Section 5 we apply Theorem 1.1 to describe exact functors between the abelian categories of
twisted coherent sheaves. In particular we deduce a Gabriel-type result for twisted varieties.

Notations. We will work over a fixed field K. All triangulated and abelian categories and all
exact functors will be assumed to be K-linear. For an abelian category A we will denote by D(A)
the derived category of A. An object C• of D(A) is a complex in A, i.e. it is given by a collection
of objects Ci and morphisms di : Ci → Ci+1 of A such that di+1 ◦ di = 0. The bounded derived
category of A is the full subcategory Db(A) of D(A) with objects the complexes C• such that
Ci = 0 for |i| � 0. If there is no ambiguity, we will usually write C instead of C•. If B is another
abelian category, every exact functor G : A → B trivially induces exact functors of triangulated
categories D(G) : D(A) → D(B) and Db(G) : Db(A) → Db(B). Recall that an abelian category
A is of finite homological dimension if there exists an integer l such that, for any i > l and any
A,B ∈ Ob(A), HomDb(A)(A,B[i]) = 0; if N ∈ N is the least such integer l, then A is said to be of
homological dimension N .

2. Boundedness and ample sequences

For a smooth projective variety X consider the cohomology group H2
ét(X,O∗X) in the étale

topology. Any α ∈ H2
ét(X,O∗X) can be represented by a Čech 2-cocycle on an étale cover {Ui}i∈I

of X using sections αijk ∈ Γ(Ui ∩Uj ∩Uk,O∗X). An α-twisted quasi-coherent sheaf F consists of a
pair ({Fi}i∈I , {ϕij}i,j∈I), where Fi is a quasi-coherent sheaf on Ui and ϕij : Fj |Ui∩Uj → Fi|Ui∩Uj

is an isomorphism such that ϕii = id, ϕji = ϕ−1
ij and ϕij ◦ ϕjk ◦ ϕki = αijk · id.

The category of α-twisted quasi-coherent sheaves on X will be denoted by QCoh(X,α). An
α-twisted quasi-coherent sheaf ({Fi}i∈I , {ϕij}i,j∈I) is an α-twisted coherent sheaf if Fi is coherent
for any i ∈ I. We write Coh(X,α) for the abelian category of α-twisted coherent sheaves and
Db(X,α) := Db(Coh(X,α)) for the bounded derived category of Coh(X,α). The Brauer group
of X is the group Br(X) consisting of all α ∈ H2

ét(X,O∗X) such that Coh(X,α) contains a locally
free α-twisted coherent sheaf (actually, due to [5], Br(X) coincides with H2

ét(X,O∗X)).
Let X and Y be smooth projective varieties and let f : X → Y be a morphism. The following

derived functors are defined: −
L
⊗ − : Db(X,α)×Db(X,α′)→ Db(X,α ·α′), Rf∗ : Db(X, f∗(β))→

Db(Y, β) and Lf∗ : Db(Y, β) → Db(X, f∗(β)), where α, α′ ∈ Br(X) and β ∈ Br(Y ) (see [3, Thm.
2.2.4, Thm. 2.2.6]). For the rest of this paper (X,α) and (Y, β) will denote two twisted varieties
as in Theorem 1.1.
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Remark 2.1. (i) If (X,α) is a twisted variety and X has dimension n, then Coh(X,α) has
homological dimension n. To prove this claim, one can proceed as in the untwisted case (see [8,
Prop. 3.12]), using the fact that the functor S(−) = (−)⊗ ωX [n] is the Serre functor of Db(X,α).

(ii) If (X,α) and (Y, β) are twisted varieties, then any exact functor G : Db(X,α) → Db(Y, β)
has a left adjoint G∗ : Db(Y, β) → Db(X,α). Indeed, it is proved in [15] (generalizing ideas
from [2] and [16]) that any cohomological functor of finite type is representable. Hence, for any
F ∈ Db(Y, β) the functor HomDb(Y,β)(G(−),F) is representable by a unique E ∈ Db(X,α). Setting

G′(F) := E , by the Yoneda Lemma we get a functor which is right adjoint to G. Since Db(X,α)
and Db(Y, β) have Serre functors, G has also a left adjoint G∗.

Definition 2.2. Given an abelian category A with finite dimensional Hom’s, a subset {Pi}i∈Z ⊂
Ob(A) is an ample sequence if, for any B ∈ Ob(A), there exists an integer i(B) such that, for any
i ≤ i(B),

(1) the natural morphism HomA(Pi, B)⊗ Pi → B is surjective;
(2) if j 6= 0 then HomDb(A)(Pi, B[j]) = 0;

(3) HomA(B,Pi) = 0.

Lemma 2.3. Let E ∈ Coh(X,α) be a locally free sheaf. If {Ak}k∈Z is an ample sequence in
Coh(X), then {E ⊗Ak}k∈Z is an ample sequence in Coh(X,α). In particular, if L ∈ Coh(X) is
an ample line bundle, then {E ⊗ L⊗k}k∈Z is an ample sequence.

Proof. Observe that since {Ak}k∈Z is an ample sequence, for any E ∈ Coh(X,α) and for i � 0,
there exists a surjective map HomCoh(X)(Ai, E∨ ⊗ E) ⊗ Ai � E∨ ⊗ E . Then (1) in the previous
definition follows from the fact that the diagram

HomCoh(X,α)(E ⊗Ai, E)⊗ E ⊗Ai //

∼=
��

E

HomCoh(X)(Ai, E∨ ⊗ E)⊗ E ⊗Ai // // E ⊗ E∨ ⊗ E

OOOO

commutes. Analogously, HomDb(X,α)(E ⊗Ai, E [j]) ∼= HomDb(X)(Ai, E∨ ⊗ E [j]) = 0 and

HomCoh(X,α)(E , E ⊗Ai) ∼= HomCoh(X)(E ⊗ E∨,Ai) = 0,

for i� 0 and j 6= 0. This proves that (2) and (3) hold true. The second part of the lemma follows
from the easy fact that {L⊗k}k∈Z is an ample sequence in Coh(X). �

Recall that, given two abelian categories A and B, a functor G : Db(A) −→ Db(B) is bounded if
there exist a ∈ Z and n ∈ N such that H i(G(A)) = 0 for any A ∈ Ob(A) and any i 6∈ [a, a+ n].

Proposition 2.4. Let (X,α) and (Y, β) be twisted varieties and assume that G : Db(X,α) −→
Db(Y, β) is an exact functor. Then G is bounded.

