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Abstract. We study ACM bundles on cubic fourfolds containing a plane exploiting the geometry

of the associated quadric fibration and Kuznetsov’s treatment of their bounded derived categories

of coherent sheaves. More precisely, we recover the K3 surface naturally associated to the fourfold

as a moduli space of Gieseker stable ACM bundles of rank four.

Introduction

This paper is a follow-up of [15] which deals with some geometric properties of special ACM

bundles on smooth cubic threefolds (i.e., smooth hypersurfaces of degree 3 in P4). The idea we are

pursuing in the two papers is that, for a cubic hypersurface Y , one should consider semiorthogonal

decompositions of its derived category Db(Y ). Up to some (a priori non-canonical) choice, one

gets a non-trivial triangulated subcategory TY ⊂ Db(Y ). According to an intuition of Kuznetsov,

TY should encode the birational information of the cubic.

More specifically, if Y is a cubic fourfold (i.e., a smooth hypersurface of degree 3 in P5), then

in [10] it is conjectured that Y is rational if and only if the category TY is equivalent to the derived

category of a K3 surface. A relation between this conjecture and the classical Hodge theoretical

approach to rationality appears in [2].

If we assume further that the cubic fourfold Y contains a plane P , then the projection from

P onto a skew P2 in P5 yields a quadric fibration π over P2. As an instance of Kuznetsov’s

semiorthogonal decomposition of the derived category of a quadric fibration (see [11] and Section

1.3), there exists an exact equivalence Ξ between TY and the bounded derived category of sheaves

on P2 with the action of a sheaf of Clifford algebras B0 (determined by the structure of quadric

fibration on the cubic).

The category Db(P2,B0) can be described more geometrically. Indeed, the singular quadrics

of the fibration π lie over a sextic plane curve which we denote by C. Generically, the sextic is

smooth. In such a case, we let S be the smooth projective K3 surface obtained as double cover of

P2 ramified along C. We call S the associated K3 surface to the pair (Y, P ) or, equivalently, to the

quadric fibration π. Otherwise, the K3 surface S is singular over the singular points of C. Then,
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by [10], we have an equivalence Db(P2,B0) ∼= Db(S,A0), where A0 is a sheaf of algebras over S

which, restricted to the smooth locus of S, is actually a sheaf of Azumaya algebras.

The result. Consider now a very ample line bundle OX(H) on a smooth projective variety X.

Recall that a vector bundle F on a X is Arithmetically Cohen–Macaulay if dimH i(X,F (jH)) = 0,

for all i = 1, . . . , n−1 and all j ∈ Z. The presence of families of arbitrary dimensions of such bundles

determines the representation type of X which should encode the complexity of the geometry of X

(see, for example, [5]). A way to make this precise is by observing that ACM bundles correspond

to Maximal Cohen-Macaulay (MCM) modules over the graded ring associated to the projectively

embedded variety (see, e.g., [19]).

In [15], it was observed that, given a stable ACM bundle F on a smooth projective cubic

hypersurface Y , a certain twist of F by the very ample line bundle OY (H) belongs to TY (this

is Lemma 1.3). If Y has dimension 4 and contains a plane, one can use the functor Ξ to study

basic properties of ACM bundles on Y or to construct examples or families of such bundles. This

reduces the problem to consider certain complexes of B0-modules on P2. From the homological

point of view, Db(P2,B0) has dimension 2 and thus one may reasonably hope that such a dimension

reduction can clarify or simplify the picture and the computations.

The present paper is actually an incarnation of this idea. More precisely, the K3 surface S

associated to (Y, P ) plays an important role in the study of moduli spaces of ACM bundles on

cubic fourfolds. Indeed, we can prove the following.

Theorem A. Let Y be a cubic fourfold in P5 containing a plane P . Then the smooth locus Sreg of

the K3 surface S associated to (Y, P ) is isomorphic to an open subset of an irreducible component

of the moduli space of Gieseker stable ACM bundles over Y with class
(
4,−2H,−P, l, 1

4

)
, where l

is the class of a line in Y .

The theorem can be deduced by a quite long computation carried out all along Sections 2 and

3. As far as we know, this is the first example of a 2-dimensional family of stable ACM bundles

of rank 4 on a cubic fourfold. Moreover, we observe that the smooth locus of any moduli space of

slope-stable ACM vector bundles on Y carries a symplectic form (see Remark 1.4).

A way to rephrase Theorem A is that the embedding of TY into Db(Y ) can be realized as a

fully faithful Fourier–Mukai functor whose kernel is a shift of a sheaf: namely the universal family

in the moduli problem in Theorem A.

Related works. As we pointed out in [15], the idea of using semiorthogonal decompositions to

study ACM bundles by reducing dimension is an application of the circle of ideas in [13]. This idea

was previously exploited in [16] to describe the Fano variety of lines of cubic fourfolds containing

a plane. In [3], the Fano variety of lines on a cubic threefold is reconstructed as a moduli space of

Bridgeland stable objects. Several ideas from the last two papers enter the picture described by

the present paper and [15].

Several papers study stable ACM bundles on threefolds and surfaces (see [15] for a non-

complete list of references). In [15], we provide a generalization of one of the main results in [6]. In

particular, we show that the moduli spaces of stable Ulrich bundles on any smooth cubic threefold
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is non-empty. Roughly speaking, Ulrich bundles are ACM bundles with prescribed constraints on

the degree of the generators (see [6] for a precise definition).

We should point out that the use of derived categories and Bridgeland stability is actually

intrinsic in the strategy of the proofs of the main results in [15]. On the other hand, the only key

point where derived categories appear in the present paper is the existence of the Fourier–Mukai

equivalence Ξ above. This serves as a guideline to construct the 2-dimensional family of stable

ACM bundles in Theorem A.

Plan of the paper. The paper is organized as follows. Section 1 collects basic facts about

semiorthogonal decompositions and general results about ACM bundles on cubic hypersurfaces.

In Section 1.3 we review Kuznetsov’s work on quadric fibrations and we then focus on the case of

cubic fourfolds containing a plane.

Sections 2 and 3 are devoted to the proof of Theorem A. In particular, in Section 2, we show

how to associate a (shift of a) coherent sheaf on Y to any point in the regular locus of the K3

surface S associated to Y . We then prove in Section 3 that such sheaves are Gieseker stable and

of ACM type.

