A tour on Bridgeland stability

Paolo Stellari

Hamburg, June 2015

Paolo Stellari A tour on Bridgeland stability

<ロト <回 > < 回 > < 回 > .

æ

1 Moduli spaces and stability

- Curves
- Stability
- Recasting

< 日 > < 回 > < 回 > < 回 > < 回 > <

3

1 Moduli spaces and stability

- Curves
- Stability
- Recasting
- 2 Geometry out of stability
 - Fourier–Mukai transforms
 - Varying stability

□→▲目→▲目→

1 Moduli spaces and stability

- Curves
- Stability
- Recasting
- 2 Geometry out of stability
 - Fourier–Mukai transforms
 - Varying stability

3 Bridgeland stability

- Definition and examples
- Open problems and results

★ E ► < E ►</p>

Motivation

Paolo Stellari A tour on Bridgeland stability

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

They should provide a generalization of the usual Kähler cone according to String Theory and Mirror Symmetry.

▲御▶ ▲臣▶ ▲臣▶ 三臣

They should provide a generalization of the usual Kähler cone according to String Theory and Mirror Symmetry.

Whereof one cannot speak, thereof one must be silent. L. Wittgenstein, Tractatus logico-philosophicus

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

They should provide a generalization of the usual Kähler cone according to String Theory and Mirror Symmetry.

Whereof one cannot speak, thereof one must be silent. L. Wittgenstein, Tractatus logico-philosophicus

Thus we take a different perspective:

副 と く ヨ と く ヨ と

They should provide a generalization of the usual Kähler cone according to String Theory and Mirror Symmetry.

Whereof one cannot speak, thereof one must be silent. L. Wittgenstein, Tractatus logico-philosophicus

Thus we take a different perspective: we present Bridgeland stability conditions as emerging from the quest of a general approach to the geometry of moduli spaces.

▲御▶ ▲ 国▶ ▲ 国▶ …

1 Moduli spaces and stability

- Curves
- Stability
- Recasting
- 2 Geometry out of stability
 - Fourier–Mukai transforms
 - Varying stability
- 3 Bridgeland stability
 - Definition and examples
 - Open problems and results

日本・モン・モン

The baby example

Let *E* be an elliptic curve. Namely,

< 日 > < 回 > < 回 > < 回 > < 回 > <

3

Let *E* be an elliptic curve. Namely,

1 Topologically: an orientable, compact connected topological surface of genus 1.

▲御 ▶ ▲ 陸 ▶ ▲ 陸 ▶ ― 陸

Let *E* be an elliptic curve. Namely,

1 Topologically: an orientable, compact connected topological surface of genus 1.

The baby example

Paolo Stellari A tour on Bridgeland stability

◆ロ〉 ◆御〉 ◆臣〉 ◆臣〉 三臣 のへで

르

Example

Consider the homogenous polynomial

$$p(x_0, x_1, x_2) = x_0^3 + x_1^3 + x_2^3.$$

< 47 ▶

A B F A B F

Example

Consider the homogenous polynomial

$$p(x_0, x_1, x_2) = x_0^3 + x_1^3 + x_2^3.$$

Set

$$E = V(p(x_0, x_1, x_2)) := \{Q \in \mathbb{P}^2 : p(Q) = 0\} \hookrightarrow \mathbb{P}^2.$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Example

Consider the homogenous polynomial

$$p(x_0, x_1, x_2) = x_0^3 + x_1^3 + x_2^3.$$

Set

$$E = V(p(x_0, x_1, x_2)) := \{Q \in \mathbb{P}^2 : p(Q) = 0\} \hookrightarrow \mathbb{P}^2.$$

Then *X* is called Fermat cubic curve.

By looking at E from the second point of view, the torus gains more structure:

Paolo Stellari A tour on Bridgeland stability

(日) (圖) (E) (E) (E)

By looking at *E* from the second point of view, the torus gains more structure: it is clearly a complex manifold

Paolo Stellari A tour on Bridgeland stability

▲□ ▶ ▲ □ ▶ ▲ □ ▶ →

By looking at *E* from the second point of view, the torus gains more structure: it is clearly a complex manifold (roughly, *E* is locally the same as \mathbb{C}).

▲□ ▶ ▲ □ ▶ ▲ □ ▶ →

By looking at *E* from the second point of view, the torus gains more structure: it is clearly a complex manifold (roughly, *E* is locally the same as \mathbb{C}).

Thus we can define the following sheaves:

回 と く ヨ と く ヨ とし

2

By looking at *E* from the second point of view, the torus gains more structure: it is clearly a complex manifold (roughly, *E* is locally the same as \mathbb{C}).

Thus we can define the following sheaves:

• \mathcal{O}_E such that, for any open subset $U \subseteq E$,

By looking at *E* from the second point of view, the torus gains more structure: it is clearly a complex manifold (roughly, *E* is locally the same as \mathbb{C}).

Thus we can define the following sheaves:

• \mathcal{O}_E such that, for any open subset $U \subseteq E$,

 $U \mapsto \mathcal{O}_E(U) := \{f \colon U \to \mathbb{C} : f \text{ is holomorphic}\};$

(本間) (本語) (本語) (語)

By looking at *E* from the second point of view, the torus gains more structure: it is clearly a complex manifold (roughly, *E* is locally the same as \mathbb{C}).

