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ABSTRACT. We describe a connected component of the space of stability conditions on abelian
threefolds, and on Calabi-Yau threefolds obtained as (the crepant resolution of) a finite quotient of
an abelian threefold. Our proof includes the following essential steps:

1. We simultaneously strengthen a conjecture by the first two authors and Toda, and prove that
it follows from a more natural and seemingly weaker statement. This conjecture is a Bogomolov-
Gieseker type inequality involving the third Chern character of “tilt-stable” two-term complexes on
smooth projective threefolds; we extend it from complexes of tilt-slope zero to arbitrary tilt-slope.

2. We show that this stronger conjecture implies the so-called support property of Bridgeland
stability conditions, and the existence of an explicit open subset of the space of stability conditions.

3. We prove our conjecture for abelian threefolds, thereby reproving and generalizing a result
by Maciocia and Piyaratne.

Important in our approach is a more systematic understanding on the behaviour of quadratic
inequalities for semistable objects under wall-crossing, closely related to the support property.
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1. INTRODUCTION

In this paper, we determine the space of Bridgeland stability conditions on abelian threefolds
and on Calabi-Yau threefolds obtained either as a finite quotient of an abelian threefold, or as
the crepant resolution of such a quotient. More precisely, we describe a connected component
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of the space of stability conditions for which the central charge only depends on the degrees
H3−i chi( ), i = 0, 1, 2, 3, of the Chern character1 with respect to a given polarization H , and
that satisfy the support property.

Stability conditions on threefolds via a conjectural Bogomolov-Gieseker type inequality. The
existence of stability conditions on three-dimensional varieties in general, and more specifically
on Calabi-Yau threefolds, is often considered the biggest open problem in the theory of Bridgeland
stability conditions. Until recent work by Maciocia and Piyaratne [MP15, MP16], they were only
known to exist on threefolds whose derived category admits a full exceptional collection. Possible
applications of stability conditions range from modularity properties of generating functions of
Donaldson-Thomas invariants [Tod13a, Tod14a] to Reider-type theorems for adjoint linear series
[BBMT14].

In [BMT14], the first two authors and Yukinobu Toda, also based on discussions with Aaron
Bertram, proposed a general approach towards the construction of stability conditions on a smooth
projective threefold X . The construction is based on the auxiliary notion of tilt-stability for two-
term complexes, and a conjectural Bogomolov-Gieseker type inequality for the third Chern char-
acter of tilt-stable objects; we review these notions in Section 2 and the precise inequality in
Conjecture 2.4. It depends on the choice of two divisor classes ω,B ∈ NS(X)R with ω ample. It
was shown that this conjecture would imply the existence of Bridgeland stability conditions2, and,
in the companion paper [BBMT14], a version of an open case of Fujita’s conjecture, on the very
ampleness of adjoint line bundles on threefolds.

Our first main result is the following, generalizing the result of [MP15, MP16] for the case
when X has Picard rank one:

Theorem 1.1. The Bogomolov-Gieseker type inequality for tilt-stable objects, Conjecture 2.4,
holds when X is an abelian threefold, and ω is a real multiple of an integral ample divisor class.

There are Calabi-Yau threefolds that admit an abelian variety as a finite étale cover; we call
them Calabi-Yau threefolds of abelian type. Our result applies similarly in these cases:

Theorem 1.2. Conjecture 2.4 holds when X is a Calabi-Yau threefold of abelian type, and ω is a
real multiple of an integral ample divisor class.

Combined with the results of [BMT14], these theorems imply the existence of Bridgeland sta-
bility conditions in either case. There is one more type of Calabi-Yau threefolds whose derived
category is closely related to those of abelian threefolds: namely Kummer threefolds, that are ob-
tained as the crepant resolution of the quotient of an abelian threefold X by the action of a finite
group G. Using the method of “inducing” stability conditions on the G-equivariant derived cate-
gory of X and the BKR-equivalence [BKR01], we can also treat this case. Overall this leads to
the following result (which we will make more precise in Theorem 1.4).

Theorem 1.3. Bridgeland stability conditions on X exist when X is an abelian threefold, or a
Calabi-Yau threefold of abelian type, or a Kummer threefold.

Support property. The notion of support property of a Bridgeland stability condition is cru-
cial in order to apply the main result of [Bri07], namely that the stability condition can be de-
formed; moreover, it ensures that the space of such stability conditions satisfies well-behaved
wall-crossing.

1In the case of crepant resolutions, we take the Chern character after applying BKR-equivalence [BKR01] between
the crepant resolution and the orbifold quotient.

2Not including the so-called “support property” reviewed further below.
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In order to prove the support property, we first need a quadratic inequality for all tilt-stable
complexes, whereas Conjecture 2.4 only treats complexes E with tilt-slope zero. We state such an
inequality in Conjecture 4.1 for the case where ω,B are proportional to a given ample class H:

Conjecture 4.1. Let (X,H) be a smooth polarized threefold, and ω =
√

3αH , B = βH , for
α > 0, β ∈ R. If E ∈ Db(X) is tilt-semistable with respect to ω,B, then

α2
((
H2 chB1 (E)

)2 − 2H3 chB0 (E)H chB2 (E)
)

+ 4
(
H chB2 (E)

)2 − 6H2 chB1 (E) chB3 (E) ≥ 0,

where chB := e−B ch.

In Theorem 4.2, we prove that this generalized conjecture is in fact equivalent to the original
Conjecture 2.4. Moreover, in Theorem 8.7 we prove that it implies a similar quadratic inequal-
ity for objects that are stable with respect to the Bridgeland stability conditions constructed in
Theorem 1.3, thereby obtaining a version of the support property.

To be precise, we consider stability conditions whose central charge Z : K(X) → C factors
via

(1) vH : K(X)→ Q4, E 7→
(
H3 ch0(E), H2 ch1(E), H ch2(E), ch3(E)

)
.

(In the case of Kummer threefolds, we apply the BKR-equivalence before taking the Chern char-
acter.) We prove the support property with respect to vH ; this shows that a stability condition
deforms along a small deformation of its central charge, if that deformation still factors via vH .

We discuss the relation between support property, quadratic inequalities for semistable objects
and deformations of stability conditions systematically in Appendix A. In particular, we obtain an
explicit open subset of stability conditions whenever Conjecture 4.1 is satisfied, see Theorem 8.2.

The space of stability conditions. In each of the cases of Theorem 1.3, we show moreover that
this open subset is a connected component of the space of stability conditions. We now give a
description of this component.

Inside the space Hom(Q4,C), consider the open subset V of linear maps Z whose kernel does
not intersect the (real) twisted cubic C ⊂ P3(R) parametrized by (x3, x2y, 1

2xy
2, 1

6y
3); it is the

complement of a real hypersurface. Such a linear map Z induces a morphism P1(R) ∼= C →
C∗/R∗ = P1(R); we define P be the component of V for which this map is an unramified cover
of topological degree +3 with respect to the natural orientations. Let P̃ be its universal cover.

We let StabH(X) be the space of stability conditions for which the central charge factors via
the map vH as in equation (1) (and satisfying the support property).

Theorem 1.4. Let X be an abelian threefold, or a Calabi-Yau threefold of abelian type, or a
Kummer threefold. Then StabH(X) has a connected component isomorphic to P̃.

Approach. We will now explain some of the key steps of our approach.

Reduction to a limit case. The first step applies to any smooth projective threefold. Assume
that ω,B are proportional to a given ample polarization H of X . We reduce Conjecture 4.1 to
a statement for objects E that are stable in the limit as ω(t) → 0 and νω(t),B(t)(E) → 0; if
B := limB(t), the claim is that

(2)
∫
X
e−B ch(E) ≤ 0.

The reduction is based on the methods of [Mac14b]: as we approach this limit, either E remains
stable, in which case the above inequality is enough to ensure that E satisfies our conjecture
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everywhere. Otherwise, E will be strictly semistable at some point; we then show that all its
Jordan-Hölder factors have strictly smaller “H-discriminant” (which is a variant of the discrim-
inant appearing in the classical Bogomolov-Gieseker inequality). This allows us to proceed by
induction.

Abelian threefolds. In the case of an abelian threefold, we make extensive use of the multiplication
by m map m : X → X in order to establish inequality (2). The key fact is that if E is tilt-stable,
then so is m∗E.

To illustrate these arguments, assume that B is rational. Via pull-back we can then assume that
B is integral; by tensoring with OX(B) we reduce to the case of B = 0. We then have to prove
that ch3(E) ≤ 0; in other words, we have to prove an inequality of the Euler characteristic of E.
To obtain a contradiction, assume that ch3(E) > 0, and consider further pull-backs:

(3) χ(OX ,m∗E) = ch3(m∗E) = m6 ch3(E) ≥ m6.

However, by stability we have Hom(OX(H),m∗E) = 0; moreover, if D ∈ |H| is a general
element of the linear system of H , classical arguments, based on the Grauert-Mülich theorem and
bounds for global sections of slope-semistable sheaves, give a bound of the form

h0(m∗E) ≤ h0((m∗E)|D) = O(m4)

Similar bounds for h2 lead to a contradiction to (3).

Support property. As pointed out by Kontsevich and Soibelman in [KS08, Section 2.1], the sup-
port property is equivalent to the existence of a real quadratic form Q : Q4 → R such that

(a) the kernel of the central charge (as a subspace of R4) is negative definite with respect to
Q, and

(b) every semistable object E satisfies Q(vH(E)) ≥ 0.
The inequality in Conjecture 4.1 precisely gives such a quadratic form. We therefore need to show
that this inequality is preserved when we move from tilt-stability to actual Bridgeland stability
conditions.

We establish a more basic phenomenon of this principle in Appendix A, which may be of
independent interest: if a stability condition satisfies the support property with respect to Q, and if
we deform along a path for which the central charges all satisfy condition (a), then condition (b)
remains preserved under this deformation, i.e., it is preserved under wall-crossing. The essential
arguments involve elementary linear algebra of quadratic forms.

Tilt-stability can be thought of as a limiting case of a path in the set of stability conditions we
construct. In Section 8 we show that the principle described in the previous paragraph similarly
holds in this case: we show that a small perturbation of the quadratic form in Conjecture 4.1
is preserved under the wall-crossings between tilt-stability and any of our stability conditions,
thereby establishing the desired support property.

Connected component. In Appendix A, we also provide a more effective version of Bridgeland’s
deformation result. In particular, the proof of the support property yields large open sets of stability
conditions, which combine to cover the manifold P̃ described above.

In Section 9, we show that this set is in fact an entire component. The proof is based on the
observation that semi-homogeneous vector bundles E with c1(E) proportional to H are stable
everywhere on P; their Chern classes (up to rescaling) are dense in C.

This fact is very unique to varieties admitting étale covers by abelian threefolds. In particular,
while Conjecture 4.1 implies that P̃ is a subset of the space of stability conditions, one should in
general expect the space to be much larger than this open subset.
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Applications. Our work has a few immediate consequences unrelated to derived categories. Al-
though these are fairly specific, they still serve to illustrate the power of Conjecture 4.1.

Corollary 1.5. Let X be a Calabi-Yau threefold of abelian type. Given α ∈ Z>0, let L be an
ample line bundle on X satisfying

• L3 > 49α,
• L2D ≥ 7α for every integral divisor class D with L2D > 0 and LD2 < α, and
• L.C ≥ 3α for every curve C ⊂ X .

Then H1(L⊗ IZ) = 0 for every 0-dimensional subscheme Z ⊂ X of length α.
In addition, if L = A⊗5 for an ample line bundle A, then L is very ample.

Proof. Since Conjecture 2.4 holds for X by our Theorem 1.2, we can apply Theorem 4.1 and
Remark 4.3 of [BBMT14]. �

Setting α = 2 we obtain a Reider-type criterion for L to be very ample. The statement for A⊗5

confirms (the very ampleness case of) Fujita’s conjecture for such X . The best known bounds for
Calabi-Yau threefolds say that A⊗8 is very ample if L3 > 1 [GP98, Corollary 1], A⊗10 is very
ample in general, and that A⊗5 induces a birational map [OP95, Theorem I]. For abelian varieties,
much stronger statements are known, see [PP03, PP04].

Corollary 1.6. Let X be one of the following threefolds: projective space, the quadric in P4, an
abelian threefold, or a Calabi-Yau threefold of abelian type. Let H be a polarization, and let
c ∈ Z>0 be the minimum positive value of H2D for integral divisor classes D. If E is a sheaf that
is slope-stable with respect to H , and with H2c1(E) = c, then

3c ch3(E) ≤ 2 (H ch2(E))2 .

The assumptions hold when NS(X) is generated by H , and c1(E) = H . We refer to Example
4.4 and Remark 4.5 for a proof and more discussion. Even for vector bundles on P3, this statement
was not previously known for rank bigger than three.

It is a special case of Conjecture 4.1. Even when X is a complete intersection threefold and
E = IC ⊗ L is the twist of an ideal sheaf of a curve C, this inequality is not known, see [Tra14].

Open questions.

General proof of Conjecture 4.1. While Conjecture 4.1 for arbitrary threefolds remains elusive,
our approach seems to get a bit closer: in our proof of Theorem 1.1 (in Sections 2—7), only
Section 7 is specific to abelian threefolds. One could hope to generalize our construction by
replacing the multiplication mapm with ramified coverings. This would immediately yield the set
P̃ as an open subset of the space of stability conditions.

Strengthening of Conjecture 4.1. In order to construct a set of stability conditions of dimension
equal to the rank of the algebraic cohomology of X , we would need a stronger Bogomolov-
Gieseker type inequality, depending on ch1 and ch2 directly, not just on H2 ch1 and H ch2. We
point out that the obvious guess, namely to replace

(
H2 ch1

)2 by H ch2
1 ·H3, and (H ch2)2 by an

appropriate quadratic form onH4(X), does not work in general: for α→ +∞, such an inequality
fails for torsion sheaves supported on a divisor D with HD2 < 0.
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Higher dimension. Our work also clarifies the expectations for higher dimensions. The definition
of P directly generalizes to dimension n in an obvious way, by replacing the twisted cubic with the
rational normal curve

(
xn, xn−1y, 1

2x
n−2y2, . . . , 1

n!y
n
)
. Let P̃n → Pn denote the corresponding

universal covering.

Conjecture 1.7. Let (X,H) be a smooth polarized n-dimensional variety. Its space StabH(X)

of stability conditions contains an open subset P̃n, for which skyscraper sheaves of points are
stable. In the case of abelian varieties, P̃n ⊂ StabH(X) is a connected component.

Such stability conditions could be constructed by an inductive procedure; the i-th induction
step would be an auxiliary notion of stability with respect to a weak notion of central charge
Zi depending on Hn ch0, H

n−1 ch1, . . . ,H
n−i chi. Semistable objects would have to satisfy a

quadratic inequality Qi involving chi+1. The precise form of Qi would depend on the parameters
of the stability condition; it would always be contained in the defining ideal of the rational normal
curve, and the kernel of Zi would be semi-negative definite with respect to Qi.

One could hope to prove such inequalities for i < n using a second induction by dimension:
for example, an inequality for ch3 for stable objects on a fourfold would follow from a Mehta-
Ramanathan type restriction theorem, showing that such objects restrict to semistable objects on
threefolds. As a first test case, one should try to prove that a given tilt-stable object on a threefold
restricts to a Bridgeland-stable object on a divisor of sufficiently high degree.

Related work. As indicated above, the first breakthrough towards constructing stability condi-
tions on threefolds (without using exceptional collections) is due to Maciocia and Piyaratne, who
proved Theorem 1.1 in the case of principally polarized abelian varieties of Picard rank one in
[MP15, MP16]. Their method is based on an extensive analysis of the behavior of tilt-stability
with respect to Fourier-Mukai transforms; in addition to constructing stability conditions, they
show their invariance under Fourier-Mukai transforms.

Our approach is very different, as it only uses the existence of the étale self-maps given by
multiplication with m. Nevertheless, there are some similarities. For example, a crucial step in
their arguments uses restriction to divisors and curves to control a certain cohomology sheaf of
the Fourier-Mukai transform of E, see the proof of [MP15, Proposition 4.15]; in Section 7 we use
restriction of divisors explicitly and to curves implicitly (when we use Theorem 7.2) to control
global sections of pull-backs of E.

As mentioned earlier, it is easy to construct stability conditions on any variety admitting a com-
plete exceptional collection; however, it is still a delicate problem to relate them to the construction
proposed in [BMT14]. This was done in [BMT14, Mac14b] for the case of P3, and in [Sch14] for
the case of the quadric in P4; these are the only other cases in which Conjecture 2.4 is known.