Proof. Due to Lemma 2.3, given a locally free sheaf E ∈ Coh(Y, β) and a very ample line bundle
L ∈ Coh(Y ) (defining an embedding Y ↪→ PN ), the set {E ⊗ L⊗k}k∈Z is an ample sequence in
Coh(Y, β). For k < 0, Beilinson’s resolution ([1]), pulled back to Y , yields an isomorphism in
Db(Y )

L⊗k ∼= {V k
N ⊗OY → V k

N−1 ⊗ L→ . . .→ V k
0 ⊗ L⊗N},(2.1)

where V k
i := HN (PN ,Ωi

PN (i+k−N)). In particular, E⊗L⊗k ∼= C•k in Db(Y, β) where Cik = 0, for

|i| > N , and each Cik is a finite direct sum of terms of the form E⊗Lj for 0 ≤ j ≤ N . This implies

that {G∗(E ⊗ L⊗k)}k<0 is bounded in Db(X,α), where G∗ is the left adjoint of G (see Remark
2.1(ii)).

This is enough to conclude that G is bounded. Indeed we can reason in the following rather
standard way. Given A ∈ Coh(X,α) and i ∈ Z, it is easy to see that H i(G(A)) = 0 is implied by
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HomDb(Y,β)(E ⊗ L⊗k, G(A)[i]) = 0 for k � 0. Choosing m such that Hj(G∗(E ⊗ L⊗k)) = 0 for

|j| ≥ m and for k < 0 and denoting by n the homological dimension of Coh(X,α) (see Remark
2.1(i)), it is clear that

HomDb(Y,β)(E ⊗ L⊗k, G(A)[i]) ∼= HomDb(X,α)(G
∗(E ⊗ L⊗k),A[i]) = 0

for |i| > n+m and for k < 0. �

The following easy lemma will be used in the forthcoming sections.

Lemma 2.5. Let (X,α) and (Y, β) be twisted varieties, let E ∈ Db(X×Y, α−1�β) and let l ∈ Z. If
E ∈ Coh(X,α) is locally free and L ∈ Coh(X) is ample, then H l(E) = 0 if H l(ΦE(E ⊗L⊗k)) = 0
for any k � 0.

Proof. Fix a locally free sheaf F ∈ Coh(Y, β) and define A := E ⊗ p∗(F∨)⊗ q∗(E), where p : X ×
Y → Y and q : X×Y → X are the natural projections. If Hj(A) 6= 0, Rip∗(H

j(A)⊗q∗(L⊗k)) = 0
for any k � 0 if and only if i 6= 0 (for a proof of this well-known fact see, for example, [7], Chapter
III, Theorem 8.8). Hence, using the spectral sequence

Rip∗(H
j(A)⊗ q∗(L⊗k)) =⇒ H i+j(ΦA(L⊗k))

we deduce that H l(A) = 0 if H l(ΦA(L⊗k)) = 0, for any k � 0.
It is obvious that H l(A) = 0 if and only if H l(E) = 0. Hence the result is proved once we show

that H l(ΦA(L⊗k)) = 0 if and only if H l(ΦE(E ⊗ L⊗k)) = 0. By the Projection Formula

ΦA(L⊗k) ∼= Rp∗(A⊗ q∗(L⊗k)) ∼= Rp∗(E ⊗ p∗(F∨)⊗ q∗(E)⊗ q∗(L⊗k)) ∼= ΦE(E ⊗ L⊗k)⊗ F∨

which yields the desired conclusion. �

3. Convolutions and isomorphisms of functors

In this section we recall few results about convolutions of bounded complexes and we use them
to study the existence of isomorphisms of exact functors.

3.1. Convolutions. Recall that a bounded complex in a triangulated category D is a sequence
of objects and morphisms in D

(3.1) Am
dm−−→ Am−1

dm−1−−−→ · · · d1−→ A0

such that dj ◦ dj+1 = 0 for 0 < j < m. Following the terminology of [11], a right convolution of
(3.1) is an object A together with a morphism d0 : A0 → A such that there exists a diagram in D

Am
dm //

id !!
�

Am−1
dm−1 //

$$
�

· · · d2 // A1
d1 //

  
�

A0

d0   
Am

;;

Cm−1
[1]

oo

<<

· · ·
[1]

oo C1
[1]

oo

>>

A,
[1]

oo

where the triangles marked with a � are commutative and the other triangles are distinguished
(such an object A is called instead a left convolution of (3.1) in [14]). In a completely dual way,
a left convolution of (3.1) is an object A′ together with a morphism dm+1 : A′ → Am such that
there exists a diagram in D

Am
dm //

""
�

Am−1
dm−1 //

""

· · · d2 //

  
�

A1

�

d1 //

  

A0

A′
dm+1

>>

C ′m−1[1]
oo

;;

· · ·
[1]

oo C ′1[1]
oo

>>

A0.
[1]

oo
id

>>
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Remark 3.1. Assume that d0 : A0 → A (respectively dm+1 : A′ → Am) is a right (respectively left)
convolution of (3.1). If D′ is another triangulated category and G : D → D′ is an exact functor,
then it is obvious from the definitions that G(d0) : G(A0)→ G(A) (respectively G(dm+1) : G(A′)→
G(Am)) is a right (respectively left) convolution of

G(Am)
G(dm)−−−−→ G(Am−1)

G(dm−1)−−−−−→ · · · G(d1)−−−→ G(A0).

In general a (right or left) convolution of a complex need not exist, and it need not be unique
up to isomorphism when it exists, but we have the following two results, which will be constantly
used in the rest of this paper:

Lemma 3.2. ([11], Lemmas 2.1 and 2.4.) Let (3.1) be a complex in D satisfying

(3.2) HomD(Aa, Ab[r]) = 0 for any a > b and r < 0.

Then (3.1) has right and left convolutions and they are uniquely determined up to isomorphism (in
general non canonical).

Lemma 3.3. Let

Am
dm //

fm
��

Am−1
dm−1 //

fm−1

��

· · · d2 // A1
d1 //

f1
��

A0

f0
��

Bm
em // Bm−1

em−1 // · · · e2 // B1
e1 // B0

be a morphism of complexes both satisfying (3.2) and such that

HomD(Aa, Bb[r]) = 0 for any a > b and r < 0.

Assume that the corresponding right (respectively left) convolutions are of the form (d0, 0) : A0 →
A⊕Ā and (e0, 0) : B0 → B⊕B̄ (respectively (dm+1, 0) : A′⊕Ā′ → Am and (em+1, 0) : B′⊕B̄′ → Bm)
and that HomD(Ap, B[r]) = 0 (respectively HomD(A′, Bp[r]) = 0) for r < 0 and any p. Then there
exists a unique morphism f : A → B (respectively f ′ : A′ → B′) such that f ◦ d0 = e0 ◦ f0

(respectively em+1 ◦ f ′ = fm ◦ dm+1). If moreover each fi is an isomorphism, then f (respectively
f ′) is an isomorphism as well.