Notation. Throughout this paper we work over the complex numbers. For a smooth projective

variety X, we denote by Db(X) the bounded derived category of coherent sheaves on X. We refer

to [8] for basics on derived categories. If X is not smooth, we denote by Xreg the regular part

of X. This paper assumes some familiarity with the notion of slope and Gieseker stability, of

Harder–Narasimhan (HN) and Jordan–Hölder (JH) factors of a (semistable) vector bundle. For

this, we refer to [9] which is also our reference for the standard construction of moduli spaces of

stable sheaves. To shorten the notation Gieseker stability will be simply called stability.

1. Preliminaries

This section contains some preliminary material about semiorthogonal decompositions and

their use to study quadric fibrations. We then specialize to the case of cubic fourfolds containing

a plane with particular attention to the associated K3 surface.

1.1. Semiorthogonal decompositions. Let X be a a smooth projective variety and let Db(X)

be its bounded derived category of coherent sheaves. A semiorthogonal decomposition of Db(X) is a

sequence of full triangulated subcategories T1, . . . ,Tm ⊆ Db(X) such that HomDb(X)(Ti,Tj) = 0,

for i > j and, for all G ∈ Db(X), there exists a chain of morphisms in Db(X)

0 = Gm → Gm−1 → . . .→ G1 → G0 = G

with cone(Gi → Gi−1) ∈ Ti, for all i = 1, . . . ,m. We will denote such a decomposition by

Db(X) = 〈T1, . . . ,Tm〉.
Moreover, an object F ∈ Db(X) is exceptional if HomDb(X)(F, F ) ∼= C and Homp

Db(X)
(F, F ) =

0, for all p 6= 0. A collection {F1, . . . , Fm} of objects in Db(X) is called an exceptional collection if

Fi is an exceptional object, for all i, and Homp
Db(X)

(Fi, Fj) = 0, for all p and all i > j.
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Remark 1.1. An exceptional collection {F1, . . . , Fm} in Db(X) provides a semiorthogonal decom-

position

Db(X) = 〈T, F1, . . . , Fm〉,
where, by abuse of notation, we denoted by Fi the triangulated subcategory generated by Fi

(equivalent to the bounded derived category of finite dimensional vector spaces). Moreover

T := 〈F1, . . . , Fm〉⊥ =
{
G ∈ Db(X) : Homp(Fi, G) = 0, for all p and i

}
.

Similarly, one can define ⊥〈F1, . . . , Fm〉 = {G ∈ T : Homp(G,Fi) = 0, for all p and i}.

For F ∈ Db(X) an exceptional object, we consider the two functors, respectively left and right

mutation, LF ,RF : Db(X)→ Db(X) defined by

LF (G) := cone (ev : RHom(F,G)⊗ F → G)

RF (G) := cone
(
ev∨ : G→ RHom(G,F )∨ ⊗ F

)
[−1],

(1.1)

where RHom(−,−) := ⊕p Homp
Db(X)

(−,−)[−p]. More intrinsically, let ι⊥F and ιF⊥ be the full

embeddings of ⊥F and F⊥ into Db(X). Denote by ι∗⊥F and ι!⊥F the left and right adjoints of ι⊥F
and by ι∗

F⊥
and ι!

F⊥
the left and right adjoints of ιF⊥ . Then LF = ιF⊥ ◦ ι∗F⊥ , while RF = ι⊥F ◦ ι!⊥F

(see, e.g., [12, Sect. 2]).

The main property of mutations is that, given a semiorthogonal decomposition of Db(X)

〈T1, . . . ,Tk, F,Tk+1, . . . ,Tn〉,

we can produce two new semiorthogonal decompositions

〈T1, . . . ,Tk,LF (Tk+1), F,Tk+2, . . . ,Tn〉

and regarding ACM bundles on threefolds and surfaces.

〈T1, . . . ,Tk−1, F,RF (Tk),Tk+1, . . . ,Tn〉.

1.2. ACM bundles on cubics. Let us briefly summarize some general results form [15]. Let Y

be a smooth cubic n-fold, namely a smooth projective hypersurface of degree 3 in Pn+1. We set

OY (H) := OPn+1(H)|Y . According to Remark 1.1, as observed by Kuznetsov, the derived category

Db(Y ) of coherent sheaves on Y has a semiorthogonal decomposition

(1.2) Db(Y ) = 〈TY ,OY ,OY (H), . . . ,OY ((n− 2)H)〉,

where, by definition,

TY := 〈OY , . . . ,OY (n− 2)〉⊥

=
{
G ∈ Db(Y ) : Homp

Db(Y )
(OY (iH), G) = 0, for all p and i = 0, . . . , n− 2

}
.

To begin with, consider the following. regarding ACM bundles on threefolds and surfaces.

Definition 1.2. (i) A vector bundle F on a smooth projective variety X of dimension n is arith-

metically Cohen-Macaulay (ACM) if dimH i(X,F (jH)) = 0, for all i = 1, . . . , n− 1 and all j ∈ Z.

(ii) An ACM bundle F is called balanced if µ(F ) ∈ [−1, 0).

The following results will be relevant in the rest of the paper and provide even more evidence

of the geometric meaning of the admissible subcategory TY .
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Lemma 1.3. ([15], Lemma 1.6.) Let Y ⊂ Pn+1 be a smooth cubic n-fold. Let F be a balanced

µ-stable ACM bundle with rk(F ) > 1. Then F ∈ TY .

It was observed in [15], that the lemma above is slightly more general and the same proof works

for a balanced ACM bundle of rank greater than one, if it is µ-semistable and Hom(F,OY (−H)) =

0.

Remark 1.4. When n = 4, the Serre functor of the subcategory TY is isomorphic to the shift by

2 (see [10, Thm. 4.3]). Thus, as an application of the result above and [14, Thm. 4.3], one gets

that the smooth locus of any moduli space of µ-stable ACM vector bundles on Y carries a closed

symplectic form.