Thus we can define the following sheaves:

• \mathcal{O}_E such that, for any open subset $U \subseteq E$,

 $U \mapsto \mathcal{O}_E(U) := \{f \colon U \to \mathbb{C} : f \text{ is holomorphic}\};$

Sheaves of \mathcal{O}_E -modules \mathcal{E} :

★ 聞 ▶ ★ 国 ▶ ★ 国 ▶ 二 国

By looking at *E* from the second point of view, the torus gains more structure: it is clearly a complex manifold (roughly, *E* is locally the same as \mathbb{C}).

Thus we can define the following sheaves:

• \mathcal{O}_E such that, for any open subset $U \subseteq E$,

 $U \mapsto \mathcal{O}_E(U) := \{f \colon U \to \mathbb{C} : f \text{ is holomorphic}\};$

Sheaves of \mathcal{O}_E -modules \mathcal{E} :

 $U\mapsto \mathcal{E}(U)$

and $\mathcal{E}(U)$ is a module over $\mathcal{O}_E(U)$;

<回>< E> < E> < E> = E

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

르

$$\mathcal{E}|_U \cong (\mathcal{O}_E)|_U^{\oplus r}.$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

$$\mathcal{E}|_U \cong (\mathcal{O}_E)|_U^{\oplus r}.$$

The integer *r* is called rank of \mathcal{E} and it is denoted by $rk(\mathcal{E})$.

日本・日本・日本・

$$\mathcal{E}|_U \cong (\mathcal{O}_E)|_U^{\oplus r}.$$

The integer *r* is called rank of \mathcal{E} and it is denoted by $rk(\mathcal{E})$.

We have another class of sheaves which play a role:

回 とくほとくほとう

$$\mathcal{E}|_U \cong (\mathcal{O}_E)|_U^{\oplus r}.$$

The integer *r* is called rank of \mathcal{E} and it is denoted by $rk(\mathcal{E})$.

We have another class of sheaves which play a role: torsion sheaves!

$$\mathcal{E}|_U \cong (\mathcal{O}_E)|_U^{\oplus r}.$$

The integer *r* is called rank of \mathcal{E} and it is denoted by $rk(\mathcal{E})$.

We have another class of sheaves which play a role: torsion sheaves!

Roughly, they are supported at points, with multiplicity.

Moduli spaces

Paolo Stellari A tour on Bridgeland stability

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

Question 1

Is there another variety X (...or maybe something more refined...) that 'parametrizes' locally free sheaves of a given rank r on E?

(日) (圖) (E) (E) (E)

Question 1

Is there another variety X (...or maybe something more refined...) that 'parametrizes' locally free sheaves of a given rank r on E?

If yes, we would (sloppily) call such a geometric object moduli space.

(日)
Question 1

Is there another variety X (...or maybe something more refined...) that 'parametrizes' locally free sheaves of a given rank r on E?

If yes, we would (sloppily) call such a geometric object moduli space.

Question 2

How do we study the geometry of these moduli spaces?

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Paolo Stellari A tour on Bridgeland stability

・ロト・日本・日本・日本・日本・日本

For a locally free sheaf \mathcal{E} , we define the following invariants:

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

For a locally free sheaf \mathcal{E} , we define the following invariants:

■ The Euler characteristic: $\chi(\mathcal{E}) = \dim_{\mathbb{C}} \operatorname{Hom}(\mathcal{O}_{E}, \mathcal{E}) - \dim_{\mathbb{C}} \operatorname{Ext}^{1}(\mathcal{O}_{E}, \mathcal{E}),$

◆母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ① ● ○ ● ●

For a locally free sheaf \mathcal{E} , we define the following invariants:

The Euler characteristic: $\chi(\mathcal{E}) = \dim_{\mathbb{C}} \operatorname{Hom}(\mathcal{O}_{E}, \mathcal{E}) - \dim_{\mathbb{C}} \operatorname{Ext}^{1}(\mathcal{O}_{E}, \mathcal{E})$, where $\operatorname{Ext}^{1}(\mathcal{O}_{E}, \mathcal{E})$ parametrizes extensions

$$0 \rightarrow \mathcal{E} \rightarrow \mathcal{F} \rightarrow \mathcal{O}_E \rightarrow 0.$$

< □ > < □ > < □ > □ =

For a locally free sheaf \mathcal{E} , we define the following invariants:

The Euler characteristic: $\chi(\mathcal{E}) = \dim_{\mathbb{C}} \operatorname{Hom}(\mathcal{O}_{E}, \mathcal{E}) - \dim_{\mathbb{C}} \operatorname{Ext}^{1}(\mathcal{O}_{E}, \mathcal{E})$, where $\operatorname{Ext}^{1}(\mathcal{O}_{E}, \mathcal{E})$ parametrizes extensions

$$0 \rightarrow \mathcal{E} \rightarrow \mathcal{F} \rightarrow \mathcal{O}_E \rightarrow 0.$$

■ Since *E* has genus 1, this number is also called degree and denoted deg(*E*).

