
DERIVED CATEGORIES AND KUMMER VARIETIES

PAOLO STELLARI

Abstract. We prove that if two abelian varieties have equivalent derived categories then the
derived categories of the smooth stacks associated to the corresponding Kummer varieties are
equivalent as well. The second main result establishes necessary and sufficient conditions for the
existence of equivalences between the twisted derived categories of two Kummer surfaces in terms
of Hodge isometries between the generalized transcendental lattices of the corresponding abelian
surfaces.

1. Introduction

The Kummer variety of an abelian variety A is the quotient K(A) := A/〈ι〉, where ι(a) = −a for
any a ∈ A. The singular variety K(A) has an orbifold structure and it admits a minimal crepant
resolution Km(A) if and only if the dimension of A is 2. In this case Km(A) is a K3 surface (i.e.
it is simply connected and its dualizing sheaf is trivial) and it is called the Kummer surface of A.
More generally, we can associate to the global quotient K(A) the smooth quotient stack [A/〈ι〉].

In [11] Hosono, Lian, Oguiso and Yau proved that,

(A) given two abelian surfaces A and B, Db(A) ∼= Db(B) if and only if

Db(Km(A)) ∼= Db(Km(B)).

Their argument runs as follows: They notice that, due to the geometric construction of the Kummer
surfaces Km(A) and Km(B), the transcendental lattices of A and B are Hodge-isometric if and
only if the transcendental lattices of Km(A) and Km(B) are Hodge-isometric. Then, they apply a
deep result of Orlov which says that two abelian or K3 surfaces have equivalent derived categories
if and only if their transcendental lattices are Hodge-isometric (see Theorem 2.2). From this it is
evident that (A) can be reformulated in the following way:

(B) given two abelian surfaces A and B, Db(Km(A)) ∼= Db(Km(B)) if and only if there exists
a Hodge isometry between the transcendental lattices of A and B.

Since Mukai proved in [20] that two K3 surfaces with Picard number greater than 11 and with
Hodge-isometric transcendental lattices are isomorphic, (A) and (B) are equivalent to the following
statement:

(C) given two abelian surfaces A and B, Db(A) ∼= Db(B) if and only if Km(A) ∼= Km(B).

The aim of this paper is to address (A), (B) and (C) in two more general contexts. Our first
result shows that if A1 and A2 are abelian varieties with equivalent derived categories, then the
derived categories of the stacks [A1/〈ι〉] and [A2/〈ι〉] are equivalent as well. In fact we will prove
the following:

Theorem 1.1. Let A1 and A2 be abelian varieties. If Db(A1) ∼= Db(A2), then there exists a
Fourier-Mukai equivalence Db([A1/〈ι〉]) ∼= Db([A2/〈ι〉]).

Conversely, if Db([A1/〈ι〉]) and Db([A2/〈ι〉]) are equivalent, then there is an isomorphism of

Hodge structures H̃(A1,Q) ∼= H̃(A2,Q).
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The Hodge structures mentioned in the second part of the previous statement will be defined in
Section 2.2 and the proof of this result will occupy almost all Section 3. As we will show in Section
3.3, when we deal with abelian surfaces this result leads to a direct proof of one implication in (A).
An application to the number of birational generalized Kummer varieties is given in Proposition
3.3.

Our second main result treats the two-dimensional twisted case. Indeed, according to (B), we
prove that the twisted derived categories of two Kummer surfaces are equivalent if and only if
the generalized transcendental lattices of the corresponding abelian surfaces are Hodge isometric.
More precisely the result (proved in Sections 4.1 and 4.2) is as follows:

Theorem 1.2. Let A1 and A2 be abelian surfaces. Then the following two conditions are equiva-
lent:

(i) there exist αi in the Brauer group of Km(Ai) and an equivalence between the derived cate-
gories Db(Km(A1), α1) and Db(Km(A2), α2);

(ii) there exist βi in the Brauer group of Ai such that the twisted abelian surfaces (A1, β1) and
(A2, β2) have Hodge-isometric generalized transcendental lattices.

Furthermore, if one of these two equivalent conditions holds true, then A1 and A2 are isogenous.

The notations an definitions involved in the formulation of the previous result will be explained
in Sections 2.2 and 4.1. We will observe that the analogues of (A) and (C) in the twisted setting
are no longer true (see Remark 4.4). Nevertheless we completely generalize the results in [11]
about the number of Kummer structures on K3 surfaces in the twisted context (Proposition 4.5).
A geometric example involving abelian surfaces with Picard number two is discussed.

2. Derived categories of abelian varieties and K3 surfaces

In this section we recall some facts and definitions concerning the derived categories of coherent
sheaves on abelian varieties and K3 surfaces. In the following pages Db(X) will always mean the
bounded derived category of coherent sheaves on the smooth projective variety X (we will also
use the same notation for the bounded derived category of coherent sheaves on a smooth quotient
stack according to [16]).

Suppose that X1 and X2 are smooth projective varieties. Let Db(X1) and Db(X2) be the
bounded derived categories of coherent sheaves on X1 and X2. Orlov proved in [25] that any
equivalence Φ : Db(X1)→ Db(X2) is a Fourier-Mukai equivalence, i.e. there exists E ∈ Db(X1×X2)
and an isomorphism of functors

Φ ∼= Rp2∗(E
L
⊗ p∗1(−)),(2.1)

where pi : X1×X2 → Xi is the projection and i ∈ {1, 2} (see also [6] for a more general statement).
The complex E is the kernel of Φ and it is uniquely (up to isomorphism) determined. We write ΦE
for a Fourier-Mukai equivalence whose kernel is E . In general, given E ∈ Db(X1 ×X2), we write
ΦE for a functor defined as in (2.1) (notice that ΦE is not necessarily an equivalence).