There is an alternative conjectural approach towards stability conditions on the quintic hyper-
surface in P4 via graded matrix factorizations, proposed by Toda [Tod14b, Tod14c]. It is more
specific, but would yield a stability condition that is invariant under certain auto-equivalences; it
would also lie outside of our set P̃. His approach would require a stronger Bogomolov-Gieseker
inequality already for slope-stable vector bundles, and likely lead to very interesting consequences
for generating functions of Donaldson-Thomas invariants.

Conjecture 2.4 can be specialized to certain slope-stable sheaves, similar to Corollary 1.6; see
[BMT14, Conjecture 7.2.3]. This statement was proved by Toda for certain Calabi-Yau threefolds,
including the quintic hypersurface, in [Tod14d]. Another case of that conjecture implies a certain
Castelnuovo-type inequality between the genus and degree of curves lying on a given threefold;
see [Tra14] for its relation to bounds obtained via classical methods.
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Our results are at least partially consistent with the expectations formulated in [Pol14]; in par-
ticular, semi-homogeneous bundles are examples of the Lagrangian-invariant objects considered
by Polishchuk, are semistable for our stability conditions, and their phases behave as predicted.

Plan of the paper. Appendix A may be of independent interest. We review systematically the
relation between support property, quadratic inequalities for semistable objects and deformations
of stability conditions, and their behaviour under wall-crossing.

Sections 2 and 3 and Appendix B review basic properties of tilt-stabilty, its deformation proper-
ties (fixing a small inaccuracy in [BMT14]), the conjectural inequality proposed in [BMT14] and
variants of the classical Bogomolov-Gieseker inequality satisfies by tilt-stable objects.

In Section 4 we show that a more general form of Conjecture 2.4 is equivalent to the original
conjecture, whereas Section 5 shows that both conjectures follows from a special limiting case.

This limiting case is proved for abelian threefolds in Section 7; in the following Section 8 we
show that this implies the existence of the open subset P̃ of stabilty conditions described above.
Section 9 shows that in the case of abelian threefolds, P̃ is in fact a connected component, and
Section 10 extends these results to (crepant resolutions) of quotients of abelian threefolds.
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Update (March 2016). Counterexamples due to Schmidt [Sch16] and Martinez [Mar16] indicate
that Conjectures 2.4 and 4.1 need to be modified in the case of a threefold obtained as the blowup
at a point of another threefold; on the other hand, they have been verified for all Fano threefolds
of Picard rank one [Li15].

2. REVIEW: TILT-STABILITY AND THE CONJECTURAL BG INEQUALITY

In this section, we review the notion of tilt-stability for threefolds introduced in [BMT14]. We
then recall the conjectural Bogomolov-Gieseker type inequality for tilt-stable complexes proposed
there; see Conjecture 2.4 below.

Slope-stability. Let X be a smooth projective complex variety and let n ≥ 1 be its dimension.
Let ω ∈ NS(X)R be a real ample divisor class.

For an arbitrary divisor class B ∈ NS(X)R, we will always consider the twisted Chern charac-
ter chB(E) = e−B ch(E); more explicitly, we have

(4)
chB0 = ch0 = rank chB2 = ch2−B ch1 +

B2

2
ch0

chB1 = ch1−B ch0 chB3 = ch3−B ch2 +
B2

2
ch1−

B3

6
ch0.
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We define the slope µω,B of a coherent sheaf E on X by

µω,B(E) =


+∞, if chB0 (E) = 0,

ωn−1 chB1 (E)

ωn chB0 (E)
, otherwise.

When B = 0, we will often write µω.

Definition 2.1. A coherent sheafE is slope-(semi)stable (or µω,B-(semi)stable) if, for all non-zero
subsheaves F ↪→ E, we have

µω,B(F ) < (≤)µω,B(E/F ).

Observe that if a sheaf is slope-semistable, then it is either torsion-free or torsion. Harder-
Narasimhan filtrations (HN-filtrations, for short) with respect to slope-stability exist in Coh(X):
given a non-zero sheaf E ∈ Coh(X), there is a filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ Em = E

such that: (i) Ai := Ei/Ei−1 is slope-semistable, and (ii) µω,B(A1) > · · · > µω,B(Am). We set
µ+
ω,B(E) := µω,B(A1) and µ−ω,B(E) := µω,B(Am).

The tilted category. Let X be a smooth projective threefold. As above, let ω,B be real divisor
classes with ω ample. There exists a torsion pair (Tω,B,Fω,B) in Coh(X) defined as follows:

Tω,B = {E ∈ Coh(X) : any quotient E � G satisfies µω,B(G) > 0} =
{
E : µ−ω,B(E) > 0

}
Fω,B = {E ∈ Coh(X) : any subsheaf F ↪→ E satisfies µω,B(F ) ≤ 0} =

{
E : µ+

ω,B(E) ≤ 0
}

Equivalently, Tω,B and Fω,B are the extension-closed subcategories of Coh(X) generated by
slope-stable sheaves of positive and non-positive slope, respectively.

Definition 2.2. We let Cohω,B(X) ⊂ Db(X) be the extension-closure

Cohω,B(X) = 〈Tω,B,Fω,B[1]〉.

By the general theory of torsion pairs and tilting [HRS96], Cohω,B(X) is the heart of a bounded
t-structure on Db(X); in particular, it is an abelian category.

Tilt-stability and the main conjecture. We now define the following slope function, called tilt,
on the abelian category Cohω,B(X): for an object E ∈ Cohω,B(X), its tilt νω,B(E) is defined by

νω,B(E) =


+∞, if ω2 chB1 (E) = 0,

ω chB2 (E)− 1
6
ω3 chB0 (E)

ω2 chB1 (E)
, otherwise.

We think of this as induced by the “reduced” central charge

(5) Zω,B(E) = ω2 chB1 (E) + iω

(
chB2 (E)− 1

6
ω2 chB0 (E)

)
;

indeed, if Zω,B(E) 6= 0, then the tilt νω,B(E) of E agrees with the slope of that complex number;
otherwise it is +∞.
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Definition 2.3. An object E ∈ Cohω,B(X) is tilt-(semi)stable if, for all non-trivial subobjects
F ↪→ E, we have

νω,B(F ) < (≤)νω,B(E/F ).

Tilt-stability gives a notion of stability, in the sense that Harder-Narasimhan filtrations exist.
The following conjecture is the main topic of [BMT14]:

Conjecture 2.4 ([BMT14, Conjecture 1.3.1]). For any νω,B-semistable object E ∈ Cohω,B(X)
satisfying νω,B(E) = 0, we have the following generalized Bogomolov-Gieseker inequality

(6) chB3 (E) ≤ ω2

18
chB1 (E).

Properties of tilt-stability. We will often fix B and vary ω along a ray in the ample cone via

ω =
√

3αH

for some given integral ample class H ∈ NS(X).3

To prove that tilt-stability is a well-behaved property, one needs to use variants of the classi-
cal Bogomolov-Gieseker inequality for slope-semistable sheaves; in particular, this leads to the
following statements:

Remark 2.5. (a) Tilt-stability is an open property. More precisely, assume that E ∈ Db(X)
is νω,B-stable with ω =

√
3αH . Then the set of pairs (α′, B′) ∈ R>0 × NS(X)R such

that E is ν√3α′H,B′-stable is open.
(b) The boundary of the above subset of R>0 × NS(X)R where E ∈ Db(X) is tilt-stable is

given by a locally finite collection of walls, i.e., submanifolds of real codimension one.

Unfortunately, a slightly stronger statement was claimed in [BMT14, Corollary 3.3.3], but (as
noted first by Yukinobu Toda) the proof there only yields the above claims. We will therefore
review these statements in more detail in Section 3 and Appendix B; one can also deduce them
with the same arguments as in the surface case, treated in detail in [Tod13b, Section 3].

Remark 2.6. It can be helpful to distinguish between two types of walls for tilt-stability, see
Proposition B.5. Locally, a wall for tilt-stability of E is described by the condition νω,B(F ) =
νω,B(E) for a destabilizing subobject F . This translates into the condition that either

(a) Zω,B(F ) and Zω,B(E) are linearly dependent, or that
(b) νω,B(E) = +∞.

In the limit ω → +∞ ·H , tilt-stability becomes closely related to slope-stability:

Lemma 2.7. Let H,B be fixed divisor classes with H ample, and let ω =
√

3αH for α ∈ R>0.
Then

(a) The category Cohω,B(X) is independent of α.
(b) Moreover, its subcategory of objects E with νω,B(E) = +∞ is independent of α.
(c) If E ∈ CohH,B(X) is νω,B-semistable for α � 0, then it satisfies one of the following

conditions:
(i) H−1(E) = 0 and H0(E) is a µω,B-semistable torsion-free sheaf.

(ii) H−1(E) = 0 and H0(E) is a torsion sheaf.

3We follow the convention of [Mac14b] by inserting a factor of
√
3 above. This ensures that walls of semistability

are semicircles, in analogy to the case of Bridgeland stability on surfaces. In particular, results from [AB13, Mac14a]
carry over more directly.
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(iii) H−1(E) is a µω,B-semistable sheaf and H0(E) is either 0, or supported in dimen-
sion ≤ 1.

Conversely, assume E ∈ Coh(X) is a µω,B-stable torsion-free sheaf.
(i) If H2 chB1 (E) > 0, then E ∈ CohH,B(X) and it is νω,B-stable for α� 0.

(ii) If H2 chB1 (E) ≤ 0, then E[1] ∈ CohH,B(X); if moreover E is a vector bundle,
then it is νω,B-stable for α� 0.

Proof. The first two statements are immediate to see. The arguments for part (c) are completely
analogous to the case of Bridgeland stable objects on surfaces, first treated in [Bri08, Proposition
14.2]; see also [BMT14, Proposition 7.2.1] for the first part. �

3. CLASSICAL BOGOMOLOV-GIESEKER TYPE INEQUALITIES

In this section, we review a result from [BMT14] that shows that tilt-stable objects onX satisfy
variants of the classical Bogomolov-Gieseker inequality.

We continue to assume that X is a smooth projective threefold. Throughout this section, let
H ∈ NS(X) be a polarization, ω =

√
3αH for α > 0, and B ∈ NS(X)R arbitrary.

First we recall the classical Bogomolov-Gieseker inequality:

Definition 3.1. The discriminant of E with respect to H is defined by

∆H(E) := H
(
ch1(E)2 − 2 ch0(E) ch2(E)

)
= H

(
chB1 (E)2 − 2 chB0 (E) chB2 (E)

)
.

Theorem 3.2 (Bogomolov, Gieseker). Assume thatE is a µH -semistable torsion-free sheaf onX .
Then ∆H(E) ≥ 0.

However, a sheaf F supported on a divisor D ⊂ X does not necessarily satisfy ∆H(F ) ≥ 0
(even if it is the push-forward of a slope-stable sheaf); indeed, we may have HD2 < 0. This leads
us to modify the inequality to a form that also holds for torsion sheaves, and in consequence for
tilt-stable objects. We first need the following easy observation (see, for example, the proof of
[BMT14, Corollary 7.3.3]):

Lemma 3.3. There exists a constant CH ≥ 0 such that for every effective divisor D ⊂ X , we
have

CH
(
H2D

)2
+H.D2 ≥ 0.

(Note that for abelian threefolds, we may take CH = 0.)

Definition 3.4. We define the H-discriminant as the following quadratic form:

(7) ∆
B
H :=

(
H2 chB1

)2 − 2H3 chB0 H. ch
B
2 .

For the second definition, choose a rational non-negative constant CH satisfying the conclusion of
Lemma 3.3. Then

(8) ∆C
H,B := ∆H + CH

(
H2 chB1

)2
.

Theorem 3.5 ([BMT14, Theorem 7.3.1, Corollaries 7.3.2 and 7.3.3]). Let X be a smooth pro-
jective threefold with ample polarization H ∈ NS(X). Assume that E is νω,B-semistable for
ω =
√

3αH and B ∈ NS(X)R. Then

∆
B
H(E) ≥ 0 and ∆C

H,B(E) ≥ 0.
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This was proved for rational B in [BMT14]; we will give a self-contained proof of the rational
case with a slightly different presentation below, and extend it to arbitrary B in Appendix B.

We think of ∆C
H,B as the composition

K(X)
vBH−−→ H0(X,R)⊕NS(X)R ⊕ R

qBH−−→ R

where the first map is given by

vBH(E) =
(
chB0 (E), chB1 (E), H chB2 (E)

)
and where qBH is the quadratic form

(r, c, d) 7→ Hc2 + CH
(
H2c

)2 − 2rd.

If B is rational, then the image of vBH (and of vBH , defined in Remark 3.8 below) is a finite rank
lattice.

Notice that Zω,B as defined in equation (5) factors via vBH . Its relation to qBH is controlled by
the following immediate consequences of the Hodge index theorem:

Lemma 3.6. The quadratic form qBH has signature (2, ρ(X)).
The kernel of Zω,B is negative definite with respect to qBH .

This makes our situation analogous to the one in Appendix A; in particular, Theorem 3.5 implies
a version of the support property for tilt-stable objects.

Lemma 3.7. Let ν ∈ R ∪ {+∞}. Then there exists a half-space

Hω,B,ν ⊂ H0(X,R)⊕NS(X)R ⊕ R

of codimension one with the following properties:
(a) For any object E ∈ Cohω,B(X) with νω,B(E) = ν, we have

vBH(E) ∈ Hω,B,ν .

(b) The intersection of Hω,B,ν with the set defined by qBH( ) ≥ 0 is a real convex cone.

Proof. We define Hω,B,ν as the preimage under Zω,B of the ray in the complex plane that has
slope ν, starting at the origin; this ensures the first claim. The second claim is a general fact about
quadratic forms, see Lemma A.7. �

Note that by definition, a half-space is closed; indeed, we may have vBH(E) = 0 iff ν = +∞.

Remark 3.8. If we replace vBH with the map

K(X)
vBH−−→ R3, vBH(E) =

(
H3 chB0 (E), H2 chB1 (E), H chB2 (E)

)
and qBH with the obvious quadratic form qBH on R3, then ∆

B
H = qBH ◦ vBH and the analogues of

Lemma 3.6 and Lemma 3.7 hold.

Proof of Theorem 3.5, case H2B ∈ Q. We prove the statement for ∆C
H,B under the assumption

that H2B is rational. The proof for ∆
B
H follows similarly due to Remark 3.8, and the non-rational

case will be treated in Appendix B.
We proceed by induction on H2 chB1 (E), which by our assumption is a non-negative function

with discrete values on objects of CohH,B(X).
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We start increasing α. If E remains stable as α→ +∞, we apply Lemma 2.7, (c); by Theorem
3.2 (for torsion-free slope-semistable sheaves) and Lemma 3.3 (for torsion sheaves) one easily
verifies that E satisfies the conclusion in any of the possible cases.

Otherwise, E will get destabilized. Note that as α increases, all possible destabilizing sub-
objects and quotients have strictly smaller H2 chB1 , which satisfy the desired inequality by our
induction assumption. This is enough to ensure that E satisfies well-behaved wall-crossing: fol-
lowing the argument of [Bri08, Proposition 9.3] it is enough to know a support property type
statement for all potentially destabilizing classes.

Hence there will be a wall α = αW where E is strictly ν√3αWH,B-semistable; let

0→ E1 → E → E2 → 0

be a short exact sequence where both E1 and E2 have the same tilt as E. Then both E1 and
E2 have strictly smaller H2 chB1 ; so they satisfy the inequality ∆C

H,B(Ei) ≥ 0 by the induction
assumption. In other words, vBH(Ei) are contained in the cone described in Lemma 3.7, (b); by
convexity, the same holds for

vBH(E) = vBH(E1) + vBH(E2).

�

We now turn to some consequences of Theorem 3.5.

Lemma 3.9. Let Q be a quadratic form of signature (1, r). Let C+ be the closure of one of the
two components of the positive cone given by Q(x) > 0. Assume that x1, . . . , xm ∈ C+, and let
x := x1 + . . . , xm. Then

Q(xi) ≤ Q(x) for all i,
with equality if and only if for all i, we have that xi is proportional to x and Q(xi) = Q(x) = 0.

Proof. This follows immediately from the easy fact that if x, y ∈ C+ − {0}, then the bilinear
form associated to Q satisfies (x, y) ≥ 0, with equality if and only if x, y are proportional with
Q(x) = Q(y) = 0. �

Corollary 3.10. Assume that E is strictly νω,B-semistable with νω,B(E) 6= +∞. Let Ei be the
Jordan-Hölder factors of E. Then

∆
B
H(Ei) ≤ ∆

B
H(E) for all i.

Equality holds if and only if all vBH(Ei) are proportional to vBH(E) and satisfy ∆
B
H(Ei) =

∆
B
H(E) = 0. In particular, if E is νω′,B′-stable for some ω′, B′ with ω′ proportional to ω, then

the inequality is strict.
The same statements hold with ∆

B
H and vBH replaced by ∆C

H,B and vBH , respectively.