Lemma 1.5. ([15], Lemma 1.8.) Let Y ⊂ Pn+1 be a smooth cubic n-fold and let F ∈ Coh(Y )∩
TY . Assume

H1(Y, F (H)) = 0

H1(Y, F ((1− n)H)) = . . . = Hn−1(Y, F ((1− n)H)) = 0.
(1.3)

Then F is an ACM bundle.

1.3. Geometry of cubic fourfolds with a plane. In this section, we let Y ⊂ P5 be a cubic

fourfold containing a plane P . Consider the blow-up P̃ of P5 along P . We set q : P̃→ P2 to be the

P3-bundle induced by the projection from P onto a plane and we denote by Ỹ the strict transform

of Y via this blow-up. The restriction of q to Ỹ induces a quadric fibration π : Ỹ → P2. Note that

P̃ = PP2(E), where E is the vector bundle O⊕3
P2 ⊕OP2(−h) on P2.

The fibres of π degenerate along a sextic C ⊂ P2. The curve C has at most ordinary double

points. On the one hand, over the smooth points of C the fibres are cones with one singular point.

On the other hand, over the singular points of C the fibre is the union of two planes intersecting

along a line. For the general cubic fourfold containing a plane, the sextic C is smooth. The double

cover over f : S → P2 ramified along C is a projective K3 surface (singular over the singular points

of C). The geometric picture can be summarized by the following diagram

(1.4) D

s

��

� � // Ỹ �
� α //

σ

��
π

**

P̃ = PP2(O⊕3
P2 ⊕OP2(−h))

q

��
P �
� // Y ⊂ P5 C ⊂ P2 S.

f
oo

We let D ⊂ Ỹ be the exceptional divisor of the blow-up σ : Ỹ → Y . We denote by h both the

class of a line in P2 and its pull-backs to P̃ and Ỹ and, accordingly, we call H both the class of

a hyperplane in P5 and its pull-backs to Y , P̃, and Ỹ . We recall that O
Ỹ

(D) ∼= OỸ (H − h), the

relative ample line bundle is OP̃(H), the relative canonical bundle is OP̃(h−2H), and the dualizing

sheaf of Ỹ is ω
Ỹ
∼= OỸ (−h− 2H) (see, e.g., [10, Lem. 4.1]).

According to [11], the quadric fibration π : Ỹ → P2 carries a sheaf B of Clifford algebras which

is the relative sheafified version of the classical Clifford algebra associated to a quadric on a vector

space (more details can be found in [11, Sect. 3]). As in the absolute case, B has an even part B0
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whose description as an OP2-module is as follows

B0
∼= OP2 ⊕ (∧2E ⊗ L)⊕ (∧4E ⊗ L2)⊕ . . . ,

where L := OP2(−h). The odd part B1 of B is such that

B1
∼= E ⊕ (∧3E ⊗ L)⊕ (∧5E ⊗ L2)⊕ . . .

We also denote B2i = B0 ⊗ L−i and B2i+1 = B1 ⊗ L−i. As sheaves of OP2-modules, we have the

following isomorphisms

B0
∼= OP2 ⊕OP2(−h)⊕3 ⊕OP2(−2h)⊕3 ⊕OP2(−3h),

B1
∼= O⊕3

P2 ⊕OP2(−h)⊕2 ⊕OP2(−2h)⊕3.
(1.5)

The category Coh(P2,B0) is the abelian category of coherent B0-modules on P2 and Db(P2,B0)

is its derived category.

As explained in [11], there exists a fully faithful functor Φ := ΦE ′ : Db(P2,B0) → Db(Ỹ ) is

defined as the Fourier–Mukai transform

ΦE ′(−) := π∗(−)⊗π∗B0 E ′,

where E ′ ∈ Coh(Ỹ ) is a rank 4 vector bundle on Ỹ with a natural structure of flat left π∗B0-module

defined by the short exact sequence

(1.6) 0 −→ q∗B0(−2H) −→ q∗B1(−H) −→ α∗E ′ −→ 0.

Such an exact functor has a left adjoint

(1.7) Ψ(−) := π∗((−)⊗O
Ỹ
E ⊗O

Ỹ
O
Ỹ

(h)[1]),

where E ∈ Coh(Ỹ ) is another rank 2 vector bundle with a natural structure of right π∗B0-module

(see again [11, Sect. 4]). The analogous presentation of E is

(1.8) 0 −→ q∗B1(−h− 2H) −→ q∗B0(−H) −→ α∗E −→ 0.

In [10, Thm. 4.3], Kuznetsov constructs an equivalence Db(P2,B0) ∼= TY , where TY is the

full subcategory in (1.2). The way this equivalence is obtained is by performing a precise sequence

of mutations which allow Kuznetsov to compare the semiorthogonal decomposition of the derived

category of Ỹ in [11, Thm. 4.2] and the one

Db(Ỹ ) = 〈σ∗(TY ),O
Ỹ
,O

Ỹ
(H),O

Ỹ
(2H), i∗OD, i∗OD(H), i∗OD(2H)〉

obtained by thinking of Ỹ as the blow-up of Y along P and using [18]. The details will not be

needed in the rest of this paper but we just recall that

TY = σ∗ ◦ LO
Ỹ

(h−H) ◦RO
Ỹ

(−h) ◦ Φ(Db(P2,B0)).

For later use we set

(1.9) Ξ := (σ∗ ◦ LO
Ỹ

(h−H) ◦RO
Ỹ

(−h) ◦ Φ)−1 : TY → Db(P2,B0).
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1.4. The derived category of the associated K3 surface. Let S be the K3 surface associated

to a cubic fourfold containing a plane, as in (1.4). By [11, Sect. 3.5], there exists a sheaf of algebras

A0 such that f∗(A0) = B0 and f∗ : Coh(S,A0) → Coh(P2,B0) is an equivalence. Moreover, by

[11, Prop. 3.13], A0 restricted to the smooth locus Sreg of S is a sheaf of Azumaya algebras. For

the basic properties of Azumaya algebras, see [17, Ch. IV] or [4, Chapter 1].

When C is smooth, we can describe the category Coh(S,A0) in terms of twisted sheaves.

More precisely, there exist α ∈ Br(S) in the Brauer group of S, α2 = id, and an α-twisted vector

bundle of rank 2, Eα ∈ Coh(S, α), such that A0 = End(Eα) and

Coh(S, α)
∼−→ Coh(S,A0)

F 7−→ F ⊗ E∨α = Hom(Eα, F )

is an equivalence of categories. When C is singular, the vector bundle Eα still exists étale locally

on smooth points.