2.1. Derived categories of abelian varieties. Assume that A1 and A2 are abelian varieties of

dimension d. For i ∈ {1, 2}, let Pi be the Poincaré line bundle on Ai×Âi, let µi : Ai×Ai → Ai×Ai
be the isomorphism such that (a, b) 7→ (a+ b, b) and let Φi := µi∗ ◦ (id× ΦPi). If ΦE : Db(A1) →
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Db(A2) is a Fourier-Mukai equivalence with kernel E , we get the following commutative diagram:

Db(A1 × Â1)
id×ΦP1

''

FE //

Φ1

��

Db(A2 × Â2)
id×ΦP2

vv
Φ2

��

Db(A1 ×A1)

µ1∗

vv

Db(A2 ×A2)

µ2∗

((
Db(A1 ×A1)

ΦE×ΦER // Db(A2 ×A2),

(2.2)

where FE is the functor completing the diagram, ER = E∨[d] and ΦE × ΦER is the Fourier-Mukai
equivalence whose kernel is E � ER. Observe that since ΦE , Φ1 and Φ2 are equivalences, ΦE ×ΦER
and FE are equivalences as well.

For i ∈ {1, 2}, the Künneth formula yields a decomposition

H1(Ai × Âi,Z) ∼= H1(Ai,Z)⊕H1(Âi,Z).

Since H1(Âi,Z) ∼= H1(Ai,Z)∨, the group H1(Ai× Âi,Z) is endowed with a natural quadratic form.

Indeed, if (a1, α1), (a2, α2) ∈ H1(Ai × Âi,Z), we define

〈(a1, α1), (a2, α2)〉i := α1(a2) + α2(a1),

where i ∈ {1, 2}. Consider the set of isomorphisms

U(A1, A2) := {f ∈ Isom(A1 × Â1, A2 × Â2) : 〈f∗(a1, α1), f∗(a2, α2)〉2 = 〈(a1, α1), (a2, α2)〉1}.
Theorem 2.1. ([26], Theorem 2.19 and Proposition 4.12.) Let A1 and A2 be abelian vari-
eties. If ΦE : Db(A1)→ Db(A2) is an equivalence, then, for any F ∈ Db(A1),

FE(F) = fE ∗(F)⊗NE ,

where FE is the equivalence in (2.2), fE ∈ U(A1, A2) and NE ∈ Pic(A2 × Â2). Moreover, there
exists a surjective map

γ : Eq(Db(A1),Db(A2)) −→ U(A1, A2)(2.3)

such that γ(ΦE) = fE , where Eq(Db(A1),Db(A2)) is the set of equivalences between Db(A1) and
Db(A2).

2.2. Hodge structures and derived categories. If X is a smooth projective variety of dimen-

sion d, we denote by H̃(X,Q) the even cohomology group H2∗(X,Q) with the Hodge structure
defined as follows:

H̃p,q(X) =
⊕

p−q=r−s
Hr,s(X),(2.4)

where Hr,s(X) is the (r, s)-part of the usual Hodge decomposition of Hr+s(X,C) ⊂ H2∗(X,C).
An equivalent way to put on H∗(X,C) such a Hodge structure could be obtained considering the
natural grading on the Hochschild homology of X (see, for example, [5]).

Suppose now that X is either an abelian or a K3 surface, H2,0(X) = 〈σX〉 and B is any class in
H2(X,Q). Then

ϕ := exp(B)(σX) = σX +B ∧ σX ∈ H2(X,C)⊕H4(X,C)

is a generalized Calabi-Yau structure on X (for a complete picture see [12]). Let T (X,B) be the
minimal primitive sublattice of H2(X,Z) ⊕ H4(X,Z) such that ϕ ∈ T (X,B) ⊗ C. The lattice

T (X,B) is the generalized transcendental lattice of ϕ (see [12] and [14]). Let H̃(X,Z) be the
Z-module H0(X,Z)⊕H2(X,Z)⊕H4(X,Z) endowed with the Mukai pairing

〈(a0, a2, a4), (b0, b2, b4)〉 = a2 · b2 − a0 · b4 − a4 · b0,
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where (a0, a2, a4), (b0, b2, b4) ∈ H2∗(X,Z) and “·” is the cup-product. We write H̃(X,B,Z) for the

lattice H̃(X,Z) with the weight-two Hodge structure such that

H̃2,0(X,B) := exp(B)(H̃2,0(X))

and H̃1,1(X,B) is its orthogonal complement in H2(X,C). It is clear that T (X,B) inherits from

H̃(X,B,Z) a weight-two Hodge structure. By definition, T (X) = T (X, 0) is the transcendental
lattice of X and

NS(X) := T (X)⊥ ⊂ H2(X,Z)

is the Néron-Severi group of X. The number ρ(X) := rkNS(X) is the Picard number of X. If L1

and L2 are lattices endowed with a weight-k Hodge structure, then an isometry f : L1 → L2 is a
Hodge isometry if it preserves the Hodge structures.

For abelian and K3 surfaces, Orlov proved in [25] (using results in [20]) the following theorem:

Theorem 2.2. ([25], Theorem 3.3.) Let X1 and X2 be either abelian or K3 surfaces. Then the
following two conditions are equivalent:

(i) there exists an equivalence Db(X1) ∼= Db(X2);
(ii) there exists a Hodge isometry T (X1) ∼= T (X2).

3. Derived categories of the smooth stacks

This section is mainly devoted to the proof of Theorem 1.1. As it will turn out, such a proof,
which will be given in Section 3.2, relies on some results about the equivariant derived categories
of coherent sheaves on abelian varieties proved in Section 3.1. In Section 3.3 some geometric
applications are discussed.

3.1. Equivariant derived categories and abelian varieties. Consider the simple case of an
abelian variety A with the action of G := Z/2Z induced by the automorphism ι : A→ A such that
ι(a) = −a, for any a ∈ A. A G-linearization for a coherent sheaf E ∈ Coh(A) is an isomorphism
λ : E → ι∗E such that ι∗(λ) = λ and ι∗(λ) ◦ λ = λ ◦ λ = id.

CohG(A) is the abelian category whose objects are the pairs (E , λ), where E ∈ Coh(A) admits
a G-linearization and λ is a G-linearization for E . The morphisms in CohG(A) are the morphisms
in Coh(A) compatible with the G-linearizations. We define Db

G(A) := Db(CohG(A)) to be the
bounded derived category of CohG(A). A complete discussion about the general case when G is
any finite group acting on a smooth projective variety can be found in [2].

