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Abstract. We prove that two Enriques surfaces defined over an algebraically closed field of

characteristic different from 2 are isomorphic if their Kuznetsov components are equivalent.

This improves and completes our previous result joint with Nuer where the same statement is

proved for generic Enriques surfaces.
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Introduction

The bounded derived category of coherent sheaves Db(X) of an Enriques surface X has been

widely investigated. Over the complex numbers, a very nice result by Bridgeland and Maciocia

[5] shows that the derived category determines the surface up to isomorphism. This goes under

the name of Derived Torelli Theorem as it can be viewed as a categorification of the usual

Hodge-theoretic Torelli Theorem for Enriques surfaces.

In this paper, we want to work over any algebraically closed field K of characteristic different

from 2 and, under this assumption, Enriques surfaces have a uniform definition: they are smooth
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projective surfaces X with 2-torsion dualizing sheaf and such that H1(X,OX) = 0. From the

geometric point of view, they are quotients of a K3 surface by a fixed-point-free involution. It

is a fact [13] that the Derived Torelli Theorem above holds in any characteristic different from

2 as soon as the field is algebraically closed.

It was first showed in [28] that Db(X) can be further decomposed into interesting pieces.

As we will explain in Section 1.2, such a triangulated category always has a semiorthogonal

decomposition

Db(X) = 〈Ku(X,L),L〉,

where L = 〈L1, . . . , L10〉 is generated by 10 line bundles. If X is generic in moduli or generic

in the divisor of the moduli space of Enriques surfaces parametrizing nodal Enriques surfaces

(i.e. containing (−2)-curves), then the 10 line bundles are completely orthogonal. Otherwise,

as clarified in Proposition 1.4, these line bundles organize themselves in completely orthogonal

blocks and inside of each such block they differ by a rational curve. The residual category

Ku(X,L) is called the Kuznetsov component of Db(X). Note that, as it is expected and will be

explained later (see Corollary 2.8), the definition of Ku(X,L) depends on the choice of L.

The study of the properties of the Kuznetsov component got a great impulse from [16] where

the authors also investigated its relation to the derived category of generic Artin–Mumford

quartic double solids. In our previous paper [22] we proved that for a generic Enriques surface

X, its Kuznetsov component determines X up to isomorphism. As this refines the Derived

Torelli Theorem mentioned above, we refer to it as the Refined Derived Torelli Theorem for

Enriques surfaces. A natural question which remained open after [22] was whether such a result

holds in general, that is for every Enriques surface.

In this paper we positively answer this question by means of the following theorem which is

the main result of this paper.

Theorem A. Let X1 and X2 be Enriques surfaces over an algebraically closed field K of char-

acteristic different from 2. If they possess semiorthogonal decompositions

Db(Xi) = 〈Ku(Xi,Li),Li〉,

where Li is as above, and there exists an exact equivalence F : Ku(X1,L1)
∼−→ Ku(X2,L2) of

Fourier–Mukai type, then X1
∼= X2.

This result sits in a very active research area. Statements as the above one are usually

referred to as categorical Torelli theorems because, in analogy with the Hodge-theoretic Torelli

theorems, they show that the geometry of a smooth projective variety can be reconstructed,

up to isomorphism, from one relevant component of its derived category (possibly with some

additional data). Such a component is meant to play the role of intermediate Jacobians or middle

cohomologies and the additional data is the analogue of principal polarizations or special Hodge

structures. In the case of Fano manifolds, many papers were devoted to this kind of problems
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including [1, 2, 3, 14, 23, 26]. All these results heavily rely on the existence of Bridgeland

stability conditions on the Kuznetsov component as proved in [2]. In general, we expect that

there are no stability conditions on the Kuznetsov components of Enriques surfaces.

For this reason, in this paper we take a different perspective which is indeed the same as in

[22]. Indeed, we prove Theorem A in Section 3.2 by showing that the given equivalence between

the Kuznetsov components can be extended to the whole derived categories by adding the 10

line bundles one by one. Once we know that Db(X1) and Db(X2) are equivalent, we can invoke

the Derived Torelli Theorem and conclude that X1 and X2 are isomorphic. It should be noted

that Theorem A is actually a special instance of the more precise Theorem 3.3.

This extension procedure is made possible by Proposition 3.2 which was proved in [22]. In

turns, to make such a result applicable in the more complicated geometric setting of this paper,

we need a complete classification of special objects in the Kuznetsov component: 3-spherical

and 3-pseudoprojective objects. If X is generic and thus the 10 line bundles are orthogonal,

we only get 3-spherical objects and their classification in [22] is considerably simpler. The hard

part of this paper consists in dealing with 3-pseudoprojective objects which appear exactly

because the line bundles in the semiorthogonal decomposition are no longer orthogonal. This

is the content of Theorem 2.7 which is indeed the technical core of this paper. In order to make

the paper self-contained we include in Sections 1.1 and 1.2 some introductory material about

semiorthogonal decompositions and the geometry of Enriques surfaces.

We conclude the introduction by pointing out that in [22] (see Remark 5.3 therein) we pro-

posed a different approach to prove Theorem A. The strategy was to deform two Enriques

surface X1 and X2 containing (−2)-curves and with an equivalence of Fourier–Mukai type

Ku(X1,L1) ∼= Ku(X2,L) to generic unnodal Enriques surfaces and then apply the generic

Refined Derived Torelli Theorem in [22]. Even though this strategy is still valid, a precise

implementation would require a careful (and possibly complicated) comparison between the

deformation theory of the Enriques surface and of its Kuznetsov component. We feel like that

the approach in the present paper is more direct and conceptually clearer.

1. Semiorthogonal decompositions and Enriques categories

In this section we provide a short introduction to semiorthogonal decompositions of triangu-

lated categories and we apply this to the derived categories of Enriques surfaces. In Section 1.3

we start discussing some preparatory material which will be used later for the classification of

special objects in the Kuznetsov component of those surfaces.

1.1. Semiorthogonal decompositions and Serre functors. Let T be a triangulated cate-

gory. A semiorthogonal decomposition of T

T = 〈D1, . . . ,Dm〉

is a sequence of full triangulated subcategories D1, . . . ,Dm of T such that:
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(a) Hom(F,G) = 0, for all F ∈ Di, G ∈ Dj and i > j;

(b) For any F ∈ T , there is a sequence of morphisms

0 = Fm → Fm−1 → · · · → F1 → F0 = F,

such that πi(F ) := Cone(Fi → Fi−1) ∈ Di for 1 ≤ i ≤ m.

The subcategories Di are called the components of the decomposition. We say that two such

distinct components Di and Dj are orthogonal if HomT (F,G) ∼= HomT (G,F ) = 0, for all F in

Di and G in Dj .
We will be mostly interested in the case where the inclusion functor αi : Di ↪→ T has left

adjoint α∗i and right adjoint α!
i. In this case, Di is called an admissible subcategory.

Remark 1.1. Suppose now that T has Serre functor ST and a semiorthogonal decomposition

as above, where all components are admissible subcategories. Then, for any pair of objects F

and G in Di, we have

HomDi(F,G) ∼= HomT (αi(F ), αi(G))

∼= Hom(αi(G), ST (αi(F )))∨

∼= Hom(G,α!
i(ST (αi(F ))))∨.

Thus Di has Serre functor SDi as well and there is a natural isomorphism SDi
∼= α!

i ◦ ST ◦ αi.