< 国 > < 国 > < 国 > -

For a locally free sheaf \mathcal{E} , we define the following invariants:

The Euler characteristic: $\chi(\mathcal{E}) = \dim_{\mathbb{C}} \operatorname{Hom}(\mathcal{O}_{E}, \mathcal{E}) - \dim_{\mathbb{C}} \operatorname{Ext}^{1}(\mathcal{O}_{E}, \mathcal{E}),$ where $\operatorname{Ext}^{1}(\mathcal{O}_{E}, \mathcal{E})$ parametrizes extensions

$$0 \rightarrow \mathcal{E} \rightarrow \mathcal{F} \rightarrow \mathcal{O}_E \rightarrow 0.$$

■ Since *E* has genus 1, this number is also called degree and denoted deg(*E*).

First example

E parametrizes vector bundles of rank 1 and degree 0 on itself.

・ロット (母) ・ ヨ) ・ コ)

æ

For a locally free sheaf \mathcal{E} , we define the following invariants:

The Euler characteristic: $\chi(\mathcal{E}) = \dim_{\mathbb{C}} \operatorname{Hom}(\mathcal{O}_{E}, \mathcal{E}) - \dim_{\mathbb{C}} \operatorname{Ext}^{1}(\mathcal{O}_{E}, \mathcal{E})$, where $\operatorname{Ext}^{1}(\mathcal{O}_{E}, \mathcal{E})$ parametrizes extensions

$$0 \rightarrow \mathcal{E} \rightarrow \mathcal{F} \rightarrow \mathcal{O}_E \rightarrow 0.$$

■ Since *E* has genus 1, this number is also called degree and denoted deg(*E*).

First example

E parametrizes vector bundles of rank 1 and degree 0 on itself. We say that E is self-dual.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

æ

Outline

1 Moduli spaces and stability

- Curves
- Stability
- Recasting
- 2 Geometry out of stability
 - Fourier–Mukai transforms
 - Varying stability
- 3 Bridgeland stability
 - Definition and examples
 - Open problems and results

日本・モン・モン

Paolo Stellari A tour on Bridgeland stability

If the rank is greater than 1, we cannot hope to have a nice answer to our questions without making further assumptions on the sheaves.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

If the rank is greater than 1, we cannot hope to have a nice answer to our questions without making further assumptions on the sheaves.

We set

$$\mu(\mathcal{E}) := \begin{cases} \frac{\deg(\mathcal{E})}{\operatorname{rk}(\mathcal{E})} & \text{if } \mathcal{E} \text{ is loc. free} \end{cases}$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

If the rank is greater than 1, we cannot hope to have a nice answer to our questions without making further assumptions on the sheaves.

We set

$$\mu(\mathcal{E}) := \begin{cases} \frac{\deg(\mathcal{E})}{\mathrm{rk}(\mathcal{E})} & \text{if } \mathcal{E} \text{ is loc. free} \\ +\infty & \text{otherwise.} \end{cases}$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

If the rank is greater than 1, we cannot hope to have a nice answer to our questions without making further assumptions on the sheaves.

We set

$$\mu(\mathcal{E}) := \begin{cases} \frac{\deg(\mathcal{E})}{\mathrm{rk}(\mathcal{E})} & \text{if } \mathcal{E} \text{ is loc. free} \\ +\infty & \text{otherwise.} \end{cases}$$

It is called slope.

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ...

Paolo Stellari A tour on Bridgeland stability

Definition

A sheaf \mathcal{E} is (semi-)stable if, for all proper and non-trivial subsheaves $\mathcal{F} \hookrightarrow \mathcal{E}$ such that $\operatorname{rk}(\mathcal{F}) < \operatorname{rk}(\mathcal{E})$, we have $\mu(\mathcal{F}) < (\leq)\mu(\mathcal{E})$.

・ロト ・聞 ト ・ 臣 ト ・ 臣 ト … 臣

Definition

A sheaf \mathcal{E} is (semi-)stable if, for all proper and non-trivial subsheaves $\mathcal{F} \hookrightarrow \mathcal{E}$ such that $rk(\mathcal{F}) < rk(\mathcal{E})$, we have $\mu(\mathcal{F}) < (\leq)\mu(\mathcal{E})$.

We will refer to this notion of stability as slope or μ stability.

Paolo Stellari A tour on Bridgeland stability

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

Definition

A sheaf \mathcal{E} is (semi-)stable if, for all proper and non-trivial subsheaves $\mathcal{F} \hookrightarrow \mathcal{E}$ such that $\operatorname{rk}(\mathcal{F}) < \operatorname{rk}(\mathcal{E})$, we have $\mu(\mathcal{F}) < (\leq)\mu(\mathcal{E})$.

We will refer to this notion of stability as slope or μ stability.

Fix two integers r > 0 and $d \in \mathbb{Z}$.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Definition

A sheaf \mathcal{E} is (semi-)stable if, for all proper and non-trivial subsheaves $\mathcal{F} \hookrightarrow \mathcal{E}$ such that $rk(\mathcal{F}) < rk(\mathcal{E})$, we have $\mu(\mathcal{F}) < (\leq)\mu(\mathcal{E})$.

We will refer to this notion of stability as slope or μ stability.