If A1 and A2 are abelian varieties and G∆
∼= Z/2Z acts on A1×A2 via the automorphism ι× ι,

the set of G∆-invariant equivalences has the following description:

Eq(Db(A1),Db(A2))G∆ = {ΦG ∈ Eq(Db(A1),Db(A2)) : G ∈ Db(A1 ×A2) is G∆-invariant}.

An equivalence Φ : Db
G(A1) ∼= Db

G(A2) is a Fourier-Mukai equivalence if there is an isomorphism as

in (2.1), where the kernel E is in Db
G×G(A1 ×A2). Eq(Db

G(A1),Db
G(A2)) is the set whose elements

are the equivalences of this type.

Proposition 3.1. Let A1 and A2 be abelian varieties and let G = Z/2Z act on A1 and A2 as
above. Then the restriction

γ : Eq(Db(A1),Db(A2))G∆ −→ U(A1, A2)

of the map in (2.3) is surjective and Eq(Db
G(A1),Db

G(A2)) is non-empty if U(A1, A2) is non-empty.

Proof. By definition, we can think of any f ∈ U(A1, A2) as represented by a matrix(
xf yf
zf wf

)
.
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Define S(A1, A2) := {f ∈ U(A1, A2) : yf is an isogeny} and let f ∈ S(A1, A2). Using results from
[19], Orlov proved in [26] (see, in particular, [26, Prop. 4.12]) that there exists a vector bundle E
on A1 ×A2 with the following properties:

(a) E is simple and ΦE is an equivalence;
(b) for any (a, b) ∈ A1 × A2, if T(a,b) is the translation with respect to the point (a, b), then

T(a,b)∗E ∼= E ⊗ P for some P ∈ Pic0(A1 ×A2);
(c) γ(ΦE) = f .

Consider now the sheaf F := (ι× ι)∗E . It is clear that γ(ΦF ) = γ(ΦE) = f .
For a brief proof of this fact, consider the maps Φi, ΦPi and µi in (2.2). A straightforward

calculation shows that (ι × ι)∗Pi ∼= Pi. Moreover, µi is a morphism of abelian varieties. Hence
(ι × ι)∗ ◦ (id × ΦPi) ◦ (ι × ι)∗ = id × ΦPi and (ι × ι)∗ ◦ µi∗ ◦ (ι × ι)∗ = µi∗. This implies that
(ι× ι)∗ ◦Φi ◦ (ι× ι)∗ = Φi, for i ∈ {1, 2}. Since ΦF = ι∗ ◦ΦE ◦ ι∗ and ΦF ×ΦFR = (ι× ι)∗ ◦ (ΦE ×
ΦER) ◦ (ι× ι)∗, we rewrite the commutative diagram (2.2) in the following way:

Db(A1 × Â1)

Φ1

��

(ι×ι)∗
//

FF

++
Db(A1 × Â1)

Φ1

��

FE // Db(A2 × Â2)

Φ2

��

(ι×ι)∗
// Db(A2 × Â2)

Φ2

��
Db(A1 ×A1)

(ι×ι)∗ //

ΦF×ΦFR

33
Db(A1 ×A1)

ΦE×ΦER// Db(A2 ×A2)
(ι×ι)∗// Db(A2 ×A2).

(3.1)

By Theorem 2.1, for any G ∈ Db(A1 × Â1), FF (G) = fF∗(G)⊗NF , for some fF ∈ U(A1, A2) and

NF ∈ Pic(A2 × Â2). Hence, from (3.1) we deduce that

FF (G) = ((ι× ι)∗ ◦ FE ◦ (ι× ι)∗)(G)

= ((ι× ι)∗ ◦ fE∗ ◦ (ι× ι)∗)(G)⊗M
= fE∗(G)⊗M,

for some M ∈ Pic(A2 × Â2). Observe that the last equality holds true because fE is a morphism
of abelian varieties. This proves that γ(ΦF ) = γ(ι∗ ◦ ΦE ◦ ι∗) = γ(ΦE) which is what we claimed.

Due to this last remark and to [26, Cor. 3.4], there exist a ∈ A1 and α ∈ Â1 such that

F = T(a,0)∗E ⊗ p∗Pα[i],(3.2)

where p : A1 ×A2 → A1 is the projection, i is an integer and Pα is the degree zero line bundle on
A1 corresponding to α. In the following arguments, without loss of generality, we will forget about
the shift [i] in (3.2).

Since E satisfies (b), from (3.2) we get F = E ⊗ Q, where Q is a degree zero line bundle on
A1 × A2. Let N ∈ Pic0(A1 × A2) be such that N2 = Q and consider the sheaf Ef := E ⊗N . It is
easy to see that

(ι× ι)∗(Ef ) = (ι× ι)∗(E ⊗N)
∼= E ⊗Q⊗N∨
∼= E ⊗N
= Ef .

Due to [26, Prop. 3.3] and to (c), γ(ΦEf ) = γ(ΦE) = f .
Let f ∈ U(A1, A2). Orlov observed in [26, Sect. 4] that there exist g1 ∈ S(A1, A2) and g2 ∈

S(A2, A2) such that f = g2 ◦ g1. From its very definition, the map γ in Theorem 2.1 preserves the
compositions. Hence γ restricts to a surjective map γ : Eq(Db(A1),Db(A2))G∆ → U(A1, A2).
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To prove the second claim in Proposition 3.1, consider the set

Ker(A1, A2, G∆) := {(G, λ) ∈ Db
G∆

(A1 ×A2) : ΦG ∈ Eq(Db(A1),Db(A2))}.

Since the group cohomology H2(Z/2Z,C∗) is trivial, [27, Thm. 6] shows the existence of two maps

ψ1 : Ker(A1, A2, G∆) −→ Eq(Db(A1),Db(A2))G∆

ψ2 : Ker(A1, A2, G∆) −→ Eq(Db
G(A1),Db

G(A2))

such that, for any (G, λ) ∈ Ker(A1, A2, G∆), ψ1((G, λ)) = ΦG and ψ2((G, λ)) = ΦH, where H :=
(G ⊕ (ι, id)∗G, λ′) and λ′ is the natural (G×G)-linearization induced by λ.