Proof. The first part is a particular case of Lemma 2.3 (respectively Lemma 2.6) of [11]. From
this it is then straightforward to deduce that f (respectively f ′) is an isomorphism if each fi is an
isomorphism. �

Example 3.4. Let D := Db(A) for some abelian category A and let Z be a complex as in (3.1)
and such that every Ai is an object of A. Then it is easy to see that a right (respectively left)
convolution of Z (which is unique up to isomorphism by Lemma 3.2) is given by the natural
morphism A0 → Z• (respectively Z•[−m] → Am), where Z• is the object of Db(A) naturally
associated to Z (namely, Zi := A−i for −m ≤ i ≤ 0 and otherwise Zi := 0, with differential
d−i : Zi → Zi+1 for −m ≤ i < 0).

3.2. Extending isomorphisms of functors. Let A be an abelian category with finite dimen-
sional Hom’s and assume that {Pi}i∈Z ⊂ Ob(A) is an ample sequence.

Lemma 3.5. Any A ∈ A admits a resolution

· · · −→ A⊕kii
di−→ A

⊕ki−1

i−1

di−1−−−→ · · · d1−→ A⊕k00
d0−→ A −→ 0,(3.3)

where Aj ∈ {Pi}i∈Z and kj ∈ N, for any j ∈ N.

Proof. To prove that such a(n infinite) resolution exists, it is clearly enough to show that for any
B ∈ Ob(A) there exists P ∈ {Pi}i∈Z and a surjective map P⊕k � B, for some k ∈ N. This follows
from condition (1) in Definition 2.2. �
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Remark 3.6. Consider a resolution of A ∈ Ob(A) as in Lemma 3.5 and assume that A has finite
homological dimension N . Take m > N and consider the bounded complex

Sm := {A⊕kmm
dm−−→ A

⊕km−1

m−1

dm−1−−−→ · · · d1−→ A⊕k00 }.

If Km := ker(dm), we have a distinguished triangle in Db(A)

Km[m] −→ S•m −→ A −→ Km[m+ 1].

Due to the choice of m, HomDb(A)(A,Km[m + 1]) = HomDb(A)(A0,Km[m]) = 0. Hence S•m
∼=

A ⊕ Km[m] and Sm has a (unique up to isomorphism) convolution (d0, 0) : A⊕k00 −→ A ⊕ Km[m]
(see Example 3.4).

The following result, whose proof relies on an extensive use of convolutions, improves [11, Lemma
6.5] and [14, Prop. 2.16].

Proposition 3.7. Let D be a triangulated category and let A be an abelian category with finite
dimensional Hom’s and of finite homological dimension. Assume that {Pi}i∈Z ⊆ Ob(A) is an
ample sequence and denote by C the full subcategory of Db(A) such that Ob(C) = {Pi}i∈Z. Let
F1 : Db(A)→ D and F2 : Db(A)→ D be exact functors such that

(i) there exists an isomorphism of functors f : F2|C
∼−→ F1|C;

(ii) HomD(F1(A), F1(B)[j]) = 0, for any A,B ∈ Ob(A) and any j < 0;
(iii) F1 has a left adjoint F ∗1 .

Then there exists an isomorphism of functors g : F2
∼−→ F1 extending f .

Proof. We denote by N the homological dimension of A.
For any i ∈ Z, let fi := f(Pi) : F2(Pi)

∼−→ F1(Pi). Given A ∈ Ob(A), we want to construct an

isomorphism fA : F2(A)
∼−→ F1(A). According to Lemma 3.5, let

· · · −→ P
⊕kj
ij

dj−→ P
⊕kj−1

ij−1

dj−1−−−→ · · · d1−→ P⊕k0i0

d0−→ A −→ 0(3.4)

be a resolution of A. Fix m > N and consider the bounded complex

Rm := {P⊕kmim

dm−−→ P
⊕km−1

im−1

dm−1−−−→ · · · d1−→ P⊕k0i0
}.

Due to Remark 3.6, a (unique up to isomorphism) convolution of Rm is (d0, 0) : P⊕k0i0
→ A⊕Km[m].

Due to Remark 3.1, for i ∈ {1, 2}, the complex

Fi(Rm) := {Fi(P⊕kmim
)
Fi(dm)−−−−→ Fi(P

⊕km−1

im−1
)
Fi(dm−1)−−−−−−→ · · · Fi(d1)−−−−→ Fi(P

⊕k0
i0

)}

admits a convolution (Fi(d0), 0) : Fi(P
⊕k0
i0

) → Fi(A ⊕ Km[m]). Lemma 3.2 and conditions (i)
and (ii) ensure that such a convolution is unique up to isomorphism. Moreover, again by (i) and
(ii), HomD(F2(Pik), F1(A)[r]) ∼= HomD(F2(Pil), F1(Pij )[r]) = 0, for any ij , il, ik ∈ {i0, . . . , im} and

r < 0. Hence we can apply Lemma 3.3 getting a unique isomorphism fA : F2(A)
∼−→ F1(A) making

the following diagram commutative:

F2(P⊕kmim
)
F2(dm)//

f⊕km
im
��

F2(P
⊕km−1

im−1
)
F2(dm−1)//

f
⊕km−1
im−1��

· · ·
F2(d1)// F2(P⊕k0i0

)
F2(d0) //

f
⊕k0
i0
��

F2(A)

fA

��
F1(P⊕kmim

)
F1(dm)// F1(P

⊕km−1

im−1
)
F1(dm−1)// · · ·

F1(d1)// F1(P⊕k0i0
)
F1(d0)// F1(A).

By Lemma 3.3, the definition of fA does not depend on the choice of m. In other words, if we
choose a different m′ > N and we truncate (3.4) in position m′, the bounded complexes Fi(Rm′)
give rise to the same isomorphism fA.
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To show that the definition of fA does not depend on the choice of the resolution (3.4), consider
another resolution

· · · −→ P
⊕k′j
i′j

d′j−→ P
⊕k′j−1

i′j−1

d′j−1−−−→ · · ·
d′1−→ P

⊕k′0
i′0

d′0−→ A −→ 0.(3.5)

Suppose that there exists a third resolution

· · · −→ P
⊕k′′j
i′′j

d′′j−→ P
⊕k′′j−1

i′′j−1

d′′j−1−−−→ · · ·
d′′1−→ P

⊕k′′0
i′′0

d′′0−→ A −→ 0(3.6)

and morphisms sj : P
⊕k′′j
i′′j
→ P

⊕kj
ij

and tj : P
⊕k′′j
i′′j
→ P

⊕k′j
i′j

, for any j ≥ 0, fitting into the following

commutative diagram:

· · ·
d′j+1 // P

⊕k′j
i′j

d′j // P
⊕k′j−1

i′j−1

d′j−1 // · · ·
d′1 // P

⊕k′0
i′0

d′0

��
· · ·

d′′j+1 // P
⊕k′′j
i′′j

tj

OO

sj

��

d′′j // P
⊕k′′j−1

i′′j−1

tj−1

OO

sj−1

��

d′′j−1 // · · ·
d′′1 // P

⊕k′′0
i′′0

s0

��

t0

OO

d′′0 // A.