We need now to introduce another functor which is naturally defined in presence of a

semiorthogonal decomposition satisfying the additional assumption that its components are

admissible subcategories. The left mutation functor through Di is the functor LDi defined by

the canonical distinguished triangle

(1.1) αiα
!
i
ηi−→ id→ LDi ,

where ηi denotes the counit of the adjunction. In complete analogy, one defines the right

mutation functor through Di as the functor RDi defined by the canonical distinguished triangle

(1.2) RDi → id
εi−→ αiα

∗
i ,

where εi is the unit of the adjunction.

The following is a very simple and well-known result.

Lemma 1.2. Let T = 〈D1,D2〉 be a semiorthogonal decomposition. Then we have an isomor-

phism of exact functors LD1 |D2
∼= ST ◦ S−1D2

.

Proof. We have the following natural isomorphisms of exact functors

(1.3) LD1 |D2
∼= LD1 ◦ S−1T ◦ ST |D2

∼= S−1ST (D2)
◦ ST |D2

∼= ST ◦ S−1T ◦ S
−1
ST (D2)

◦ ST |D2
∼= ST ◦ S−1D2

.
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Here the non-trivial isomorphism is the second one which follows from [20, Lemma 2.6] and the

easy observation that

T = 〈ST (D2),D1〉

is yet another semiorthogonal decomposition for T . The last isomorphism in (1.3) follows from

an explicit computation using Remark 1.1. �

We conclude this section by noting that, from now on, we will assume that all categories are

linear over a field K. In this case, E ∈ T is exceptional if Hom(E,E[p]) = 0, for all integers

p 6= 0, and Hom(E,E) ∼= K. A set of objects {E1, . . . , Em} in T is an exceptional collection if

Ei is an exceptional object, for all i, and Hom(Ei, Ej [p]) = 0, for all p and all i > j.

1.2. Enriques surfaces. In the rest of the paper we work over an algebraically closed field K
of characteristic different from 2. Let X be an Enriques surface. For later use, let us recall that

its Serre functor SX is defined as SX(−) := (−)⊗ ωX [2], where ωX is 2-torsion but non-trivial.

Hence S2X = [4] but SX 6= [2]. Moreover the torsion part of the Néron–Severi group NS(X)tor is

2-torsion as well and generated by the class of ωX . We set Num(X) := NS(X)/NS(X)tor. For a

brief but very informative survey about the geometry of Enriques surfaces, one can have a look

at [10]. A more complete treatment is in [9, 11].

Let us now consider the bounded derived category of coherent sheaves Db(X) of X. On one

side we have the well-known Derived Torelli Theorem which is a summary of [5, Proposition

6.1] and [13, Theorem 1.1].

Theorem 1.3 (Bridgeland–Maciocia, Honigs–Lieblich–Tirabassi). Let X and Y be smooth pro-

jective surfaces defined over an algebraically closed field K of characteristic different from 2. If

X is an Enriques surface and there is an exact equivalence Db(X) ∼= Db(Y ), then X ∼= Y .

On the other hand we can study the structure of Db(X) by means of the following result

(which is mostly well-known to experts).

Proposition 1.4 ([22, Proposition 3.5]). Let X be an Enriques surface over K. Then Db(X)

contains an admissible subcategory L = 〈L1, . . . ,Lc〉, where L1, . . . ,Lc are orthogonal admissible

subcategories and

Li = 〈Li1, . . . , Lini
〉

where

(1) Lij is a line bundle such that Lij = Li1 ⊗OX(Ri1 + · · ·+Rij−1) where Ri1, . . . , R
i
j−1 is a

chain of (−2)-curves of Aj−1 type;

(2) {Li1, . . . , Lini
} is an exceptional collection; and

(3) n1 + · · ·+ nc = 10.

In view of the previous proposition we can state the following.
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Definition 1.5. If X is an Enriques surface with a semiorthogonal decomposition as in Propo-

sition 1.4, then the unordered sequence of positive integers {n1, . . . , nc} is the type of the

semiorthogonal decomposition.

It is worth discussing when the type of the semiorthogonal decomposition may be seen as an

invariant associated to X.

Remark 1.6. If X is generic in moduli, then all possible semiorthogonal decompositions as in

the statement above get much simplified. Indeed, X does not contain (−2)-curves and then one

always gets 10 orthogonal blocks, each consisting of only one line bundle. Thus, for unnodal

Enriques surfaces, all semiorthogonal decompositions as above are of the type given by the

10-uple {1, . . . , 1}.

The situation gets much more interesting if one looks at the generic Enriques surfaces in the

divisor of the moduli space of such surfaces parametrizing nodal Enriques surfaces (i.e. surfaces

containing (−2)-curves). This is very much related to the fact that a natural polarization (called

Fano polarization) is ample and not just nef. For an extensive discussion on this, the reader

can have a look at [22, Section 3.1]. In this paper we will be interested in the following.

Example 1.7. If X is a generic nodal Enriques surface, then by [8, Theorem 3.2.2] and [12,

Corollary 4.4], the surface X has an ample Fano polarization and thus a semiorthogonal decom-

position as in Proposition 1.4 with c = 10 and of type given by the 10-uple {1, . . . , 1}. On the

other hand, by Theorem 6.5.4 and Corollary 6.5.9 in [11], any generic nodal Enriques surface

has a nef Fano polarization which is not ample and gives rise to a semiorthogonal decomposition

as in the proposition above but where c = 9 and of type given by the 9-uple {1, . . . , 1, 2}. This

implies that the type of a semiorthogonal decomposition as in Proposition 1.4 is not an invariant

of the surface.

Let us now consider the following slightly more general setting. Let L = 〈L1, . . . ,Lc〉 be an

admissible subcategory of Db(X), for X an Enriques surface such that Li = 〈Li1, . . . , Lini
〉 and

(a) the admissible subcategories Li’s are orthogonal;

(b) the objects Lij ’s satisfy properties (1) and (2) in Proposition 1.41.

In this situation, consider the admissible subcategory

Ku(X,L) := L⊥ = 〈L1, . . . ,Lc〉⊥

which we will call the Kuznetsov component of X. By definition, Db(X) admits then a

semiorthogonal decomposition:

(1.4) Db(X) = 〈Ku(X,L),L〉.
1Note that here we do not assume that condition (3) in Proposition 1.4 is satisfied by L as in the subsequent

argument we will need to make induction on the number of exceptional objects.
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1.3. Some useful computations. In this section we discuss some preliminary computations

concerning special objects in Db(X), for an Enriques surface X with a semiorthogonal decom-

position as in (1.4) and satisfying properties (a) and (b). We set

ζK : Ku(X,L) ↪→ Db(X)

to be the embedding, where K is a shorthand for Ku(X,L). For fixed 1 ≤ i ≤ c and 1 ≤ j <

l ≤ ni we set

(1.5) Qij,l := Coker(Lij ↪→ Lil).

Remark 1.8. Note that Qij,l is supported on a chain of (−2)-curves of Al−j-type. This imme-

diately implies that Qij,l ⊗ ωX ∼= Qij,l. In particular, 〈Qij,l〉⊥ = ⊥〈Qij,l〉.

The following rather technical result will be used later.

Lemma 1.9. In the above setting, we have that

(1) For every object L in L, χ(L,L) ≥ 0;

(2) RHom(SL(Li1), L
i
1)
∼= K⊕K[−1]⊕K[−2], when ni ≥ 2, while RHom(SL(Li1), L

i
1)
∼= K,

when ni = 1;

(3) ζ !K(Li1)
∼= . . . ∼= ζ !K(Lini

) ∼= ζ !K ◦ S
−1
L (Li1).