We previously proved that for any f ∈ S(A1, A2), there exists ΦEf ∈ Eq(Db(A1),Db(A2))G∆

such that γ(ΦEf ) = f . From [27] it follows that ψ1 is surjective and that the set Ker(A1, A2, G∆)

is non-empty if Eq(Db(A1),Db(A2))G∆ is non-empty. Hence, there exists Ψf ∈ Ker(A1, A2, G∆)

such that ψ1(Ψf ) = ΦEf . The functor ψ2(Ψf ) is in Eq(Db
G(A1),Db

G(A2)). �

The special case A1 = A2 is also treated in [27].

3.2. Proof of Theorem 1.1. Let A1 and A2 be abelian varieties and suppose that Db(A1) ∼=
Db(A2). Due to Theorem 2.1, the set U(A1, A2) is non-empty. Therefore, if G = Z/2Z acts on A1

and A2 as prescribed at the beginning of Section 3.1, then Proposition 3.1 yields an equivalence
Ψ : Db

G(A1)
∼−→ Db

G(A2).

Consider the stacks [A1/G] and [A2/G] (see [9] and [16]). For any i ∈ {1, 2}, let Db([Ai/G])
be the bounded derived category of the abelian category Coh([Ai/G]) of coherent sheaves on
[Ai/G] (see [16]). Obviously Db([Ai/G]) ∼= Db

G(Ai), because Coh([Ai/G]) ∼= CohG(Ai), for any

i ∈ {1, 2}. This implies that Ψ can be rewritten as Φ : Db([A1/G])
∼−→ Db([A2/G]). Due to [16], Φ

is of Fourier-Mukai type (i.e. there is an isomorphism as in (2.1)). Hence, the first part of Theorem
1.1 is proved.

Assume that an equivalence Φ : Db([A1/G])
∼−→ Db([A2/G]) is given. As before, the results

in [16] imply that we can think of Φ as a Fourier-Mukai equivalence whose kernel is a (G × G)-
linearized complex (E , λ). Obviously, the inverse Φ−1 is a Fourier-Mukai equivalence as well.
Suppose that its kernel is (F , λ′). It is an easy exercise to show that the kernel of the identity
functor id = Φ ◦ Φ−1 : Db

G(Ai) → Db
G(Ai) is the (G × G)-linearized sheaf (O∆ ⊕ (ι, id)∗O∆, µ),

where µ is the natural linearization and ∆ ↪→ Ai ×Ai is the diagonal embedding.
Consider the functors ΦE , ΦF and ΦO∆⊕(ι,id)∗O∆

. Although they are no longer equivalences,
they induce the commutative diagram

Db(A1)

ch
��

ΦE //

ΦO∆⊕(ι,id)∗O∆

((
Db(A2)

ch
��

ΦF // Db(A1)

ch
��

H2∗(A1,Q)
ΦHE //

ΦHO∆⊕(ι,id)∗O∆

66
H2∗(A2,Q)

ΦHF // H2∗(A1,Q),

(3.3)

where ΦH
E : H2∗(A1,Q)→ H2∗(A2,Q) is such that ΦH

E (a) = p2∗(ch(E)·p∗1(a)) and pi : A1×A2 → Ai
is the projection. Take analogous definitions for ΦH

F and ΦH
O∆⊕(ι,id)∗O∆

.

Observe that (ι, id)∗O∆ is the kernel of the Fourier-Mukai equivalence ι∗ : Db(Ai)
∼−→ Db(Ai).

Since ι∗ acts as the identity on the cohomology lattice H̃(Ai,Z), from (3.3) we deduce

ΦH
F ◦ ΦH

E = (ΦO∆⊕(ι,id)∗O∆
)H = 2id.
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Hence ΦH
E is injective. Exchanging the roles of ΦE and ΦF in (3.3), we see that ΦH

E is an isomor-
phism of Q-vector spaces. In particular, dim(A1) = dim(A2) = n.

The fact that the Hodge structures defined in (2.4) are preserved follows from the standard
argument for Fourier-Mukai equivalences (see [13, Prop. 5.39]). Indeed, one just needs to observe

that ch(E) ∈ H̃∗,∗(A1 ×A2). This concludes the proof of Theorem 1.1.

Remark 3.2. Of course, in general, ΦH
E does not preserve the Mukai pairing naturally defined on

H2∗(Ai,Q) by means of the cup product ([13, Chapter 5]). Indeed, it is easy to see that the Mukai
pairing is preserved up to a factor 2.

3.3. Geometric applications. Assume that A1 and A2 are abelian surfaces. The main result
in [2] yields an equivalence Ψi : Db([Ai/〈ι〉])

∼−→ Db(Km(Ai)), for any i ∈ {1, 2}. Thus, if Υ :

Db(A1)
∼−→ Db(A2) is a Fourier-Mukai equivalence, we immediately get a second Fourier-Mukai

equivalence

Φ : Db(Km(A1))
Ψ−1

1−→ Db([A1/〈ι〉])
∼−→ Db([A2/〈ι〉])

Ψ2−→ Db(Km(A2)),(3.4)

where the middle equivalence is produced by Theorem 1.1 and the kernel of Φ can be easily
computed using [2]. This leads to a different and explicit proof of the “only if” implication in (A)
without using the lattice theoretical description of the transcendental lattices of an abelian surface
and of the associated Kummer surface.

Let us discuss a second geometric application. Assume that A is an abelian surface. We denote
by Kn(A) the n-th generalized Kummer variety of A. Recalling the construction in [1], we see that
Kn(A) is the fiber over 0 with respect to the map Ψ which is the composition of the morphisms in
the following diagram:

Ψ : Hilbn+1(A)
ρ−→ Symn+1(A)

σ−→ A,

where ρ is the Hilbert-Chow morphism and σ(a1, . . . , an+1) = a1 + . . . + an+1. It is easy to see
that Kn(A) is smooth and that K1(A) = Km(A). Furthermore, in [1] Beauville proved that these
varieties are examples of irreducible symplectic manifolds.

Proposition 3.3. Let A be an abelian surface and let n ≥ 2 be an integer. The number of
generalized Kummer varieties Kn(B) birational to Kn(A) is finite up to isomorphisms. Moreover
if Kn(A) and Kn(B) are birational, then Km(A) ∼= Km(B) and A and B are isogenous.