Let x ∈ Sreg. Consider Lx := f∗(C(x)⊗E∨α ) ∈ Coh(P2,B0). As anOP2-module it is isomorphic

to V ⊗C C(f(x)), where V is a 2-dimensional C-vector space. The structure of B0-module on Lx

is provided by the following result:

Lemma 1.6. (i) If f(x) 6∈ C, then B0|f(x)
∼= End(V ) × End(V ) and it acts on V via one of

the two projections End(V )× End(V )→ End(V ).

(ii) If f(x) ∈ Creg, then B0|f(x)
∼= End(V ) and it acts on V via the standard representation.

Proof. This follows directly from [11, Lem. 2.6 and Prop. 3.13]. �

2. A family of sheaves on cubic fourfolds containing a plane

As a first step in the proof of Theorem A, in this section we want to describe a family of

bundles parametrized by the K3 surface S described in Section 1.4. More precisely, for x ∈ Sreg

and setting

(2.1) Mx := Ξ−1(Lx)[−1] ∈ Db(Y )

we get the following.

Proposition 2.1. For all x ∈ Sreg, the object Mx is a coherent sheaf with class

ch(Mx) = (4,−2H,−P, l, 1
4) ∈ H∗(Y,Q).

The proof will be carried out in the rest of this section and it is divided up in several steps.

Moreover, in Proposition 3.1, we will show that Mx is actually a stable ACM bundle.

We denote by Q̃f(x) the fibre of π : Ỹ → P2 over f(x) and by l̃x ⊂ Q̃f(x) any line in the ruling

corresponding to x ∈ Sreg. Recall that the points in Sreg parametrize rulings of lines in the quadric

fibration π. When it is clear from the context, we will denote Q̃f(x) simply by Q̃ and l̃x by l.

Step 1: Kuznetsov’s embedding. We first want to prove that

(2.2) Φ(Lx) ∼= Il̃x,Q̃f(x)
,

where I
l̃x,Q̃f(x)

is the ideal sheaf of l̃x in Q̃f(x).
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Indeed, by definition Φ(Lx) = π∗Lx ⊗π∗B0 E ′ ∈ Db(Ỹ ). Since π is flat and E ′ is π∗B0-flat,

we have Φ(Lx) ∈ Coh(Ỹ ). As α is a closed immersion, also α∗Φ(Lx) is a sheaf, i.e., α∗Φ(Lx) ∈
Coh(P̃). We have

α∗Φ(Lx) ∼= α∗(π
∗Lx ⊗π∗B0 E ′)

∼= q∗Lx ⊗q∗B0 α∗E ′.

where we used the Projection Formula for the fist isomorphism and the identity π = q ◦ α for the

second one. Since α∗Φ(Lx) is a sheaf, if we tensor the exact sequence (1.6) by q∗Lx, then we get

an exact sequence:

(2.3) 0→ q∗Lx ⊗q∗B0 q∗B0(−2H)
δ→ q∗Lx ⊗q∗B0 q∗B1(−H)→ q∗Lx ⊗q∗B0 α∗E ′ → 0.

The first term in the previous exact sequence is

q∗Lx ⊗q∗B0 q∗B0(−2H) ∼= (q∗Lx ⊗q∗B0 q∗B0)⊗OP̃
OP̃(−2H)

= q∗Lx ⊗OP̃
OP̃(−2H)

= OP3(−2)⊕2,

where in the first isomorphism we have used the non-commutative associativity (see, for example,

[7, Prop. A2.1]) and the fact that q∗B0(−2H) = q∗B0 ⊗OP̃
OP̃(−2H).

The action of B0 on Lx is controlled by Lemma 1.6. The map δ in (2.3) corresponds to δ−1,1

in [11, Sect. 3.4]. Hence, the second term of (2.3) is q∗Lx ⊗q∗B0 q∗B1(−H) ∼= OP3(−1)⊕2 and

(2.4) q∗Lx ⊗q∗B0 q∗B0(−2H) ∼= OP3(−2)⊕2 δ→ OP3(−1)⊕2 ∼= q∗Lx ⊗q∗B0 q∗B1(−H).

is the “matrix factorization” of the quadric Q̃f(x) = π−1(f(x)). Therefore, Φ(Lx) is the cokernel

of the matrix factorization map, namely the ideal sheaf I
l̃x,Q̃f(x)

. This is well explained in [1].

Step 2: the right mutation. Set Φ′(Lx) := RO
Ỹ

(−h)Φ(Lx). We want to show that Φ′(Lx) sits

in the following distinguished triangle

(2.5) O
Ỹ

(−h)⊕2[1]→ Φ′(Lx)→ I
l̃x,Q̃f(x)

.

By Step 1, we have

Φ′(Lx) = RO
Ỹ

(−h)(Il̃,Q̃) = cone
(
I
l̃,Q̃

ev∨−→ RHom(I
l̃,Q̃
,O

Ỹ
(−h))∨ ⊗O

Ỹ
(−h)

)
[−1].

Now, we observe that

Extp(I
l̃,Q̃
,O

Ỹ
(−h)) ∼= H4−p(Ỹ , I

l̃,Q̃
(−2H)) ∼= H4−p(Q̃, I

l̃,Q̃
(−2)),

where the first isomorphism follows from Serre duality and the fact that K
Ỹ

= −2H −h, while for

the second one, we use that OP̃(H) is a relative ample line bundle.

Since l̃ is a line in the quadric Q̃, we have

H4−p(Q̃, I
l̃,Q̃

(−2)) =

C2 if p = 2

0 otherwise.

Hence we get the distinguished triangle (2.5).
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Step 3: the left mutation. Set Φ′′(Lx) := LO
Ỹ

(h−H)RO
Ỹ

(−h)Φ(Lx). We want to show that

Φ′′(Lx)[−1] is isomorphic to a sheaf sitting in the following non-split short exact sequence

(2.6) 0 −→ O
Ỹ

(−h)⊕2 −→ Φ′′(Lx)[−1] −→ K̃x −→ 0,

where K̃x is defined as the kernel of the evaluation map O
Ỹ

(h−H)⊕2 ev−→ I
l̃x,Q̃f(x)

.