Proof. Let us first prove (1). Note that χ(Lji , L
m
l ) = δilδjm. Indeed, if j 6= m, then the

objects Lji and Lml are orthogonal, for all i and l, and thus χ(Lji , L
m
l ) = 0. On the other hand,

if j = m and i 6= l, then χ(Lji , L
m
l ) = 0 by Proposition 1.4 (1) and a simple computation

with Riemann–Roch. Finally, if j = m and i = l, then χ(Lji , L
m
l ) = 1, because the object is

exceptional. This shows that the bilinear form χ(−,−) is positive definite on the numerical

Grothendieck group Knum(L) of L and thus the claim follows.

As for (2), when ni = 1, we have SL(Li1) = SLi(L
i
1) = Li1. As Li1 is exceptional, the statement

holds by definition.

When ni ≥ 2, we first observe that we have the following isomorphisms

(1.6) S−1L (Li1)
∼= S−1Li (Li1)

∼= R〈Li
2,...,L

i
ni
〉(SLi ◦ S

−1
Li (Li1))

∼= R〈Li
2,...,L

i
ni
〉(L

i
1)

where the first one follows from the fact that the admissible subcategories Li’s are orthogonal

and thus S−1Li (Li1) = S−1L (Li1). The second isomorphism is indeed [20, Lemma 2.7] applied to

the object S−1Li (Li1) in B with the following assignments

A = 〈Li2, . . . , Lini
〉 B = 〈S−1Li (Li1)〉 T = 〈A,B〉 = Li,

and noticing that SB = IdB.

Pick j ∈ {1, . . . , ni − 1}. Note that RHom(Lij , L
i
j+1)

∼= H∗(X,OX(Rij))
∼= K ⊕ K[−1] by

property (b) of the semiorthogonal decomposition (1.4). Therefore, we have the distinguished

triangle

RLi
j+1

(Lij)→ Lij → Lij+1 ⊕ Lij+1[1].
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Consider the commutative diagram where the rows are distinguished triangles

Lij+1 Lij+1 0 Lij+1[1]

Lij+1[−1]⊕ Lij+1 RLi
j+1

(Lij) Lij Lij+1 ⊕ Lij+1[1].

By the octahedron axiom, we get the morphisms

Cone(Lij+1 → RLi
j+1

(Lij))
∼= Cone(Lij [−1]→ Lij+1[−1]) ∼= Qij,j+1[−1].

In particular, we have the distinguished triangle

(1.7) Lij+1 → RLi
j+1

(Lij)→ Qij,j+1[−1]

for every 1 ≤ j ≤ ni − 1. If we apply R〈Li
j+2,...,L

i
ni
〉 to (1.7) and we take into account that

Qij,j+1 ∈ (Lil)
⊥ ∩⊥Lil for all l 6= j, j + 1, then we get the distinguished triangle

(1.8) R〈Li
j+2,...,L

i
ni
〉(L

i
j+1)→ R〈Li

j+1,...,L
i
ni
〉(L

i
j)→ Qij,j+1[−1],

for every 1 ≤ j ≤ ni − 1. If we apply the functor RHom(Li1,−) to (1.8) when j ≥ 2 (which

means that ni ≥ 3), then we get the isomorphisms of graded vector spaces

RHom(Li1,R〈Li
3,...,L

i
ni
〉(L

i
2))
∼= RHom(Li1,R〈Li

4,...,L
i
ni
〉(L

i
3))(1.9)

∼= . . .

∼= RHom(Li1, L
i
ni

) ∼= K⊕K[−1].

Finally, if we apply RHom(Li1,−) to (1.8), for j = 1, and we use (1.9) and the fact that

RHom(Li1, Q
i
1,2[−1]) ∼= K[−2],

then we get the isomorphisms of graded vector spaces

RHom(SL(Li1), L
i
1)
∼= RHom(Li1, S

−1
L (Li1))

∼= RHom(Li1,R〈Li
2,...,L

i
ni
〉(L

i
1))
∼= K⊕K[−1]⊕K[−2].

For the penultimate isomorphism we used (1.6).

Finally, let us prove (3). When ni = 1, we have S−1L (Li1) = S−1Li (Li1) = Li1 and the only

isomorphim in the statement hold automatically.

When ni ≥ 2, since Qij,j+1 ∈ SX(L), for every 1 ≤ j ≤ ni − 1, we have ζ !K(Qij,j+1) = 0. By

definition, ζ !K(Lij)
∼= ζ !K(Lij+1), for every 1 ≤ j ≤ ni − 1. Therefore, if we apply the functor ζ !K

to (1.8), for every 1 ≤ j ≤ ni − 1, we get ζ !K ◦ S
−1
L (Li1)

∼= ζ !K(Lini
). �

2. Classifying spherical and pseudoprojective objects

In this section we study and classify 3-spherical and 3-pseudoprojective objects in the Kuznetsov

component of the special semiorthogonal decompositions in Section 1.2.
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2.1. Spherical and pseudoprojective objects: construction and classification. We be-

gin with a fairly general definition.

Definition 2.1. Let T a triangulated category that it is linear over a field K and with Serre

functor ST .

(a) An object E in T is n-spherical if:

(i) There is an isomorphism of graded vector spaces RHom(E,E) ∼= K⊕K[−n];

(ii) ST (E) ∼= E[n].

(b) An object E in T is n-pseudoprojective if:

(i) There is an isomorphism of graded vector spaces RHom(E,E) = K ⊕ K[−1] ⊕
· · · ⊕K[−n].;

(ii) ST (E) ∼= E[n].

Remark 2.2. Some comments on the choice of the names in the above definition are in order

here. Spherical objects were introduced in the seminal paper [27] and our definition is exactly

the same. The name is clearly motivated by the fact the the Ext-algebra of such an object is

isomorphic to the cohomology algebra of an n-sphere.

The situation is slightly different for n-pseudoprojective objects as in (b) of the definition

above. Our objects look very much like a variant of Pn-objects described in [15]. The first

key different is that in [15] the Ext-algebra of a Pn-object is assumed to be isomorphic to the

cohomology algebra of the complex projective space Pn and it is then generated in degree 2. On

the contrary, our n-pseudoprojective objects have non-trivial Ext’s in odd degrees as well. The

case of objects with Ext-algebra isomorphic to the cohomology algebra of Pn but with generator

in degree 1 has been studied in [17]. Indeed, our objects E in Definition 2.1 (b) look very much

like Pn[1]-objects in [17]. The key difference is that RHom(E,E) ∼= C[x]/(xn+1), with x in

degree 1, only as graded vector spaces and not as algebras. Of course, we expect the objects

studied in Theorem 2.7 to be P3[1]-objects but, at the moment, we have no control on their

Ext-algebra and, as we will see, this is not relevant for our computations. For these reasons we

prefer to adopt a new name and call them 3-pseudoprojective with the hope that future studies

may turn them into P3[1]-objects.

In this paper we will be mainly interested in 3-spherical and 3-pseudoprojective objects. The

former were extensively used in [22] to prove the Refined Derived Torelli Theorem in the generic

case.

In the more general setting of the present paper, we want to show how one can possibly

construct 3-pseudoprojective objects in the Kuznetsov component of an Enriques surface whose

derived category is endowed with a semiorthogonal decomposition as in (1.4). To this extent,

we set

Si := ζ !K(Li1).
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Remark 2.3. (i) By (1.1), the object Si sits in the distinguished triangle

ζ !K(Li1)→ Li1 → LKu(X,L)(L
i
1).

By Lemma 1.2, we get the distinguished triangle

(2.1) ζ !K(Li1)→ Li1
ϕi−→ SX(S−1L (Li1)).

In other words, since Hom(Li1,SX(S−1L (Li1)))
∼= K, the object Si[1] is isomorphic to the cone of

the unique non-trivial morphism Li1 → SX(S−1L (Li1)).

(ii) Note that if ni ≥ 2, then by Lemma 1.9 (3), we get an isomorphism Si ∼= ζ !K(Lij), for all

1 ≤ j ≤ ni.