Fix two integers r > 0 and $d \in \mathbb{Z}$. We denote by

M(r, d)

the moduli space of semi-stable sheaves on E with rank r and degree d

Definition

A sheaf \mathcal{E} is (semi-)stable if, for all proper and non-trivial subsheaves $\mathcal{F} \hookrightarrow \mathcal{E}$ such that $rk(\mathcal{F}) < rk(\mathcal{E})$, we have $\mu(\mathcal{F}) < (\leq)\mu(\mathcal{E})$.

We will refer to this notion of stability as slope or μ stability.

Fix two integers r > 0 and $d \in \mathbb{Z}$. We denote by

M(r, d)

the moduli space of semi-stable sheaves on E with rank r and degree d (...or rather their S-equivalence classes).

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

Moduli spaces

Paolo Stellari A tour on Bridgeland stability

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

Paolo Stellari A tour on Bridgeland stability

(本間) (本語) (本語) (語)

Theorem (Atiyah)

Let r and d be coprime integers as above. Then

Paolo Stellari A tour on Bridgeland stability

(日) (圖) (E) (E) (E)

Theorem (Atiyah)

Let r and d be coprime integers as above. Then

$$\blacksquare M(r,d) = M(r,d)^s;$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Atiyah)

Let r and d be coprime integers as above. Then

$$\blacksquare M(r,d) = M(r,d)^s;$$

• M(r, d) is isomorphic to *E*.

(日) (圖) (E) (E) (E)

Theorem (Atiyah)

Let r and d be coprime integers as above. Then

$$\blacksquare M(r,d) = M(r,d)^s;$$

• M(r, d) is isomorphic to *E*.

...the description can be completed in the non-coprime case as well!

(日) (圖) (E) (E) (E)

Theorem (Atiyah)

Let r and d be coprime integers as above. Then

$$\blacksquare M(r,d) = M(r,d)^s;$$

• M(r, d) is isomorphic to *E*.

...the description can be completed in the non-coprime case as well! ...or for any curve.

(日)

Filtrations

Paolo Stellari A tour on Bridgeland stability

◆□ > ◆□ > ◆三 > ◆三 > ○ ○ ○ ○ ○

Paolo Stellari A tour on Bridgeland stability

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

Harder–Narasimhan filtration

Any sheaf \mathcal{E} has a filtration

Paolo Stellari A tour on Bridgeland stability

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Harder–Narasimhan filtration

Any sheaf \mathcal{E} has a filtration

$$0 = \mathcal{E}_0 \hookrightarrow \mathcal{E}_1 \hookrightarrow \ldots \hookrightarrow \mathcal{E}_{n-1} \hookrightarrow \mathcal{E}_n = \mathcal{E}$$

such that

< 日 > < 回 > < 回 > < 回 > < 回 > <

2

Harder–Narasimhan filtration

Any sheaf \mathcal{E} has a filtration

$$0 = \mathcal{E}_0 \hookrightarrow \mathcal{E}_1 \hookrightarrow \ldots \hookrightarrow \mathcal{E}_{n-1} \hookrightarrow \mathcal{E}_n = \mathcal{E}$$

such that

The quotient $\mathcal{E}_{i+1}/\mathcal{E}_i$ is semi-stable, for all *i*;

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Harder–Narasimhan filtration

Any sheaf \mathcal{E} has a filtration

$$0 = \mathcal{E}_0 \hookrightarrow \mathcal{E}_1 \hookrightarrow \ldots \hookrightarrow \mathcal{E}_{n-1} \hookrightarrow \mathcal{E}_n = \mathcal{E}$$

such that

The quotient $\mathcal{E}_{i+1}/\mathcal{E}_i$ is semi-stable, for all *i*;

$$\blacksquare \mu(\mathcal{E}_1/\mathcal{E}_0) > \ldots > \mu(\mathcal{E}_n/\mathcal{E}_{n-1}).$$

< 日 > < 回 > < 回 > < 回 > < 回 > <

르

First question... first answer

Paolo Stellari A tour on Bridgeland stability

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

Question 1

Is there another variety X (...or maybe something more refined...) that 'parametrizes' locally free sheaves of a given rank r on E?

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Question 1

Is there another variety X (...or maybe something more refined...) that 'parametrizes' locally free sheaves of a given rank r on E?

To get a positive answer to this question

 We have to impose some 'stability (or semi-stability) condition';

A (1) > A (2) > A (2) > A
Question 1

Is there another variety X (...or maybe something more refined...) that 'parametrizes' locally free sheaves of a given rank r on E?

To get a positive answer to this question

- We have to impose some 'stability (or semi-stability) condition';
- Non semi-stable sheaves can then be filtered by semi-stable ones.

・ 戸 ト ・ 三 ト ・ 三 ト

Outline

1 Moduli spaces and stability

- Curves
- Stability
- Recasting
- 2 Geometry out of stability
 - Fourier–Mukai transforms
 - Varying stability
- 3 Bridgeland stability
 - Definition and examples
 - Open problems and results

日本・モン・モン

크

Paolo Stellari A tour on Bridgeland stability

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(a) We take the category of all (coherent) sheaves on *E*: locally free sheaves + torsion sheaves.

▲御 ▶ ▲ 陸 ▶ ▲ 陸 ▶ ― 陸

(a) We take the category of all (coherent) sheaves on *E*: locally free sheaves + torsion sheaves.