· · ·
dj+1 // P

⊕kj
ij

dj // P
⊕kj−1

ij−1

dj−1 // · · · d1 // P⊕k0i0

d0

??

Define the bounded complexes

R′′m := {P⊕k
′′
m

i′′m

d′′m−−→ P
⊕k′′m−1

i′′m−1

d′′m−1−−−→ · · ·
d′′1−→ P

⊕k′′0
i′′0
}

Fi(R
′′
m) := {Fi(P⊕k

′′
m

i′′m
)
Fi(d

′′
m)−−−−→ Fi(P

⊕k′′m−1

i′′m−1
)
Fi(d

′′
m−1)

−−−−−−→ · · ·
Fi(d

′′
1 )

−−−−→ Fi(P
⊕k′′0
i′′0

)}.
(3.7)

Let f ′′A : F2(A)
∼−→ F1(A) be the isomorphism constructed using (3.7). Due to Remark 3.6, these

complexes and their convolutions give rise to the diagram

F2(P
⊕k′′0
i′′0

)
F2(d′′0 )

//

F2(s0)

%%

f
⊕k′′0
i′′0

��

F2(A)

id
||

f ′′A

��

F2(P⊕k0i0
)
F2(d0) //

f
⊕k0
i0��

F2(A)

fA

��
F1(P⊕k0i0

)
F1(d0) // F1(A)

F

F1(P
⊕k′′0
i′′0

)
F1(d′′0 )

//

F1(s0)

99

F1(A)

id

bb

where all squares but F are commutative. Due to hypotheses (i), (ii) and Lemma 3.3 there exists
a unique morphism F2(A)→ F1(A) making the following diagram commutative:

F2(P
⊕k′′0
i′′0

)

F1(s0)◦f⊕k′′0
i′′0 ��

F2(d′′0 )
// F2(A)

��
F1(P⊕k0i0

)
F1(d0) // F1(A).
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Since F1(s0) ◦ f⊕k
′′
0

i′′0
= f⊕k0i0

◦ F2(s0), both fA and f ′′A have this property and then they coincide.

Similarly one can prove that the morphism f ′′A is equal to the morphism f ′A constructed by means
of (3.5).

To construct (3.6), we proceed as follows. First take i′′0 � 0 such that there exist a surjective

morphism d′′0 : P
⊕k′′0
i′′0

� A, for some k′′0 ∈ N, and two morphisms s0 and t0 as required. Suppose

now that Pi′′j , k′′j , d′′j , sj and tj are defined. Take i′′j+1 � 0, k′′j+1 ∈ N and d′′j+1 : P
⊕k′′j+1

i′′j+1
→ P

⊕k′′j
i′′j

such that

(a.1) ker(d′′j ) = im(d′′j+1);

(b.1) the morphism sj ◦ d′′j+1 factorizes through dj+1;

(c.1) the morphism tj ◦ d′′j+1 factorizes through d′j+1.

Observe that this is always possible because im(sj |ker(d′′j )) ⊂ im(dj+1) and for n � 0 the natural

map HomA(Pn, P
⊕kj+1

ij+1
) → HomA(Pn, im(dj+1)) is surjective (the same holds true for d′j+1 and

tj).
To prove the functoriality, let A,B ∈ Ob(A) and let ϕ : A → B be a morphism. Consider a

resolution

· · · −→ P
⊕hj
lj

ej−→ P
⊕hj−1

lj−1

ej−1−−−→ · · · e1−→ P⊕h0l0

e0−→ B −→ 0.(3.8)

Reasoning as before, we can find a resolution

· · · −→ P
⊕kj
ij

dj−→ P
⊕kj−1

ij−1

dj−1−−−→ · · · d1−→ P⊕k0i0

d0−→ A −→ 0(3.9)

and morphisms gj : P
⊕kj
ij

→ P
⊕hj
lj

defining a morphism of complexes compatible with ϕ. Fix

m > N and take the bounded complexes

Rm := {P⊕kmim

dm−−→ P
⊕km−1

im−1

dm−1−−−→ · · · d1−→ P⊕k0i0
}

Tm := {P⊕hmlm

em−−→ P
⊕hm−1

lm−1

em−1−−−→ · · · e1−→ P⊕h0l0
}

Fi(Rm) := {Fi(P⊕kmim
)
Fi(dm)−−−−→ Fi(P

⊕km−1

im−1
)
Fi(dm−1)−−−−−−→ · · · Fi(d1)−−−−→ Fi(P

⊕k0
i0

)}

Fi(Tm) := {Fi(P⊕hmlm
)
Fi(em)−−−−→ Fi(P

⊕hm−1

lm−1
)
Fi(em−1)−−−−−−→ · · · Fi(e1)−−−−→ Fi(P

⊕h0
l0

)}.

We can now consider the diagram

F2(P⊕k0i0
)

F2(d0) //

f
⊕k0
i0

%%

F2(g0)

��

F2(A)

fA{{

F2(ϕ)

��

F1(P⊕k0i0
)
F1(d0) //

F1(g0)
��

F1(A)

F1(ϕ)

��
F1(P⊕h0l0

)
F1(e0) // F1(B)

F

F2(P⊕h0l0
)

F2(e0) //
f
⊕h0
l0

99

F2(B)

fB

cc
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where all squares but F are commutative. Applying (i), (ii) and Lemma 3.3 we see that there is
a unique morphism F2(A)→ F1(B) completing the following diagram to a commutative square

F2(P⊕k0i0
)

F1(g0)◦f⊕k0
i0 ��

F2(d0) // F2(A)

��
F1(P⊕h0l0

)
F1(e0) // F1(B).

Since F1(g0) ◦ f⊕k0i0
= f⊕h0l0

◦ F2(g0), both F1(ϕ) ◦ fA and fB ◦ F2(ϕ) have this property. Thus

F1(ϕ) ◦ fA = fB ◦ F2(ϕ).
If A ∈ Ob(A), we can clearly put fA[n] := fA[n] for every integer n. Moreover, for any A,B ∈

Ob(A), the morphisms fA and fB just constructed commute with any g ∈ HomDb(A)(A,B[j]) (see

[14, Sect. 2.16.4] for the proof).
The rest of the proof follows the strategy in [14, Sect. 2.16.5] and it proceeds by induction on

the length of the segment in which the cohomologies of the objects are concentrated. In particular,
let A be an object in Db(A) and suppose, without loss of generality, that Hp(A) = 0 if p 6∈ [a, 0]

and a < 0. Consider a morphism v : P⊕ki → A such that

(a.2) the natural morphism u : P⊕ki → H0(A) induced by v is surjective;
(b.2) HomA(H0(F ∗1 ◦ F1(A)), Pi) = 0.