The case ν = +∞ is excluded as in that case we may have vBH(Ei) = 0 or vBH(Ei) = vBH(E).

Proof. Let xi := vBH(Ei) and x := vBH(E). By Lemmas 3.6 and 3.7, they satisfy the assumptions
of Lemma 3.9, which then implies our claim. �

As another application, one obtains the tilt-stability of certain slope-stable sheaves (see also
[BMT14, Proposition 7.4.1]):

Corollary 3.11. (a) Let F be a µH,B-stable vector bundle with ∆C
H,B(F ) = 0 or ∆

B
H(F ) =

0. Then F or F [1] is a νω,B-stable object of CohH,B(X).
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(b) In particular, if L is a line bundle, and if in addition either c1(L) − B is proportional
to H , or we can choose the constant CH of Lemma 3.3 to be zero, then L or L[1] is
νω,B-stable.

(c) Conversely, consider an object E ∈ CohH,B(X) that is νω,B-stable with ∆C
H,B(E) = 0

or ∆
B
H(E) = 0. Then either E = H0(E) is a µH -semistable sheaf, or E = H0(E) is

supported in dimension ≤ 2, or H−1(E) 6= 0 is a µH -semistable sheaf and H0(E) has
zero-dimensional support. In addition, E is νω′,B-stable for all ω′ proportional to H .

Note that the choice CH = 0 in particular applies to abelian threefolds (or more generally any
threefold whose group of automorphisms acts transitively on closed points), or to any threefold of
Picard rank one.

Proof. Consider an object E that is νω,B-stable with ∆
B
H(E) = 0 or ∆C

H,B(E) = 0. By Corollary
3.10, E can never become strictly semistable with respect to νω′,B′ as long as ω′ is proportional to
ω. Combined with Lemma 2.7, (c) this implies all our claims. �

The analogue to the case CH = 0 of part (b) for Bridgeland stability on surfaces is due to
Arcara and Miles, see [AM16, Theorem 1.1], with a very different proof.

Proposition 3.12. Assume that B is rational, and let E ∈ CohH,B(X) be a νω,B-stable object
with ∆

B
H(E) = 0 and νω,B(E) = 0. Then E satisfies Conjecture 2.4.

Proof. If F is a µω,B-semistable reflexive sheaf on X with ∆
B
H(F ) = 0, then F is a vector

bundle by [LM16, Proposition 3.12], Further, if E is νω,B-semistable with νω,B(E) < +∞, then
H−1(E) is reflexive by [LM16, Proposition 3.1]. Hence, the case H−1(E) 6= 0 of part (c) in
Corollary 3.11 can actually be made much more precise: in this case, H0(E) = 0 and H−1(E) is
a vector bundle. In the other case, if νω,B(E) = 0, ∆

B
H(E) = 0, and H−1(E) = 0, then H0(E)

is a torsion-free sheaf and its double-dual is again locally-free with ∆
B
H = 0. In either case, a

classical result of Simpson (see [Sim92, Theorem 2] and [Lan11, Theorem 4.1]) implies that E
satisfies Conjecture 2.4; see [BMT14, Proposition 7.4.2]. �

4. GENERALIZING THE MAIN CONJECTURE

For this and the following section, we assume that ω and B are proportional to a given ample
class H ∈ NS(X):

(9) ω =
√

3αH, B = βH.

We will abuse notation and write chβi instead of chβHi , Cohβ(X) instead of CohH,βH(X), and
νHα,β or να,β to abbreviate

να,β =
√

3αν√3αH,βH =
H chβ2 −1

2α
2H3 chβ0

H2 chβ1
.

We will also write ∆H instead of ∆
B
H , as it is independent of the choice of β.

The goal of this section is to generalize Conjecture 2.4 to arbitrary tilt-semistable objects, not
just those satisfying να,β = 0. This generalization relies on the structure of walls for tilt-stability
in R>0 × R; it is completely analogous to the case of walls for Bridgeland stability on surfaces,
treated most systematically in [Mac14a].
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Conjecture 4.1. LetX be a smooth projective threefold, andH ∈ NS(X) an ample class. Assume
that E is νHα,β-semistable. Then

(10) α2∆H(E) + 4
(
H chβ2 (E)

)2
− 6H2 chβ1 (E) chβ3 (E) ≥ 0.

Theorem 4.2. Let X be a smooth projective threefold, and H ∈ NS(X) an ample class. Then
Conjecture 4.1 holds if and only if Conjecture 2.4 holds for all ω,B proportional to H .

We begin with the following aspect of “Bertram’s Nested Wall Theorem” [Mac14a, Theorem
3.1]:

Lemma 4.3. Assume the situation and notation of Conjecture 4.1 with να,β(E) 6= +∞. Then the
object E is να,β-semistable along the semicircle Cα,β(E) in the (α, β)-plane R>0×R with center
(0, β + να,β(E)) and radius

√
α2 + να,β(E)2.

Proof. We have to show that Cα,β(E) does not intersect any wall for tilt-stability, which are de-
scribed in Remark 2.6 or Proposition B.5. In our situation, all reduced central charges Zα,β factor
via the map

(11) vH : K(X)→ Q3, w 7→
(
H3 ch0(w), H2 ch1(w), H ch2(w)

)
.

The first type of wall, case (a) in Proposition B.5, can thus equivalently be described as the set
of (α′, β′) for which vH(F ) (for some destabilizing subobject F ↪→ E) is contained in the two-
dimensional subspace of Q3 spanned by vH(E) and the kernel of Zα′,β′ .

However, this two-dimensional subspace does not vary as (α′, β′) move within Cα,β(E): the
kernel of Zα′,β′ is spanned by

(
1, β′, 1

2(α′2 + β′2)
)
, and the the vectors(

H3 ch0(E), H2 ch1(E), H ch2(E)
)
,

(
1, β,

1

2
(α2 + β2)

) (
1, β′,

1

2
(α′2 + β′2)

)
are linearly dependent if and only if (α′, β′) is contained in Cα,β(E).

In addition, a simple computation shows H2 chβ
′

1 (E) > 0 for (α′, β′) ∈ Cα,β(E); therefore,
the semicircle cannot intersect a wall given by να′,β′(E) = +∞ either. �

Proof of Theorem 4.2. We first note that due to Theorem 3.5, Conjecture 4.1 holds for all objects
E with H2 chβ1 (E) = 0. We may therefore assume να,β(E) 6= +∞ throughout the proof.

As an auxiliary step, consider the following statement:
(*) Assume that E is να,β-stable with να,β(E) 6= +∞. Let β′ := β + να,β(E). Then

(12) chβ
′

3 (E) ≤ 1

6

(
α2 + να,β(E)2

)
H2 chβ

′

1 (E).

Evidently, Conjecture 2.4 (for the case of ω,B proportional to H) is a special case of (*). Con-
versely, consider the assumptions of (*). By Lemma 4.3, E is να′,β′-semistable, where β′ is as
above, and α′2 = α2 + να,β(E)2. Moreover, a simple computation shows να′,β′(E) = 0. There-
fore, Conjecture 2.4 implies the statement (*).

Finally, a straightforward computation shows that the inequalities (12) and (10) are equivalent;
for this purpose, let us use the abbreviations ei := H3−i chβi (E) for 0 ≤ i ≤ 3. Note that by our
assumptions, e1 > 0. With this notation, expanding inequality (12) yields:

e3 − να,βe2 +
1

2
ν2
α,βe1 −

1

6
ν3
α,βe0 ≤

1

6
α2e1 +

1

6
ν2
α,βe1 −

1

6
α2να,βe0 −

1

6
ν3
α,βe0
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Collecting related terms, substituting να,β =
− 1

2
α2e0+e2
e1

and multiplying with 6e1 yields:

0 ≤ −6e1e3 + 3e2

(
−α2e0 + 2e2

)
− 2

(
−1

2
α2e0 + e2

)2

+ α2e2
1 − α2

(
−1

2
α2e0 + e2

)
e0

This simplifies to (10). �

Example 4.4. Assume that E is a slope-stable sheaf such that c := H2c1(E) is the minimum
positive integer of the form H2F for integral divisor classes F ; for example, this is the case when
NS(X) = Z ·H and c1(E) = H . Then E is να,0-stable for all α > 0 by [BMT14, Lemma 7.2.2].
Hence in that case, Conjecture 4.1 claims that

(13) 3c ch3(E) ≤ 2 (H ch2(E))2 .

This generalizes [BMT14, Conjecture 7.2.3]. In particular, let C ⊂ X be a curve of genus g and
degree d = HC; then E = IC ⊗ O(H) is supposed to satisfy (13). Let K ∈ Z such that the
canonical divisor class KX = KH . By the Hirzebruch-Riemann-Roch Theorem, we have

1− g = χ(OC) = ch3(OC)− 1

2
Kd.

Since

ch(IC ⊗O(H)) =

(
1, H,

1

2
H2 − C, 1

6
H3 − d− ch3(OC)

)
,

the inequality (13) specializes to the following Castelnuovo type inequality between genus and
degree of the curve (where D = H3 is the degree of the threefold):

(14) g ≤ 2d2

3D
+

5 + 3K

6
d+ 1

Even for complete intersection threefolds, this inequality does not follow from existing results;
see [Tra14, Section 3] for progress in that direction.

Remark 4.5. The inequality (13) holds when X is an abelian threefold, or a Calabi-Yau threefold
of abelian type. Moreover, since Conjecture 4.1 is equivalent to Conjecture 2.4, and since the
latter has been verified for P3 in [BMT14, Mac14b], and for the quadric threefold in [Sch14], it
also applies in these two cases.

The inequality is new even in the case of P3: for sheaves of rank three, it is slightly weaker
than classically known results, see [EHV82, Theorem 4.3] and [MR87, Theorem 1.2], but no such
results are known for higher rank.

5. REDUCTION TO SMALL α

The goal of this section is to reduce Conjecture 4.1 to a more natural inequality, that can be
interpreted as an Euler characteristic in the case of abelian threefolds, and which considers the
limit as α→ 0 and να,β → 0.

We continue to assume that X is a smooth projective threefold with an ample polarization
H ∈ NS(X). To give a slightly better control over the limit α→ 0, we will modify the definition
of the reduced central charge of (5) to the following form (which is equivalent for α 6= 0):

(15) Zα,β = H2 chβ1 +i

(
H chβ2 −

1

2
α2H3 chβ0

)
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It factors via the map vH of (11). Also, as observed in Remark 3.8, the H-discriminant can be
written as the composition ∆H = q ◦ vH where q is the quadratic form on Q3 given by

(r, c, d) 7→ c2 − 2rd.

Given any E ∈ Cohβ(X), we define β(E) as follows:

(16) β(E) :=


H ch2(E)
H2 ch1(E)

if ch0(E) = 0,
H2 ch1(E)−

√
∆H(E)

H3 ch0(E)
if ch0(E) 6= 0.

The motivation behind this definition is that β(E) is the limit of a curve (α(t), β(t)) ∈ R>0 × R
for which both α(t) → 0 and να(t),β(t)(E) → 0; in other words, for which the right-hand-side of
the inequality (12) goes to zero: this follows from

(17) H ch
β(E)
2 (E) = 0.

We also point out that H2 ch
β(E)
1 (E) > 0 unless ∆H(E) = 0.

The other motivation for the definition of β̄ lies in the following observations, extending Lemma
3.6:

Lemma 5.1. The kernel of Z0,β(E) (as a subspace of R3) is contained in the quadric q = 0, and
the map (α, β)→ KerZα,β extends to a continuous map from of R≥0 × R to the projectivization
C−/R∗ of the cone C− ⊂ R3 given by q ≤ 0.

Moreover, if ∆H(E) > 0, then the quadratic form q is positive semi-definite on the 2-plane
spanned by vH(E) and the kernel of Z0,β(E).

In other words, the vector vH(E) is contained in the tangent plane to the quadric q = 0 at the
kernel of Z0,β(E); see Figure 1.

Remark 5.2. The map (α, β) 7→ KerZα,β gives a homeomorphism from R≥0×R onto its image
in the closed unit disc C−/R∗. This can be a helpful visualization, as a central charge is, up to the
action of GL2(R), determined by its kernel.

Proof of Lemma 5.1. The kernel of Zα,β is spanned by the vector
(
1, β, 1

2(α2 + β2)
)
, which has

H-discriminant qH
(
1, β, 1

2(α2 + β2)
)

= −α2. This proves the first claim.
For the second claim, we just observe that

(
1, β(E), 1

2β(E)2
)

and vH(E) are orthogonal with
respect to the bilinear form on R3 associated to q. �

The following is a limit case of Conjecture 4.1:

Conjecture 5.3. Let E ∈ Db(X) be an object with the following property: there exists an open
neighborhood U ⊂ R2 of (0, β(E)) such that for all (α, β) ∈ U with α > 0, either E or E[1] is
a να,β-stable object of Cohβ(X). Then

(18) ch
β(E)
3 (E) ≤ 0.

Unless ∆H(E) = 0, we can always make U small enough such that H2 chβ1 (E) > 0 for
(α, β) ∈ U ; then E itself is an object of Cohβ(X).

A strengthening of the methods of [Mac14b] leads to the main result of this section:

Theorem 5.4. Conjectures 5.3 and 4.1 are equivalent.
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q < 0

kerZ0,β(E)

vH(E)

FIGURE 1. A section of the negative cone q ≤ 0 and the tangent plane passing
through vH(E) and kerZ0,β(E). The other planes through vH(E) intersecting
q < 0 correspond to walls of stability for vH(E).

Lemma 5.5. Let E ∈ Db(X) be an object with ∆H(E) > 0 that is να,β-stable for some (α, β) ∈
R>0 × R. The point (0, β(E)) cannot be an endpoint of a wall of tilt-stability for E. Moreover,
each of the semicircles of Lemma 4.3 (along which E has to remain stable) contains (0, β(E)) in
its interior.

Proof. Recall the description of walls in Remark 2.6. As ∆H(E) > 0 impliesH2 ch
β(E)
1 (E) > 0,

we can exclude the possibility of a wall given by νω,B(E) = +∞. The other type of walls can
equivalently be defined by the property that the kernel of Zα,β(E) is contained in the 2-plane
Π ⊂ R3 spanned by vH(F ) and vH(E), for some destabilizing subobject F ↪→ E. The signature
of q restricted to Π has to be (1, 1) (as it contains vH(E) and the kernel of Zα,β for some α > 0).
If (0, β(E)) was an endpoint of this wall, then by Lemma 5.1 the kernel of Z0,β(E) would also be
contained in Π; this is a contradiction to the second assertion of Lemma 5.1.

For the second claim, recall that the semicircles of Lemma 4.3 do not intersect. (For example,
in Figure 1, they are given by the condition that KerZα,β is contained in a given plane through
vH(E).) As we shrink the radius of the circles, their center has to converge to the point with α = 0
and να,β(E) = 0. �

Lemma 5.6. Objects with ∆H(E) = 0 satisfy both Conjecture 4.1 and Conjecture 5.3.

Proof. Proposition 3.12 combined with Theorem 4.2 ensures that such an object satisfies Con-
jecture 4.1. If E in addition satisfies the assumptions of Conjecture 5.3, we consider inequality
(10) nearby (0, β(E)). The first term vanishes identically, the second vanishes to second order at

(0, β(E)). Therefore, we must have ch
β(E)
3 (E) = 0; otherwise the third term would only have a

simple zero, in contradiction to Conjecture 4.1. �

Proof of Theorem 5.4. By the previous lemma, we can restrict to the case ∆H(E) > 0 throughout.
First assume that Conjecture 4.1 holds. Let E be an object as in the assumptions of Conjecture
5.3 and consider the limit of (10) as (α, β) → (0, β). Evidently the first term α2∆H(E) goes to
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zero; by equation (17), the same holds for the second term
(
H chβ2 (E)

)2
. Since H2 ch

β(E)
1 > 0,

the limit yields exactly (18).
For the converse, we start with three observations on inequality (10).

(a) Consider a semicircle given by Lemma 4.3. By the proof of Theorem 4.2, inequality (10)
either holds for all points on the semicircle, or it is violated for all such points; indeed,
it is equivalent to inequality (12), which is just the original Conjecture 2.4 applied at the
point where this semicircle intersects the curve given by να,β(E) = 0.

(b) Once we fix β, it is clear from Theorem 3.5 that if (10) holds for a given α0, then it holds
for all α ≥ α0.