Proof. Let A1 and A2 be abelian surfaces and let ϕ be a birational morphism between Kn(A1) and

Kn(A2). Obviously, ϕ induces an isomorphism g : H2(Kn(A1),Z)
∼−→ H2(Kn(A2),Z). Furthermore,

there exists an isometry of lattices H2(Kn(Ai),Z)
∼−→ H2(Ai,Z)⊕Z[Ei], where Ei is the restriction

to Kn(A) of the exceptional locus of Hilbn+1(Ai). The left hand side of the isomorphism is endowed
with the Beauville-Bogomolov form while the quadratic form on H2(Ai,Z) is the cup-product (see
[1, Lemma 4.10] and [30, Prop. 4.11]).

Since E1 and E2 are algebraic, g yields an isomorphism T (A1) ∼= T (A2). Using Theorem 2.2,
we get an equivalence Db(A1) ∼= Db(A2). To prove that A1 is isogenous to A2 observe that if

Db(A1) ∼= Db(A2), then A1 × Â1
∼= A2 × Â2 (Theorem 2.1). Hence A1 × A1 and A2 × A2 are

isogenous and A1 and A2 are isogenous as well. On the other hand, as there are only finitely
many isomorphism classes of abelian surfaces A such that Db(A) ∼= Db(A1) (see [3, Prop. 5.3]), the
number of generalized Kummer varieties Kn(A2) birational to Kn(A1) is finite up to isomorphism.
Moreover, Theorem 1.1 yields an equivalence Db([A1/〈ι〉]) ∼= Db([A2/〈ι〉]). Due to (3.4) and
Theorem 1.1, Db(Km(A)) ∼= Db(Km(B)) and then Km(A) ∼= Km(B) (see [20]). �

An analogous result for Hilbert schemes of points on K3 surfaces was proved in [27].

Remark 3.4. Observe that, in general, if A and B are abelian surfaces such that Km(A) ∼= Km(B),
then Kn(A) and Kn(B) are not necessarily birational. Indeed, consider an abelian surface A such
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that A 6∼= Â and NS(A) = 〈H〉 with H2 = 6. Obviously Db(A) ∼= Db(Â). Due to Theorem 1.1,

Db(Km(A)) ∼= Db(Km(Â)) and Km(A) ∼= Km(Â) ([20]). On the other hand, Namikawa ([21, Sect.

5]) proved that K2(A) and K2(Â) are not birational.
Furthermore, Example 4.3 yields very explicit examples of isogenous abelian surfaces A and B

such that Db(A) 6∼= Db(B). In particular Km(A) 6∼= Km(B) and Kn(A) is not birational to Kn(B)
for any positive integer n.

4. Derived categories of twisted Kummer surfaces

In this section we prove Theorem 1.2 which relates the existence of equivalences between the
twisted derived categories of two Kummer surfaces and the existence of Hodge isometries between
the generalized transcendental lattices of the corresponding abelian surfaces. More precisely, in
Section 4.1 we introduce the Brauer group of smooth projective varieties and we prove a preliminary
result (Lemma 4.1) which will be used in the proof of Theorem 1.2 contained in Section 4.2. We
also discuss a geometric example and an application to the problem of determining the number of
possible twisted Kummer structures on a twisted K3 surface (respectively in Sections 4.3 and 4.4).

4.1. Brauer groups and twisted sheaves. Recall that the Brauer group Br(X) of a smooth
projective variety X is the torsion part of H2(X,O∗X) in the analytic topology (or, equivalently,
H2

ét(X,O∗X) in the étale topology) (see [4, 7]).
Assume that X is either a K3 or an abelian surface. It is known that any α ∈ Br(X) is

determined (not uniquely) by some B ∈ H2(X,Q) (see Chapter 1 of [4] for the case of K3 surfaces
and use a similar argument to deal with abelian surfaces). This follows from the fact that H2(X,Z)
is unimodular and H1(X,Z) is torsion free. More precisely, we deduce the existence of natural
isomorphisms Br(X) ∼= T (X)∨ ⊗ Q/Z ∼= Hom(T (X),Q/Z) and for any t ∈ T (X), α : t 7−→ t · B
(mod Z), where “·” is the cup-product. From this we get a surjective map

κX : H2(X,Q) −→ Br(X).

Lemma 4.1. If A is an abelian surface, there exists an isomorphism ΘA : Br(A)→ Br(Km(A)).

Proof. The K3 surface Km(A) is the crepant resolution of K(A) = A/〈ι〉. Hence there exists a
rational map π : A 99K Km(A). Furthermore, as it was observed in Remark 2 of [22] (see also [17,
Sect. 4]), the homomorphism π∗ induces a Hodge isometry

π∗ : T (A)(2) −→ T (Km(A)).(4.1)

(Recall that, given a lattice L with quadratic form bL, the lattice L(m), with m ∈ Z, coincides
with L as a group but its quadratic form bL(m) is such that bL(m)(l1, l2) = mbL(l1, l2), for any
l1, l2 ∈ L.)

In particular, we get a natural morphism Ξ : H2(A,Q)→ T (Km(A))⊗Q defined by

Ξ : B 7−→ π∗(p(B))

2
,(4.2)

where p : H2(A,Q) → T (A) ⊗ Q is the orthogonal projection. This yields a morphism ΘA :
Br(A) −→ Br(Km(A)) of Brauer groups defined by the commutative diagram

H2(A,Q)
Ξ //

κA
����

T (Km(A))⊗Q
κKm(A)

��
Br(A)

ΘA // Br(Km(A)).

(4.3)

Observe that ΘA is well-defined because, obviously, the restriction κKm(A)|T (Km(A))⊗Q is still sur-
jective. An easy check then shows that ΘA is an isomorphism. �
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Any α ∈ Br(X) can be represented by a Čech 2-cocycle on an analytic cover {Ui}i∈I of X using
sections αijk ∈ Γ(Ui ∩ Uj ∩ Uk,O∗X). An α-twisted coherent sheaf F is a pair ({Fi}i∈I , {ϕij}i,j∈I),
where Fi is a coherent sheaf on Ui and ϕij : Fj |Ui∩Uj → Fi|Ui∩Uj is an isomorphism such that

ϕii = id, ϕji = ϕ−1
ij and ϕij ◦ ϕjk ◦ ϕki = αijkid. Given α ∈ Br(X), we denote by Coh(X,α)

the abelian category of α-twisted coherent sheaves on X while Db(X,α) := Db(Coh(X,α)) is the
bounded derived category of Coh(X,α) (see [4] and [15] for details).