We have by definition

Φ′′(Lx) = cone
(

RHom(O
Ỹ

(h−H),Φ′(Lx))⊗O
Ỹ

(h−H)
ev−→ Φ′(Lx)

)
.

By Step 2, we need to compute Extp(O
Ỹ

(h−H),O
Ỹ

(−h)⊕2) and Extp(O
Ỹ

(h−H), I
l̃,Q̃

). On

the one hand, we have the following natural isomorphisms

Extp(O
Ỹ

(h−H),O
Ỹ

(−h)⊕2) = ∼= Hp(Ỹ ,O
Ỹ

(−2h+H))⊕2

∼= H4−p(Ỹ ,O
Ỹ

(h− 3H))⊕2

∼= H4−p(Ỹ ,O
Ỹ

(−D)⊗O
Ỹ

(−2H))⊕2

∼= H4−p(Y, IP,Y (−2H))⊕2 = 0,

where the first isomorphisms follows from Serre duality and of the fact that K
Ỹ

= −2H + h. For

the third one we use that D is the exceptional divisor of σ. On the other hand,

Extp(O
Ỹ

(h−H), I
l̃,Q̃

) = Hp(Ỹ , I
l̃,Q̃

(H)) =

C2 p = 0

0 otherwise.

Therefore, Φ′′(Lx) = cone
(
O
Ỹ

(h−H)⊕2 ev−→ Φ′(Lx)
)

.

Taking cohomology and using the results in Step 2, we get

0→ O
Ỹ

(−h)⊕2 → H−1(Φ′′(Lx))→ OỸ (h−H)⊕2 ev→ I
l̃,Q̃
→ H0(Φ′′(Lx))→ 0

Note that the evaluation mapO
Ỹ

(h−H)⊕2 ev→ I
l̃,Q̃

is surjective and non-split. HenceH0(Φ′′(Lx)) =

0 and Φ′′(Lx) sits in the non-split triangle

O
Ỹ

(−h)⊕2[1]→ Φ′′(Lx)→ K̃x[1].

Step 4: the blow-up. Finally we prove that Mx = Ξ−1(Lx)[−1] is isomorphic to a sheaf sitting

in the non-split short exact sequence

(2.7) 0→ OY (−H)⊕2 →Mx → Kx → 0,

where Kx is defined as the kernel of the evaluation map I⊕2
P,Y

ev−→ Ilx,Qf(x)
. Here P ⊂ Y is the

plane contained in Y and lx and Qf(x) are the images of l̃x and Q̃f(x).

Indeed, we know that Φ′′(Lx) is an element on σ∗TY . Hence, by the Projection Formula,

Mx is a sheaf. We only need to study σ∗K̃x because σ∗OỸ (−h) ∼= OY (−H). The fact that

Mx ∈ Coh(Y ) implies that σ∗K̃x is also a sheaf that we denote byKx. Since σ|
Q̃

is an isomorphism,

σ∗Il̃x,Q̃f(x)

∼= Ilx,Qf(x)
. SinceD = H−h is the exceptional divisor of σ, we have σ∗OỸ (h−H) ∼= IP,Y .

For later use, we give two different descriptions of the sheaf Kx. Given the quadric Qf(x) and

a line lx in it, we denote by l′x any line in the second ruling not containing lx. When Qf(x) is a

cone, we set l′x = lx.
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Lemma 2.2. The sheaf Kx sits in the following (non-split) short exact sequences

0 −→ I⊕2
P∪Qf(x),Y

−→ Kx −→ Il′x,Qf(x)
(−H) −→ 0,(2.8)

0 −→ IP∪Qf(x),Y −→ Kx −→ IP∪l′x,Y −→ 0.(2.9)

Proof. Recall that Kx
∼= σ∗K̃x, where K̃x := ker(O

Ỹ
(h −H)⊕2 ev→ I

l̃,Q̃
). Denoting by i : Q̃ ↪→ Ỹ

the closed embedding, it is not difficult to see that the morphism O
Ỹ

(h − H)⊕2 → I
l̃,Q̃

factors

through i∗i
∗O

Ỹ
(h−H)⊕2 ∼= OQ̃(−H)⊕2 as the composition O

Ỹ
(h−H)⊕2 → O

Q̃
(−H)⊕2 → I

l̃,Q̃
.

Thus we have the following commutative diagram

(2.10) 0

��

0

��
I
Q̃,Ỹ

(h−H)⊕2

��

I
Q̃,Ỹ

(h−H)⊕2

��
0 // K̃x

//

��

O
Ỹ

(h−H)⊕2 ev //

��

I
l̃,Q̃

// 0

0 // I
l̃′,Q̃

(−H) //

��

O
Q̃

(−H)⊕2 //

��

I
l̃,Q̃

// 0,

0 0

because the kernel of the surjective morphism O
Q̃

(−H)⊕2 → I
l̃,Q̃

described above is precisely

I
l̃′,Q̃

(−H). Here l̃′ is a line in the ruling opposite to the one containing l̃ if Q̃ is non-degenerate

while, when Q̃ is a cone, we take l̃′ = l̃.

Applying the functor σ∗, the previous diagram becomes

0

��

0

��

I⊕2
P∪Q,Y

��

I⊕2
P∪Q,Y

��

0 // Kx
//

��

I⊕2
P,Y

//

��

Il,Q // 0

0 // Il′,Q(−H) //

��

OQ(−H)⊕2 //

��

Il,Q // 0.

0 0
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Considering the first column of the previous diagram we can also see Kx as the following

extension

0

��

0

��
IP∪Q,Y

��

IP∪Q,Y

��
0 // I⊕2

P∪Q,Y
//

��

Kx
//

��

Il′,Q(−H) // 0

0 // IP∪Q,Y //

��

T //

��

Il′,Q(−H) // 0,

0 0

where T corresponds to an element in Ext1(Il′,Q(−H), IP∪Q,Y ). To compute this class observe

that, since P ∪Q is a complete intersection in Y , we have the short exact sequence

0 // OY (−2H)
α // OY (−H)⊕2 // IP∪Q,Y // 0,

where α is the multiplication by the equations of two hyperplanes in Y .