We can now discuss some additional properties of the objects Si’s.

Lemma 2.4. In the above setting we have:

(1) If ni = 1, then Si is a 3-spherical object in Ku(X,L).

(2) If ni ≥ 2, then Si is a 3-pseudoprojective object in Ku(X,L).

Furthermore, if i 6= j, then RHom(Si, Sj) = 0 and thus Si 6∼= Sj [k], for all k ∈ Z.

Proof. If ni = 1, then the result is simply [22, Lemma 4.8]. Thus we can assume ni ≥ 2. In this

case, we can first compute the action of the Serre functor using again an argument very close

to the one in [22, Lemma 4.8] and which consists of the following chain of isomorphisms

SK(Si) ∼= ζ !K(SX(Si))

∼= ζ !K(Cone(SX(Li1)
SX(ϕi)−−−−→ S2X(S−1L (Li1)))[−1])

∼= ζ !K(Cone(SX(Li1)
SX(ϕi)−−−−→ S−1L (Li1)[3]))

∼= ζ !K(S−1L (Li1[3]))

∼= Si[3],

where the first isomorphism is [20, Lemma 2.6], the second one is Remark 2.3 (i), the third one

follows from the the fact that S2X
∼= [4] and the fourth one follows from the observation that

ζ !K(SX(Li1)) = 0 (this by (1.1) and noticing that SX(Li1) ∈ K⊥). Finally, the last isomorphism

is a consequence of Lemma 1.9 (3). This yields property (ii) in Definition 2.1 (b).

To conclude that Si is 3-pseudoprojective, we first apply Hom(Si,−) to (2.1). Hence, since

Si ∈ K =⊥(SX(L)), we have an isomorphism of graded vector spaces

(2.2) RHom(Si, Si) ∼= RHom(Si, L
i
1).

By Lemma 1.9 and Serre duality,

RHom(SX ◦ S−1L (Li1), L
i
1)
∼= (RHom(Li1, S

−1
L (Li1)[4]))∨ ∼= K[−2]⊕K[−3]⊕K[−4].
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Finally, if we apply the functor RHom(−, Li1) to the distinguished triangle (2.1), then we get

RHom(Si, L
i
1)
∼= K⊕K[−1]⊕K[−2]⊕K[−3].

This, together with (2.2), implies (i) in Definition 2.1 (b).

To prove the last claim in the statement, observe that, as in the previous part, we have

the isomorphism of graded vector spaces RHom(Si, Sj) ∼= RHom(Si, L
j
1). If i 6= j, then

RHom(Li1, L
j
1) = 0. On the other hand, by Serre duality,

RHom(SX(S−1L (Li1)), L
j
1)
∼= RHom(Lj1, S

−1
L (Li1)[4])∨ = 0,

where the last vanishing is due to the fact that S−1L (Li1) is in Li which is orthogonal to Lj to

which Lj1 belongs. By (2.1), these two observations imply RHom(Si, Sj) = 0, when i 6= j, and

thus the claim follows. �

As we learnt from the previous lemma, we need to distinguish when ni = 1 and ni ≥ 2 in

the semiorthogonal decomposition (1.4). Thus it is convenient to reformulate here and keep it

in mind for the rest of the paper the setup we are working in:

Setup 2.5. Let X be an Enriques surface with a semiorthogonal decomposition

Db(X) = 〈Ku(X,L),L〉,

where L = 〈L1, . . . ,Lc〉 is an admissible subcategory and L1, . . . ,Lc are orthogonal admissible

subcategories and

Li = 〈Li1, . . . , Lini
〉

where

(a) Lij is a line bundle such that Lij = Li1 ⊗OX(Ri1 + · · ·+ Rij−1) where Ri1, . . . , R
i
j−1 is a

chain of (−2)-curves of Aj−1 type;

(b) {Li1, . . . , Lini
} is an exceptional collection; and

(c) If there is j ∈ {1, . . . , c} such that nj 6= 1, then there is d ∈ {1, . . . , c} such that nj ≥ 2

for all 1 ≤ j ≤ d while nj = 1 for all d < j ≤ c.

Remark 2.6. Since the components Li’s are orthogonal, the special choice in (c) above for the

ordering of these components does not cause loss of generality.

The goal of the rest of this section is to prove the following result which is the key for our

Refined Derived Torelli Theorem and answers the open question in [22, Remark 4.11].

Theorem 2.7. In Setup 2.5, if F is an object in Ku(X,L), then

(1) F is 3-spherical if and only F ∼= Sj [k] for some d < j ≤ c and k ∈ Z;

(2) F is 3-pseudoprojective if and only if F ∼= Sj [k] for some 1 ≤ j ≤ d and k ∈ Z.

Furthermore, all these 3-spherical and 3-pseudoprojective objects are not isomorphic.
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Before moving to the proof of this result, we want to discuss an easy application that shows

that the Kuznetsov component of an Enriques surface is not, in general, intrinsic to the surface,

up to equivalence.

Corollary 2.8. If X is a generic nodal Enriques surface, then there exist two semiorthogonal

decompositions

Db(X) = 〈Ku(X,Li),Li〉,
for i = 1, 2, as in Setup 2.5 and such that L1 and L2 consist of 10 exceptional line bundles but

Ku(X,L1) 6∼= Ku(X,L2).

Proof. Consider the two distinct semiorthogonal decompositions on Db(X), for X a generic

nodal Enriques surface, described in Example 1.7. Assume that there is an exact equivalence

Ku(X,L1) ∼= Ku(X,L2). Then the two Kuznetsov components would contain, up to shifts

and isomorphisms, the same number of 3-spherical and 3-pseudoprojective objects. But this

contradicts Theorem 2.7. �

Remark 2.9. If one could prove that, given a generic nodal Enriques surface, the Kuznetsov

components of the two semiorthogonal decompositions in Example 1.7 have no non-trivial

semiorthogonal decompositions, then Corollary 2.8 would yield another counterexample to the

Jordan–Hölder property of semiorthogonal decompositions. Roughly, such a property predicts

that if X is a smooth projective variety then the semiorthogonal decompositions of Db(X) are

essentially unique, up to reordering of the components and equivalence. It is worth recalling

that we already know counterexamples to such a property [4, 18].

2.2. Proof of Theorem 2.7. It is clear that the ‘if’ part in (1) and (2) and the last part of

the statement in Theorem 2.7 are the content of Lemma 2.4. Thus it remains to prove the hard

implication in (1) and (2): if F is either a 3-spherical or 3-pseudoprojective object in Ku(X,L),

then, up to shift, it is isomorphic to one of the Si’s. The proof is split in several steps.

Step 1: reduction to one component. We first prove that we can simplify our computation and

reduce to the case L = Li, for some i = 1, . . . , c. For now, we can indifferently assume that F

is either a 3-spherical or a 3-pseudoprojective object in Ku(X,L).

First of all, note that the semiorthogonal decomposition in Setup 2.5 can be conveniently

rewritten as

Db(X) = 〈SX(L),Ku(X,L)〉.
By (1.1) and Lemma 1.2, we have a distinguished triangle

(2.3) ζ !SX(L)(F )→ F → SX(S−1Ku(X,L)(F )).

If ζSX(L) : SX(L) ↪→ Db(X) denotes the embedding of the corresponding admissible subcategory,

then we set

G := SX(ζ !SX(L)(F )) ∈ L.
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We now want to prove some relevant properties of G.