If X and Y are smooth projective varieties and α ∈ Br(X) while β ∈ Br(Y ), an equivalence
Φ : Db(X,α) → Db(Y, β) is a twisted Fourier-Mukai equivalence if and only if it there is an
isomorphism as in (2.1) whose kernel E is in Db(X × Y, α−1 � β) (see also [6]).

As in [14], a twisted variety is a pair (X,α), where X is a smooth projective variety and
α ∈ Br(X). An isomorphism f : (X,α) → (Y, β) of the twisted varieties (X,α) and (Y, β) is an
isomorphism f : X → Y such that f∗β = α.

4.2. Proof of Theorem 1.2. First of all, observe that, if X is either a K3 or an abelian surface
and α ∈ Br(X), the lattice T (X,α) := ker(α) inherits from T (X) a weight-two Hodge structure.
Secondly, if ΘAi : Br(Ai) → Br(Km(Ai)) is the isomorphism in Lemma 4.1, the isometry πi∗ :
T (Ai)(2)→ T (Km(Ai)) defined in (4.1) yields a Hodge isometry

fi : T (Ai, α)(2) −→ T (Km(Ai),ΘAi(α)),

for any α ∈ Br(Ai) and i ∈ {1, 2}.
Proposition 4.7 in [12], originally proved for K3 surfaces, works perfectly in the case of abelian

surfaces as well. Therefore if X is either a K3 or an abelian surface, α ∈ Br(X) and B ∈ H2(X,Q)
is such that α = κX(B), then there exists a Hodge isometry

exp(B) : T (X,α)(k) −→ T (X,B)(k)
γ 7−→ (γ,B ∧ γ),

(4.4)

for any k ∈ {1, 2}. Given Bi ∈ H2(Ai,Q), let B̃i ∈ H2(Km(Ai),Q) be such that

ΘAi(κAi(Bi)) = κKm(Ai)(B̃i).

Define α̃i := ΘAi(κAi(Bi)). If g : T (A1, B1)→ T (A2, B2) is a Hodge isometry, the diagram

T (A1, B1)(2)
g //

��

exp(−B1) ))

T (A2, B2)(2)

��

exp(−B2)uu
T (A1, κA1(B1))(2)

f1

��

// T (A2, κA2(B2))(2)

f2

��
T (Km(A1), α̃1) // T (Km(A2), α̃2)

T (Km(A1), B̃1)
f //

exp(B̃1)
55

T (Km(A2), B̃2)

exp(B̃2)
ii

commutes and yields a Hodge isometry f : T (Km(A1), B̃1) → T (Km(A2), B̃2). Conversely, since
Θi is an isomorphism (Lemma 4.1), the same diagram and remarks show that any Hodge isometry

between the generalized transcendental lattices of Km(A1) and Km(A2) determined by some B̃i ∈
H2(Km(Ai),Q) induces a Hodge isometry of the generalized transcendental lattices of A1 and A2

corresponding to Bi ∈ H2(Ai,Q) such that

κAi(Bi) = Θ−1
Ai

(κKm(Ai)(B̃i)) ∈ Br(Ai).
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Since the Picard number of Km(Ai) is greater than 11, the equivalence between item (i) and
item (ii) of Theorem 1.2 follows from [14, Thm. 0.4]. Indeed such a result proves that, for any
Bi ∈ H2(Km(Ai),Q), there exists a twisted Fourier-Mukai equivalence

Db(Km(A1), κKm(A1)(B1)) ∼= Db(Km(A2), κKm(A2)(B2))

if and only if there exists a Hodge isometry T (Km(A1), B1) ∼= T (Km(A2), B2).
Due to what we have just proved, any twisted Fourier-Mukai equivalence Db(Km(A1), α1) ∼=

Db(Km(A2), α2) induces a Hodge isometry T (Km(A1)) ⊗ Q ∼= T (Km(A2)) ⊗ Q which yields a
Hodge isometry T (A1)⊗Q ∼= T (A2)⊗Q. Consider the Kuga-Satake varieties KS(A1) and KS(A2)
associated to the weight-two Hodge structures on T (A1)⊗Q and T (A2)⊗Q (see Section 4 in [18]
for the definition). Theorem 4.3 and Lemma 4.4 in [18] show that, for any i ∈ {1, 2},

KS(Ai)× · · · ×KS(Ai)︸ ︷︷ ︸
2ρ(Ai) times

∼ Ai × · · · ×Ai︸ ︷︷ ︸
8 times

,

where “∼” denotes an isogeny of abelian varieties. By construction KS(A1) ∼ KS(A2) and then
A8

1 ∼ A8
2. In particular, A1 and A2 are isogenous and this concludes the proof of Theorem 1.2.

To shorten the notation and according to [14], we introduce two equivalence relations:

Definition 4.2. Let (X1, α1) and (X2, α2) be twisted K3 or abelian surfaces.

(i) They are D-equivalent if there exists a twisted Fourier-Mukai equivalence

Φ : Db(X1, α1)→ Db(X2, α2).

(ii) They are T -equivalent if there exist Bi ∈ H2(Xi,Q) such that αi = κAi(Bi) and a Hodge
isometry

ϕ : T (X1, B1)→ T (X2, B2).

We can now prove the following easy corollary of Theorem 1.2:

Corollary 4.3. (i) (Km(A1), 1) is D-equivalent to (Km(A2), 1) if and only if (A1, 1) and (A2, 1)
are T-equivalent.

(ii) If (A1, α1) and (A2, α2) are D-equivalent twisted abelian surfaces, then (Km(A1),ΘA1(α1))
and (Km(A2),ΘA2(α2)) are D-equivalent.