We spoke about

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

크

(a) We take the category of all (coherent) sheaves on *E*: locally free sheaves + torsion sheaves.

We spoke about

Subobjects (definition of slope stability);

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

크

(a) We take the category of all (coherent) sheaves on *E*: locally free sheaves + torsion sheaves.

We spoke about

- Subobjects (definition of slope stability);
- Quotients and extensions (HN filtrations).

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

2

(a) We take the category of all (coherent) sheaves on *E*: locally free sheaves + torsion sheaves.

We spoke about

- Subobjects (definition of slope stability);
- Quotients and extensions (HN filtrations).

We are using that the category is abelian.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

Paolo Stellari A tour on Bridgeland stability

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

(b) A function Z defined, for all sheaves \mathcal{E} , as

Paolo Stellari A tour on Bridgeland stability

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(b) A function Z defined, for all sheaves \mathcal{E} , as $Z(\mathcal{E}) = -\deg(\mathcal{E}) + \sqrt{-1} \operatorname{rk}(\mathcal{E}) \in \mathbb{C}.$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

(b) A function Z defined, for all sheaves \mathcal{E} , as $Z(\mathcal{E}) = -\text{deg}(\mathcal{E}) + \sqrt{-1}\text{rk}(\mathcal{E}) \in \mathbb{C}.$

Observe that:

(b) A function Z defined, for all sheaves \mathcal{E} , as $Z(\mathcal{E}) = -\text{deg}(\mathcal{E}) + \sqrt{-1}\text{rk}(\mathcal{E}) \in \mathbb{C}.$

Observe that:

■
$$rk(\mathcal{E}) \ge 0$$
 and if $rk(\mathcal{E}) = 0$, then $deg(\mathcal{E}) > 0$.

(b) A function Z defined, for all sheaves \mathcal{E} , as $Z(\mathcal{E}) = -\text{deg}(\mathcal{E}) + \sqrt{-1}\text{rk}(\mathcal{E}) \in \mathbb{C}.$

Observe that:

■ $\operatorname{rk}(\mathcal{E}) \ge 0$ and if $\operatorname{rk}(\mathcal{E}) = 0$, then $\operatorname{deg}(\mathcal{E}) > 0$. Hence, for $\mathcal{E} \neq 0$, $Z(\mathcal{E}) \in \mathbb{R}_{>0} e^{(0,1]\sqrt{-1}\pi}$.

◆聞 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ─ 臣

Paolo Stellari A tour on Bridgeland stability

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

Any object in the abelian category has a filtration with respect to the function

$$-\frac{\operatorname{Re}(Z)}{\operatorname{Im}(Z)}$$

Paolo Stellari A tour on Bridgeland stability

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

Any object in the abelian category has a filtration with respect to the function

$$-\frac{\operatorname{Re}(Z)}{\operatorname{Im}(Z)}(=\mu)$$

Paolo Stellari A tour on Bridgeland stability

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Any object in the abelian category has a filtration with respect to the function

$$-\frac{\operatorname{Re}(Z)}{\operatorname{Im}(Z)}(=\mu)$$

Such a filtration is actually unique.

< □→ < □→ < □→ □ □

Outline

1 Moduli spaces and stability

- Curves
- Stability
- Recasting
- 2 Geometry out of stability
 - Fourier–Mukai transforms
 - Varying stability

3 Bridgeland stability

- Definition and examples
- Open problems and results

日本・モン・モン

The problem

Paolo Stellari A tour on Bridgeland stability

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

Let X_1 be any smooth projective variety (i.e. with an embedding in some projective space). Suppose that M_1 is a moduli space of (semi-)stable sheaves on X_1 .

< □ > < □ > < □ > □ =

Let X_1 be any smooth projective variety (i.e. with an embedding in some projective space). Suppose that M_1 is a moduli space of (semi-)stable sheaves on X_1 .

The second question we formulated before is:

副 と く ヨ と く ヨ と

э

Let X_1 be any smooth projective variety (i.e. with an embedding in some projective space). Suppose that M_1 is a moduli space of (semi-)stable sheaves on X_1 .

The second question we formulated before is:

Question 2

How do we study the geometry of M_1 ?

▲□ → ▲ □ → ▲ □ → □

Paolo Stellari A tour on Bridgeland stability

▲御▶ ▲ 国▶ ▲ 国▶ …

3

There is another complex manifold X_2 and a 'functorial association'

< □ > < □ > < □ > □ =

There is another complex manifold X_2 and a 'functorial association'

 $\Phi: \mathcal{E} \in \textit{M}_1$

◆聞 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ─ 臣

There is another complex manifold X_2 and a 'functorial association'

 $\Phi: \mathcal{E} \in M_1 \mapsto \Phi(\mathcal{E})$

There is another complex manifold X_2 and a 'functorial association'

 $\Phi: \mathcal{E} \in M_1 \mapsto \Phi(\mathcal{E})$

such that

<回> < 回> < 回> < 回> = □

$$\Phi: \mathcal{E} \in M_1 \mapsto \Phi(\mathcal{E})$$

such that

• $\Phi(\mathcal{E})$ is a (coherent) sheaf on X_2 ;

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □

$$\Phi: \mathcal{E} \in M_1 \mapsto \Phi(\mathcal{E})$$

such that

- $\Phi(\mathcal{E})$ is a (coherent) sheaf on X_2 ;
- $\Phi(\mathcal{E})$ is (semi-)stable.