Thus, applying the exact functor R Hom(Il′,Q(−H),−) to such a sequence and taking coho-

mology, we get

0→ Ext1(Il′,Q(−H), IP∪Q,Y )→ C2 ϕ→ C12 → Ext2(Il′,Q(−H), IP∪Q,Y )→ 0,

as dim Ext2(Il′,Q(−H),OY (−2H)) = 2 and dim Ext2(Il′,Q(−H),OY (−H)) = 6.

Of course, ϕ = α[2] ◦ (−) and so it vanishes. By Serre duality, Ext1(Il′,Q(−H), IP∪Q,Y ) ∼=
H0(Q, Il,Q(H)) ∼= C2. Thus Ext1(Il′,Q(−H), IP∪Q,Y ) gets identified to the 1-dimensional linear

system of lines l′ in Q and T = IP∪l′,Y .

The fact that the exact sequence

0 −→ K̃x −→ OỸ (h−H)⊕2 ev−→ I
l̃,Q̃
−→ 0

does not split implies that (2.8) and (2.9) are non-split as well. �

From Lemma 2.2, we can deduce in a standard way the following Chern characters, by using

Grothendieck–Riemann–Roch:

ch(IP∪Qf(x),Y ) = (1, 0,−H2, 3l,−7
4),

ch(IP∪l′x,Y ) = (1, 0,−P,−l, 7
4),

ch(OY (−H)⊕2) = (2,−2H,H2,−l, 1
4),

ch(Kx) = (2, 0,−P −H2, 2l, 0),

ch(Mx) = (4,−2H,−P, l, 1
4).

This completes the proof of Proposition 2.1.
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3. A family of stable ACM vector bundles

We are now ready to conclude the proof of Theorem A. More precisely, the aim of this section

is to prove the following proposition.

Proposition 3.1. For all x ∈ Sreg, the sheaf Mx is a Gieseker stable ACM bundle on Y .

The proof is divided in two steps.

Step 1: ACM bundle. In order to prove that Mx is an ACM bundle, we want to apply Lemma

1.5. Hence, we need:

H1(Y,Mx(H)) = 0

H1(Y,Mx(−3H)) = H2(Y,Mx(−3H)) = H3(Y,Mx(−3H)) = 0.

These vanishing will be proved in Lemma 3.2 and Lemma 3.4.

Lemma 3.2. For x ∈ Sreg, we have H1(Y,Mx(mH)) = H2(Y,Mx(mH)) = 0, for all m ∈ Z.

Proof. From (2.7), by tensoring by OY (mH) and taking cohomology, we get

Hp(Y,Mx(mH)) = Hp(Y,Kx(mH)) for p = 1, 2 and for all m ∈ Z.

To compute the cohomology of Kx(mH), we want to use (2.8). As above, we take the tensor

product OY (mH) and then cohomology. Thus we get

H1(Y, IP∪Q(mH))⊕2 → H1(Y,Kx(mH))→ H1(Y, Il′,Q((m− 1)H))→ H2(Y, IP∪Q(mH))⊕2

By using the Koszul resolution of IP∪Q, we have the vanishings

H1(Y, IP∪Q(mH)) = H2(Y, IP∪Q(mH)) = 0.

From the matrix factorization presentation (2.4), we have H1(Y, Il′,Q((m− 1)H)) = 0 for all

m ∈ Z. Therefore, H1(Y,Mx(mH)) = 0.

To conclude the proof of the lemma we only need to show that H2(Y,Kx(−mH)) = 0.

Since Kx is defined as the kernel of the evaluation map I⊕2
P,Y

ev−→ Il,Q, we have an inclusion

H2(Y,Kx(−mH)) ↪→ H2(Y, IP,Y (−mH))⊕2 and H2(Y, IP,Y (−mH)) = 0. �

In order to prove the crucial vanishing, H3(Y,Mx(−3H)) = 0, we set

(3.1) N := LO
Ỹ

(2H)(RO
Ỹ

(−3H)(OỸ (H − h))⊗O
Ỹ

(2H + h)).

Lemma 3.3. The object N ∈ Db(Ỹ ) lies in the following distinguished triangle

O
Ỹ

(−H + h)[3] −→ N −→ σ∗ΩP5(3H)|Y [1].

Proof. First we consider the right mutation of O
Ỹ

(H − h) with respect to O
Ỹ

(−3H), that is

cone
(
O
Ỹ

(H − h)
ev∨−→ RHom(O

Ỹ
(H − h),O

Ỹ
(−3H))∨ ⊗O

Ỹ
(−3H)

)
[−1].

Using Serre duality we have that Extp(O
Ỹ

(H − h),O
Ỹ

(−3H))∨ is 1-dimensional if p = 4 and it is

trivial otherwise. Hence we have the distinguished triangle

O
Ỹ

(H − h)
ev∨−→ O

Ỹ
(−3H)[4]→ RO

Ỹ
(−3H)(OỸ (H − h))[1]
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which, after tensorization by O
Ỹ

(2H + h) and shift, becomes

(3.2) O
Ỹ

(−H + h)[3]→ RO
Ỹ

(−3H)(OỸ (H − h))⊗O
Ỹ

(2H + h)→ O
Ỹ

(3H).

Now we want to compute the left mutation of the middle term in (3.2) with respect toO
Ỹ

(2H).

To this end, we compute the left mutations of the first and third term in the same distinguished

triangle. Now, an easy computation shows that LO
Ỹ

(2H)(OỸ (−H + h)[3]) ∼= OỸ (−H + h)[3].

On the other hand, the vector space Extp(O
Ỹ

(2H),O
Ỹ

(3H)) is 6-dimensional if p = 0 and

trivial otherwise. Thus we get a distinguished triangle

O
Ỹ

(2H)⊕6 ev−→ O
Ỹ

(3H) −→ LO
Ỹ

(2H)(OỸ (3H)).

Hence LO
Ỹ

(2H)(OỸ (3H))[−1] ∼= σ∗ΩP5(3H)|Y and putting all together we get the desired conclu-

sion. �

Finally we can prove the following.

Lemma 3.4. For x ∈ Sreg, we have H3(Y,Mx(−3H)) = 0.