(c) Finally, if we consider the semicircles of Lemma 4.3 at all points (α, β) with α > 0, β =

β(E), then by Lemma 5.5 they fill up all points of R>0 × R with H2 chβ1 (E) > 0.
Now assume that Conjecture 5.3 holds. We proceed by induction on ∆H(E) (recall that ∆H

only obtains non-negative integers for tilt-stable objects E).
For contradiction, let E be an object that is να,β-stable, with ∆H(E) > 0, and that violates

conjecture (10) at this point. By Lemma 5.5 and observation (a) above, we may assume β = β(E).
Now fix β = β(E) and start decreasing α. Since we assume (10) to be violated, we must have

ch
β(E)
3 (E) > 0. If E were to remain stable as α → 0, then by Lemma 5.5 it would be stable in a

neighborhood of (0, β(E)) as in the conditions of Conjecture 5.3; this is a contradiction.
Therefore there must be a point α0 where E is strictly να0,β(E)-semistable; let Ei be the list of

its Jordan-Hölder factors. By observation (b), E still violates conjecture (10) at (α0, β(E)). On
the other hand, by Corollary 3.10, ∆H(Ei) < ∆H(E) for each i; by the induction assumption, Ei
satisfies Conjecture 4.1.

Now the conclusion follows just as in Lemma A.6: consider the left-hand-side of (10) as a qua-
dratic form on R4 with coordinates (H3 chβ0 , H

2 chβ1 , H chβ2 , ch
β
3 ). The kernel ofZα,β , considered

as a subspace of R4, is negative semi-definite with respect to the quadratic form. Therefore, the
claim follows from Lemma A.7. �

6. TILT STABILITY AND ÉTALE GALOIS COVERS

Consider an étale Galois cover f : Y → X with covering groupG; in other words,G acts freely
on Y with quotient X = Y/G. In this section, we will show that tilt-stability is preserved under
pull-back by f .

For this section, we again let ω,B ∈ NS(X)R be arbitrary classes with ω a positive real multiple
of an ample.

Proposition 6.1. If E ∈ Db(X), then
(a) E ∈ Cohω,B(X) if and only if f∗E ∈ Cohf

∗ω,f∗B(Y ), and
(b) E is νω,B-semistable if and only if f∗E is νf∗ω,f∗B-semistable.

Proof. The pull-back formula for Chern characters immediately gives

µf∗ω,f∗B(f∗F ) = µω,B(F ) and νf∗ω,f∗B(f∗E) = νω,B(E).

By [HL10, Lemma 3.2.2], a torsion-free sheafF is µω,B-semistable if and only if f∗F is µf∗ω,f∗B-
semistable, which directly implies (a).

Now consider E ∈ Cohω,B(X). Part (a) and the above computation shows that if E is tilt-
unstable, then so is f∗E. Conversely, assume that f∗E is tilt-unstable. Let F ↪→ f∗E be the first
step in its Harder-Narasimhan filtration with respect to νf∗ω,f∗B . Since f∗E is G-equivariant, and
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since the HN filtration is unique and functorial, the object F must also be G-equivariant. Hence
it is the pull-back of an object F ′ in Db(X). Using part (a) again, we see that F ′ must be an
object of Cohω,B(X). Applying the same arguments to the quotient f∗E/F , we see that F ′ is a
destabilizing subobject of E in Cohω,B(X). �

Example 6.2. Let n ∈ Z>0. Let X = Y be an abelian threefold and let n : X → X be the
multiplication by n map. Then n has degree n6, and n∗H = n2H for any class H ∈ NS(X); see
e.g. [BL04, Corollary 2.3.6 and Chapter 16].

We also obtain directly the following consequence:

Proposition 6.3. If Conjecture 2.4 holds for tilt-stability with respect to νf∗ω,f∗B on Y , then it
also holds for tilt-stability with respect to νω,B on X .

7. ABELIAN THREEFOLDS

Let (X,H) be a polarized abelian threefold. In this section we prove Theorem 1.1.
Most of this section will be concerned with proving Conjecture 5.3, the case where ω andB are

proportional to H . For (α, β) ∈ R>0 × R, we let ω =
√

3αH and B = βH . We can also assume
that H is the class of a very ample divisor, which, by abuse of notation, will also be denoted by H .

We let E ∈ Db(X) be an object satisfying the assumptions of Conjecture 5.3. By Lemma 5.6,

we can also assume ∆H(E) > 0, and so H2 ch
β(E)
1 (E) > 0. We proceed by contradiction, and

assume that
ch
β(E)
3 (E) > 0.

Idea of the proof. Consider the Euler characteristic of the pull-backs

n∗
(
E(−β(E)H)

)
via the multiplication by n map. If we pretend that E(−β(E)H) exists, this Euler characteristic
grows proportional to n6; we will show a contradiction via restriction of sections to divisors.

The proof naturally divides into two cases: if β(E) is rational, then n∗
(
E(−β(E)H)

)
exists

when n is sufficiently divisible, and the above approach works verbatim; otherwise, we need to
use Diophantine approximation of β(E).

Proof of Conjecture 5.3, rational case. We assume that β(E) is a rational number.

Reduction to β(E) = 0. Let q ∈ Z>0 such that qβ(E) ∈ Z, and consider the multiplication map
q : X → X . By Proposition 6.1, q∗E still violates Conjecture 5.3. By definition, we have

β(q∗E) = q2β(E) ∈ Z.

Replacing E with q∗E, we may assume that β(E) is an integer. Replacing E again with E ⊗
OX(−β(E)H), we may assume that E satisfies the assumptions of Conjecture 5.3, as well as

• β(E) = 0, and so H. ch2(E) = 0, and
• ch3(E) > 0, and so ch3(E) ≥ 1.

Asymptotic Euler characteristic. We look at χ(OX , n∗E), for n → ∞. By the Hirzebruch-
Riemann-Roch Theorem, we have

(19) χ(OX , n∗E) = n6 ch3(E) ≥ n6.

The goal is to bound χ(OX , n∗E) from above with a lower order in n.
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First bound. We claim that

(20) χ(OX , n∗E) ≤ hom(OX , n∗E) + ext2(OX , n∗E).

Indeed, both n∗E and OX [1] are objects of Cohβ=0(X). Hence, for all k ∈ Z>0, we have

hom−k−1(OX , n∗E) = hom−k(OX [1], n∗E) = 0,

homk+2(OX , n∗E) = homk+3(OX [1], n∗E) = hom−k(n∗E,OX [1]) = 0.

Hom-vanishing from stability. To bound the above cohomology groups, we use Hom-vanishing
between line bundles and n∗E. By Corollary 3.11, all objects of Cohβ(X) of the form OX(uH)
and OX(−uH)[1] are να,β-stable, for all u > 0 and β close to 0. For (β, α)→ (0, 0), we have

να,β(OX(uH))→ u

2
> 0

να,β(OX(−uH)[1])→ −u
2
< 0

να,β(n∗E)→ 0,

(21)

and therefore
να,β(OX(H)) > να,β(n∗E) > να,β(OX(−H)[1]).

Applying the standard Hom-vanishing between stable objects and Serre duality, we conclude

(22) Hom(OX(H), n∗E) = 0 and Ext2(OX(−H), n∗E) = 0.

Restriction to divisors. We will use this Hom-vanishing to restrict sections to divisors; we will
repeatedly apply the following immediate observation:

Lemma 7.1. Let F1, . . . , Fm be a finite collection of sheaves. Then any globally generated linear
system contains an open subset of divisors D with

Tori(OD, Fj) = 0

for all i > 0 and j = 1, . . . ,m.

Proof. We choose D such that it does not contain any of the associated points of Fj , i.e., such that
the natural map Fj(−D)→ Fj is injective. �

In particular, for general D, a finite number of short exact sequences restrict to exact sequences
on D, and taking cohomology sheaves of a complex E commutes with restriction to D.

Bound on hom(OX , n∗E). We want to show

(23) hom(OX , n∗E) = O(n4).

We consider the exact triangle in Db(X)

n∗E ⊗OX(−H)→ n∗E → (n∗E)⊗OD,
where D is a general smooth linear section of H . By (22), we have

hom(OX , n∗E) ≤ hom(OX , (n∗E)⊗OD).

We consider the cohomology sheaves of E and the exact triangle in Db(X)

H−1(E)[1]→ E → H0(E).

Since D is general, Lemma 7.1 gives

hom
(
OX , (n∗E)⊗OD

)
≤ h0

(
D, (n∗H0(E))|D

)
+ h1

(
D, (n∗H−1(E))|D

)
.
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The bound (23) will then follow from Lemma 7.3 below. We first recall a general bound on
global sections of sheaves restricted to hyperplane sections, which is due to Simpson and Le
Potier, and can be deduced as a consequence of the Grauert-Mülich Theorem:

Theorem 7.2 ([HL10, Corollary 3.3.3]). Let Y be a smooth projective complex variety of dimen-
sion n ≥ 1 and let H be a very ample divisor on Y . Let F ∈ Coh(Y ) be a torsion-free sheaf.
Then, for a general sequence of hyperplane section D1, . . . , Dn ∈ |H| and for all d = 1, . . . , n,
we have

h0(Yd, F |Yd) ≤

 ch0(F )Hn

d!

(
µ+
H(F ) + ch0(F )−1

2 + d
)d

if µ+
H(F ) ≥ 0

0 if µ+
H(F ) < 0

,

where Yn = Y and Yd := D1 ∩ · · · ∩Dn−d.

Notice that in the actual statement of [HL10, Corollary 3.3.3] there is a factor Hn; this is
already included in our definition of slope.

Lemma 7.3. Let Q be a sheaf on X and let L be a line bundle. For all i = 0, 1, 2 and for D a
smooth very general surface in the linear system |H|, we have

hi(D, (n∗Q⊗ L)|D) = O(n4).

Proof. We assume first that Q is torsion-free. Notice that the multiplication map n preserves
slope-stability and the rank. Therefore, by Theorem 7.2, we have

h0(D, (n∗Q⊗ L)|D) ≤ ch0(Q)H3

2

(
µ+
H(n∗Q⊗ L) +

ch0(Q)− 1

2
+ 2

)2

=
ch0(Q)H3

2

(
µ+
H(Q)

)2
n4 +O(n3).

The h2-estimate follows similarly, by using Serre Duality onD. Finally, the Hirzebruch-Riemann-
Roch Theorem on D gives

h1(D, (n∗Q⊗ L)|D) = −χ(D, (n∗Q⊗ L)|D) + h0(D, (n∗Q⊗ L)|D) + h2(D, (n∗Q⊗ L)|D)

= O(n4).

This finishes the proof in the torsion-free case.
For a general sheaf Q, we take a resolution

0→M → N → Q→ 0,

with N locally-free and M torsion-free. Since D is very general, Lemma 7.1 applies, giving

hi(D, (n∗Q⊗ L)|D) ≤ hi(D, (n∗N ⊗ L)|D) + hi+1(D, (n∗M ⊗ L)|D).

Hence the result follows from the previous case. �

Bound on ext2(OX , n∗E). This is similar to the previous case. We consider the exact triangle

n∗E → n∗E ⊗OX(H)→ (n∗E ⊗OX(H))⊗OD.
Again, we apply (22), Lemma 7.1 and Lemma 7.3 and reach

ext2(OX , n∗E) ≤ ext1(OX , (n∗E ⊗OX(H))⊗OD)

≤ h1(D, (n∗H0(E)⊗OX(H))|D) + h2(D, (n∗H−1(E)⊗OX(H))|D)

= O(n4).

(24)
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Conclusion. By (19), (20), (23), and (24), we have

n6 ≤ χ(OX , n∗E) = O(n4),

which gives a contradiction for n sufficiently large.

Proof of Conjecture 5.3, irrational case. Now assume that β(E) ∈ R\Q is an irrational number.
As a consequence ch0(E) 6= 0 and, for all β ∈ Q, H chβ2 (E) 6= 0.

By assumption, there exists ε > 0 such that E is να,β-stable for all (α, β) in

Vε :=
{

(α, β) ∈ R>0 × R : 0 < α < ε, β(E)− ε < β < β(E) + ε
}
.

By the Dirichlet approximation theorem, there exists a sequence
{
βn = pn

qn

}
n∈N

of rational

numbers such that

(25)
∣∣∣∣β(E)− pn

qn

∣∣∣∣ < 1

q2
n

< ε

for all n, and with qn → +∞ as n→ +∞.

The Euler characteristic. The function f(β) = chβ3 (E) has derivatives f ′(β) = −H chβ2 (E) and

f ′′(β) = H2 chβ1 (E); since H chβ2 (E) = 0 and H2 chβ1 (E) > 0, the point β = β(E) is a local
minimum. Thus, for large n, we have

chβn3 (E) > ch
β(E)
3 (E) > 0.

Consider the multiplication map qn : X → X . We let

Fn := qn
∗E ⊗OX(−pnqnH).

By Lemma 6.1, Fn is να,0-stable, for all α > 0 sufficiently small. We have

(26) χ(OX , Fn) = ch3(Fn) = q6
n chβn3 (E) > q6

n ch
β(E)
3 (E).

By (20), it is again enough to bound both hom(OX , Fn) and ext2(OX , Fn) from above.

Hom-vanishing. As α→ 0, we have

να,0(Fn)→ q2
n

H chβn2 (E)

H2 chβn1 (E)
.

We can bound this term as follows:∣∣∣∣∣q2
n

H chβn2 (E)

H2 chβn1 (E)

∣∣∣∣∣ = q2
n

∣∣∣∣∣H chβ2 (E)− (βn − β)H2 chβ1 (E) + 1
2(βn − β)2H3 ch0(E)

H2 chβ1 (E)− (βn − β)H3 ch0(E)

∣∣∣∣∣
= q2

n

∣∣βn − β∣∣
∣∣∣∣∣H2 chβ1 (E)− 1

2(βn − β)H3 ch0(E)

H2 chβ1 (E)− (βn − β)H3 ch0(E)

∣∣∣∣∣
≤ 1 ·

(
1 +

∣∣∣∣∣ 1
2(βn − β)H3 ch0(E)

H2 chβ1 (E)− (βn − β)H3 ch0(E)

∣∣∣∣∣
)
→ 1.

Here we used H2 ch
β(E)
2 (E) = 0 in the second equality, and H2 ch

β(E)
1 (E) > 0 in the limit.

By comparison with (21), it follows that

να,βn(OX(3H)) > να,βn(Fn) > να,β(OX(−3H)[1])
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for α→ 0 and n sufficiently large; therefore

(27) Hom(OX(3H), Fn) = 0 and Ext2(OX(−3H), Fn) = 0.

Bound on hom(OX ,m∗Fn) and conclusion. Proceeding as in the rational case, we consider the
exact triangle

Fn ⊗OX(−3H)→ Fn → Fn ⊗OD,
where D is a general smooth surface in the linear system |3H|. By (27), we have

hom(OX , Fn) ≤ hom(OX , Fn ⊗OD)

≤ h0(D,H0(Fn)|D) + h1(D,H−1(Fn)|D).

The following is the analogue of Lemma 7.3:

Lemma 7.4. Let Q be a sheaf on X and let L be a line bundle. Then

hi(D, (qn
∗Q(−pnqnH)⊗ L)|D) = O(q4

n),

for all i, and for D a general smooth surface in |3H|.

Proof. By the same argument as in the proof of Lemma 7.3, we may assume thatQ is torsion-free.
Applying Theorem 7.2 in our case we obtain, for general D,

h0
(
D, (qn

∗Q(−pnqnH)⊗ L)|D
)

≤ ch0(Q)(3H)3

2

(
µ+

3H(qn
∗Q(−pnqnH)⊗ L) +

ch0(Q)− 1

2
+ 2

)2

=
3 ch0(Q)H3

2

(
µ+
H,βn

(Q)
)2
q4
n +O(q3

n)

=
3 ch0(Q)H3

2

(
µ+
H,β(E)

(Q)
)2
q4
n +O(q3

n),

The h1 and h2 bounds follow from Serre duality and the Riemann-Roch Theorem. �

Applying Lemma 7.4 to the cohomology sheaves of E in combination with Lemma 7.1, we get

hom(OX , Fn) = O(q4
n).

The same argument gives a similar bound on ext2(OX , Fn) and a contradiction to (26). This
completes the proof of Conjecture 5.3, and therefore Conjecture 4.1, for abelian threefolds.

Proof of Theorem 1.1. Let now B ∈ NS(X)R be an arbitrary divisor class and ω a positive
multiple of H . In the abelian threefold case, we can use Conjecture 5.3 to deduce Conjecture 2.4
in this more general case.

We letE ∈ Cohω,B(X) be as in Conjecture 2.4. We first assume thatB ∈ NS(X)Q is rational.
Then, by Proposition 6.1, we can assume B integral. By taking the tensor product withOX(−B),
we can then assume E is νω,0-semistable. Conjecture 2.4 then follows directly from Conjecture
4.1 and Theorem 5.4.

