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Motivation

Stability conditions were introduced by Bridgeland to make the
notion of Π-stability by Douglas rigorous.

They should provide a generalization of the usual Kähler cone
according to String Theory and Mirror Symmetry.

Whereof one cannot speak, thereof one must be silent.
L. Wittgenstein, Tractatus logico-philosophicus

Thus we take a different perspective: we present Bridgeland
stability conditions as emerging from the quest of a general
approach to the geometry of moduli spaces.
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The baby example

Let E be an elliptic curve. Namely,

1 Topologically: an orientable, compact connected
topological surface of genus 1.
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The baby example

1 Algebraically: the zero locus in P2 of a homogeneous
polynomial of degree 3.

Example

Consider the homogenous polynomial

p(x0, x1, x2) = x3
0 + x3

1 + x3
2 .

Set

E = V (p(x0, x1, x2)) := {Q ∈ P2 : p(Q) = 0} ↪→ P2.

Then X is called Fermat cubic curve.
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Sheaves

By looking at E from the second point of view, the torus gains
more structure:

it is clearly a complex manifold (roughly, E is
locally the same as C).

Thus we can define the following sheaves:
OE such that, for any open subset U ⊆ E ,

U 7→ OE (U) := {f : U → C : f is holomorphic};

Sheaves of OE -modules E :

U 7→ E(U)

and E(U) is a module over OE (U);
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Locally free sheaves

A sheaf E as above is a locally free sheaf if there exists a
positive integer r such that

E|U ∼= (OE )|⊕r
U .

The integer r is called rank of E and it is denoted by rk(E).

We have another class of sheaves which play a role: torsion
sheaves!

Roughly, they are supported at points, with multiplicity.
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Moduli spaces

Question 1

Is there another variety X (...or maybe something more
refined...) that ‘parametrizes’ locally free sheaves of a given
rank r on E?

If yes, we would (sloppily) call such a geometric object moduli
space.

Question 2

How do we study the geometry of these moduli spaces?
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Rank = 1

For a locally free sheaf E , we define the following invariants:

The Euler characteristic:
χ(E) = dimCHom(OE , E)− dimCExt1(OE , E), where
Ext1(OE , E) parametrizes extensions

0→ E → F → OE → 0.

Since E has genus 1, this number is also called degree
and denoted deg(E).

First example

E parametrizes vector bundles of rank 1 and degree 0 on itself.
We say that E is self-dual.
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Stability

Idea

If the rank is greater than 1, we cannot hope to have a nice
answer to our questions without making further assumptions on
the sheaves.

We set

µ(E) :=

{
deg(E)
rk(E) if E is loc. free
+∞ otherwise.

It is called slope.

Paolo Stellari A tour on Bridgeland stability



Stability

Idea

If the rank is greater than 1, we cannot hope to have a nice
answer to our questions without making further assumptions on
the sheaves.

We set

µ(E) :=

{
deg(E)
rk(E) if E is loc. free
+∞ otherwise.

It is called slope.

Paolo Stellari A tour on Bridgeland stability



Stability

Idea

If the rank is greater than 1, we cannot hope to have a nice
answer to our questions without making further assumptions on
the sheaves.

We set

µ(E) :=

{
deg(E)
rk(E) if E is loc. free

+∞ otherwise.

It is called slope.

Paolo Stellari A tour on Bridgeland stability



Stability

Idea

If the rank is greater than 1, we cannot hope to have a nice
answer to our questions without making further assumptions on
the sheaves.

We set

µ(E) :=

{
deg(E)
rk(E) if E is loc. free
+∞ otherwise.

It is called slope.

Paolo Stellari A tour on Bridgeland stability



Stability

Idea

If the rank is greater than 1, we cannot hope to have a nice
answer to our questions without making further assumptions on
the sheaves.

We set

µ(E) :=

{
deg(E)
rk(E) if E is loc. free
+∞ otherwise.

It is called slope.

Paolo Stellari A tour on Bridgeland stability



Stability

Definition

A sheaf E is (semi-)stable if, for all proper and non-trivial
subsheaves F ↪→ E such that rk(F) < rk(E), we have
µ(F) < (≤)µ(E).

We will refer to this notion of stability as slope or µ stability.