Proof. Using adjunction, we get

H3(Y,Mx(−3H)) = Hom2
Db(Y )(OY (3H),Ξ−1(Lx))

= Hom2
Db(Ỹ )

(O
Ỹ

(3H),LO
Ỹ

(h−H)RO
Ỹ

(−h)Φ(Lx))

= Hom2
Db(P2,B0)(Ψ(LO

Ỹ
(2H)(RO

Ỹ
(−3H)(OỸ (H − h))⊗O

Ỹ
(2H + h))), Lx)

= Hom2
Db(P2,B0)(Ψ(N), Lx).

where N is defined in (3.1). By [16, Lem 2.3], we have Ψ(O
Ỹ

(−H+h)) = 0. Therefore, by Lemma

3.3,

Ψ(N) ∼= Ψ(σ∗ΩP5(3H)|
Ỹ

)[1],

and thus,

H3(Y,Mx(−3H)) ∼= Hom1
Db(P2,B0)(Ψ(σ∗ΩP5(3H)|

Ỹ
, Lx)

= Ext1
Ỹ

(σ∗ΩP5(3H)|
Ỹ
, I
l̃,Q̃

)

= Ext1
Y (ΩP5(3H)|Y , Il,Q)

= H1(Q, TP5(−3H)|Q ⊗ Il,Q)

∼= H1(Q, TP3(−3H)|Q ⊗ Il,Q)⊕H1(Q, Il,Q(−2H))⊕2.

The last isomorphism follows from the fact that Q ⊂ P3 and TP5 ⊗OP3
∼= TP3 ⊕OP3(H)⊕2.

From the matrix factorization presentation (2.4), we have H1(Q, Il,Q(−2H)) = 0. Hence, to

conclude the proof of the lemma we only need to show H1(Q, TP3(−3H)⊗ Il,Q) = 0.

The Euler sequence on P3 restricted to the quadric and twisted by Il,Q(−3H) becomes

0 −→ Il,Q(−3H) −→ Il,Q(−2H)⊕4 −→ TP3(−3H)⊗ Il,Q −→ 0.

Taking cohomology we see that H1(Q, TP3(−3H)⊗ Il,Q) is the kernel of the morphism

H2(Q, Il,Q(−3H))
α−→ H2(Q, Il,Q(−2H)⊕4).
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Hence, we need to show that α is injective. Consider the short exact sequence

0 −→ Il,Q −→ OQ(H)⊕2 −→ Il′,Q(H) −→ 0.

By taking cohomology and using that H1(Q, Il′,Q(−2H)) = H1(Q, Il′,Q(−H)) = 0, we have that

α sits in the following commutative diagram

H2(Q,OQ(−3H)⊕2)
β
// H2(Q,OQ(−2H)⊕8)

H2(Q, Il,Q(−3H))
α //

?�

OO

H2(Q, Il,Q(−2H)⊕4).
?�

OO

Thus, to prove that α is injective is enough to show that β is such. By construction, β = H2(f)⊕2

where H2(f) is the morphism induced on cohomology by the map f sitting in the following Koszul

exact sequence on Q

0 −→ OQ(−3H)
f−→ OQ(−2H)⊕4 −→ OQ(−H)⊕6 −→ O⊕4

Q

g−→ OQ(H) −→ 0.

The cokernel of f is TP3(−3H) ⊗ OQ and the kernel of g is ΩP3(H) ⊗ OQ. Chasing through the

associated long exact sequence in cohomology, we get H1(Q, TP3(−3H)⊗OQ) = H0(Q,ΩP3(H)⊗
OQ) = 0, since H0(Q,O⊕4

Q ) → H0(Q,OQ(H)) is a base change of the evaluation map. Hence,

H2(f) is injective. �

Step 2: Gieseker stability. Now we finish the proof of Proposition 3.1 by showing that, again

for all x ∈ Sreg, the ACM bundle Mx is stable. Note that µ(Kx) = 0, µ(Mx) = −1
2 , and by (2.9),

Kx is µ-semistable.

SupposeMx is not stable. SinceMx is a vector bundle, there exists F a semistable destabilizing

reflexive sheaf and a sheaf G sitting in a short exact sequence

0 −→ F −→Mx −→ G −→ 0

with µ(F ) > −1
2 . Now rk(F ) = 1, 2, 3 and the three cases need to be analysed separately.

Case A: rk(F ) = 1. Then c1(F ) > 0 and F is a line bundle. Moreover, we have a commutative

diagram

F� _

��

� q

φ

""
Mx

// // Kx.

Since F is torsion free, the composition φ can only vanish or be an injection. If φ is trivial, then it

factors through OY (−H)⊕2 which is semistable with µ = −1 (recall that OY (H) generates Pic(Y )).

Thus we get a contradiction. So assume that φ is injective and consider the following commutative

diagram

F� _

φ

��

ϕ

$$
IP∪Q,Y �

� // Kx
// // IP∪l′,Y .

Again, F cannot inject neither in IP∪Q,Y nor in IP∪l′,Y , and we get a contradiction.
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Case B: rk(F ) = 2. In this case c1(F ) > −1 and we have a commutative diagram

(3.3) F1
� � //
� _

��

F� _

��

// // F2� _

��
OY (−H)⊕2 � � // Mx

// // Kx.

At this point we have to analyse some additional cases.

Case B.1: rk(F1) = 2. Since Kx is torsion free, F2 = 0. On the other hand, OY (−H)⊕2 is

semistable, so c1(F1) 6 −2. Then c1(F ) 6 −2, so µ(F ) 6 −1 and F does not destabilize Mx.

Case B.2: rk(F1) = rk(F2) = 1. In that situation, c1(F1) = −1, so F1
∼= OY (−H) and c1(F2) = 0.

On the other hand, since F2 ↪→ Kx, by (2.8), we have F2 ↪→ IP∪Q. Thus (3.3) can be rewritten as

OY (−H) �
� //

� _

��

F� _

��

// // F2� _

��
OY (−H)⊕2

����

� � // Mx

����

// // Kx

����
OY (−H) �

� // G // // G2.

In that case, ch2(F ) = ch2(OY (−H)) + ch2(F2) 6 H2

2 − (P + Q) = −H2

2 . Since ch2(Mx)·H2

rk(Mx) =

−P ·H2

4 = −H4

12 > −H4

4 >
ch2(F )·H2

rk(F ) , F does not destabilize Mx.