Proof. Due to the isomorphism in Lemma 4.1, (i) follows trivially from Theorem 1.2. The ma-
chinery in [14] applied to the case of abelian surfaces shows that if (A1, α1) and (A2, α2) are
D-equivalent, then they are T-equivalent as well. Then use Theorem 1.2. �

Notice that part (i) of Corollary 4.3 is exactly the analogue of (B) in the introduction.

Remark 4.4. (i) Due to [14, Prop. 8.1], if αj ∈ Br(Km(Aj)) is non-trivial for any j ∈ {1, 2},
then the existence of an equivalence Db(Km(A1), α1) ∼= Db(Km(A2), α2) does not imply that
Km(A1) ∼= Km(A2) (see also Example 4.3). This is one of the main differences with the untwisted
case treated by Hosono, Lian, Oguiso and Yau in [11] (see (A) and (C) in the introduction).

(ii) As suggested by Corollary 4.3, we would expect (ii) in Theorem 1.2 to be equivalent to
the existence of a twisted Fourier-Mukai equivalence Db(A1, β1) ∼= Db(A2, β2), where βi ∈ Br(Ai).
This would lead to a twisted version of (A). Actually this is not the case. Indeed, since the period
map is surjective for abelian surfaces ([28]), one can produce a counterexample to this expectation
by adapting Example 4.11 in [14].

(iii) Let A1 and A2 be two abelian surfaces with NS(A1) = 〈H1〉 and NS(A2) = 〈H2〉. If there
exist α1 ∈ Br(Km(A1)) and α2 ∈ Br(Km(A2)) such that Db(Km(A1), α1) ∼= Db(Km(A2), α2) then
H2

1/H
2
2 is a square in Q. Indeed, by Theorem 1.2 (and by [14, Sect. 7]), if Db(Km(A1), α1) ∼=

Db(Km(A2), α2) then there exists an isogeny ϕ : A1 → A2 inducing a Hodge isometry ϕ∗ :
H2(A2,Q)→ H2(A1,Q) such that ϕ∗(H2) = qH1, for some q ∈ Q. In particular H2

2 = q2H2
1 .
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4.3. An explicit example. In this example, we use Theorem 1.2 to establish a connection be-
tween the twisted derived categories of some nice Kummer surfaces with Picard number 2. Recall
that the lattices U and U(n) are the free abelian group Z ⊕ Z endowed respectively with the
quadratic forms represented by the matrices(

0 1
1 0

)
and

(
0 n
n 0

)
.

Let A be an abelian surface such that NS(A) ∼= U(n), for some positive integer n. We first show
that there exist two elliptic curves E and F and a subgroup Cn ∼= Z/nZ of E×F such that either

A ∼= (E × F )/Cn or Â ∼= (E × F )/Cn.
To see this, let us first observe that, since NS(A) ∼= U(n), the transcendental lattice T (A) is

isometric to U(n)⊕U . Indeed for any abelian surface A, H2(A,Z), endowed with the cup-product,
is isometric to the lattice U ⊕ U ⊕ U (see [17] for more details).

We choose a basis 〈e1, e2, f1, f2〉 = U ⊕ U(n) ↪→ U3, an isometry ϕ : H2(A,Z)→ U3 and c ∈ C
such that

ϕ(cσA) = e1 − nω1ω2e2 + ω1f1 + ω2f2,(4.5)

where H2,0(A) = 〈σA〉. We define in C the lattices Γ1 = Z+ω1Z and Γ2 = Z+ω2Z and the elliptic
curves E := C/Γ1 and F := C/Γ2. Notice that, since T (A) ∼= U(n)⊕ U and σ2

A = 0, the numbers
1, ω1, ω2 and ω1ω2 are linearly independent over Q. So, in particular, E and F are not isogenous.
If H1(E × F,Z) = 〈γ1, γ2, δ1, δ2〉, then we consider the subgroup Cn of E × F such that

H1((E × F )/Cn,Z) =

〈
γ1 + δ1

n
, γ2, δ1, δ2

〉
.

Let S := (E × F )/Cn. In terms of the dual bases of the bases of H1(E × F,Z) and H1(S,Z) just
described, we write H1(S,Z) = 〈dz1,dz2,dw1,dw2〉 and H1(E × F,Z) = 〈dx1,dx2, dy1,dy2〉. If
π : E × F → S is the natural surjection, the map θ := π∗ : H1(S,Z)→ H1(E × F,Z) is such that:

θ(dz1) = ndx1,
θ(dz2) = dx2,

θ(dw1) = −dx1 + dy1,
θ(dw2) = dy2.

(4.6)

Observe that NS(E × F ) = 〈dx1 ∧ dx2, dy1 ∧ dy2〉. Furthermore, due to the properties in (4.6)

which characterize the morphism
2
∧ θ : H2(S,Z) → H2(E × F,Z) and due to the fact that

2
∧ θ

preserves the Hodge structures on H2(S,Z) and H2(E × F,Z),

NS(S) = 〈dz1 ∧ dz2, ndw1 ∧ dw2 + dz1 ∧ dw2〉,
T (S) = 〈dz1 ∧ dw1,dz2 ∧ dw2, dz1 ∧ dw2,−ndw1 ∧ dz2 + dz1 ∧ dw2〉.

In particular, NS(S) ∼= U(n) and T (S) ∼= U ⊕ U(n).
Consider the two cohomology classes

σE×F = dx1 ∧ dy1 + ω2dx1 ∧ dy2 + ω1dx2 ∧ dy1 + ω1ω2dx2 ∧ dy2;

σS = dz1 ∧ dw1 + ω2dz1 ∧ dw2 + ω1(ndw1 ∧ dz2 − dz1 ∧ dw2) + nω1ω2dz2 ∧ dw2.

Obviously, σE×F ∈ T (E × F )⊗C and σS ∈ T (S)⊗C. Since 〈σE×F 〉 = H2,0(E × F ) and since an

easy calculation shows that
2
∧ θ(σS) = nσE×F , 〈σS〉 = H2,0(S). This implies that, due to (4.5),

there exists an isometry η : H2(S,Z) → U3 such that η−1 ◦ ϕ : H2(A,Z) → H2(S,Z) is a Hodge
isometry (see [28]). The Torelli Theorem for abelian surfaces shows that either A ∼= (E × F )/Cn
or Â ∼= (E × F )/Cn.