Take a distinguished triangle

Z[−1] −→ P⊕ki
v−→ A −→ Z

and observe thatHp(Z) = 0 if p 6∈ [a,−1]. Hence, by induction hypothesis, we have an isomorphism

fZ : F2(Z)
∼−→ F1(Z) and the following commutative diagram

F1(Z)[−1] //

f−1
Z [−1]

��

F1(P⊕ki ) //

(f⊕k
i )−1

��

F1(A) // F1(Z)

f−1
Z

��
F2(Z)[−1] // F2(P⊕ki ) // F2(A) // F2(Z).

By [14, Lemma 1.4], to complete the previous diagram with a unique isomorphism fA : F2(A)
∼−→

F1(A), we need to show that

HomD(F1(A), F2(Pi)) = 0.

To prove this we can suppose A ∈ Ob(A) because the cohomologies of A are concentrated in
degrees less or equal to zero. Let w = max{n ∈ Z : Hn(F ∗1 ◦ F1(A)) 6= 0}. Obviously, there exists
a natural non-zero morphism F ∗1 ◦ F1(A)→ Hw(F ∗1 ◦ F1(A))[−w]. Hence

0 6= HomDb(A)(F
∗
1 ◦ F1(A), Hw(F ∗1 ◦ F1(A))[−w]) ∼= HomD(F1(A), F1(Hw(F ∗1 ◦ F1(A)))[−w])

and w ≤ 0 because of (ii). In particular Hj(F ∗1 ◦F1(A)) = 0 if j 6∈ [−b, 0], for some positive integer
b. Therefore, due to (b.2) and (ii),

HomD(F1(A), F2(Pi)) ∼= HomD(F1(A), F1(Pi))

∼= HomDb(A)(F
∗
1 ◦ F1(A), Pi) ∼= HomA(H0(F ∗1 ◦ F1(A)), Pi) = 0.

To prove that fA is well-defined and functorial, one has to repeat line by line the proof in Sections
2.16.6 and 2.16.7 of [14] using (ii) instead of the hypothesis that F1 and F2 are fully-faithful. We
leave this to the reader. �

Corollary 3.8. Let A and B be abelian categories such that A has finite dimensional Hom’s, it
is of finite homological dimension and it has an ample sequence. If F : Db(A) → Db(B) is an
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exact functor with a left adjoint and such that F (A) ⊆ B, then G := F |A : A → B is exact and
Db(G) ∼= F .

Proof. The exactness of G is trivial. Since Db(G)|A ∼= F |A, we can apply Proposition 3.7 getting
the desired conclusion. �

4. Proof of Theorem 1.1

We divide up our argument in several steps.

4.1. Resolution of the diagonal. Denoting by d : X ↪→ X ×X the diagonal morphism, O∆ :=
d∗OX can be regarded as an (α−1 � α)-twisted coherent sheaf on X ×X in a natural way, since
d∗(α−1 � α) = 1. It is easy to see that O∆ ∈ Coh(X ×X,α−1 � α) admits a resolution

(4.1) · · · −→ Ai �Bi
δi−→ Ai−1 �Bi−1

δi−1−−→ · · · δ1−→ A0 �B0
δ0−→ O∆ −→ 0,

where Aj ∈ Coh(X,α−1) and Bj ∈ Coh(X,α) are locally free for any j ∈ N. Indeed, if L is an
ample line bundle on X, L�L is ample on X×X. Hence, given a locally free sheaf E ∈ Coh(X,α),
Lemma 2.3 proves that {(E∨�E)⊗ (L�L)⊗k}k∈Z is an ample sequence in Coh(X×X,α−1�α).
As (E∨ � E)⊗ (L� L)⊗k ∼= (E∨ ⊗ L⊗k)� (E ⊗ L⊗k), we conclude by Lemma 3.5.

4.2. Some bounded complexes. Since F is a bounded functor by Proposition 2.4, we can assume
without loss of generality that H i(F (F)) = 0 for any F ∈ Coh(X,α) and any i /∈ [−M, 0] for
some M ∈ N. Then we fix once and for all a resolution of O∆ as in (4.1), and for every integer
m > dim(X) + dim(Y ) +M we define the following complexes

Cm := {Am �Bm
δm−−→ · · · δ1−→ A0 �B0}

C̃m := {Am � F (Bm)
δ̃m−−→ · · · δ̃1−→ A0 � F (B0)}

in Db(X × X,α−1 � α) and Db(X × Y, α−1 � β) respectively, where δ̃i denotes the image of δi
through the map

HomDb(X×X,α−1�α)(Ai �Bi, Ai−1 �Bi−1) ∼= HomDb(X,α−1)(Ai, Ai−1)⊗HomDb(X,α)(Bi, Bi−1)

id⊗F−−−→ HomDb(X,α−1)(Ai, Ai−1)⊗HomDb(Y,β)(F (Bi), F (Bi−1))

∼= HomDb(X×Y,α−1�β)(Ai � F (Bi), Ai−1 � F (Bi−1)).

Setting Km := ker(δm) ∈ Coh(X × X,α−1 � α) and proceeding as in Remark 3.6, we see that,
if m > 2 dim(X), C•m

∼= O∆ ⊕ Km[m] and Cm has a (unique up to isomorphism by Lemma 3.2)
right convolution (δ0, 0) : A0 � B0 → O∆ ⊕ Km[m]. Observe that the assumption on F implies

that also C̃m satisfies the hypothesis of Lemma 3.2, hence it has a unique up to isomorphism right
convolution δ̃′0,m : A0 � F (B0)→ Gm.

We proceed now as in [11, Lemma 6.1]. We denote by Km the full subcategory of Coh(X,α) with
objects the locally free sheaves E such that H i(X,E⊗Aj) = 0 for i > 0 and 0 ≤ j ≤ m+ dim(X).
Observe that, for any locally free E′ ∈ Coh(X,α) and any ample line bundle L ∈ Coh(X),
E′ ⊗ L⊗k ∈ Km, when k � 0.