Case B.3: rk(F2) = 2. In this case, F ∼= F2. If c1(F ) > 0, then F ∼= Kx. Thus (2.7) splits, which

gives a contradiction.

If c1(F ) = −1, then F ↪→ Kx and, by (2.8), we have F ↪→ I⊕2
P∪Q. Hence F is the extension of

two ideal sheaves. Since we have assumed that F is semistable, we have that

0→ IZ1(−H)→ F → IZ2 → 0,

where codimZ1 and codimZ2 are greater or equal than 2. Moreover, Z1 is possibly empty and

P ∪Q ⊆ Z2. Thus, ch2(F ) = ch2(IZ1(−H)) + ch2(IZ2) = H2

2 −Z1−Z2 6 H2

2 −P ∪Q. Hence, the

same computation as at the end of Case B.2 shows that F does not destabilize Mx.

Case C: rk(F ) = 3. Now c1(F ) > −1 and we can consider again a diagram as (3.3). We can

distinguish two possibilities.

Case C.1: rk(F2) = 2. Since F is semistable, −1
3 6 µ(F ) 6 µ(F2) 6 µ(Kx) = 0. As 2µ(F2) is an

integer, µ(F2) = c1(F2) = 0, F1
∼= OY (−H) and c1(F ) = −1. Hence we rewrite again (3.3) as

OY (−H) �
� //

� _

��

F� _

��

// // F2� _

��
OY (−H)⊕2

����

� � // Mx

����

// // Kx

����
OY (−H) �

� // G // // T.
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Since G is a torsion-free sheaf of rank 1 and c1(G) = −1, if OY (−H) 6∼= G, then G ∼= IZ(−H) with

Z 6= ∅ with codimZ > 2. Hence we get a contradiction since Hom(OY (−H), IZ(−H)) = 0. Thus,

G ∼= OY (−H) contradicting the fact that Mx is non-split.

Case C.2: rk(F2) = 1. Since OY (−H)⊕2 is semistable, c1(F1) 6 −2. On the other hand, also Kx

is semistable, so c1(F2) 6 0. Then c1(F ) 6 −2 and µ(F ) 6 −2
3 . Therefore, F does not destabilize

Mx.

This completes the proof of Proposition 3.1. We are now ready to prove our main result.

Proof of Theorem A. Consider the irreducible component M of the moduli space of Gieseker stable

sheaves on Y with Chern character (4,−2H,−P, l, 1
4) and containing the sheaves Mx, for x ∈ Sreg.

Now observe that Mx ∈ TY , for all x ∈ Sreg, and the Serre functor of TY is the shift by 2.

Hence, by Serre duality and stability,

Hom(Mx,Mx) ∼= Ext2(Mx,Mx) ∼= C Ext1(Mx,Mx) ∼= C2,

for all x ∈ Sreg. This means that M is generically smooth of dimension 2.

By the above discussion, the functor

F := Ξ−1 ◦ f∗(−⊗ E∨α ) : Db(S,A0)→ Db(Y )

yields an injection Sreg ↪→ M by sending the skyscraper sheaf C(x) to Mx. Moreover, such a

morphism induces an isomorphism between the tangent spaces

TxS = Ext2(C(x),C(x))
∼−→ Ext1(Mx,Mx) = TMxM.

Since being right orthogonal to the three objects OY , OY (H) and OY (2H) is an open condition,

F induces and isomorphism between Sreg and an open subset of M. If S is smooth, then this gives

an isomorphism S ∼= M.

3.1. Universal family. In this section we assume that S is smooth. Then the above discussion

can be summarized by saying that there exists a twisted universal family M ∈ Coh(S × Y, p∗1α)

such that the Fourier–Mukai functor

ΦM : Db(S, α)→ Db(Y )

is fully faithful and it factors through TY . Recall that ΦM(−) := (pY )∗(M⊗ p∗S(−)).

As the Kuznetsov’s functor providing the full embedding of Db(S, α) into Db(Y ) is a composi-

tion of a Fourier–Mukai functor and mutations, finding M amounts to finding the Fourier–Mukai

kernel of their composition. For this, consider

S := (σ × id)∗

(
p∗
Ỹ
E ′ ⊗p∗

Ỹ
π∗B0 (π × id)∗(f × id)∗(p

∗
1E
∨
α ⊗O∆S

)
)



ACM BUNDLES ON CUBIC FOURFOLDS CONTAINING A PLANE 17

where p
Ỹ

: Ỹ × S → Ỹ is the natural projection, p1 : S × S → S is the projection on the first

factor, ∆S ⊂ S × S is the diagonal, and E ′ is defined in (1.6). From (2.2) we have

S|Y×{x} ∼= σ∗

(
p∗
Ỹ
E ′ ⊗p∗

Ỹ
π∗B0 (π × id)∗(f × id)∗(p

∗
1E
∨
α ⊗O∆S

)
)∣∣∣
Ỹ×{x}

∼= σ∗

(
E ′ ⊗π∗B0 π∗

(
(f × id)∗(p

∗
1E
∨
α ⊗O∆S

)
)∣∣

P2×{x}

)
∼= σ∗

(
E ′ ⊗π∗B0 π∗f∗

(
E∨α ⊗ O∆S

|S×{x}
))

∼= σ∗
(
E ′ ⊗π∗B0 π∗f∗

(
E∨α ⊗ C(x)

))
∼= σ∗Φ(Lx)

∼= Ilx,Qf(x)
.

Then, the universal family M over Y × S such that M|Y×{x} ∼= Mx can be described as

M := (σ × id)∗ ◦ Lp∗
Ỹ
O

Ỹ
(h−H) ◦Rp∗

Ỹ
O

Ỹ
(−h) ◦ (σ × id)∗S[−1],

where Lp∗
Ỹ
O

Ỹ
(h−H) and Rp∗

Ỹ
O

Ỹ
(−h) denote the corresponding left and right mutations.

The fact that M ∈ Db(S × Y, p∗1α) is actually a locally free sheaf follows from the fact that

M|x×Y ∼= Mx is locally free, for all x ∈ S. This was observed above.
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