Note that, by assumption, SKu(X,L)(F ) ∼= F [3]. Thus, by [20, Lemma 2.6], we have the

isomorphisms

SL(G) ∼= ζ !L(SX(G))(2.4)

∼= ζ !L(Cone(S2X(F )→ S3X(S−1K (F )))[−1])

∼= ζ !L(Cone(F [3]→ SX(F )))

∼= ζ !L(SX(F ))

∼= SX(ζ !SX(L)(F ))

∼= G,

where for the second one we use (2.3). The third isomorphism follows from the fact that

S2X(F ) ∼= F [4] and SKu(X,L)(F ) ∼= F [3]. The fourth is a consequence of ζ !L(F ) = 0 while the

penultimate is a simple computation. Here ζL : L ↪→ Db(X) is the embedding of the admissible

subcategory L.

Furthermore, if we apply the equivalence SX to (2.3), we get the distinguished triangle

(2.5) G→ SX(F )→ F [1].

This implies that [G] = 2[F ] in Num(X) and thus χ(G,G) = 4χ(F, F ) = 0 because F is either

3-spherical or 3-pseudoprojective. By (2.4), we have Hom(G,G[t]) ∼= Hom(G,G[−t]) for every

t ∈ Z and thus Hom(G,G) has dimension at least 2.

If we apply RHom(G,−) to (2.5) and we use Serre duality, we get the isomorphism of graded

vector spaces RHom(G,G) ∼= RHom(G, SX(F )). Furthermore, if we apply RHom(−, SX(F ))

to (2.5) and we take into consideration that, by assumption,

RHom(F,SX(F )) ∼=

K⊕K[3] if F is 3-spherical;

K⊕K[1]⊕K[2]⊕K[3] if F is 3-pseudoprojective,

then we get the isomorphisms of graded vector spaces

(2.6) RHom(G,G) ∼=

K[−3]⊕K⊕2 ⊕K[3] if F is 3-spherical;

K[±3]⊕K[±2]⊕K[±1]⊕K⊕2 if F is 3-pseudoprojective;

Here we used that Hom(G,G) has dimension at least 2.

Denote by Q the collection of torsion sheaves Qij,l for all 1 ≤ i ≤ c and 1 ≤ j < l ≤ ni,

defined in (1.5). Since both F and SX(F ) are in Q⊥ = ⊥Q (here we use Remark 1.8), by (2.5)

both G and SX(G) are orthogonal to Q as well. Thus

(2.7) RHom(G,Q) ∼= RHom(SL(G), Q) = 0,

for every Q ∈ Q.
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We now prove the following result.

Lemma 2.10. In Setup 2.5, let E be an object in L satisfying

(a) SL(E) ∼= E;

(b) We have the isomorphisms Hom(E,E) ∼= K⊕2; Hom(E,E[3]) ∼= K; Hom(E,E[1]) ∼=
Hom(E,E[2]) and Hom(E,E[t]) = 0, for |t| ≥ 4;

(c) Hom(E,Q) = 0, for every Q ∈ Q.

Then

(1) The object E ∈ Li for some i;

(2) There exists t ∈ Z such that for all 1 ≤ j ≤ ni, Hom(E,Lij [t])
∼= Hom(E,Lij [t+3]) ∼= K

and Hom(E,Lij [s]) = 0 for s ≤ t− 1 and s ≥ t+ 4;

(3) The composition of non-trivial morphisms E → E[3] and E[3]→ Li1[t+3] is non-trivial.

Proof. Let us first prove (1). Since the Li’s are orthogonal, we may write E = F1 ⊕ · · · ⊕ Fc,
for Fi in Li. For the same reason,∑

χ(Fi, Fi) = χ(E,E) = 0.

Hence, by Lemma 1.9 (1), χ(Fi, Fi) = 0 for every 1 ≤ i ≤ c.
Since SL(E) ∼= E and the Li’s are orthogonal, we must have SLi(Fi)

∼= Fi, for every i.

Therefore, Hom(Fi, Fi[t]) ∼= Hom(Fi, Fi[−t]), for every t ∈ Z, and since χ(Fi, Fi) = 0, we must

have that Hom(Fi, Fi) is even-dimensional. As Hom(E,E) =
⊕

1≤i≤d Hom(Fi, Fi), assumption

(b) implies that E ∼= Fi, for a unique i. Thus E is in Li and we get (1).

In view of what we have just proved, we can simplify the notation and assume L = Li and

set n := ni, Lj := Lij and Qj,l := Qij,l. First, we can note that, if n = 1, then E = L[t]⊕L[t+3],

for some t ∈ Z. Thus (2) and (3) hold true automatically and we may assume n ≥ 2 from now

on.

Let us prove (2) under this assumption. We set E1 := E ∈ L and write it as an extension

E2 → E1 → L1 ⊗RHom(E1, L1)
∨,

where now E2 ∈ 〈L2, . . . , Ln〉. Inductively, for all j = 1, . . . , n− 1, we then define

(2.8) Ej+1 → Ej → Lj ⊗RHom(Ej , Lj)
∨,

where Ek ∈ 〈Lk, . . . , Ln〉.
If we apply the functor RHom(−, Lj+1) to (2.8) we get the exact sequence

(2.9) RHom(Lj , Lj+1)⊗RHom(Ej , Lj)→ RHom(Ej , Lj+1)→ RHom(Ej+1, Lj+1).

Now consider the distinguished triangle

(2.10) Lk → Lk+1 → Qk,k+1,
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where the first map is the unique (up to scalar) non-trivial one, and apply RHom(Ej ,−) to

it. Note that, by construction, the object Ej is obtained with a finite number of extensions

involving E and elements in 〈L1, . . . , Lj−1〉. On the other hand, RHom(Ls, Qj,j+1) = 0, when

s ≤ j − 1, while, by assumption (c), we have RHom(E,Qj,j+1) = 0. Therefore we get an

isomorphism of graded vector spaces

Hom(Lj , Lj+1)⊗RHom(Ej , Lj)
∼−→ RHom(Ej , Lj+1).

Recall that Hom(Lj , Lj+1) ∼= K with generator the non-trivial morphism in (2.10).

If we plug this into (2.9), we get the isomorphism

RHom(Ej+1, Lj+1) ∼= RHom(Ej , Lj)

and, iterating the argument, we get

RHom(Ej , Lj) ∼= RHom(E,L1),

for all j = 1, . . . , n− 1. In particular, (2.8) gets the form

(2.11) Ej+1 → Ej → Lj ⊗RHom(E,L1)
∨.

Again by assumption (c), Serre duality and the fact that SL(E) = E, we get

(2.12) RHom(E,Lj) ∼= RHom(E,L1) and RHom(Lj , E) ∼= RHom(L1, E),

for every j = 1, 2, . . . , n− 1. Hence, if we apply the functor RHom(E,−) to (2.11) and we use

this observation, then we get the distinguished triangle

(2.13) RHom(E,Ej+1)→ RHom(E,Ej)→ RHom(E,L1)⊗RHom(E,L1)
∨.

Ut to shifting E, we may assume that there is a positive integer m such that Hom(E,L1[t])

is non-trivial for t = 0,m, and it is trivial for t < 0 and t > m. Thus the graded vector space

RHom(E,L1)⊗RHom(E,L1)
∨ has non-trivial components concentrated in degrees −m, . . . ,m.

Moreover, in degrees −m and m, the corresponding components have the form

Hom(E,L1)⊗Hom(E,L1[m])∨ ∼= Hom(E,L1[m])⊗Hom(E,L1)
∨ ∼= K⊕a0am ,

where a0 := dim Hom(E,L1) and am := dim Hom(E,L1[m]).

On the one hand, we have

RHom(E,En) ∼= RHom(E,L1)⊗RHom(E,L1)
∨.