Finally, we take B irrational. Since (6) is additive, by considering its Jordan-Hölder factors we
can assume E is νω,B-stable. By using Theorem 3.5 and Remark 2.5, we can deform (ω,B) to
(ω′, B′) with B′ rational (and ω′ still proportional to H), such that E is still νω′,B′-stable with
νω′,B′(E) = 0. But, if (6) does not hold for (ω,B), then it does not hold for (ω′, B′) sufficiently
close, giving a contradiction to what we just proved.
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8. CONSTRUCTION OF BRIDGELAND STABILITY CONDITIONS

It was already established in [BMT14] that Conjecture 2.4 implies the existence of Bridgeland
stability conditions on X , except that the notion of support property was ignored. This property
ensures that stability conditions deform freely, and exhibit well-behaved wall-crossing.

In this section, we show that the equivalent Conjecture 4.1 is in fact strong enough to deduce
the support property, and to construct an explicit open subset of the space of stability conditions.
In the following section, we will show that in the case of abelian threefolds, this open set is in fact
an entire component of the space of stability conditions.

Statement of results. Fix a threefold X with polarization H; we assume throughout this section
that Conjecture 4.1 is satisfied for the pair (X,H). We consider the lattice ΛH ∼= Z4 generated by
vectors of the form (

H3 ch0(E), H2 ch1(E), H ch2(E), ch3(E)
)
∈ Q4

together with the obvious map vH : K(X)→ ΛH .
We refer to Appendix A for the definition of stability conditions on Db(X) with respect to

(ΛH , vH); it is given by a pair σ = (Z,P), where P is a slicing, and the central charge Z is
a linear map Z : ΛH → C. The main result of [Bri07] shows that the space StabH(X) of such
stability conditions is a four-dimensional complex manifold such that

Z : StabH(X)→ Hom(ΛH ,C), (Z,P) 7→ Z

is a local isomorphism. In Proposition A.5 we make this deformation result more effective. This
result will be essential in the following, where we will construct an explicit open subset of this
manifold. We let C ⊂ ΛH ⊗ R ∼= R4 be the cone over the twisted cubic

C =

{(
x3, x2y,

1

2
xy2,

1

6
y3

)
: x, y ∈ R

}
,

which contains vH(OX(uH)) for all u ∈ Z.

Definition 8.1. Consider the open subset V ⊂ Hom(ΛH ,C) of central charges whose kernel
intersects C only at the origin. We let P ⊂ V be the connected component containing Zbasic

H
defined by

(28) Zbasic
H (E) =

[
− ch3(E) +

1

2
H2 ch1(E)

]
+ i

[
H ch2(E)− 1

6
H3 ch0(E)

]
.

Let P̃ be its universal covering.

The goal of this section is the following precise version of Theorem 1.3:

Theorem 8.2. Let (X,H) be a polarized threefold for which Conjecture 4.1 is satisfied. Then
there is an open embedding P̃ ⊂ StabH(X) for which the following diagram commutes:

P̃ �
� //

��

StabH(X)

Z
��

P �
� // Hom(ΛH ,C)

We will prove this theorem by constructing an explicit family of stability conditions following
the construction of [BMT14], and then applying the deformation arguments of Proposition A.5.
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Alternative description of P. We will need a more explicit description of the set P before pro-
ceeding to prove our main result.

The group GL+
2 (R) of 2 × 2-matrices with positive determinant acts on P on the left by post-

composing a central charge with the induced R-linear map of R2 ∼= C. There is also an action of
R on P on the right: for β ∈ R, the multiplication by e−βH in K(Db(X)) corresponds to a linear
selfmap of ΛH ⊗ R which leaves C invariant; therefore we can act on P by pre-composing with
this linear map.

Lemma 8.3. There is a slice of P with respect to the GL+
2 (R)-action given by central charges of

the form

Za,bα,β :=
[
− chβ3 +bH chβ2 +aH2 chβ1

]
+ i

[
H chβ2 −

1

2
α2H3 chβ0

]
for all α, β, a, b ∈ R satisfying α > 0 and

(29) a >
1

6
α2 +

1

2
|b|α.

This slice is simply-connected.

It follows that it is simultaneously a slice of the G̃L
+

2 (R)-action on P̃.

Proof. Consider a central charge Z ∈ P. Since Z(0, 0, 0, 1) 6= 0 by definition of P, we may
use the action of rotations and dilations to normalize to the assumption Z(0, 0, 0, 1) = −1. Now
consider the functions

r(x) := <Z
(

1, x,
1

2
x2,

1

6
x3

)
= −1

6
x3 +O(x2) and i(x) := =Z

(
1, x,

1

2
x2,

1

6
x3

)
= O(x2)

for Z ∈ P normalized as above; their coefficients vary continuously with Z. They can never
vanish simultaneously, by definition of P. In the case of Zbasic

H , the function r(x) = −1
6x

3 + 1
2x

has zeros as x = −
√

3, x = 0, x =
√

3, whereas i(x) = 1
2x

2 − 1
6 has zeros at x = ±

√
1
3 . This

configuration of zeros on the real line will remain unchanged as Z varies: r(x) will always have
three zeros, and i(x) will have two zeros lying between the first and second, and the second and
third zero of r(x), respectively.

We now use the action of R on P from the right to ensure that x = 0 is always the midpoint
of the two zeros of i(x). The sign of the leading coefficient of i(x) must remain constant as Z
varies; therefore, we can use vertical rescaling of R2 to normalize it to be +1

2 . Since the sign of
i(0) = =Z(OX) is constant within this slice, it has to be negative; hence there exists a unique
α ∈ R>0 such that i(0) = −1

2α
2.

On the slice we have constructed thus far, we still have the action of R given by sheerings of
R2 ∼= C that leave the real line fixed. Since =Z(OX) = i(0) < 0, there is a unique such sheering
that forces Z(OX) to be real. Summarizing, we have constructed a slice in which all central
charges are of the form

Za,bα,β=0 :=
[
− ch3 +bH ch2 +aH2 ch1

]
+ i

[
H ch2−

1

2
α2H3 ch0

]
.

In this form, the zeros of i(x) = 1
2x

2 − 1
2α

2 are x = ±α; thus the kernel of Z intersects the
twisted cubics if and only if

a =
1

6
α2 ± 1

2
bα.
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In the case of Zbasic
H , we have α =

√
1
3 , b = 0 and a = 1

2 , which is bigger than the right-hand-side.
It follows that the inequality (29) holds in the whole connected component of our slice.

Conversely, given a central charge Za,bα,β as described in the lemma, we can first use the ac-
tion of R to reduce to the case β = 0. The coefficients of the linear functions =Z,<Z are in
one-to-one correspondence with the coefficients of r(x) and i(x), respectively; these are, up to
scaling, uniquely determined by the configurations of zeros of r(x) and i(x) on the real line. But
our conditions ensure that we can continuously deform the configuration of zeros into the one
corresponding to Zbasic

H . �

Remark 8.4. From the proof of the lemma one can also deduce the following more intrinsic
description of the set P. Consider the twisted cubic C in projective space P3(R). There is an open
subset of central charges Z with the following properties: the hyperplanes =Z = 0 and <Z = 0
both intersect C in three distinct points; moreover, their configuration on C ∼= S1 are such that the
zeros of the two functions alternate. This open set has two components: one of them is P, the
other is obtained from P by composing central charges with complex conjugation.

Moreover, one can also deduce the description given in the introduction.

Recall the H-discriminant

∆H =
(
H2 chβ1

)2
− 2H3 chβ0 H chβ2 .

defined in (7), Let us also introduce a notation of the remainder term of (10):

∇βH := 4
(
H chβ2 (E)

)2
− 6H2 chβ1 (E) chβ3 (E).

Lemma 8.5. There is an open interval Ia,bα ⊂ R>0 such that the kernel of Za,bα,β is negative definite

with respect to the quadratic formK∆H+∇βH for allK ∈ Ia,bα . In case b = 0, the interval is given
by Ia,bα = (α2, 6a). In case b 6= 0, it is a subinterval of (α2, 6a) satisfying 1

2

(
α2 + 6a

)
∈ Ia,bα for

all b, and

Ia,b
′

α ⊂ Ia,bα
whenever |b′| > |b|.

Proof. Let us use the coordinates ei := H3−i chβi on ΛH ⊗ R. In these coordinates, the kernel of
Za,bα,β is generated by the vectors (1, 0, 1

2α
2, 1

2bα
2) and (0, 1, 0, a). The intersection matrix for the

symmetric pairing associated to K∆H +∇βH is(
−Kα2 + α4 −3bα2

−3bα2 K − 6a

)
.

The diagonal entries are negative for K ∈ (α2, 6a) (which is non-empty by the assumptions on
a). In case b 6= 0, we additionally need to ensure that the determinant

α2
(
−K2 + 6aK +Kα2 − 6aα2 − 9b2α2

)
is positive. Solving the quadratic equation, one obtains a subinterval of (α2, 6a) symmetric around
the midpoint K = 1

2

(
α2 + 6a

)
with the properties as claimed. �



STABILITY CONDITIONS ON ABELIAN THREEFOLDS AND SOME CALABI-YAU THREEFOLDS 27

Review: construction of stability conditions. We will use [Bri07, Proposition 5.3] to construct
stability conditions. It says that a stability condition is equivalently determined by a pair σ =
(Z,A), where Z : ΛH → C is a group homomorphism (called central charge) and A ⊂ Db(X) is
the heart of a bounded t-structure, which have to satisfy the following three properties:

(a) For any 0 6= E ∈ A the central charge Z(vH(E)) lies in the following semi-closed upper
half-plane:

(30) Z(vH(E)) ∈ R>0 · e(0,1]·iπ

We can use <Z and =Z to define a notion of slope-stability on the abelian category A via the
slope function λσ(E) = −<Z(vH(E))

=Z(vH(E))

(b) With this notion of slope-stability, every object in E ∈ A has a Harder-Narasimhan
filtration 0 = E0 ↪→ E1 ↪→ . . . ↪→ En = E such that each Ei/Ei−1 is λσ-semistable,
with λσ(E1/E0) > λσ(E2/E1) > · · · > λσ(En/En−1).

(c) (support property) There is a constant C > 0 such that, for all λσ-semistable object
E ∈ A, we have

‖vH(E)‖ ≤ C|Z(vH(E))|,

where ‖ ‖ is a fixed norm on ΛH ⊗ R ∼= R4.
For brevity, we will write Z(E) instead of Z(vH(E)). Shifts of λσ-(semi)stable objects are called
σ-(semi)stable.

Explicit construction of stability conditions. We start by reviewing (a slightly generalized ver-
sion of) the construction of stability conditions in [BMT14].

We define a heart Aα,β(X) ⊂ Db(X) as a tilt of Cohβ(X): we let

T ′α,β =
{
E ∈ Cohβ(X) : any quotient E � G satisfies να,β(G) > 0

}
F ′α,β =

{
E ∈ Cohβ(X) : any subobject F ↪→ E satisfies να,β(F ) ≤ 0

}
and define

Aα,β(X) = 〈T ′α,β,F ′α,β[1]〉.

Theorem 8.6 ([BMT14]). Let (X,H) be a polarized threefold for which Conjecture 4.1 holds.
Assume that α, β ∈ Q, and that α, β, a, b satisfy (29). Then the pair σ =

(
Za,bα,β,A

α,β(X)
)

satisfy
conditions (a) and (b) above.

Proof. The case b = 0 is [BMT14, Corollary 5.2.4], and the same arguments apply here; let us
review them briefly.

The construction of the heart directly ensures that ifE ∈ Aα,β(X), then=Za,bα,β ≥ 0. Moreover,
if E ∈ Aα,β(X) is such that =Zα,β,s(E) = 0, then E fits into an exact triangle F [1] → E → T
where

• T is a zero-dimensional torsion sheaf, and
• F ∈ Cohβ(X) is να,β-semistable with να,β(E) = 0 (in particular, H2 chβ1 (F ) > 0).

We have Za,bα,β(T ) = −length(T ) < 0 if T is non-trivial. To treat F [1], observer that να,β(F ) = 0
implies

1

2
α2H3 chβ0 (F ) = H chβ2 (F ).
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Therefore we can use Conjecture 4.1 and Theorem 3.5 to estimate

Za,bα,β(F [1]) = chβ3 (F )− bH chβ2 (F )− aH2 ch1(F )

≤ 1

6
α2H2 ch1(F ) + |b| 1

2
α2H2 chβ1 (F )− aH2 ch1(F ) < 0.

By [BMT14, Proposition 5.2.2], the category Aα,β(X) is noetherian. Since =Zα,β,s is a dis-
crete subset of R, we can apply [BM11, Proposition B.2] to deduce the existence of Harder-
Narasimhan filtrations. �

Support property. The next step towards proving Theorem 8.2 is to establish the support prop-
erty for the stability conditions constructed in Theorem 8.6. Our overall goal is the following
analogue of Theorem 3.5.

Let σ = (Z,A) ∈ P̃ ⊂ StabH(X) be a stability condition in the open subset given in Theorem
8.6. We may assume that Z = Za,bα,β is of the form given in Lemma 8.3. We also choose a constant

K ∈ Ia,bα in accordance with Lemma 8.5.

Theorem 8.7. Under the assumptions above, every σ-semistable object E satisfies

(31) QβK(E) := K∆H(E) +∇βH(E) ≥ 0.

Moreover, up to shift the heart A is of the form A = Aα,β(X).

We will treat only the case b = 0; then Ia,bα = (α2, 6a). We will also shorten notation and
write Zaα,β instead of Za,0α,β , and Iaα instead of Ia,0α . The case b 6= 0 will then follow directly by
Proposition A.5.

The analogy between Theorem 8.7 and Theorem 3.5 is reflected also in their proof. We first
treat the rational case:

Lemma 8.8. Let (X,H) be a polarized threefold and (α, β) ∈ Q>0×Q. Assume that Conjecture
4.1 holds for this pair (α, β). Then for any a > 1

6α
2, the pair σaα,β = (Zaα,β,Aα,β(X)) satisfies

the support property; more precisely, the inequality (31) holds for all σaα,β-semistable objects E
and all K ∈ Iaα.

We first need an analogue of Lemma 2.7.
Let us denote by H i

β the i-th cohomology object with respect to the t-structure Cohβ(X).

Lemma 8.9. Let E ∈ Aα,β(X) be a σaα,β-semistable object, for all a � 1 sufficiently big. Then
it satisfies one of the following conditions:

(a) H−1
β (E) = 0 and H0

β(E) is να,β-semistable;
(b) H−1

β (E) is να,β-semistable and H0
β(E) is either 0 or supported in dimension 0.

Proof. Consider the exact sequence

0→ H−1
β (E)[1]→ E → H0

β(E)→ 0.

in Aα,β(X). For a→ +∞, we have

<Zaα,β
(
H−1
β (E)[1]

)
= −aH2 chβ1 (H−1

β (E)) + const→ −∞

unless H−1
β (E) = 0, and

<Zaα,β
(
H0
β(E)

)
= aH2 chβ1 (H0

β(E))− chβ3 (H0
β(E)) ≥ − chβ3 (H0

β(E)).
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Their imaginary parts are constant, with =Zaα,β
(
H0
β(E)

)
6= 0 unless H0

β(E) is supported in

dimension zero. This means that E is σaα,β-unstable for a� 0 unless H−1
β (E) = 0, or H0

β(E) is
a zero-dimensional torsion sheaf, or H0

β(E) = 0.
In the limit a → +∞, we have Zaα,β → Zα,β up to rescaling of the real part; this implies the

να,β-semistability of the cohomology objects in both cases. �

We have already proved the analogue of Lemma 3.6, as part of Lemma 8.5. This also enables
us to use the result from Appendix A.

Proof of Lemma 8.8. Throughout the proof, we fix α and β.
If E is strictly σaα,β-semistable, and if (31) holds for all of the Jordan-Hölder factors Ei of E,

then by Lemma A.6, it also holds for E. We may therefore assume that E is stable.
We also notice that if F ∈ Cohβ(X) is να,β-semistable, then Conjecture 4.1 and Theorem 3.5

show that in particular, it satisfies QβK(F ) ≥ 0 for every K > α2.
We proceed by induction on f(E) := H chβ2 (E) − α2H3

2 chβ0 (E) = =Zaα,β(E), which is a
non-negative function on Aα,β(X) with discrete values.

We fix a0 >
1
6α

2 and K ∈ (α2, 6a0). Let E be a σa0α,β-stable object in Aα,β(X).
If E remains σaα,β-semistable, for all a > a0, then by Lemma 8.9 either E = H0

β(E) is να,β-
semistable, or H−1

β (E) is να,β-semistable and H0(E) is either 0 or supported in dimension 0. In

the first case, we already pointed out above thatE satisfies (31). In the second case, H2 chβ1 (E) =

H2 chβ1 (H−1
β (E)[1]) < 0 and chβ3 (H0

β(E)) ≥ 0. Therefore ∆H(E) = ∆H(H−1
β (E)) and

∇βH(E) = ∇βH(H−1
β (E))− 6H2 chβ1 (H−1

β (E)[1]) chβ3 (H0
β(E)) ≥ ∇βH(H−1

β (E)).