Observe that, since NS(A) ∼= U(n), the abelian surface A is principally polarized if and only if
n = 1. This means that, if n 6= 1, (E×F )/Cn and its dual are not isomorphic. Furthermore, A and
E × F are isogenous but T (A) 6∼= T (E × F ). Therefore, due to Theorem 2.2, Db(A) 6∼= Db(E × F ).
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This proves that there are isogenous abelian surfaces whose derived categories of (untwisted)
coherent sheaves are not equivalent (see Remark 3.4).

Choose the standard basis {g1, g2, k1, k2} for U⊕U . Due to the explicit description of T (A) that
we have previously given, it is straightforward to see that there exists an inclusion i1 : T (A)→ U⊕U
where i1(ej) = gj (j ∈ {1, 2}), i1(f1) = nk1 and i1(f2) = nk2. Let σ := i(σA) ∈ U2 ⊗ C. Due to
(4.5), we can write σ = g1 − nω1ω2g2 + nω1h1 + ω2h2.

Consider in C the lattice Γ3 = Z + nω1Z and the elliptic curve E1 := C/Γ3. Of course, E
and E1 are isogenous. Reasoning as before and using the surjectivity of the period map and the
Torelli Theorem for abelian surfaces ([28]), we get an isometry ϕ1 : T (E1×F )→ U2 fitting in the
following commutative diagram:

0

  

T (E1 × F )

ϕ1

��

α

%%

0

T (A)
i1

&&

i
99

Z/nZ

""

==

0

==

U ⊕ U

α1

88

0.

Of course, i preserves the Hodge structures and α ∈ Br(E1 × F ). Proposition 4.7 in [12] yields
B ∈ H2(E×F,Q) such that (A, 1) and (E×F, κE×F (B)) are T-equivalent. By Theorem 1.2, there
exist β ∈ Br(Km(E1 × F )) of order n and a twisted Fourier-Mukai equivalence Db(Km(A)) ∼=
Db(Km(E1 × F ), β).

4.4. The number of twisted Kummer structures. As an easy corollary of Lemma 4.1, we get
a surjective map

Ψ : {Twisted abelian surfaces}/isom −→ {Twisted Kummer surfaces}/isom

which sends the isomorphism class [(A,α)] to the isomorphism class [(Km(A),ΘA(α))]. The main
result in [11] proves that the preimage of [(Km(A), 1)] is finite, for any abelian surface A and 1 ∈
Br(A) the trivial class (see [11, Thm. 0.1]). On the other hand [11] shows that the cardinality of the
preimages of Ψ can be arbitrarily large. This answered an old question by Shioda. Namely, there
can be many non-isomorphic (untwisted) abelian surfaces giving rise to isomorphic (untwisted)
Kummer surfaces (a partial result in this direction is also contained in [10]). This is usually
rephrased saying that on a K3 surface one can put many non-isomorphic (untwisted) Kummer
structures.

Using Theorem 1.2, the picture in [11] can be completely generalized to the twisted case.

Proposition 4.5. (i) For any twisted Kummer surface (Km(A), α), the preimage Ψ−1([(Km(A), α)])
is finite.

(ii) For positive integers N and n, there exists a twisted Kummer surface (Km(A), α) with α of
order n in Br(Km(A)) and such that |Ψ−1([(Km(A), α)])| ≥ N .

Proof. Suppose that Ψ([(A1, α1)]) = Ψ([(A2, α2)]) = [(Km(A), α)], i.e. suppose that there exists

an isomorphism f : Km(A)
∼−→ Km(Ai) such that f∗ΘAi(αi) = α. In particular,

Db(Km(A1),ΘA1(α1)) ∼= Db(Km(A2),ΘA2(α2)).

Due to Theorem 1.2, the proof of (i) amounts to show that, up to isomorphisms, there are
finitely many T-equivalent twisted abelian surfaces (A′, β) such that Ψ([(A′, β)]) = [(Km(A), α)].
Since, up to isomorphisms, there are just finitely many abelian surfaces A′ with Db(A′) ∼= Db(A)
([3, Prop. 5.3]), we can just fix A′ with such a property and show that, up to isomorphisms, there
exists a finite number of β′ ∈ Br(A′) such that (A′, β) and (A′, β′) are T-equivalent. But this is
the content of [14, Prop. 3.4] for the case of abelian surfaces.
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Applying the results in [24] and [29] to abelian surfaces, we see that, for any positive integer
N , there exist N non-isomorphic abelian surfaces A1, . . . , AN such that Db(Ai) ∼= Db(Aj) (i, j ∈
{1, . . . , N}). Due to Theorem 2.2, for any i ∈ {2, . . . , N}, there is a Hodge isometry

gi : T (A1)→ T (Ai).

Take B1 ∈ T (A1) ⊗ Q such that α1 := κA1(B1) and ΘA1(α1) are not trivial in Br(A1) and
Br(Km(A1)) respectively. We can also choose α1 such that the order of ΘA1(α1) is n in Br(Km(A1)).
Then, for any i ∈ {2, . . . , N}, define αi := κAi(gi(B1)). Obviously, (Ai, αi) and (Aj , αj) are T-
equivalent when i, j ∈ {1, . . . , N}. Theorem 1.2 immediately implies that (Km(Ai),ΘAi(αi)) and
(Km(Aj),ΘAj (αj)) are D-equivalent.

For any i ∈ {2, . . . , N}, the isometry gi induces a Hodge isometry fi : T (Km(A1))→ T (Km(Ai))
which (due to [23, Thm. 1.14.4]) extends to a Hodge isometry hi : H2(Km(A1),Z)→ H2(Km(Ai),Z).
The Torelli Theorem yields an isomorphism ϕi : Km(A1) → Km(Ai) such that ϕ∗i (ΘAi(αi)) =

ΘA1(α1) (possibly changing αi with α−1
i ), for any i ∈ {2, . . . , N}. This concludes the proof of

(ii). �

In other words, Proposition 4.5 shows that on a twisted K3 surface we can put just a finite num-
ber of non-isomorphic twisted Kummer structures. Nevertheless, such a number can be arbitrarily
large even when the twist is non-trivial and has any possible order.
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