As Rip2∗(Aj � Bj ⊗ p∗1F) ∼= H i(X,Aj ⊗ F) ⊗ Bj for F ∈ Coh(X,α) and i, j ∈ N (where

pl : X ×X → X is the projection onto the lth factor),

Rp2∗(Aj �Bj ⊗ p∗1E) ∼= p2∗(Aj �Bj ⊗ p∗1E) ∼= H0(X,Aj ⊗ E)⊗Bj
if E ∈ Km and 0 ≤ j ≤ m + dim(X). It follows that the exact functor Rp2∗(− ⊗ p∗1E) maps Cm
to a complex

Cm,E = {H0(X,Am ⊗ E)⊗Bm
δm,E−−−→ · · ·

δ1,E−−→ H0(X,A0 ⊗ E)⊗B0}
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in Db(X,α), which has a (unique up to isomorphism) right convolution

(δ0,E , 0) : H0(X,A0 ⊗ E)⊗B0 → E ⊕Km,E [m],

where Km,E := ker(δm,E). If p : X × Y → Y and q : X × Y → X are the natural projections, a

similar argument shows that the exact functor Rp∗(−⊗ q∗E) maps C̃m to a complex

C̃m,E = {H0(X,Am ⊗ E)⊗ F (Bm)
δ̃m,E−−−→ · · ·

δ̃1,E−−→ H0(X,A0 ⊗ E)⊗ F (B0)}

in Db(Y, β), which has a unique up to isomorphism right convolution

(4.2) δ̃′0,m,E : H0(X,A0 ⊗ E)⊗ F (B0)→ Rp∗(Gm ⊗ q∗E) = ΦGm(E).

On the other hand, C̃m,E can be identified with the image of Cm,E through F , so that a right

convolution of C̃m,E is given also by

(4.3) (F (δ0,E), 0) : H0(X,A0 ⊗ E)⊗ F (B0)→ F (E)⊕ F (Km,E)[m].

Therefore ΦGm(E) ∼= F (E) ⊕ F (Km,E)[m], and so, in particular, H i(ΦGm(E)) = 0 unless i ∈
[−m −M,−m] ∪ [−M, 0]. Since this holds for every E ∈ Km, applying Lemma 2.5 we deduce
that also H i(Gm) = 0 unless i ∈ [−m−M,−m] ∪ [−M, 0]. This implies that Gm ∼= Em ⊕Fm with
H i(Em) = 0 unless i ∈ [−M, 0] and H i(Fm) = 0 unless i ∈ [−m−M,−m].

4.3. Uniqueness of the kernel. We are going to show that a kernel of F (if it exists) is necessarily
isomorphic to Em for m � 0. Indeed, assume that E ∈ Db(X × Y, α−1 � β) is such that F ∼= ΦE .
A standard computation shows that

E ′ := p∗13O∆

L
⊗ p∗24E ∈ Db(X ×X ×X × Y, α� α−1 � α−1 � β)

(where pij is the obvious projection from X×X×X×Y and O∆ is now considered to be (α�α−1)-
twisted) defines a functor of Fourier-Mukai type

ΦE ′ : Db(X ×X,α−1 � α) −→ Db(X × Y, α−1 � β)

such that ΦE ′(F) ∼= R(q13)∗(q
∗
12F

L
⊗ q∗23E) for every F ∈ Db(X × X,α−1 � α) (here, again, qij

denotes the obvious projection from X ×X × Y ). It follows easily that ΦE ′(O∆) ∼= E and

ΦE ′(A
L
� B) ∼= A

L
� ΦE(B) ∼= A

L
� F (B)

for A ∈ Db(X,α−1) and B ∈ Db(X,α). In particular, we see that ΦE ′ maps the complex Cm to

C̃m, hence if m > 2 dim(X) a convolution of the latter complex is given by ΦE ′(O∆⊕Km[m]) ∼= E⊕
ΦE ′(Km)[m]. Therefore E ⊕ΦE ′(Km)[m] ∼= Gm ∼= Em⊕Fm, and we can conclude that E ∼= Em (and
ΦE ′(Km)[m] ∼= Fm) provided m� 0 (more precisely, it is enough that HomDb(X×Y,α−1�β)(E ,Fm) =

0 and HomDb(X×Y,α−1�β)(Em,ΦE ′(Km)[m]) = 0, which is certainly true for large m by definition of

Em and Fm and because ΦE ′ is bounded).

4.4. Isomorphism of functors on a subcategory. Now we fix an integer m > dim(X) +
dim(Y ) + M and we will prove that E := Em is really a kernel of F . To simplify the notation we

will suppress the subscript m also from Gm, Fm, C̃m,E , δ̃′0,m,E and Km. As a first step, we will

show that ΦE |K and F |K are isomorphic as functors from K to Db(Y, β). To see this we use the

argument in [11, Lemma 6.2]. In fact for every E ∈ K by (4.2) and (4.3) the complex C̃E has two
right convolutions, namely

δ̃′0,E = (δ̃0,E , 0) : H0(X,A0 ⊗ E)⊗ F (B0)→ ΦG(E) ∼= ΦE(E)⊕ ΦF (E)

and (F (δ0,E), 0). Due to Lemma 3.3 this implies that there exists a unique isomorphism ϕ(E) :

ΦE(E)
∼−→ F (E) such that F (δ0,E) = ϕ(E) ◦ δ̃0,E . In order to see that this isomorphism is
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functorial, just notice that for every morphism γ : E → E′ of K, again by Lemma 3.3, there is a
unique morphism ΦE(E)→ F (E′) such that the diagram

H0(X,A0 ⊗ E)⊗ F (B0)
δ̃0,E //

H0(id⊗γ)⊗id
��

ΦE(E)

��
H0(X,A0 ⊗ E′)⊗ F (B0)

F (δ0,E′ ) // F (E′)

commutes. Since both F (γ) ◦ ϕ(E) and ϕ(E′) ◦ ΦE(γ) satisfy this property, they must be equal.

4.5. Extending the isomorphism. Now we choose an α-twisted locally free sheaf E and a
very ample line bundle L on X (defining an embedding X ↪→ PN ) and we denote by C the full
subcategory of Coh(X,α) with objects {E ⊗ L⊗k}k∈Z. Now, by Lemma 2.3 this set of objects
is an ample sequence in Coh(X,α), hence by Proposition 3.7 in order to prove that F ∼= ΦE it
is enough to show that F |C ∼= ΦE |C. To this purpose, we proceed as in [11, Lemma 6.4] and we

define isomorphisms ϕk : F (E ⊗ L⊗k) ∼−→ ΦE(E ⊗ L⊗k) (for k ∈ Z) such that

(4.4) ΦE(γ) ◦ ϕk1 = ϕk2 ◦ F (γ)

for every morphism γ : E⊗L⊗k1 → E⊗L⊗k2 of C and for every k1, k2 ∈ Z. By definition of ample
sequence there exists k0 ∈ Z such that E⊗L⊗k ∈ K for k ≥ k0. Then, setting ϕk := ϕ(E⊗L⊗k)−1

for k ≥ k0, the equation (4.4) is satisfied for k1, k2 ≥ k0. Now we proceed by descending induction:
assuming ϕk is defined for k > n and (4.4) is satisfied for k1, k2 > n, we define ϕn as follows. As
in (2.1), Beilinson’s resolution gives an exact sequence in Coh(X)

0 −→ OX
ρN+1−−−→ L⊗ VN

ρN−−→ · · · ρ2−→ L⊗N ⊗ V1
ρ1−→ L⊗N+1 ⊗ V0 −→ 0

(where each Vi is a finite dimensional vector space), hence, setting ρ
(n)
i := idE⊗L⊗n ⊗ ρi, the

complex

E ⊗ L⊗n+1 ⊗ VN
ρ
(n)
N−−→ · · ·

ρ
(n)
1−−→ E ⊗ L⊗n+N+1 ⊗ V0

in Db(X,α) has a unique up to isomorphism left convolution ρ
(n)
N+1 : E ⊗L⊗n → E ⊗L⊗n+1⊗ VN .