On the other hand, this information plugged into (2.13) for j = n−1 yields that RHom(E,En−1)

has non-trivial component concentrated in degree −m, . . . ,m as well. Furthermore,

dim Hom(E,En−1[±m]) ≥ a0am.

By descending induction on j = n, . . . , 1 we get

dim Hom(E,Ej [±m]) ≥ a0am
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and thus the same holds true for the case j = 1.

By assumption (b), we have Hom(E,E[3]) ∼= K while Hom(E,E[t]) = 0, for t > 3. Thus

m = 3 and a0 = am = 1 as claimed in (2).

We are finally ready to prove (3). As in the proof of (2), we can assume t = 0 without loss

of generality. If we apply RHom(E,−) to (2.11) with j = 1 (recall that E0 = E), we get the

long exact sequence

(2.14) · · · → Hom(E,E[3])→ Hom(E,L1[3])→ Hom(E,E1[4])→ 0

where the first map is given by the composition with the unique (up to scalar) non-trivial

morphism E[3] → L1[3] from (2). Since E1 is the extension of La, . . . , La[3], for 2 ≤ a ≤ n,

by (2.12) and the fact that RHom(E,L1) has non-trivial components concentrated in degrees

0, . . . ,m, we get Hom(E,E1[4]) = 0. Hence, since Hom(E,E[3]) ∼= Hom(E,L1[3]) ∼= K, the

composition with any non-trivial map E[3]→ L1[3], which defines the first morphism in (2.14),

induces an isomorphism Hom(E,E[3]) ∼= Hom(E,L1[3]). This is precisely (3). �

By (2.4), (2.6) and (2.7), the assumptions (a)–(c) of Lemma 2.10 for the object G. Thus G

is in Li, for some 1 ≤ i ≤ c. The other parts of Lemma 2.10 will be use later in the proof.

Step 2: reduction to the pseudoprojective case (i ≤ d). Let Li be the admissible subcategory

identified in Step 1 and set L̂i := 〈L1, . . . ,Li−1,Li+1, . . . ,Ld〉. If we apply the functor S−1X to

(2.3), we get the isomorphisms S−1X (G) ∼= ζ !Li(S
−1
X (F )) and S−1Ku(X,L)(F ) ∼= ζ∗〈Ku(X,L),L̂i〉

(S−1(F )).

By [20, Lemma 2.6], this yields

S−1
〈Ku(X,L),L̂i〉

(F ) ∼= ζ∗〈Ku(X,L),L̂i〉
(S−1X (F )) ∼= S−1Ku(X,L)(F ) ∼= F [−3].

Here ζLi and ζ〈Ku(X,L),L̂i〉 are the embeddings of the corresponding admissible subcategories.

Since condition (i) in Definition 2.1 is clearly satisfied, this implies that F is 3-spherical or

3-pseudoprojective in the larger category 〈Ku(X,L), L̂i〉 as well.

Assume now i > d. By Lemma 2.10 (2) applied to G = SX(ζ !SX(L)(F )) ∈ Li, we must have

G ∼= Li[t]⊕Li[t+ 3] for some t ∈ Z. In particular, by (2.6), the object F is 3-spherical. By [22,

Proposition 4.10], F ∼= Si[k] for some k ∈ Z. Therefore, from now on, we may assume i ≤ d.

Step 3: the final isomorphism. First note that, for i as in Step 2 and since SX(F ) ∈ ⊥L, by

Lemma 2.10 and (2.5), we have the isomorphisms

Hom(F,Li1[t])
∼= Hom(G,Li1[t])

∼=

K if t = 0, 3,

0 if t ≤ −1 and t ≥ 4,

up to shifting F (and thus G).

If ψ : F → Li1 is the unique, up to scalars, non-trivial morphism, we set

C := Cone(F
ψ−→ Li1).
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and get the distinguished triangle

(2.15) F
ψ−→ Li1

ϕ−→ C.

We first prove the following result.

Lemma 2.11. In the notation above, C ∼= SX(S−1L (Li1)).

Proof. First, we apply RHom(−, Li1) to (2.15). By definition of ψ, Hom(Li1, L
i
1)

ψ−→ Hom(F,Li1)

is an isomorphism. Since Hom(F [1], Li1) = 0 and Hom(Li1, L
i
1[1]) = 0, we get Hom(C,Li1) = 0

and Hom(C,Li1[1]) = 0.

If we apply RHom(C,−) to (2.15), we get the isomorphisms Hom(C,C) ∼= Hom(C,F [1]) ∼= K.

Since SX(S−1L (Li1)) is exceptional, being Li1 so, the claim follows if we show that there are non-

trivial morphisms

SX(S−1L (Li1))
g−→ C

f−→ SX(S−1L (Li1))

whose composition is non-trivial.

To proceed in this direction, we first observe that, if we apply RHom(−, F [1]) to (2.15) and

we use Serre duality, we get

Hom(C,F [1]) ∼= Hom(F [1], F [1]) ∼= K

Hom(SX(F ), C) ∼= Hom(C,F [4])∨ ∼= Hom(F [1], F [4])∨ ∼= K.

Indeed, the fact that F ∈ L⊥ yields RHom(C,F ) ∼= RHom(F [1], F ).

Let k1 be a non-trivial element in Hom(C,F [1]). Note that since Li1 is exceptional, up

to scalars, the morphism k1 realizes Li1 as the extension of F and C in (2.15) yielding the

distinguished triangle

(2.16) Li1
ϕ−→ C

k1−→ F [1]
ψ[1]−−→ Li1[1].

Let k2 be the non-trivial generator of Hom(SX(F ), C).

On the other hand, as SX(F ) ∈ 〈SX(S−1L (Li1))〉⊥, by (2.5) we get

Hom(SX(S−1L (Li1)), F [1]) ∼= Hom(SX(S−1L (Li1)), G[1])

∼= Hom(G[1], S−1L (Li1)[4])∨

∼= Hom(G,Li1[3])∨

∼= K,

where the second isomorphisms is by Serre duality while the penultimate is obtained by applying

SL and using that SL(G) = G by (2.4). Let k3 be a non-trivial generator of the vector space

Hom(SX(S−1L (Li1)), F [1]).

Finally, we consider the isomorphisms

Hom(SX(F ), SX(S−1L (Li1)))
∼= Hom(F,S−1L (Li1))

∼= Hom(G,S−1L (Li1))
∼= Hom(G,Li1)

∼= K,
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where the first isomorphism is due to the fact that SX is an equivalence. For the second one,

we apply RHom(−,SL(Li1)) to (2.5) and use that SX(F ) ∈ ⊥L. For the third one, we apply SL

and use (2.4). The last isomorphism is due to Lemma 2.10 (2). We set k4 to be the non-trivial

generator of Hom(SX(F ), SX(S−1L (Li1))).

Let us prove that k3 ◦ k4 is a non-trivial morphism. By Lemma 2.10 (3), the composition of

the unique (up to scalars) non-trivial morphisms

G→ G[3]→ Li1[3]

is non-trivial. Call it k. If we apply S−1L to the whole composition and since G ∼= S−1L (G), then

the composition of non-zero morphisms

G→ G[3]→ S−1L (Li1)[3]

is non-trivial. Denote by h the morphism from F toG in (2.5). Since S(F ) ∈ ⊥L, the composition

of h with the non-trivial morphisms G→ G[3] and G→ S−1L (Li1)[t] are non-trivial, for t = 0, 3.

Indeed, it is enough to apply RHom(−, G[3]) and RHom(−, SL(Li1)[t]) to (2.5). Combining

these two remarks we see that the composition of the non-trivial morphisms

F → G[3]→ S−1L (Li1)[3]

is non-trivial because it factors as

F
h−→ G→ G[3]→ S−1L (Li1)[3]︸ ︷︷ ︸

k

.