Since (31) holds for H−1
β (E), it holds also for E.

Otherwise, E will be unstable for a sufficiently big. Every possibly destabilizing subobject
or quotient F has f(F ) < f(E) (since f is non-negative, and since the subcategory of objects
F ∈ Aα,β(X) with f(F ) = 0 has maximum possible slope with respect to Zaα,β for all a).

Therefore they obey the induction assumption; since K ∈ (α2, 6a0) ⊂ (α2, 6a), this means
that all these possible subobject or quotients satisfy (31) with respect to our choice of K. Since
Zaα,β has negative definite kernel with respect to QβK for all a ≥ a0, this is equivalent to a support
property type statement, see Appendix A. It follows that E satisfies well-behaved wall-crossing
along our path. Hence, there will exist a1 > a0 such that E is strictly σa1α,β-semistable. But all the
Jordan-Hölder factors Ei of E have strictly smaller f . Using the induction assumption again, we
see that they satisfy QβK(Ei) ≥ 0; therefore, we can again apply Lemma A.6 to deduce the same
claim for E. �

The combination of Lemma 8.3, Theorem 8.6 and Lemma 8.8 together with Proposition A.5
leads to the following result: for each tuple α, β, a, b as in Theorem 8.6 (in particular α, β ∈ Q),
we obtain an open subset U(α, β, a, b) ⊂ StabH(X) of stability conditions by deforming the pair
(Za,bα,β,A

α,β(X)). The associated open subsets Z(U(α, β, a, b)) of central charges combine to
cover the set P. To conclude the proof of Theorems 8.2 and 8.7, we need to show that the sets
U(α, β, a, b) glue to form a continuous family covering P̃.

This is done by the following analogue of Proposition B.2:
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Proposition 8.10. There is a continuous family of Bridgeland stability conditions in StabH(X),
parameterized by the set

(α, β, a) ∈ R>0 × R× R, a >
1

6
α2

via
(α, β, a) 7→ σaα,β :=

(
Zaα,β,Aα,β(X)

)
.

Indeed, deformations of the central charge Za,bα,β for b 6= 0 (while keeping α, β, a fixed) do not
change the heart, as modifying b only affects the real part of the central charge. Acting on these
stability conditions by GL+

2 (R) produces the entire set P̃.
To prove Proposition 8.10, we need a few preliminary results. We will use the notion of a

pre-stability condition, which is a stability condition that does not necessarily satisfy the support
property; see Appendix A. The first result already appears implicitly in [Bri08, Section 10].

Lemma 8.11. Assume that σ1 = (Z,A1) and σ2 = (Z,A2) are two pre-stability conditions with
the following properties:

(a) Their central charges agree.
(b) There exists a heart B of a bounded t-structure such that each Ai can be obtained as a

tilt of B:
A1,A2 ⊂ 〈B,B[1]〉.

Then σ1 = σ2.

Proof. By [Pol07, Lemma 1.1.2], for i = 1, 2, Ai is a tilt of B with respect to the torsion pair

Ti := B ∩ Ai and Fi := B ∩ Ai[−1].

We need to show that T1 = T2 and F1 = F2; in fact, since Fi = T ⊥i , it is enough to show
T1 = T2. Observe that, since the central charges agree, we have T2 ∩ F1 = {0} = T1 ∩ F2.

We let T ∈ T2. Consider the exact sequence in B
0→ T1 → T → F1 → 0,

with T1 ∈ T1 and F1 ∈ F1. Since the torsion part of any torsion pair is closed under quotients,
F1 ∈ T2, contradicting the observation above. Hence, T ∈ T1, and so T2 ⊆ T1. The reverse
inclusion follows similarly. �

Lemma 8.12. There exists a continuous positive function ε(α, β, a) > 0 with the following prop-
erty: if E ∈ Cohβ(X) is να,β-stable with

|να,β(E)| < ε(α, β, a),

then <Zaα,β(E) > 0.

Proof. We first apply Conjecture 4.1, rewriting (10) as

(32) 6 ch3(E) ≤ α2H2 chβ1 (E) + 4H chβ2 (E)να,β(E).

Now we apply Theorem 3.5. First of all, we can rewrite ∆H(E) ≥ 0 as(
H2 chβ1

)2
+

1

α2

(
H chβ2 −

α2

2
H3 chβ0

)2

− 1

α2

(
H chβ2 +

α2

2
H3 chβ0

)2

≥ 0.

By assumption, ∣∣∣∣H chβ2 −
α2

2
H3 chβ0

∣∣∣∣ < εH2 chβ1
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and therefore ∣∣∣∣H chβ2 +
α2

2
H3 chβ0

∣∣∣∣ <√α2 + ε2H2 chβ1 .

Summing up the last two equations we obtain∣∣∣H chβ2

∣∣∣ ≤ ε+
√
α2 + ε2

2
H2 chβ1 .

Plugging this into (32), we obtain the desired claim. �

Lemma 8.13. We keep the notation as in the previous lemma. If E ∈ Cohβ(X) is να,β-stable
with |να,β(E)| < ε, then E ∈ Paα,β((−1

2 ,
1
2)).

Proof. We consider just the case 0 < να,β(E); the opposite case follows from dual arguments.
By construction we know E ∈ Aα,β = Paα,β((0, 1]). Let A be the HN-filtration factor of E

with respect to σaα,β and with the largest phase, and consider the associated short exact sequence
A ↪→ E � B in Aα,β . The associated long exact cohomology with respect to Cohβ(X) shows
that A ∈ Cohβ(X) ∩ Aα,β = T ′α,β; moreover, there is a sequence H−1(B) ↪→ A → E exact on
the left with H−1(B) ∈ F ′α,β .

Now consider the slopes appearing in the Harder-Narasimhan filtration of A for tilt-stability
with respect to να,β . By standard arguments using the observations in the previous paragraph,
all these slopes lie in the interval (0, ε). Lemma 8.12 then implies <Zaα,β(A) > 0, and therefore
E ∈ Paα,β((0, 1

2)) as we claimed. �

Proof of Proposition 8.10. Consider a stability condition σ0 = (Z0,P0) := σa0α0,β0
. Let ε :=

ε(α0, β0, a0) be as in Lemmas 8.12 and 8.13. Consider (α, β, a) sufficiently close to (α0, β0, a0)
(which we will make precise shortly). Let σ1 := σaα,β , and let σ2 = (Zaα,β,P2) be the stability
condition with central charge Zaα,β obtained by deforming σ0. We want to apply Lemma 8.11 with

B = P0

((
− 1

2 ,
1
2

])
.

By the support property for σ0, and the analogous property for tilt-stability, we can require
“sufficiently close” to mean that:

• if E is σ2-stable of phase φ, then E ∈ P0((φ− ε, φ+ ε)), and
• the analogous statement for tilt-stability with respect to να,β and να0,β0 , respectively.

This means that if E ∈ Cohβ(X) is να,β-semistable, and if A1, . . . , Am are the Harder-
Narasimhan filtration factors of E for tilt-stability with respect to να0,β0 , then the phases
of Zα0,β0(Ai) differs by at most ε from the phase of Zα,β(E),

The first assumption implies that

P2((0, 1]) ⊂ P0((−ε, 1 + ε]) ⊂ 〈B,B[1]〉.
The second assumption implies that if E is tilt-stable with respect to να,β and να,β > 0, then all

HN filtration factors Ai of E with respect to να0,β0 satisfy να0,β0(Ai) > −ε. In case να0,β0(Ai) >

0 this implies Ai ∈ Aα0,β0 = P0((0, 1]). Otherwise, if −ε < να0,β0(Ai) < 0, then Lemma 8.13
shows Ai ∈ P0

((
− 1

2 ,
1
2

])
; overall we obtain

E ∈ P0

((
− 1

2
, 1
])
⊂ 〈B,B[1]〉.

A similar argument implies that ifE is tilt-stable with να,β ≤ 0, thenE[1] ∈ 〈B,B[1]〉. Combined,
these two facts show that Aα,β ⊂ 〈B,B[1]〉.

We have verified all the assumptions of Lemma 8.11, which implies σ1 = σ2. �
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Let us also mention the following property:

Proposition 8.14 ([MP15, Proposition 2.1]). Skyscraper sheaves are stable for all σ ∈ P̃.

Proof (sketch). Using the long exact cohomology sequence with respect to the heart Coh(X), one
sees that k(x) is a minimal object of Cohβ(X): otherwise, there would be a short exact sequence
E ↪→ k(x) � F [1] in Cohβ(X) coming from a short exact sequence F ↪→ E � k(x) of
sheaves; this is a contradiction to µH,β(F ) < 0 and µH,β(E) ≥ 0. Similarly, taking the long exact
cohomology sequence with respect to Cohβ(X) of short exact sequences inAα,β(X), we see that
k(x) is a minimal object of Aα,β(X). �

9. THE SPACE OF STABILITY CONDITIONS ON ABELIAN THREEFOLDS

In this section we prove the following:

Theorem 9.1. Let (X,H) be a polarized abelian threefold. Then P̃ ↪→ StabH(X) is a connected
component of the space of stability conditions.

The fundamental reason behind Theorem 9.1 is the abundance of projectively flat vector bundles
on abelian threefolds; their Chern classes are dense in the projectivization of the twisted cubic C.

Consider a slope µ = p
q ∈ Q with p, q coprime and q > 0. Then there exists a family of simple

vector bundles Ep/q that are semi-homogeneous in the sense of Mukai, have slope p
q and Chern

character
ch(Ep/q) = r · e

pH
q ,

see [Muk78, Theorem 7.11]. They can be constructed as the push-forward of line bundles via an
isogeny Y → X [Muk78, Theorem 5.8], and are slope-stable [Muk78, Proposition 6.16].

The above theorem is essentially based on the following result:

Proposition 9.2. The semi-homogeneous vector bundle Ep/q is σ-stable for every σ ∈ P̃.

Proof. As mentioned above, Ep/q is slope-stable. By Corollary 3.11, either Ep/q or Ep/q[1] is a
να,β-stable object of Cohβ(X) for all α > 0, β ∈ R.

Also observe that for all K,β ∈ R, we have

∆H(Ep/q) = ∇βH(Ep/q) = 0⇒ QβK(Ep/q) = 0.

The open subsets of P where the central charges are negative definite with respect to QβK =

K∆H + ∇βH for some K,β form a covering of P; by Proposition A.8, it is therefore enough to
find a single stability condition σ ∈ P̃ for which Ep/q is σ-stable.

One can prove in general that να,β-stable vector bundles are σa,bα,β-stable for a � 0; but in
our situation one can argue more easily as follows. Choose α, β with β < p

q (and therefore

Ep/q ∈ Cohβ(X)) and να,β(E) = 0. Then E[1] ∈ Aα,β(X) with =Za,bα,β = 0 for all a, b, i.e. it

has maximal possible slope; therefore it is σa,bα,β-semistable. By Lemma A.7, it must actually be
strictly stable. �

Proof of Theorem 9.1. Assume for a contradiction that there is a stability condition σ = (Z,P) ∈
∂P̃ in the boundary of P̃ inside StabH(X). Since P̃ → P is a covering map, the central charge
Z must be in the boundary ∂P of P ⊂ Hom(ΛH ,C); by definition, this means that there is a
point (x3, x2y, 1

2xy
2, 1

6y
3) on the twisted cubic C that is contained in the kernel of Z.
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If µ := y
x = p

q is rational, then we observe that every semi-homogeneous bundle Ep/q is σ-
semistable, because being σ-semistable is a closed condition on StabH(X). This is an immediate
contradiction, as Z

(
Ep/q

)
= 0. Similarly, if x = 0, we get Z(Ox) = 0; yet skyscraper sheaves

of points are σ-semistable by 8.14.
Otherwise, if µ ∈ R \Q, consider a sequence (pn, qn) with

lim
n→∞

pn
qn

= µ,

let En := Epn/qn , and let rn = rkEn. Then

lim
n→∞

1

rn
vH(En) =

(
1, µ,

1

2
µ2,

1

6
µ3

)
and thus

lim
n→∞

|Z (vH(En)|
‖vH(E)‖

= lim
n→∞

∣∣∣Z ( 1
rn
vH(En)

)∣∣∣∥∥∥ 1
rn
vH(E)

∥∥∥ =

∣∣Z (1, µ, 1
2µ

2, 1
6µ

3
)∣∣∥∥(1, µ, 1

2µ
2, 1

6µ
3
)∥∥ = 0.

This is a contradiction to the condition that σ satisfies the support property. �

10. THE SPACE OF STABILITY CONDITIONS ON SOME CALABI-YAU THREEFOLDS

Let X be a projective threefold with an action of a finite group G. In this section, we recall
the main result of [MMS09], which induces stability conditions on the G-equivariant derived
category from G-invariant stability conditions on X; similar results are due to Polishchuk, see
[Pol07, Section 2.2]. We use it to construct stability conditions on Calabi-Yau threefolds that are
(crepant resolutions of) quotients of abelian threefolds, thus proving Theorems 1.2, 1.3 and 1.4.

The equivariant derived category. We let Coh([X/G]) be the abelian category ofG-equivariant
coherent sheaves on X , and Db([X/G]) := Db(Coh([X/G])). As explained in [Ela14], the cate-
gory Db([X/G]) is equivalent to the category of the G-equivariant objects in Db(X).

The étale morphism f : X → [X/G] of Deligne-Mumford stacks induces a faithful pull-back
functor

f∗ : Db([X/G])→ Db(X).

Let H ∈ NS(X) be an ample G-invariant divisor class. We consider the space StabH(X) of
stability conditions on Db(X) with respect to the lattice ΛH as in Section 8; for Db([X/G]) we
use the same lattice, and the map

vGH : K(Db([X/G]))→ ΛH , vGH(E) := vH(f∗(E)).

By mild abuse of notation, we will write StabH([X/G]) for the space of stability conditions on
Db([X/G]) satisfying the support property with respect to (ΛH , v

G
H). We will construct compo-

nents of StabH([X/G]) from G-invariant components of StabH(X).

Inducing stability conditions. Following [MMS09], we consider

StabGH(X) := {σ ∈ StabH(X) : g∗σ = σ, for any g ∈ G} .
Here the action of g on StabH(X) is given by

g∗(Z,A) =
(
Z ◦ (g∗)−1, g∗(A)

)
.

For any σ = (Z,A) ∈ StabGH(X), we define

(f∗)−1(σ) := (Z ′,A′)



34 AREND BAYER, EMANUELE MACRÌ, AND PAOLO STELLARI

where

Z ′ := Z ◦ vGH ,

A′ := {E ∈ Db([X/G]) : f∗(E) ∈ A}.

Theorem 10.1 ([MMS09]). Let (X,H) be a polarized threefold with an action by a finite group
G fixing the polarization. Then StabGH(X) ⊂ StabH(X) is a union of connected components.

Moreover, the pull-back f∗ induces an embedding

(f∗)−1 : StabGH(X) ↪→ StabH([X/G])

whose image is again a union of connected components.

Proof. The theorem is essentially a reformulation of Theorem 1.1 in [MMS09] but some subtle
issues have to be clarified. First of all, Theorem 1.1 in [MMS09] deals with stability conditions
whose central charge is defined on the Grothendieck group K(X) rather than on the lattice ΛH .
On the other hand, the same argument as in [MMS09, Remark 2.18] shows that all the results in
[MMS09, Section 2.2], with the obvious changes in the statements and in the proofs, hold true if
we consider pre-stability conditions as in Definition A.1 with respect to the lattice ΛH . Thus we
will freely quote the results there.

We now observe that if σ is a G-invariant pre-stability condition on Db(X), then σ satisfies the
support property with respect to vH if and only if (f∗)−1(σ) satisfies the support property with
respect to vGH . This is rather obvious, given the definition of (f∗)−1(σ) above, the fact that ΛH is
invariant under the action of G and that the semistable objects in (f∗)−1(σ) are the image under
f∗ of the semistable objects in σ (see [MMS09, Theorem 1.1]). Hence [MMS09, Proposition
2.17] applies and (f∗)−1 yields a well-defined and closed embedding.