The inductive hypothesis implies that

F (E ⊗ L⊗n+1)⊗ VN
F (ρ

(n)
N )

//

ϕn+1⊗id
��

· · ·
F (ρ

(n)
1 )

// F (E ⊗ L⊗n+N+1)⊗ V0

ϕn+N+1⊗id
��

ΦE(E ⊗ L⊗n+1)⊗ VN
ΦE(ρ

(n)
N )

// · · ·
ΦE(ρ

(n)
1 )

// ΦE(E ⊗ L⊗n+N+1)⊗ V0

is an isomorphism of complexes in Db(Y, β) which satisfies the assumptions of Lemma 3.3, hence
there is a unique isomorphism ϕn such that the diagram

F (E ⊗ L⊗n)
F (ρ

(n)
N+1)

//

ϕn

��

F (E ⊗ L⊗n+1)⊗ VN
ϕn+1⊗id
��

ΦE(E ⊗ L⊗n)
ΦE(ρ

(n)
N+1)

// ΦE(E ⊗ L⊗n+1)⊗ VN
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commutes. Moreover, for every morphism γ : E ⊗L⊗k1 → E ⊗L⊗k2 of C and for every k1, k2 ≥ n

F (E ⊗ L⊗k1+1)⊗ VN
F (ρ

(k1)
N )

//

γ̃N⊗id
��

· · ·
F (ρ

(k1)
1 )

// F (E ⊗ L⊗k1+N+1)⊗ V0

γ̃0⊗id
��

ΦE(E ⊗ L⊗k2+1)⊗ VN
ΦE(ρ

(k2)
N )

// · · ·
ΦE(ρ

(k2)
1 )

// ΦE(E ⊗ L⊗k2+N+1)⊗ V0

(where γ̃i := ϕk2+N+1−i ◦ F (γ ⊗ idL⊗N+1−i) = ΦE(γ ⊗ idL⊗N+1−i) ◦ ϕk1+N+1−i) is a morphism of
complexes in Db(Y, β) which again satisfies the assumptions of Lemma 3.3. Therefore, there is a
unique morphism F (E ⊗ L⊗k1)→ ΦE(E ⊗ L⊗k2) such that the diagram

F (E ⊗ L⊗k1)
F (ρ

(k1)
N+1)

//

��

F (E ⊗ L⊗k1+1)⊗ VN

γ̃N⊗id
��

ΦE(E ⊗ L⊗k2)
ΦE(ρ

(k2)
N+1)

// ΦE(E ⊗ L⊗k2+1)⊗ VN

commutes, and, since both ΦE(γ) ◦ϕk1 and ϕk2 ◦F (γ) satisfy this property, we conclude that (4.4)
holds.

Remark 4.1. Theorem 1.1 in [11] concerns fully faithful functors. This requirement is essential
in Kawamata’s proof only in [11, Lemma 6.5] (which depends on [14, Prop. 2.16]). Kawamata’s
argument can now be reconsidered using Proposition 3.7 instead of [11, Lemma 6.5]. Hence we
immediately get the following generalization of Kawamata’s result. Let X and Y be normal
projective varieties with only quotient singularities and let X and Y be the smooth stacks naturally
associated to them. Let F : Db(Coh(X )) → Db(Coh(Y)) be an exact functor with a left adjoint
and such that, for any F ,G ∈ Coh(X ),

HomDb(Coh(Y))(F (F), F (G)[j]) = 0

if j < 0. Then there exists a unique up to isomorphism E ∈ Db(Coh(X ×Y)) and an isomorphism
of functors F ∼= ΦE .

Observe moreover that, in Kawamata’s proof, the results in [11, Sect. 3] can be replaced by our
shorter argument in Section 4.1.

5. Exact functors between the abelian categories of twisted sheaves

Theorem 1.1 can be used to classify exact functors from Coh(X,α) to Coh(Y, β).

Proposition 5.1. Let (X,α) and (Y, β) be twisted varieties. If E is in Coh(X×Y, α−1�β), then
the additive functor

ΨE := p∗(E ⊗ q∗(−)) : Coh(X,α)→ Coh(Y, β)

is exact if and only if E is flat over X and p|Supp(E) : Supp(E)→ Y is a finite morphism.
Moreover, for every exact functor G : Coh(X,α) → Coh(Y, β) there exists unique up to iso-

morphism E ∈ Coh(X × Y, α−1 � β) (flat over X and with p|Supp(E) finite) such that G ∼= ΨE .

Proof. Clearly E is flat over X if and only if the functor E ⊗ q∗(−) is exact, and in this case ΨE is
left exact and RΨE ∼= Rp∗(E ⊗ q∗(−)). Notice also that E ⊗ q∗(−) is exact if ΨE is exact. Indeed,
given an injective morphism F ↪→ G in Coh(X,α) and setting

K := ker(E ⊗ q∗F → E ⊗ q∗G),

for every E ∈ Coh(X) locally free there is an exact sequence in Coh(Y, β)

0→ p∗(K ⊗ q∗E)→ p∗(E ⊗ q∗(F ⊗ E)) = ΨE(F ⊗ E)→ p∗(E ⊗ q∗(G ⊗ E)) = ΨE(G ⊗ E),
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from which we see that, if ΨE is exact, p∗(K ⊗ q∗E) = 0; therefore K = 0, and this proves
that E ⊗ q∗(−) is exact. It follows that, in order to conclude the proof of the first statement,
it is enough to show that p|Supp(E) is finite if and only if Rjp∗(E ⊗ q∗F) = 0 for j > 0 and for
every F ∈ Coh(X,α). To this purpose, up to replacing E with E ⊗ p∗F for some locally free
sheaf F ∈ Coh(Y, β−1), we can assume that β is trivial (because Supp(E) = Supp(E ⊗ p∗F ) and
Rjp∗(E ⊗ p∗F ⊗ q∗F) ∼= F ⊗Rjp∗(E ⊗ q∗F)).