Fix two integers r > 0 and d ∈ Z. We denote by

M(r ,d)

the moduli space of semi-stable sheaves on E with rank r and
degree d (...or rather their S-equivalence classes).
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Moduli spaces

We denote by M(r ,d)s the open subset of M(r ,d) consisting of
stable sheaves.

Theorem (Atiyah)

Let r and d be coprime integers as above. Then
M(r ,d) = M(r ,d)s;
M(r ,d) is isomorphic to E .

...the description can be completed in the non-coprime case as
well! ...or for any curve.
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Filtrations

What can we say of a sheaf which is not semi-stable?

Harder–Narasimhan filtration

Any sheaf E has a filtration

0 = E0 ↪→ E1 ↪→ . . . ↪→ En−1 ↪→ En = E

such that
The quotient Ei+1/Ei is semi-stable, for all i ;
µ(E1/E0) > . . . > µ(En/En−1).
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0 = E0 ↪→ E1 ↪→ . . . ↪→ En−1 ↪→ En = E

such that
The quotient Ei+1/Ei is semi-stable, for all i ;

µ(E1/E0) > . . . > µ(En/En−1).
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First question... first answer

Question 1

Is there another variety X (...or maybe something more
refined...) that ‘parametrizes’ locally free sheaves of a given
rank r on E?

To get a positive answer to this question

We have to impose some ’stability (or semi-stability)
condition’;

Non semi-stable sheaves can then be filtered by
semi-stable ones.
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Outline

1 Moduli spaces and stability
Curves
Stability
Recasting

2 Geometry out of stability
Fourier–Mukai transforms
Varying stability

3 Bridgeland stability
Definition and examples
Open problems and results
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Recasting 1

An equivalent way to define the slope stability introduced in the
previous slides is the following:

(a) We take the category of all (coherent) sheaves on E :
locally free sheaves + torsion sheaves.

We spoke about
Subobjects (definition of slope stability);
Quotients and extensions (HN filtrations).

We are using that the category is abelian.
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Recasting 2

(b) A function Z defined, for all sheaves E , as

Z (E) = −deg(E) +
√
−1rk(E) ∈ C.

Observe that:
rk(E) ≥ 0 and if rk(E) = 0, then deg(E) > 0. Hence, for
E 6= 0,

Z (E) ∈ R>0e(0,1]
√
−1π.
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Recasting 3

Any object in the abelian category has a filtration with
respect to the function

−Re(Z )

Im(Z )
(= µ)

Such a filtration is actually unique.

Paolo Stellari A tour on Bridgeland stability



Recasting 3

Any object in the abelian category has a filtration with
respect to the function

−Re(Z )

Im(Z )

(= µ)

Such a filtration is actually unique.

Paolo Stellari A tour on Bridgeland stability



Recasting 3

Any object in the abelian category has a filtration with
respect to the function

−Re(Z )

Im(Z )
(= µ)

Such a filtration is actually unique.

Paolo Stellari A tour on Bridgeland stability



Recasting 3

Any object in the abelian category has a filtration with
respect to the function

−Re(Z )

Im(Z )
(= µ)

Such a filtration is actually unique.

Paolo Stellari A tour on Bridgeland stability



Outline

1 Moduli spaces and stability
Curves
Stability
Recasting

2 Geometry out of stability
Fourier–Mukai transforms
Varying stability

3 Bridgeland stability
Definition and examples
Open problems and results

Paolo Stellari A tour on Bridgeland stability



The problem

Let X1 be any smooth projective variety (i.e. with an embedding
in some projective space). Suppose that M1 is a moduli space
of (semi-)stable sheaves on X1.

The second question we formulated before is:

Question 2

How do we study the geometry of M1?

Paolo Stellari A tour on Bridgeland stability



The problem

Let X1 be any smooth projective variety (i.e. with an embedding
in some projective space). Suppose that M1 is a moduli space
of (semi-)stable sheaves on X1.

The second question we formulated before is:

Question 2

How do we study the geometry of M1?

Paolo Stellari A tour on Bridgeland stability



The problem

Let X1 be any smooth projective variety (i.e. with an embedding
in some projective space). Suppose that M1 is a moduli space
of (semi-)stable sheaves on X1.

The second question we formulated before is:

Question 2

How do we study the geometry of M1?

Paolo Stellari A tour on Bridgeland stability



The problem

Let X1 be any smooth projective variety (i.e. with an embedding
in some projective space). Suppose that M1 is a moduli space
of (semi-)stable sheaves on X1.