It remains to point out that StabGH(X) is a union of connected components of StabH(X). This
is clear in view of the arguments in [MMS09, Lemma 2.15] and, again, of the fact that ΛH is
invariant under the action of G. Thus the image of (f∗)−1 is a union of connected components as
well. �

An immediate consequence of the results of Section 8 and Theorem 10.1 is the following, which
completes the proof of Theorem 1.3 (see also Examples 10.4 and 10.5 below):

Proposition 10.2. Let (X,H) be a smooth polarized threefold with an action of a finite group
G fixing the polarization. Assume that Conjecture 4.1 holds for (X,H). Then, given α, β ∈
R and α, β, a, b satisfying (29), the stability condition

(
Za,bα,β,A

α,β(X)
)

is in StabGH(X), and

(f∗)−1(StabGH(X)) is a non-empty union of connected components of StabH([X/G]).

Proof. Given Theorem 10.1, the result will follow once we prove that
(
Za,bα,β,A

α,β(X)
)

is in

StabGH(X). Since slope-stability with respect to H is preserved by the group action, we have
g∗Cohβ(X) = Cohβ(X) for all g ∈ G. The same argument holds for tilt-stability, as

να,β(g∗E) = να,β(E)

for all g ∈ G and E ∈ Cohβ(X); therefore Aα,β(X) is G-invariant as well. Since the central
charge Za,bα,β is similarly preserved by G, this shows the claim. �

As an immediate consequence we get the following.

Corollary 10.3. Let (X,H) be a polarized abelian threefold with an action of a finite group G
fixing the polarization. Then (f∗)−1(P̃) is a connected component of StabH([X/G]).



STABILITY CONDITIONS ON ABELIAN THREEFOLDS AND SOME CALABI-YAU THREEFOLDS 35

Proof. By Theorem 9.1, the open subset P̃ is a connected component of StabH(X). By Propo-
sition 10.2, we have that P̃ ∩ StabGH(X) is not empty. Since StabGH(X) is a union of con-
nected components of StabH(X) (see Theorem 10.1), we get that P̃ is a connected component of
StabGH(X). Again by Theorem 10.1, we conclude that (f∗)−1(P̃) is a connected component of
StabH([X/G]). �

Applications. When the action of the finite group G is free, the quotient Y = X/G is smooth
and Db(Y ) ∼= Db([X/G]). In this case, an ample class H on X induces an ample class HY on Y .
If we take B on X to be G-invariant as well, and write BY for the induced class on NS(Y )R, we
then have, by Proposition 6.3, that Conjecture 2.4 holds for ν√3αHY ,BY

-stability on Y if it holds
for ν√3αH,B-stability on X .

Here is a list of examples where X is an abelian threefold and this discussion can be imple-
mented, concluding the proof of Theorems 1.2 and 1.4.

Example 10.4. (i) A Calabi-Yau threefold of abelian type is an étale quotient Y = X/G of an
abelian threefoldX by a finite groupG acting freely onX such that the canonical line bundle of Y
is trivial and H1(Y,C) = 0. In [OS01, Theorem 0.1], those Calabi-Yau manifolds are classified;
the group G can be chosen to be (Z/2)⊕2 or D8, and the Picard rank of Y is 3 or 2, respectively.
The following concrete example is usually referred to as Igusa’s example (see Example 2.17 in
[OS01]). Take three elliptic curves E1, E2 and E3 and set X = E1 × E2 × E3. Pick three non-
trivial elements τ1, τ2 and τ3 in the 2-torsion subgroups of E1, E2 and E3, respectively. Then we
define two automorphisms a and b of X by setting

a(z1, z2, z3) = (z1 + τ1,−z2,−z3) and b(z1, z2, z3) = (−z1, z2 + τ2,−z3 + τ3).

By taking G := 〈a, b〉, the quotient Y = X/G is a Calabi-Yau threefold of abelian type.
(ii) Let A be an abelian surface and let E be an elliptic curve. We write X := A×E. Consider

a finite group G acting on A and E, where the action on E is given by translations. Then the
diagonal action on X is free, but it may have non-trivial (torsion) canonical bundle. The easiest
example is by taking A as the product E1 × E2 of two elliptic curve, and the action of G only on
the second factor so that E2/G ∼= P1. Then Y = E1 × S, where S is a bielliptic surface.

Let us now assume that X is an abelian threefold, that G acts faithfully, and that the dualizing
sheaf is locally trivial as a G-equivariant sheaf. By [BKR01], the quotient X/G admits a crepant
resolution Y with an equivalence ΦBKR : Db(Y )→ Db([X/G]). By a slightly more serious abuse
of notation, we will continue to write StabH(Y ) for the space of stability conditions with respect
to the lattice ΛH and the map vGH ◦ (ΦBKR)∗ : K(Y ) → ΛH . By Corollary 10.3, we obtain a

connected component as (ΦBKR)∗ (f∗)−1
(
P̃
)
⊂ StabH(Y ).

Example 10.5. We say that a Calabi-Yau threefold is of Kummer type if it is obtained as a crepant
resolution of a quotientX/G of an abelian threefoldX . Skyscraper sheaves will be semistable but
not stable with respect to the stability conditions induced from X . We mention a few examples.

(i) Let E be an elliptic curve, and let X = E × E × E. We consider a finite subgroup
G ⊂ SL(3,Z) and let it act on X via the identification X = Z3 ⊗Z E. These examples were
studied in [AW10] and classified in [Don11]; there are 16 examples, and G has size at most 24.
The singularities of the quotient X/G are not isolated.

(ii) Let E be the elliptic curve with an automorphism of order 3, and let X = E × E × E. We
can take G = Z/3Z acting on X via the diagonal action. Then the crepant resolution Y of X/G
is a simply connected rigid Calabi-Yau threefold containing 27 planes, see [Bea83, Section 2].
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One can also take G ⊂ (Z/3Z)3 to be the subgroup of order 9 preserving the volume form.
These examples were influential at the beginning of mirror symmetry, see [BB97] and references
therein.

(iii) Let X be the Jacobian of the Klein quartic curve. The group G = Z/7Z acts on X , and
again the crepant resolution Y of X/G is a simply connected rigid Calabi-Yau threefold.

(iv) We can also provide easy examples involving three non-isomorphic elliptic curves E1, E2

and E3. Indeed, take the involutions ιi : Ei → Ei such that ιi(e) = −e, for i = 1, 2, 3, and set
G := 〈ι1× ι2× idE3 , ι1× idE2 ×ι3〉. The quotient (E1×E2×E3)/G admits a crepant resolution
Y which is a Calabi-Yau threefold. This is a very simple instance of the so called Borcea-Voisin
construction (see [Bor97, Voi93]). This yields smooth projective Calabi-Yau threefolds as crepant
resolutions of the quotient (S × E)/G, where S is a K3 surface, E is an elliptic curve and G is
the group generated by the automorphism f × ι of S ×E, with f an antisymplectic involution on
S and ι the natural involution on E above. Example 2.32 in [OS01] is yet another instance of this
circle of ideas.

APPENDIX A. SUPPORT PROPERTY VIA QUADRATIC FORMS

In this appendix, we clarify the relation between support property, quadratic inequalities for
Chern classes of semistable objects, and effective deformations of Bridgeland stability conditions.

Equivalent definitions of the support property. Let D be a triangulated category, for which we
fix a finite rank lattice Λ with a surjective map v : K(D) � Λ. We recall the main definition of
[Bri07] with a slight change of terminology: a stability condition not necessarily satisfying the
support property will be called a pre-stability condition:

Definition A.1. A pre-stability condition on D is a pair (Z,P) where
• the central charge Z is a linear map Z : Λ→ C, and
• P is a collection of full subcategories P(φ) ⊂ D for all φ ∈ R,

such that
(a) P(φ+ 1) = P(φ)[1];
(b) for φ1 > φ2, we have Hom(P(φ1),P(φ2)) = 0;
(c) for 0 6= E ∈ P(φ), we the complex number Z(v(E)) is contained in the ray R>0 · eiπφ;

and
(d) every E admits an HN-filtration

0 E0
// E1

//

��

E2
//

��

. . . // Em−1
// Em

��

E

A1

^^

A2

^^

Am

aa

with Ai ∈ P(φi) and φ1 > φ2 > · · · > φm.

We write φ+
σ (E) := φ1 and φ−σ (E) := φm for the maximal and minimum phase appearing in

the HN filtration. The mass is defined by mσ(E) :=
∑m

i=1 |Z(Ai)|.
Recall the definition of the “support property” introduced by Kontsevich and Soibelman:

Definition A.2 ([KS08, Section 1.2]). Pick a norm ‖ ‖ on Λ ⊗ R. The pre-stability condition
σ = (Z,P) satisfies the support property if there exists a constant C > 0 such that for all σ-
semistable objects 0 6= E ∈ Db(X), we have

(33) ‖v(E)‖ ≤ C |Z(v(E))|
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This notion is equivalent to σ being “full” in the sense of [Bri08], see [BM11, Proposition B.4].
The definition is quite natural: it implies that if W is in an ε-neighborhood of Z with respect to
the operator norm on Hom(ΛR,C) induced by ‖ ‖ and the standard norm on C, then W (E) is in
a disc of radius εC |Z(E)| around Z(E) for all semistable objects E; in particular, we can bound
the difference of the arguments of the complex numbers Z(E) and W (E).

Moreover, it is equivalent to the following notion; we follow Kontsevich-Soibelman and also
call it “support property”:

Definition A.3. The pre-stability condition σ = (Z,P) satisfies the support property if there
exists a quadratic form Q on the vector space ΛR such that

• the kernel of Z is negative definite with respect to Q, and
• for any σ-semistable object E ∈ Db(X), we have

Q(v(E)) ≥ 0.

Lemma A.4 ([KS08, Section 2.1]). Definitions A.2 and A.3 are equivalent.

Proof. If σ = (Z,P) satisfies Definition A.2, then the quadratic form

Q(w) := C2 |Z(w)|2 − ‖w‖2

evidently satisfies both properties of Definition A.3. Conversely, assume we are given a quadratic
form Q as in Definition A.3. The non-negative quadratic form |Z(w)|2 is strictly positive on the
set where −Q(w) ≤ 0; by compactness of the unit ball, there exists a constant C such that

C2 |Z(w)|2 −Q(w)

is a positive definite quadratic form. Then Z clearly satisfies (33) with respect to the induced norm
on ΛR. �

Statement of deformation properties. By StabΛ(D) we denote the space of stability conditions
satisfying the support property with respect to (Λ, v). By the main result of [Bri07], the forgetful
map

Z : StabΛ(D)→ Hom(Λ,C), (Z,P) 7→ Z

is a local homeomorphism. The following result is the main purpose of this appendix:

Proposition A.5. Assume that σ = (Z,P) ∈ StabΛ(D) satisfies the support property with re-
spect to a quadratic form Q on ΛR. Consider the open subset of Hom(Λ,C) consisting of central
charges whose kernel is negative definite with respect to Q, and let U be the connected compo-
nent containing Z. Let U ⊂ StabΛ(D) be the connected component of the preimage Z−1(U)
containing σ.

(a) The restriction Z|U : U → U is a covering map.
(b) Any stability condition σ′ ∈ U satisfies the support property with respect to the same

quadratic form Q.

In other words, this proposition gives an effective version of Bridgeland’s deformation result
[Bri07, Theorem 1.2], and shows that Chern classes of semistable objects for varieties continue to
satisfy the same inequalities within this class of deformations.
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The quadratic form and wall-crossing. We start with the observation that the quadratic form is
preserved by wall-crossing:

Lemma A.6. Let Q be a quadratic form on ΛR. Assume that σ = (Z,P) is a pre-stability
condition such that the kernel of Z is negative semi-definite with respect to Q. If E is strictly
σ-semistable with Jordan-Hölder factors E1, . . . , Em, and if Q(Ei) ≥ 0 for all i = 1, . . . ,m,
then Q(E) ≥ 0.

Proof. Let HE ⊂ ΛR be the half-space of codimension one given as the preimage of the ray
R≥0 · Z(E), and let C+ ⊂ HE be the subset defined by Q ≥ 0. By the following Lemma, C+ is a
convex cone, implying the claim. �

Lemma A.7. Let Q be a quadratic form an a real vector space V , and let Z : V → C be a linear
map such that the kernel of Z is semi-negative definite with respect to Q. Let ρ be a ray in the
complex plane starting at the origin. Then the intersection

C+ = Z−1(ρ) ∩ {Q( ) ≥ 0}

is a convex cone.
Moreover, if we assume thatQ has signature (2, dimV −2), and that the kernel of Z is negative

definite, then any vector w ∈ C+ with Q(w) = 0 generates an extremal ray of C+.

Proof. To prove convexity we just need to show that if w1, w2 ∈ C+, then Q(w1 + w2) ≥ 0.
According to the taste of the reader, this can either be seen by drawing a picture of 2-plane Π
spanned by w1, w2—the only interesting case being where Q|Π has signature (1, 1)—, or by the
following algebraic argument. Assume that Q(w1 + w2) < 0. Since w1, w2 ∈ Z−1(ρ), there
exists λ > 0 such that w1 − λw2 is in the kernel of Z. We therefore have

Q(w1 − λw2) ≤ 0, Q(w1) ≥ 0, Q(w1 + w2) < 0, and Q(w2) ≥ 0.

This configuration is impossible, since the quadratic function f(x) := Q(w1 + xw2) would have
too many sign changes.

To prove the second statement, observe that under these stronger assumptions and for w1, w2, λ
as above, we have Q(w1 − λw2) < 0. This implies Q(w1 + w2) > 0, from which the claim
follows. �

Before returning to the proof of Proposition A.5, let us add one additional consequence:

Proposition A.8. Assume that the quadratic form Q has signature (2, rk ΛH − 2). Let U ⊂
StabΛ(D) be a path-connected set of stability conditions that satisfy the support property with
respect to Q. Let E ∈ Db(X) be an object with Q(E) = 0 that is σ-stable for some σ ∈ U . Then
E is σ′-stable for all σ′ ∈ U .

Proof. Otherwise there would be a wall at which E becomes strictly semi-stable. However, by
the previous Lemma, vH(E) is an extremal ray of the cone C+. Therefore, all the Jordan-Hölder
factors Ei must have vH(Ei) proportional to vH(E), in contradiction to E being strictly stable for
some nearby central charges. �

Proof of the deformation property. In a sense, Lemma A.6 is the key observation in the proof
of Proposition A.5; the remainder boils down to a careful application of local finiteness of wall-
crossing, and of the precise version of the deformation result proved by Bridgeland.

To this end, we need to recall the definition of the metric on StabΛ(D).
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Definition A.9 ([Bri07, Proposition 8.1]). The following is a generalized metric on StabΛ(D):

d(σ1, σ2) := sup
06=E∈D

{∣∣φ−σ2(E)− φ−σ1(E)
∣∣ , ∣∣φ+

σ2(E)− φ+
σ1(E)

∣∣ , |logmσ2(E)− logmσ2(E)|
}

Bridgeland’s proof of the deformation result in fact proves the following stronger statement:

Theorem A.10 ([Bri07, Sections 6 and 7]). Assume that σ = (Z,P) is a stability condition on D,
and let C > 0 be a constant with respect to which σ satisfies the support property condition (33).
Let ε < 1

8 , and consider the neighborhood B ε
C

(Z) of Z taken with respect to the operator norm
on Hom(Λ,C). Then there exists an open neighborhood U ⊂ StabΛ(D) containing σ, such that
Z restricts to a homeomorphism

Z|U : U → B ε
C

(Z).

Therefore, StabΛ(D) is a complex manifold; moreover, the generalized metric of Definition A.9 is
finite on every connected component of StabΛ(D).

Proof of Proposition A.5. Consider the subset V ⊂ U of stability conditions that do not satisfy the
second claim; we want to prove that V is empty, thereby establishing the second claim.

Given σ′ ∈ V , there exists a σ′-semistable object E with with Q(v(E)) < 0; by Lemma A.6,
we may assume that E is stable. By openness of stability of E, there exists a neighborhood of σ′

contained in V; therefore, V ⊂ U is open.
We claim that V ⊂ U is also a closed subset; since U is a manifold and V ⊂ U is open, it is

enough to show that if σ : [0, 1] → U is a piece-wise linear path with σ(t) ∈ V for 0 ≤ t < 1,
then σ(1) ∈ V . By the definition of V and Lemma A.6 there exists an object E0 that is σ(0)-
stable with Q(v(E0)) < 0. Since σ(1) /∈ V , there must be 0 < t1 < 1 such that E0 is strictly
semistable; applying Lemma A.6 again, it must have a Jordan-Hölder factor σ(t1)-stable factor
E1 with Q(v(E1)) < 0. Proceeding by induction, we obtain an infinite sequence 0 = t0 < t1 <
t2 < t3 < · · · < 1 of real numbers and objects Ei such that Ei is σ(t)-stable for ti ≤ t < ti+1,
strictly semistable with respect to σ(ti+1) (having Ei+1 as a Jordan-Hölder factor), and satisfies
Q(v(Ei)) < 0. This is a contradiction by Lemma A.11 below.