If p|Supp(E) is finite, we can find a cover by open affine subsets {Vi}i∈I of Y and Ui ⊂ X open
affine such that Supp(E|X×Vi) ⊂ Ui × Vi for every i ∈ I. Then, denoting by pi : X × Vi → Vi and
p′i : Ui × Vi → Vi the projections, for j > 0 and for every F ∈ Coh(X,α) we have

Rjp∗(E ⊗ q∗F)|Vi ∼= Rjpi∗((E ⊗ q∗F)|X×Vi) ∼= Rjp′i∗((E ⊗ q
∗F)|Ui×Vi) = 0

because p′i is an affine morphism, hence Rjp∗(E ⊗ q∗F) = 0. On the other hand, if p|Supp(E) is
not finite, there exist a closed point y ∈ Y and a closed irreducible subset X ′ ⊆ X such that
d := dim(X ′) > 0 and X ′ ⊆ Supp(Ey), where Ey ∈ Coh(X,α−1) corresponds to E|X×{y} under
the natural isomorphism X ∼= X × {y}. We claim that there exists F0 ∈ Coh(X,α) such that
Supp(F0) = X ′ and Hd(X, Ey ⊗ F0) 6= 0. For instance, denoting by E a locally free α-twisted
sheaf on X and by OX′(1) a very ample line bundle on X ′ (regarded as a subscheme of X with
the reduced induced structure), we can take F0 = E ⊗OX′(−n) for n � 0. Indeed, by definition
of the dualizing sheaf ω◦X′ (see [7, p. 241]), we have

Hd(X, Ey ⊗ E ⊗OX′(−n))∨ ∼= Hd(X ′, (Ey ⊗ E)|X′(−n))∨

∼= HomX′((Ey ⊗ E)|X′ , ω◦X′(n)) ∼= H0(HomX′((Ey ⊗ E)|X′ , ω◦X′)(n)),

and the last term is not 0 for n � 0, since HomX′((Ey ⊗ E)|X′ , ω◦X′) 6= 0 due to the fact that
Supp((Ey ⊗ E)|X′) = X ′ and ω◦X′

∼= ωX′ on the non-empty open subset where X ′ is smooth.
Then let V ⊂ Y be an open affine subset containing y and denote by q′ : X × V → X the

projection. Applying the right exact functor q′∗(−) ⊗ F0 to the natural surjective morphism
E|X×V � E|X×{y}, we get a surjective morphism in QCoh(X)

ϕ : q′∗(E|X×V )⊗F0 � q′∗(E|X×{y})⊗F0
∼= Ey ⊗F0.

As Supp(ker(ϕ)) ⊆ X ′, we have Hd+1(X, ker(ϕ)) = 0, hence the assumption Hd(X, Ey ⊗ F0) 6= 0
implies that

0 6= Hd(X, q′∗(E|X×V )⊗F0) ∼= Hd(X × V, (E ⊗ q∗F0)|X×V ),

and this proves that Rdp∗(E ⊗ q∗F0) 6= 0.
Assume now that G : Coh(X,α) → Coh(Y, β) is an exact functor. By Theorem 1.1 there

exists (unique up to isomorphism) E ∈ Db(X × Y, α−1 � β) such that Db(G) ∼= ΦE , and E ∈
Coh(X × Y, α−1 � β) by Lemma 2.5. From the fact that ΦE(Coh(X,α)) ⊆ Coh(Y, β) it is easy
to deduce that

G ∼= ΦE |Coh(X,α)
∼= ΨE .

The uniqueness of E follows from Corollary 3.8. �

Remark 5.2. The above result implies that there are no non-zero exact functors from Coh(X,α)
to Coh(Y, β) if dim(X) > dim(Y ): to prove this, just note that if 0 6= E ∈ Coh(X×Y, α−1�β) is
flat over X then dim(Supp(E)) ≥ dim(X), and that dim(Supp(E)) ≤ dim(Y ) if p|Supp(E) is finite.

It was proved by Gabriel in [6] that if X and Y are noetherian schemes then there exists an
exact equivalence QCoh(X) ∼= QCoh(Y ) if and only if X and Y are isomorphic. For smooth
projective varieties, a short proof (relying on Orlov’s result) of an analogous statement involving
coherent sheaves was given in [8]. Following this last approach and using Proposition 5.1 we prove
a Gabriel-type result for twisted varieties.
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Corollary 5.3. Let (X,α) and (Y, β) be twisted varieties. Then the following three conditions are
equivalent:

(i) there is an exact equivalence between QCoh(X,α) and QCoh(Y, β);
(ii) there is an exact equivalence between Coh(X,α) and Coh(Y, β);

(iii) there exists an isomorphism f : X
∼−→ Y such that f∗(β) = α.

Proof. The implications (iii)⇒ (i) and (iii)⇒ (ii) are trivial. Suppose that an exact equivalenceG :

QCoh(X,α)
∼−→ QCoh(Y, β) is assigned and consider the equivalence D(G) : D(QCoh(X,α))

∼−→
D(QCoh(Y, β)) induced by G. Due to [15, Thm. 18] and [3, Lemma 2.1.4, Prop. 2.1.8], D(G)

restricts to an equivalence F : Db(X,α)
∼−→ Db(Y, β) which yields an exact equivalence G′ :

Coh(X,α)
∼−→ Coh(Y, β). This proves that (i) implies (ii).

The proof of the implication (ii) ⇒ (iii) proceeds now as in [8, Cor. 5.22, Cor. 5.23]. First of
all, recall that given an abelian category A, A ∈ Ob(A) is minimal if any non-trivial surjective

morphism A→ B in A is an isomorphism. Notice that an equivalence F : A
∼−→ B sends minimal

objects to minimal objects.
It is easy to see that the set of minimal objects of Coh(X,α) consists of all skyscraper sheaves

Ox, where x is a closed point of X. Let G : Coh(X,α)
∼−→ Coh(Y, β) be an exact equivalence. By

Proposition 5.1, G ∼= ΨE , for some E ∈ Coh(X × Y, α−1 � β).
Since G maps skyscraper sheaves to skyscraper sheaves, E|{x}×Y is isomorphic to a skyscraper

sheaf and we naturally get a morphism f : X → Y and L ∈ Pic(X) such that

G ∼= L⊗ f∗(−).

The morphism f is actually an isomorphism since G is an equivalence ([8, Cor. 5.23]) and, by
definition, f∗(β) = α. �

This proves Conjecture 1.3.17 in [3] for quasi-coherent sheaves on smooth projective varieties.

Remark 5.4. Suppose that X and Y are smooth separated schemes of finite type over a field
K and that α ∈ Br(X) while β ∈ Br(Y ). In [15] it was proved that if there exists an exact

equivalence Coh(X,α) ∼= Coh(Y, β), then there is an isomorphism f : X
∼−→ Y . On the other

hand the approach in [15] does not allow to conclude that f∗(β) = α.
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