The second question we formulated before is:

Question 2

How do we study the geometry of M1?

Paolo Stellari A tour on Bridgeland stability



First try: comparing moduli spaces

There is another complex manifold X2 and a ‘functorial
association’

Φ : E ∈ M1 7→ Φ(E)

such that
Φ(E) is a (coherent) sheaf on X2;
Φ(E) is (semi-)stable.

Set M2 to be the moduli space of (semi-)stable sheaves on X2
containing Φ(E).

Hope

Φ is so natural that it induces an isomorphism M1 ∼= M2. Just
study M2! ...which might be simpler if we are smart choosing Φ.
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Derived categories

To make this precise, we have to substitute the category of
(coherent) sheaves on Xi with Db(Xi), where

The objects in Db(Xi) are bounded complexes of coherent
sheaves, i.e.

E• := {0 · · · → Ep−1 dp−1
−→ Ep dp

−→ Ep+1 → · · · → 0},

with dq ◦ dq−1 = 0.

The morphisms are slightly complicated: they are a
localization of the usual morphisms of complexes.
But we do not need to understand them properly here...

Paolo Stellari A tour on Bridgeland stability



Derived categories

To make this precise, we have to substitute the category of
(coherent) sheaves on Xi with Db(Xi), where

The objects in Db(Xi) are bounded complexes of coherent
sheaves, i.e.

E• := {0 · · · → Ep−1 dp−1
−→ Ep dp

−→ Ep+1 → · · · → 0},

with dq ◦ dq−1 = 0.

The morphisms are slightly complicated: they are a
localization of the usual morphisms of complexes.
But we do not need to understand them properly here...

Paolo Stellari A tour on Bridgeland stability



Derived categories

To make this precise, we have to substitute the category of
(coherent) sheaves on Xi with Db(Xi), where

The objects in Db(Xi) are bounded complexes of coherent
sheaves,

i.e.

E• := {0 · · · → Ep−1 dp−1
−→ Ep dp

−→ Ep+1 → · · · → 0},

with dq ◦ dq−1 = 0.

The morphisms are slightly complicated: they are a
localization of the usual morphisms of complexes.
But we do not need to understand them properly here...

Paolo Stellari A tour on Bridgeland stability



Derived categories

To make this precise, we have to substitute the category of
(coherent) sheaves on Xi with Db(Xi), where

The objects in Db(Xi) are bounded complexes of coherent
sheaves, i.e.

E• := {0 · · · → Ep−1 dp−1
−→ Ep dp

−→ Ep+1 → · · · → 0},

with dq ◦ dq−1 = 0.

The morphisms are slightly complicated: they are a
localization of the usual morphisms of complexes.
But we do not need to understand them properly here...

Paolo Stellari A tour on Bridgeland stability



Derived categories

To make this precise, we have to substitute the category of
(coherent) sheaves on Xi with Db(Xi), where

The objects in Db(Xi) are bounded complexes of coherent
sheaves, i.e.

E• := {0 · · · → Ep−1 dp−1
−→ Ep dp

−→ Ep+1 → · · · → 0},

with dq ◦ dq−1 = 0.

The morphisms are slightly complicated: they are a
localization of the usual morphisms of complexes.

But we do not need to understand them properly here...

Paolo Stellari A tour on Bridgeland stability



Derived categories

To make this precise, we have to substitute the category of
(coherent) sheaves on Xi with Db(Xi), where

The objects in Db(Xi) are bounded complexes of coherent
sheaves, i.e.

E• := {0 · · · → Ep−1 dp−1
−→ Ep dp

−→ Ep+1 → · · · → 0},

with dq ◦ dq−1 = 0.

The morphisms are slightly complicated: they are a
localization of the usual morphisms of complexes.
But we do not need to understand them properly here...

Paolo Stellari A tour on Bridgeland stability



Fourier–Mukai functors 1

We are now in good shape to make the previous construction
rigorous:

Take X1 and X2 be smooth projective varieties. Let
pi : X1 × X2 → Xi be the natural projection. Take
F ∈ Db(X1 × X2).