< □→ < □→ < □→ = □

 $\Phi: \mathcal{E} \in M_1 \mapsto \Phi(\mathcal{E})$

such that

- $\Phi(\mathcal{E})$ is a (coherent) sheaf on X_2 ;
- $\Phi(\mathcal{E})$ is (semi-)stable.

Set M_2 to be the moduli space of (semi-)stable sheaves on X_2 containing $\Phi(\mathcal{E})$.

▲御▶ ▲ 理▶ ▲ 理▶ - - 理

 $\Phi: \mathcal{E} \in M_1 \mapsto \Phi(\mathcal{E})$

such that

- $\Phi(\mathcal{E})$ is a (coherent) sheaf on X_2 ;
- $\Phi(\mathcal{E})$ is (semi-)stable.

Set M_2 to be the moduli space of (semi-)stable sheaves on X_2 containing $\Phi(\mathcal{E})$.

Hope

 Φ is so natural that it induces an isomorphism $M_1 \cong M_2$.

- 同下 - ヨト - ヨト

æ

 $\Phi: \mathcal{E} \in M_1 \mapsto \Phi(\mathcal{E})$

such that

- $\Phi(\mathcal{E})$ is a (coherent) sheaf on X_2 ;
- $\Phi(\mathcal{E})$ is (semi-)stable.

Set M_2 to be the moduli space of (semi-)stable sheaves on X_2 containing $\Phi(\mathcal{E})$.

Hope

 Φ is so natural that it induces an isomorphism $M_1 \cong M_2$. Just study M_2 !

★ 聞 ▶ ★ 国 ▶ ★ 国 ▶ 二 国

 $\Phi: \mathcal{E} \in M_1 \mapsto \Phi(\mathcal{E})$

such that

- $\Phi(\mathcal{E})$ is a (coherent) sheaf on X_2 ;
- $\Phi(\mathcal{E})$ is (semi-)stable.

Set M_2 to be the moduli space of (semi-)stable sheaves on X_2 containing $\Phi(\mathcal{E})$.

Hope

 Φ is so natural that it induces an isomorphism $M_1 \cong M_2$. Just study $M_2!$...which might be simpler if we are smart choosing Φ .

★ E → < E → </p>

Derived categories

Paolo Stellari A tour on Bridgeland stability

◆□ → ◆御 → ◆臣 → ◆臣 → ○臣
▲御 ▶ ▲ 陸 ▶ ▲ 陸 ▶ ― 陸

The objects in D^b(X_i) are bounded complexes of coherent sheaves,

<回>< E> < E> < E> = E

The objects in D^b(X_i) are bounded complexes of coherent sheaves, i.e.

$$\mathcal{E}^{\bullet} := \{ 0 \cdots \to \mathcal{E}^{p-1} \xrightarrow{d^{p-1}} \mathcal{E}^p \xrightarrow{d^p} \mathcal{E}^{p+1} \to \cdots \to 0 \},$$

with $d^q \circ d^{q-1} = 0.$

▲□ → ▲ □ → ▲ □ → □ □

■ The objects in D^b(X_i) are bounded complexes of coherent sheaves, i.e.

$$\mathcal{E}^{\bullet} := \{\mathbf{0} \cdots \to \mathcal{E}^{p-1} \xrightarrow{d^{p-1}} \mathcal{E}^p \xrightarrow{d^p} \mathcal{E}^{p+1} \to \cdots \to \mathbf{0}\},\$$

with $d^q \circ d^{q-1} = 0$.

The morphisms are slightly complicated: they are a localization of the usual morphisms of complexes.

■ The objects in D^b(X_i) are bounded complexes of coherent sheaves, i.e.

$$\mathcal{E}^{\bullet} := \{\mathbf{0} \cdots \to \mathcal{E}^{p-1} \xrightarrow{d^{p-1}} \mathcal{E}^p \xrightarrow{d^p} \mathcal{E}^{p+1} \to \cdots \to \mathbf{0}\},\$$

with $d^q \circ d^{q-1} = 0$.

The morphisms are slightly complicated: they are a localization of the usual morphisms of complexes. But we do not need to understand them properly here...

< □ > < □ > < □ > □ Ξ

Paolo Stellari A tour on Bridgeland stability

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < @

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

■ Take X_1 and X_2 be smooth projective varieties. Let $p_i : X_1 \times X_2 \rightarrow X_i$ be the natural projection. Take $\mathcal{F} \in D^b(X_1 \times X_2)$.

<回>< E> < E> < E> = E

- Take X_1 and X_2 be smooth projective varieties. Let $p_i : X_1 \times X_2 \to X_i$ be the natural projection. Take $\mathcal{F} \in D^b(X_1 \times X_2)$.
- For $\mathcal{E} \in D^b(X_1)$, we set

< 国 > < 国 > < 国 > -

크

■ Take X_1 and X_2 be smooth projective varieties. Let $p_i : X_1 \times X_2 \rightarrow X_i$ be the natural projection. Take $\mathcal{F} \in D^b(X_1 \times X_2)$.