Therefore, since V ⊂ U is both open and closed, and does not contain σ, it must be empty.
It remains to prove the first claim. By Theorem A.10, it is enough to show that there is a

continuous function C : U → R>0 such that every σ ∈ U satisfies the support property with
respect to C(Z(σ)). This is evident from the second claim and the proof of Lemma A.4. �

Lemma A.11. Let σ : [0, 1] → StabΛ(D) be a piece-wise linear path in the space of stability
condition satisfying the support property. Assume there is a sequence 0 = t0 < t1 < t2 < · · · < 1
of real numbers and a sequence of objects E0, E1, E2, . . . with the following properties:

• Ei is σ(ti)-stable.
• Ei is σ(ti+1)-semistable, and Ei+1 is one of its Jordan-Hölder factors.

Such a sequence always terminates.

Proof. Assume we are given an infinite such sequence. Let di := d (σ(ti), σ(ti+1)); the assump-
tions imply that σ is a path of bounded length, and hence that

D :=
∑
i

di < +∞.

On the other hand, if we write Zi for the central charge of σ(ti), then

|Zi+1 (Ei+1)| < |Zi+1 (Ei)| = mσ(ti+1)(Ei) ≤ edimσ(ti)(Ei) = edi |Zi (Ei)| ;
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using induction we deduce that the mass of all objects Ei is bounded:

mσ(0)(Ei) ≤ eDmσ(ti)(Ei) = eD |Zi (Ei)| ≤ e2D |Z0 (E0)| .
By [Bri08, Section 9], this implies that there is a locally finite collection of walls of semistability
for all Ei. Since our path is compact, it intersects only finitely many walls; since it is piece-wise
linear, it intersects every wall only finitely many times. �

APPENDIX B. DEFORMING TILT-STABILITY

The purpose of this appendix is to establish rigorously the deformation and wall-crossing prop-
erties of tilt-stability, in particular correcting [BMT14, Corollary 3.3.3]. This will lead to variants
of the results of Appendix A in this context. We assume that the reader of this appendix is famil-
iar with the notion of tilt-stability as reviewed in Sections 2 and 3, as well as with the proof of
Bridgeland’s deformation result for stability conditions in [Bri07, Sections 6 and 7].

Let X be a smooth projective threefold with polarization H; the role of Λ and v in the previous
appendix will be played by

Λ = H0(X,Z)⊕NS(X)Z ⊕
1

2
Z

vH : K(X)→ Λ, vH(E) = (ch0(E), ch1(E), H ch2(E)) .

We will use a variant of the notion of “weak stability” of [Tod10], adapted to our situation:

Definition B.1. A very weak stability condition on X is a pair σ = (Z,A), where A is the heart
of a bounded t-structure on Db(X), and Z : Λ→ C is a group homomorphism such that

• Z satisfies the following weak positivity criterion for every E ∈ A:

<Z(vH(E)) ≥ 0 and <Z(vH(E)) = 0⇒ =Z(vH(E)) ≥ 0

• If we let νZ,A : A → R ∪+∞ be the induced slope function, then HN filtrations exist in
A with respect to νZ,A-stability.

By induced slope function we mean that νZ,A(E) is the usual slope =< of the complex number
Z(vH(E)) if its real part is positive, and νZ,A(E) = +∞ if Z(vH(E)) is purely imaginary or
zero. The crucial difference to a Bridgeland stability condition is that Z(vH(E)) = 0 is allowed
for non-zero objects E ∈ A.

Given a very weak stability condition, one can define a slicing P = {P(φ) ⊂ Db(X)}φ∈R
just as in the case of a proper stability condition constructed from a heart of a t-structure: for
−1

2 < φ ≤ 1
2 , we let P(φ) ⊂ A be the subcategory of νZ,A-semistable objects with slope

corresponding to the ray R>0 · eiπφ; this gets extended to all φ ∈ R via P(φ+ n) = P(φ)[n] for
n ∈ Z.

This allows one to define a topology on the set of very weak stability conditions; it is the
coarsest topology such that the maps σ 7→ Z and σ 7→ φ±σ (E) are continuous, for all E ∈ Db(X).
Our first goal is to show tilt-stability conditions vary continuously; note that we use a slightly
different normalization of the central charge than in Section 2:

Proposition B.2. There is a continuous family of very weak stability conditions parameterized by
R>0 ×NS(X)R given by

(α,B) 7→
(
Zα,B,CohH,B(X)

)
where

Zα,B = H2 chB1 +i

(
H chB2 −

1

2
α2H3 chB0

)
.
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For rational B, this stability condition can be constructed by proving directly that the pair(
Zα,B,CohH,B(X)

)
admits Harder-Narasimhan filtrations, see [BMT14, Lemma 3.2.4]. We will

extend this to arbitrary B by deformations, and show simultaneously that these deformations glue
to give a single family of very weak stability conditions.

Let us first indicate the key difficulty that prevents us from applying the methods of [Bri07,
Sections 6 and 7] directly. Let I be a small interval containing 1

2 ; then the quasi-abelian category
P(I) is not Artinian: if x ∈ X lies on a curve C ⊂ X , then . . . ↪→ OC(−2x) ↪→ OC(−x) ↪→ OC
is an infinite chain of strict subobjects of OC in P(1

2) ⊂ P(I). Therefore, the proof of [Bri07,
Lemma 7.7] does not carry over.

We now explain how to circumvent this problem. Fix α,B with B rational; we will use Z :=
Zα,B for the corresponding central charge. By the rational case of Theorem 3.5, proved in Section
3, the central charge Z satisfies the support property.4 Let C > 0 be the constant appearing in the
support property; we also write P for the associated slicing.

Now consider a central charge W := Zα′,B′ , where α′, B′ are sufficiently close to α,B such
that W satisfies ‖W − Z‖ < ε

C , for some sufficiently small ε > 0; recall that this implies that
the phases of σ-semistable object change by at most ε. We choose ε < 1

8 and small enough
such that

∣∣H2(B′ −B)
∣∣ < αH3 is automatically satisfied. For simplicity we also assume that

H2(B′ −B) < 0; the other case can be dealt with analogously.
Let I = (a, b) be a small interval with a + ε < 1

2 < b − ε; the key problem is to construct
Harder-Narasimhan filtrations of objects in P(I) with respect to W . Our first observation is that
due to our assumption H2(B′−B) < 0, central charges of objects in P(I) can only “move to the
left”; this is again based on the Bogomolov-Gieseker inequality for σ-stability:

Lemma B.3. If E ∈ P((a, b)) is σ-semistable with <Z(E) < 0, then also <W (E) < 0.

Note that the assumption is equivalent to E ∈ CohH,B(X)[1] ∩ P((a, b)) = P
((

1
2 , b
))

.

Proof. By assumption we have <Z(E) = H2 chB1 (E) < 0 and

<W (E) = <Z(E)−H2(B′ −B) ch0(E).

The case ch0(E) ≤ 0 is trivial due to the assumption H2(B′ − B) < 0. Otherwise, note that
=Z(E) ≥ 0 implies

2H chB2 (E)H3 ch0(E)− α2
(
H3 ch0(E)

)2 ≥ 0.

By using Theorem 3.5, applied to the rational class B, we also have

2H chB2 (E)H3 ch0(E)− α2
(
H3 ch0(E)

)2 ≤ (H2 chB1 (E)
)2 − α2

(
H3 ch0(E)

)2
.

Therefore, we deduce
H2 chB1 (E) ≤ −αH3 ch0(E).

Using
∣∣H2(B′ −B)

∣∣ < αH3, this implies the claim. �

As in [Bri07, Section 7], we define the set of semistable objects Q(φ) to be objects of P((φ−
ε, φ+ ε)) that are W -semistable in a slightly larger category, e.g. in P((φ− 2ε, φ+ 2ε)). The key
lemma overcoming the indicated difficulty above is the following:

Lemma B.4. Given E ∈ P((a, b)), there exists a filtration 0 = E0 ↪→ E1 ↪→ E2 ↪→ E3 such that

• E1 ∈ CohH,B
′
(X)[1] and E1 has no quotients E1 � N in P((a, b)) with <W (N) ≥ 0;

4Note that definitions A.2 and A.3 both apply verbatim in this situation: they allow for Z(vH(E)) = 0 for a stable
object E if and only if vH(E) = 0.
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• E2/E1 ∈ CohH,B
′
(X) is W -semistable in P((a, b)) with <W (E2/E1) = 0;

• E3/E2 ∈ CohH,B
′
(X) and E3/E2 has no subobjects M ↪→ E3/E2 in P((a, b)) with

<W (M) ≤ 0.

Proof. The t-structure associated to CohH,B(X) gives a short exact sequence E′ ↪→ E � E′′

in P((a, b)) with E′ ∈ CohH,B(X)[1] and E′′ ∈ CohH,B(X). Any quotient E′ � N would
necessarily satisfy N ∈ P((1

2 , b)); by Lemma B.3, this implies <W (N) < 0. Thus, given a
filtration as in the claim for E′′, its preimage in E will still satisfy all the claims.

We may therefore assume E ∈ CohH,B(X). Note that CohH,B
′
(X) can be obtained as a tilt of

CohH,B(X): there exists a a torsion pair

T = CohH,B
′
(X)[1] ∩ CohH,B(X), F = CohH,B

′
(X) ∩ CohH,B(X).

Moreover,
T ∈ T ⇒ <W (T ) < 0 and F ∈ F ⇒ <W (T ) ≥ 0.

Let E1 ↪→ E � F be the short exact sequence associated to E via this torsion pair. Since T is
closed under quotients, E1 satisfies all the claims in the lemma; similarly, B only has subobjects
with <W ( ) ≥ 0.

The existence of E2 now follows from the fact that CohH,B
′
(X) admits a torsion pair whose

torsion part is given by objects with <W ( ) = 0; this is shown in the first paragraph of the proof
of [BMT14, Lemma 3.2.4], which does not use any rationality assumptions. �

The existence of Harder-Narasimhan filtrations of E1 and E3/E2 can now be proved with the
same methods as in [Bri07, Section 7]; the same goes for any E ∈ P((a, b)) when (a, b) is an
interval not intersecting the set 1

2 + Z; this is enough to conclude the existence of HN filtrations
for arbitrary E ∈ Db(X), see the arguments at the end of Section 7 in [Bri07]. Similar arguments
apply in the case H2(B′ −B) > 0.

We have thus proved the claim that the tilt-stability condition σ deforms to a very weak stability
condition σ′ with central charge W . Moreover, by the construction in Lemma B.4, its associated
t-structure is exactly CohH,B

′
(X); this finishes the proof of Proposition B.2.

Let us also observe that for φ ∈ 1
2 + Z, the subcategory P(φ) ∩

{
E ∈ Db(X) : vH(E) = 0

}
is unchanged under deformations: it consists of 0-dimensional torsion sheaves, shifted by φ − 1

2 .
These are the only semistable objects with central charge equal to zero; we will use this fact to
show that tilt-stability conditions satisfy well-behaved wall-crossing:

Proposition B.5. Fix a class c ∈ Λ. There exists a wall-and-chamber structure given by a locally
finite set of walls in R>0 × NS(X)R such that for an object E with vH(E) = c, tilt-stability
is unchanged as (α,B) vary within a chamber. Each of the walls is locally given by one of the
following conditions on Z = Zα,B:

(a) Z(F ) is proportional to Z(E) for some destabilizing subobject F ↪→ E with vH(F ) 6=
0 6= vH(E/F ), or

(b) Z(E) is purely imaginary (if there exists a subobject or quotient F with vH(F ) = 0).

Proof. As indicated above, the second type of walls corresponds to the case where E has a shift of
a zero-dimensional torsion sheaf as a subobject or quotient. Otherwise, any possibly destabilizing
short exact sequence F ↪→ E � E/F must have the properties given in (a), to which the usual
arguments (e.g. in [Bri08, Section 9]) based on support property apply. �

This allows us to complete the proof of the Bogomolov-Gieseker type inequalities:
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Proof of Theorem 3.5, case H2B non-rational. Consider a νω,B-semistable object E. We may
assume have H2 chB1 (E) 6= 0. Using Lemma 3.7, we can assume that E is in fact νω,B-stable.
By Proposition B.5, there is an open chamber in R>0 × NS(X)R in which E is tilt-stable; this
chamber contains points with rational B; therefore, our claim ∆C

H,B(E) ≥ 0 follows from case
H2B rational proved in Section 3. �

Remark B.6. (a) Alternatively, the statements of this appendix could be proved via the relation
of tilt-stability to a certain polynomial stability condition (in the sense of [Bay09]); see Sections 4
and 5 of [BMT14], in particular Proposition 5.1.3. The advantage is that the slicing associated to
this polynomial stability condition is locally finite.

(b) Let us also explain precisely the problem with the statement of [BMT14, Corollary 3.3.3]:
if we allow arbitrary deformations of ω ∈ NS(X)R, rather than just those proportional to a given
polarization H , we would need to prove the support property for tilt-stable objects with respect to
a non-degenerate quadratic form on the lattice

Λ = H0(X)⊕NS(X)⊕ 1

2
N1(X), v(E) = (ch0(E), ch1(E), ch2(E)) .

However, none of the variants of the classical Bogomolov-Gieseker inequality discussed in Section
3 give such a quadratic form, as they only depend on H ch2 rather than ch2 directly.
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[EHV82] Lawrence Ein, Robin Hartshorne, and Hans Vogelaar. Restriction theorems for stable rank 3 vector bundles
on Pn. Math. Ann., 259(4):541–569, 1982.

[Ela14] Alexey Elagin. On equivariant triangulated categories, 2014. arXiv:1403.7027.
[GP98] Francisco Javier Gallego and B. P. Purnaprajna. Very ampleness and higher syzygies for Calabi-Yau three-

folds. Math. Ann., 312(1):133–149, 1998.
[HL10] Daniel Huybrechts and Manfred Lehn. The geometry of moduli spaces of sheaves. Cambridge Mathemati-

cal Library. Cambridge University Press, Cambridge, second edition, 2010.
[HRS96] Dieter Happel, Idun Reiten, and Sverre O. Smalø. Tilting in abelian categories and quasitilted algebras.

Mem. Amer. Math. Soc., 120(575):viii+ 88, 1996.
[KS08] Maxim Kontsevich and Yan Soibelman. Stability structures, motivic Donaldson-Thomas invariants and

cluster transformations, 2008. arXiv:0811.2435.
[Lan11] Adrian Langer. On the S-fundamental group scheme. Ann. Inst. Fourier (Grenoble), 61(5):2077–2119,

2011. arXiv:0905.4600.
[Li15] Chunyi Li. Stability conditions on Fano threefolds of Picard number one, 2015. arXiv:1510.04089.
[LM16] Jason Lo and Yogesh More. Some Examples of Tilt-Stable Objects on Threefolds, 2016. arXiv:1209.2749.
[Mac14a] Antony Maciocia. Computing the walls associated to Bridgeland stability conditions on projective surfaces,

2014. arXiv:1202.4587.
[Mac14b] Emanuele Macrı̀. A generalized Bogomolov–Gieseker inequality for the three-dimensional projective

space. Algebra Number Theory, 8(1):173–190, 2014. arXiv:1207.4980.
[Mar16] Cristian Martinez. Failure of to the generalized Bogomolov-Gieseker type inequality on blowups, 2016.

Preprint.
[MMS09] Emanuele Macrı̀, Sukhendu Mehrotra, and Paolo Stellari. Inducing stability conditions. J. Algebraic

Geom., 18(4):605–649, 2009. arXiv:0705.3752.
[MP15] Antony Maciocia and Dulip Piyaratne. Fourier-Mukai transforms and Bridgeland stability conditions on

abelian threefolds, 2015. arXiv:1304.3887.
[MP16] Antony Maciocia and Dulip Piyaratne. Fourier–Mukai transforms and Bridgeland stability conditions on

abelian threefolds II, 2016. arXiv:1310.0299.
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DINI 50, 20133 MILANO, ITALY

E-mail address: paolo.stellari@unimi.it
URL: https://sites.unimi.it/stellari

http://www.maths.ed.ac.uk/~abayer/
http://nuweb15.neu.edu/emacri/
https://sites.unimi.it/stellari

	1. Introduction
	2. Review: tilt-stability and the conjectural BG inequality
	3. Classical Bogomolov-Gieseker type inequalities
	4. Generalizing the main conjecture
	5. Reduction to small 
	6. Tilt stability and étale Galois covers
	7. Abelian threefolds
	8. Construction of Bridgeland stability conditions
	9. The space of stability conditions on abelian threefolds
	10. The space of stability conditions on some Calabi-Yau threefolds
	Appendix A. Support property via quadratic forms
	Appendix B. Deforming tilt-stability
	References