Since Hom(F,SX(F )[3]) ∼= Hom(F,SX(F )[4]) = 0, the composition of non-trivial morphisms

F → F [3]
h[3]−−→ G[3]

is non-zero and it coincides with the non-trivial morphism F → G[3] above, up to a scalar.

Therefore, the composition of non-trivial morphisms

F → F [3]
h[3]−−→ G[3]→ S−1L (Li1)[3]

is non-zero and the same is true for the composition of non-trivial morphisms

(2.17) F → F [3]→ S−1L (Li1)[3].

Set

K := Cone

(
F

S−1
X (k4)−−−−−→ S−1L (Li1)

)
.

Since the composition in (2.17) is non-zero and Hom(F, F [4]) = 0, we have Hom(F,K[3]) = 0.

By Serre duality, Hom(SX(K), F [1]) = 0. Finally, if we apply RHom(−, F [1]) to the distin-

guished triangle:

SX(F )
k4−→ SX(S−1L (Li1)) −→ SX(K),
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we get

(2.18) 0 6= k3 ◦ k4 : SX(F )→ SX(S−1L (Li1))→ F [1].

By Serre duality and Lemma 1.9, Hom(SX(S−1L (Li1)), L
i
1[t])

∼= Hom(SL(Li1)[t], L
i
1[4]) = 0,

when t ≤ 1. Thus, if we apply RHom(SX(S−1L (Li1)),−) to (2.16), we get an isomorphism

k1 ◦ − : Hom(SX(S−1L (Li1)), C)
∼−→ Hom(SX(S−1L (Li1)), F [1]).

In particular, Hom(SX(S−1L (Li1)), C) ∼= K and there exists a non-trivial map g : SX(S−1L (Li1))→
C such that

(2.19) k1 ◦ g = k3 6= 0.

Let us now produce the morphism f . Consider the diagram

(2.20)

SX(F )[−1] F G SX(F )

0 Li1 Li1 0

SX(F ) C M SX(F )[1],
k2

where the first row is (a rotation of) the distinguished triangle (2.5), the second column is (2.15)

while the third column is a distinguished triangle whose morphism G → Li1 is the unique (up

to scalars) non-trivial morphism from Lemma 2.10 (2). Since SX(F ) ∈ ⊥L, the top squares in

the diagram commute and by the octahedron axiom, the bottom row is a distinguished triangle

as well.

If we apply RHom(−, Li1) to the triangle in the third column of (2.20) and we take into

account that Hom(G,Li1)
∼= K and Hom(G[1], Li1)

∼= Hom(Li1[−1], Li1) = 0 (by Lemma 2.10

(2)), we get Hom(M,Li1)
∼= Hom(M [−1], Li1) = 0. By Serre duality (both in Db(X) and in L),

Hom(M [t], SX(S−1L (Li1)))
∼= Hom(S−1L (Li1),M [t])∨ ∼= Hom(M [t], Li1) = 0,

when t = 0 or −1.

Now, if we apply RHom(−,SX(S−1L (Li1))) to the distinguished triangle in the bottom row of

(2.20) and we use the vanishing above, then we get an isomorphism

− ◦ k2 : Hom(C,SX(S−1L (Li1)))
∼−→ Hom(SX(F ),SX(S−1L (Li1))).

In particular, Hom(C,SX(S−1L (Li1)))
∼= K and there a non-trivial f : C → SX(S−1L (Li1)) such

that

f ◦ k2 = k4 6= 0.
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To summarize, all morphisms we introduced so far fit in the following diagram

SX(F )

k2
��

k4

))

SX(S−1L (Li1))
g

//

k3 ))

C
f

//

k1

��

SX(S−1L (Li1))

F [1],

where the two triangles are commutative. Note now that the composition k3 ◦ f is non-trivial.

Indeed, if not, we would have 0 = k3 ◦ f ◦ k2 = k3 ◦ k4, contradicting (2.18). Thus there is

0 6= λ ∈ K such that k3 := λk3 6= 0 sits in the diagram

SX(S−1L (Li1))
g

//

k3 ((

C
f

//

k1

��

SX(S−1L (Li1))

k3vv
F [1],

where the two triangles are commutative.

Assume now 0 = f ◦ g. By the commutativity of the diagram above

0 = k3 ◦ f ◦ g = k1 ◦ g = k3

which contradicts (2.19). Thus f ◦ g 6= 0 as we want. �

In conclusion we get the following sequence of isomorphisms

F [1] ∼= Cone(Li1
ϕ−→ C) ∼= Cone(Li1 → SX(S−1L (Li1)))

∼= Si[1].

Note that for the first isomorphism follows from (2.15), the second one from Lemma 2.11 while

the last one is a consequence of the definition of Si and of the isomorphism

Hom(Li1,SX(S−1L (Li1)))
∼= K.

This concludes the proof of Theorem 2.7.

3. Proof of the main result

In this section, after a quick discussion about Fourier–Mukai functors and the way we can

extend them from admissible subcategories to larger subcategories, we prove our main result.

As we will see the main theorem follows from the more precise statement in Section 3.2.
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3.1. Fourier–Mukai functors and their extensions. Let us start with a short introduction

to the theory of Fourier–Mukai functors. In complete generality, assume that X1 and X2 are

smooth projective varieties over K with admissible subcategories

αi : Ai ↪→ Db(Xi),

for i = 1, 2.

An exact functor F : A1 → A2 is of Fourier–Mukai type if there exists an object E ∈ Db(X1×
X2) such that there is an isomorphism of exact functors

α2 ◦ F ∼= ΦE |A1 : A1 → Db(X2).

The exact functor ΦE is defined as

ΦE(−) := p2∗(E ⊗ p∗1(−)),

where pi : X1 ×X2 → Xi is the ith natural projection.

Remark 3.1. (i) Suppose we are given a Fourier–Mukai functor ΦE : Db(X1) → Db(X2) such

that F := ΦE |A1 : A1 → Db(X2) factors through A2. The projection functor onto Ai is of

Fourier–Mukai type by [19, Theorem 7.1]. Thus, precomposing ΦE with the projection onto A1,

yields a Fourier–Mukai functor ΦE ′ : Db(X1)→ Db(X2) such that ΦE ′ |A1 = F and ΦE ′(
⊥A1) = 0.

(ii) It should be noted that, when F : A1 → A2 is an equivalence, [21, Conjecture 3.7] should

imply that F is of Fourier–Mukai type in the above sense. This expectation is motivated by

what is known for full functors between the bounded derived categories of smooth projective

varieties (see [6, 7, 24, 25]).

In general, one should not expect to be able to extend an equivalence between admissible

subcategories to the whole triangulated categories. Nonetheless, this is possible under some

compatibility assumptions as illustrated in the following result which we proved in [22].

Proposition 3.2 ([22, Propositions 2.4 and 2.5]). Let α1 : A1 ↪→ Db(X1) be an admissible

embedding and let E ∈⊥A1 with counit of adjunction η1 : α1α
!
1(E) → E . Let ΦE : Db(X1) →

Db(X2) be a Fourier–Mukai functor with the property that ΦE(
⊥A1) ∼= 0. Suppose further that

(a) ΦE |A1 is an equivalence onto an admissible subcategory A2 with embedding α2 : A2 ↪→
Db(X2), and

(b) there is an exceptional object F ∈ ⊥A2 and an isomorphism ρ : ΦE(α1α
!
1(E))

∼−→
α2α

!
2(F ).