For $\mathcal{E} \in D^b(X_1)$, we set

$$\Phi_{\mathcal{F}}(\mathcal{E}) := (p_2)_*(\mathcal{F} \otimes p_1^*(\mathcal{E}))$$

< 国 > < 国 > < 国 > -

크

Take X_1 and X_2 be smooth projective varieties. Let $p_i : X_1 \times X_2 \to X_i$ be the natural projection. Take $\mathcal{F} \in D^b(X_1 \times X_2)$.

For
$$\mathcal{E} \in \mathrm{D}^b(X_1)$$
, we set

$$\Phi_{\mathcal{F}}(\mathcal{E}) := (p_2)_*(\mathcal{F} \otimes p_1^*(\mathcal{E}))$$

Definition

A functor isomorphic to one as above is called Fourier–Mukai functor. And \mathcal{F} is its Fourier–Mukai kernel.

Paolo Stellari A tour on Bridgeland stability

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < @

1 Fourier: these are sheafifications of the usual Fourier transform

1 Fourier: these are sheafifications of the usual Fourier transform

 $(p_2)_*$

Fourier: these are sheafifications of the usual Fourier transform

$$(p_2)_* \implies \int$$

Fourier: these are sheafifications of the usual Fourier transform

$$(p_2)_* \implies \int \mathcal{F} \otimes$$

Fourier: these are sheafifications of the usual Fourier transform

$$(p_2)_* \implies \int \mathcal{F} \otimes \longrightarrow Multiplication by the Fourier kernel.$$

Fourier: these are sheafifications of the usual Fourier transform

$$(p_2)_* \implies \int \mathcal{F} \otimes \longrightarrow Multiplication by the Fourier kernel.$$

2 Mukai: Used by Mukai to study moduli spaces on abelian varieties (i.e. higher dimensional analogues of elliptic curves).

▲□→ ▲ □→ ▲ □→ ----

크

Fourier: these are sheafifications of the usual Fourier transform

$$(p_2)_* \implies \int \mathcal{F} \otimes \longrightarrow$$
 multiplication by the Fourier kernel.

- 2 Mukai: Used by Mukai to study moduli spaces on abelian varieties (i.e. higher dimensional analogues of elliptic curves).
- Hodge: 'Categorification' of the usual notion of correspondence.

< □ > < □ > < □ > □ =

Disadvantages

Paolo Stellari A tour on Bridgeland stability

◆□ → ◆御 → ◆臣 → ◆臣 → □臣

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

크

But, in general,

日本・モート・モート

크

But, in general,

1 FM functors do not send sheaves to sheaves.

(4) (3) (4) (3) (4)

But, in general,

- **1** FM functors do not send sheaves to sheaves.
- 2 FM functors do not preserve stability, in the sense we explained before.

日本・日本・日本・

Outline

1 Moduli spaces and stability

- Curves
- Stability
- Recasting

2 Geometry out of stability

- Fourier–Mukai transforms
- Varying stability

3 Bridgeland stability

- Definition and examples
- Open problems and results

日本・モン・モン

크

Paolo Stellari A tour on Bridgeland stability

・ロト ・四ト ・ヨト ・ヨト

Suppose that X carries many different types of stability (stability conditions) and that all these stability conditions are nicely parametrized by a geometric object S.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

Suppose that X carries many different types of stability (stability conditions) and that all these stability conditions are nicely parametrized by a geometric object S.

Then one may start with a moduli space M of μ -stable sheaves and begin changing stability inside S.

< 国 > < 国 > < 国 > -

Paolo Stellari A tour on Bridgeland stability

(日) (圖) (E) (E) (E)

There might be regions (chambers) of S where M does not change even if stability is changing.

▲御 ▶ ▲ 陸 ▶ ▲ 陸 ▶ ― 陸

- There might be regions (chambers) of S where M does not change even if stability is changing.
- But passing through a different region (wall) of S, all sheaves in M get destabilized and M has to be replaced by a different moduli space M' of stable sheaves.

▲□ → ▲ □ → ▲ □ → …

- There might be regions (chambers) of S where M does not change even if stability is changing.
- But passing through a different region (wall) of S, all sheaves in M get destabilized and M has to be replaced by a different moduli space M' of stable sheaves.

We call this wall-crossing phenomenon.

・白・・ヨ・・ モー・

Paolo Stellari A tour on Bridgeland stability

(日) (圖) (E) (E) (E)

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶

æ

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶

æ

▲□ → ▲ □ → ▲ □ →

æ

Paolo Stellari A tour on Bridgeland stability

▲□ → ▲ □ → ▲ □ →

▲御▶ ▲ 国▶ ▲ 国▶

▲御▶ ▲理▶ ▲理▶

During this process, we might get M' and M'' birational to M: this means that M and M' (or M'') are isomorphic just along open subsets.

(B) (A) (B) (A)

Paolo Stellari A tour on Bridgeland stability

르

Variation of this stability means then variation of the corresponding polarization.

< □ > < □ > < □ > □ =

Variation of this stability means then variation of the corresponding polarization.

This, in turn, is related to variations of GIT quotients:

< □ > < □ > < □ > □ =

Variation of this stability means then variation of the corresponding polarization.