For E ∈ Db(X1), we set

ΦF (E) := (p2)∗(F ⊗ p∗1(E))

Definition

A functor isomorphic to one as above is called Fourier–Mukai
functor. And F is its Fourier–Mukai kernel.
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Fourier–Mukai functors 2

1 Fourier: these are sheafifications of the usual Fourier
transform

(p2)∗ =⇒
∫

F⊗ =⇒ multiplication by the Fourier kernel.

2 Mukai: Used by Mukai to study moduli spaces on abelian
varieties (i.e. higher dimensional analogues of elliptic
curves).

3 Hodge: ‘Categorification’ of the usual notion of
correspondence.
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Disadvantages

These functors are (essentially) always a natural choice and
they make our first try work in several interesting examples.

But, in general,

1 FM functors do not send sheaves to sheaves.

2 FM functors do not preserve stability, in the sense we
explained before.
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1 Moduli spaces and stability
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2 Geometry out of stability
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Second try: varying stability 1

Suppose that X carries many different types of stability (stability
conditions) and that all these stability conditions are nicely
parametrized by a geometric object S.

Then one may start with a moduli space M of µ-stable sheaves
and begin changing stability inside S.
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Second try: varying stability 2

There might be regions (chambers) of S where M does not
change even if stability is changing.

But passing through a different region (wall) of S, all
sheaves in M get destabilized and M has to be replaced by
a different moduli space M ′ of stable sheaves.

We call this wall–crossing phenomenon.
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Second try: varying stability 3

S

�
��

�
��

�
��

�
��

�
��

�
��

A
A
A
A
A
A
A
A
A
A
A
A

wall

wall

M
↘

M ′

−→

M ′′

During this process, we might get M ′ and M ′′ birational to M:
this means that M and M ′ (or M ′′) are isomorphic just along
open subsets.
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Second try: varying stability 4

To make this more precise, one should consider (twisted)
Gieseker stability.

Variation of this stability means then variation of the
corresponding polarization.

This, in turn, is related to variations of GIT quotients:
Thaddeus, Matsuki–Wentworth, ...
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Hope and bad news

Question 2’

By varying stability, can we get all birational models of M?

Again, variations of the usual stability cannot be sufficient to get
such a complete picture.
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Main idea

The two methods we described:

1 Apply FM functors and change the model;

2 Vary stability and look for all birational models

are very simple and promising ...but they do not fit nicely with
the usual notion of stability...

Hence...

Change perspective on stability!
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Bridgeland definition (very roughly)

Simply: axiomatize and make general the recasting of
µ-stability discussed before!

A (Bridgeland) stability condition on Db(X ), for X a smooth
projective variety, is a pair

σ = (A,Z )

where

1 A is an abelian category (...with some technical
assumptions...);
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Bridgeland definition (very roughly)

2 Z is a group homomorphism such that

Z (E) ∈ R>0e(0,1]
√
−1π, for 0 6= E ∈ A;

Any 0 6= E ∈ A has a Harder–Narasimhan filtration with
respect to the slope

−Re(Z )

Im(Z )

3 Kontsevich–Soibelman: support property (ensuring that, if
we have one stability condition, then we get an entire open
subset).
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Properties (Bridgeland)

Bridgeland stability is preserved under Fourier–Mukai
equivalences;

The space Stab(Db(X )), parametrizing Bridgeland stability
conditions, is actually a complex manifold of finite
dimension. Moreover Stab(Db(X )) has a wall and chamber
structure.

Hence, in this setup, we can apply our two methods.
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Wall crossing 1

Warning

The usual µ-stability is a stability condition in the sense of
Bridgeland if and only if the dimension of X is 1.

Thus, in general, given a moduli space M of stable sheaves on
X , we first need to find a Bridgeland stability condition

σ ∈ Stab(Db(X ))

such that
M ∼= M̃,

where M̃ is a moduli space of σ-stable objects.
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Wall crossing 2

Stab(Db(X ))

�
��
�
��

�
��

�
��

�
��

�
��

A
A
A
A
A
A
A
A
A
A
A
A

wall

wall

∞

M ∼= M̃ −→ M̃
↘

M̃ ′

−→

M̃ ′′
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Wall crossing 3

These techniques have been successfully exploited for moduli
spaces of (Gieseker) stable sheaves on smooth projective
complex surfaces.