Then there exists a Fourier–Mukai functor ΦẼ : Db(X1)→ Db(X2) satisfying

(1) ΦẼ(
⊥〈A1, E〉) ∼= 0;

(2) ΦẼ |A1
∼= Φ|A1 and ΦẼ(E) ∼= F ;

(3) ΦẼ |〈A1,E〉 is an equivalence onto 〈A2, F 〉.
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3.2. Proof of Theorem A. Let X1 and X2 be smooth Enriques surfaces over K admitting

admissible subcategories L and M which fall under Setup 2.5. More precisely, their derived

categories Db(X1) and Db(X2) admit semiorthogonal decompositions

Db(Xi) = 〈Ku(X1,L),L〉 and Db(X2) = 〈Ku(X2,M),M〉

where L = 〈L1, . . . ,Lc〉 and M = 〈M1, . . . ,Mc′〉 and

Li = 〈Li1, . . . , Lini
〉 and Mi = 〈M i

1, . . . ,M
i
n′i
〉

are as that in Setup 2.5.

We are now going to prove the following result which is actually a more precise version of

Theorem A.

Theorem 3.3. Under the assumptions above, let F : Ku(X1,L)→ Ku(X2,M) be an equivalence

which is of Fourier–Mukai type. Then the two semiorthogonal decompositions have the same

type and there exists a Fourier–Mukai functor ΦẼ : Db(X1)→ Db(X2) such that

(1) ΦẼ |Ku(X1,L)
∼= F;

(2) ΦẼ : Db(X1)→ Db(X2) is an equivalence and thus an isomorphism X1
∼= X2; and

(3) Up to reordering, ΦẼ(L
i
j)
∼= M i

j [ti], for some ti ∈ Z, all i = 1, . . . , c, and j = 1, . . . , ni.

Proof. By Remark 3.1 (i), there exists E ∈ Db(X1×X2) such that ΦE |Ku(X1,L)
∼= F and ΦE(L) ∼=

0. The proof proceeds now by induction on c, given that when c = 0, there is nothing to prove.

First observe that, by Theorem 2.7, we get the identity c = c′ and, up to reordering,

(3.1) ΦE(ζ
!
Ku(X1,L)(L

i
1))
∼= ζ !Ku(X2,M)(M

i
1)[ti]

for every 1 ≤ i ≤ c and some ti ∈ Z. Without loss of generality, in the rest of the argument

we can assume t1 = 0. Let us show how to extend F to an equivalence 〈Ku(X1,L),L1〉 ∼=
〈Ku(X2,M),M1〉. The general argument by induction works literally along the exact same

lines.

By Proposition 3.2, there exists E1 ∈ Db(X1 ×X2) such that

(1) ΦE1 |Ku(X1,L)
∼= F and ΦE1(⊥〈Ku(X1,L), L1

1〉) ∼= 0;

(2) ΦE1 |〈Ku(X1,L),L1
1〉 : 〈Ku(X1,L), L1

1〉 → 〈Ku(X2,M),M1
1 〉 is an equivalence;

(3) ΦE1(L1
1)
∼= M1

1 .

Actually, it is important to note that the admissible subcategories L′ := 〈L′1, . . . ,Lc〉 and

M′ := 〈M′1, . . . ,Mc〉, where L′1 := 〈L1
2, . . . , L

1
n1
〉 and M′1 := 〈M1

2 , . . . ,M
1
n′1
〉, give rise to

semiorthogonal decompositions Db(X1) = 〈Ku(X1,L′),L〉 and Db(X2) = 〈Ku(X2,M′),M〉 as

in Setup 2.5. Here, Ku(X1,L′) := 〈Ku(X1,L), L1
1〉 and Ku(X2,M′) := 〈Ku(X2,M),M1

1 〉.
If n1 = 1, then, by Theorem 2.7, n′1 = 1. Then the first step of the extension is complete.

Moreover, ΦE1 satisfies assumptions (a) and (b) of Proposition 3.2 for A1 = 〈Ku(X1,L), L1
1〉 and

A2 = 〈Ku(X2,M),M1
1 〉. Thus we can proceed further as above.
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Assume then n1 ≥ 2. Since the Li’s (and theMi’s) are completely orthogonal to each other,

we get the isomorphisms ζ !Ku(X1,L)(L
i
1)
∼= ζ !Ku(X1,L′)(L

i
1) and ζ !Ku(X2,M)(M

i
1)
∼= ζ !Ku(X2,M′)(M

i
1),

for every i ≥ 2.

By (3.1) and Theorem 2.7,

(3.2) ΦE1(ζ !Ku(X1,L′)(L
1
2))
∼= ζ !Ku(X2,M′)(M

1
2 )[t],

for some t ∈ Z. In particular, n′1 ≥ 2. Moreover, we have the following chain of isomorphisms

RHom(L1
1, L

1
2)
∼= RHom(L1

1, ζ
!
Ku(X1,L′)(L

1
2))

∼= RHom(ΦE1(L1
1),ΦE1(ζ !Ku(X1,L′)(L

1
2)))

∼= RHom(M1
1 , ζ

!
Ku(X2,M′)(M

1
2 )[t])

∼= RHom(M1
1 ,M

1
2 [t])

∼= K[t]⊕K[t− 1],

where the first and penultimate one follows by adjunction, the second one uses that ΦE1 |Ku(X1,L′)
is an equivalence, the third one is by induction and (3.2) and, finally, the last isomorphism is

by the definition of M1
1 and M1

2 . Since RHom(L1
1, L

1
2)
∼= K⊕K[−1], we have t = 0.

We can then apply Proposition 3.2 again in order to extend ΦE1 |Ku(X1,L′) to a Fourier–Mukai

functor ΦE2 inducing an equivalence

ΦE2 : 〈Ku(X1,L), L1
1, L

1
2〉

∼−→ 〈Ku(X2,M),M1
1 ,M

1
2 〉

such that

• ΦE2 |〈Ku(X1,L),L1
1〉
∼= ΦE1 |〈Ku(X1,L),L1

1〉,

• ΦE2(⊥〈Ku(X1,L), L1
1, L

1
2〉) ∼= 0, and

• ΦE2(L1
2)
∼= M1

2 .

By iterating the procedure, we get a Fourier–Mukai functor ΦEn1
inducing an equivalence

ΦEn1
: 〈Ku(X1,L),L1〉

∼−→ 〈Ku(X2,M),M1
1 ,M

1
2 , . . . ,M

1
n1
〉

such that ΦEn1
(L1

j )
∼= M1

j . By (3.1), (3.2) and Theorem 2.7, the admissible subcategory

〈M1
1 , . . . ,M

1
n1
〉 must coincide with M1 and thus n1 = n′1.

At each step, the assumptions (a) and (b) of Proposition 3.2 are satisfied, so we can proceed

further by induction on c and deal with the other components as we mentioned at the beginning

of this proof. In conclusion, in a finite number of step, we get an equivalence Db(X1) ∼= Db(X2)

and, by Theorem 1.3, an isomorphism X1
∼= X2. This proves (2) in the statement while

properties (1) and (3) are automatic by construction. �

Clearly, Theorem A has a trivial converse. Indeed, assume we are given an isomorphism

f : X1 → X2 and a semiorthogonal decomposition for Db(X2) as in Setup 2.5. Since the exact
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functor f∗ : Db(X2) → Db(X1) is an equivalence, we can take on Db(X1) the semiorthogo-

nal decomposition as in Setup 2.5 which is the image of the given one on Db(X2) under f∗.

The exact functor, F := (f∗)−1|Ku(X1,L1) : Ku(X1,L1)
∼−→ Ku(X2,L2) is an exact equivalence of

Fourier–Mukai type by construction. Of course, the two semiorthogonal decompositions on X1

and X2 have the same type and, in the argument, we can exchange the roles of X1 and X2.
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