In particular, just to mention some:

Arcara–Bertram–Coskun–Huizenga: Hilbert scheme of
points on the projective plane (i.e. stable sheaves with very
special topological invariants);
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Wall crossing 4

Bayer–Macrı̀: Moduli spaces of (Gieseker) stable sheaves
on K3 surfaces (e.g. zero locus in P3 of x4

0 + x4
1 + x4

2 + x4
3 );

Minamide–Yanagida–Yoshioka: Moduli spaces of
(Gieseker) stable sheaves on abelian surfaces.

Nuer: Moduli spaces of (Gieseker) stable sheaves on
Enriques surfaces (i.e. quotients of special K3 surfaces
under the action of a free involution).
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2 Geometry out of stability
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Open problems 1

Main problem

Is Stab(Db(X )) non empty, for a smooth projective variety X?

dim(X ) = 1 (Bridgeland): Stab(Db(X )) 6= ∅. Namely,
µ-stability is THE example.

dim(X ) = 2 (Bridgeland and others): one can describe
connected components of Stab(Db(X )) 6= ∅.
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Open problems 1

The really challenging case is the one of smooth projective
varieties of dimension 3.

Even more precisely, we really need to know if Stab(Db(X )) 6= ∅,
for a smooth projective Calabi–Yau 3-fold X or a variety with
trivial canonical bundle:

Applications to string theory and mathematical physics;

Counting invariants.
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Results

Theorem (Bayer–Macrı̀–S.)

If X is any abelian 3-fold or some Calabi–Yau 3-folds (of
quotient type), then Stab(Db(X )) 6= ∅.

We prove much more: we describe a connected component as
in the surface case!

An example of Calabi–Yau 3-folds (not covered by our result) is
the Fermat quintic, i.e. zero locus in P4 of the homogeneous
polynomial

x5
0 + x5

1 + x5
2 + x5

3 + x5
4 .
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Results

The special Calabi–Yau’s we study are obtained by one of the
following two constructions

Quotients of an abelian 3-fold A by the free action of a
finite group G (Type A Calabi-Yau’s);

Quotients of an abelian 3-fold A by the action of a finite
group G such that the quotient A/G has a crepant
resolution of Calabi–Yau type.

Example

For an example of the last set of CY’s, one can take the product
E × E × E , where E is an elliptic curve, and quotient by the
diagonal action of Z/3Z.
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Results

Thus the result for Calabi–Yau 3-folds is deduced by the one for
abelian 3-folds by inducing stability conditions.

Let A be an abelian 3-fold and let G be a finite group acting on
A. Let Stab(Db(A))G denote G-invariant stability conditions.

Macrı̀–Mehrotra–S.

There is a closed embedding

Stab(Db(A))G ↪→ Stab(Db(Y )),

where Y is a crepant resolution of A/G.
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Open problems 2

The Main Problem is still open in its complete generality but the
techniques developed to treat the case of abelian 3-folds seem
promising, for several other 3-folds.

Indeed, the non-emptiness result is known in other cases:

3-dimensional projective space: Macrı̀, Bayer–Macrı̀–Toda;

3-dimensional quadrics: Schmidt;

Generic ppav: Maciocia–Piyaratne (special case of our
result).
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Open problems 3

Problem 2

Study the birational geometry of moduli spaces of stable
sheaves on 3-folds.

This is certainly a difficult problem. But it could work in several
interesting cases: special Hilbert schemes on P3.

Paolo Stellari A tour on Bridgeland stability



Open problems 3

Problem 2

Study the birational geometry of moduli spaces of stable
sheaves on 3-folds.

This is certainly a difficult problem.

But it could work in several
interesting cases: special Hilbert schemes on P3.

Paolo Stellari A tour on Bridgeland stability



Open problems 3

Problem 2

Study the birational geometry of moduli spaces of stable
sheaves on 3-folds.

This is certainly a difficult problem. But it could work in several
interesting cases:

special Hilbert schemes on P3.

Paolo Stellari A tour on Bridgeland stability



Open problems 3

Problem 2

Study the birational geometry of moduli spaces of stable
sheaves on 3-folds.

This is certainly a difficult problem. But it could work in several
interesting cases: special Hilbert schemes on P3.

Paolo Stellari A tour on Bridgeland stability


	Outline
	Moduli spaces and stability
	Curves
	Stability
	Recasting

	Geometry out of stability
	Fourier–Mukai transforms
	Varying stability

	Bridgeland stability
	Definition and examples
	Open problems and results