This, in turn, is related to variations of GIT quotients: Thaddeus, Matsuki–Wentworth, ...

白マ イヨマ イヨマ

Hope and bad news

Paolo Stellari A tour on Bridgeland stability

◆□ → ◆御 → ◆臣 → ◆臣 → ○臣

Hope and bad news

Question 2'

By varying stability, can we get all birational models of M?

Paolo Stellari A tour on Bridgeland stability

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ …

르

Hope and bad news

Question 2'

By varying stability, can we get all birational models of M?

Again, variations of the usual stability cannot be sufficient to get such a complete picture.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

Outline

1 Moduli spaces and stability

- Curves
- Stability
- Recasting
- 2 Geometry out of stability
 - Fourier–Mukai transforms
 - Varying stability

3 Bridgeland stability

- Definition and examples
- Open problems and results

日本・モン・モン

Main idea

Paolo Stellari A tour on Bridgeland stability

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● の Q @

1 Apply FM functors and change the model;

▲御▶ ▲ 理▶ ▲ 理▶ ― 理

- 1 Apply FM functors and change the model;
- 2 Vary stability and look for all birational models

▲□ → ▲ □ → ▲ □ → …

르

- 1 Apply FM functors and change the model;
- 2 Vary stability and look for all birational models

are very simple and promising

留下 くぼう くぼう

- 1 Apply FM functors and change the model;
- 2 Vary stability and look for all birational models

are very simple and promising ...but they do not fit nicely with the usual notion of stability...

留下 くぼう くぼう

- 1 Apply FM functors and change the model;
- 2 Vary stability and look for all birational models

are very simple and promising ...but they do not fit nicely with the usual notion of stability...

Hence...

留下 くぼう くぼう

- 1 Apply FM functors and change the model;
- 2 Vary stability and look for all birational models

are very simple and promising ...but they do not fit nicely with the usual notion of stability...

Hence...

Change perspective on stability!

Paolo Stellari A tour on Bridgeland stability

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Simply: axiomatize and make general the recasting of μ -stability discussed before!

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Simply: axiomatize and make general the recasting of μ -stability discussed before!

A (Bridgeland) stability condition on $D^{b}(X)$, for X a smooth projective variety, is a pair

$$\sigma = (\mathbf{A}, \mathbf{Z})$$

where

▲御▶ ▲理▶ ▲理▶ 二理

Simply: axiomatize and make general the recasting of μ -stability discussed before!

A (Bridgeland) stability condition on $D^b(X)$, for X a smooth projective variety, is a pair

$$\sigma = (\mathbf{A}, \mathbf{Z})$$

where

1 A is an abelian category (...with some technical assumptions...);

(本間) (本語) (本語) (語)

Paolo Stellari A tour on Bridgeland stability

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

2 Z is a group homomorphism such that

▲御 ▶ ▲ 陸 ▶ ▲ 陸 ▶ ― 陸

2 Z is a group homomorphism such that

•
$$Z(\mathcal{E}) \in \mathbb{R}_{>0} e^{(0,1]\sqrt{-1}\pi}$$
, for $0 \neq \mathcal{E} \in \mathbf{A}$;

▲御 ▶ ▲ 陸 ▶ ▲ 陸 ▶ ― 陸

2 Z is a group homomorphism such that

•
$$Z(\mathcal{E}) \in \mathbb{R}_{>0} e^{(0,1]\sqrt{-1}\pi}$$
, for $0 \neq \mathcal{E} \in \mathbf{A}$;

Any $0 \neq \mathcal{E} \in \mathbf{A}$ has a Harder–Narasimhan filtration with respect to the slope

$$-\frac{\operatorname{Re}(Z)}{\operatorname{Im}(Z)}$$

2 Z is a group homomorphism such that

•
$$Z(\mathcal{E}) \in \mathbb{R}_{>0} e^{(0,1]\sqrt{-1}\pi}$$
, for $0 \neq \mathcal{E} \in \mathbf{A}$;

Any $0 \neq \mathcal{E} \in \mathbf{A}$ has a Harder–Narasimhan filtration with respect to the slope

$$-\frac{\operatorname{Re}(Z)}{\operatorname{Im}(Z)}$$

3 Kontsevich–Soibelman: support property (ensuring that, if we have one stability condition, then we get an entire open subset).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Properties (Bridgeland)

Paolo Stellari A tour on Bridgeland stability

Properties (Bridgeland)

Bridgeland stability is preserved under Fourier–Mukai equivalences;

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

- Bridgeland stability is preserved under Fourier–Mukai equivalences;
- The space Stab(D^b(X)), parametrizing Bridgeland stability conditions, is actually a complex manifold of finite dimension. Moreover Stab(D^b(X)) has a wall and chamber structure.

◆□ → ◆ □ → ◆ □ → □ □

- Bridgeland stability is preserved under Fourier–Mukai equivalences;
- The space Stab(D^b(X)), parametrizing Bridgeland stability conditions, is actually a complex manifold of finite dimension. Moreover Stab(D^b(X)) has a wall and chamber structure.

Hence, in this setup, we can apply our two methods.

<回>< E> < E> < E> = E

Wall crossing 1

Paolo Stellari A tour on Bridgeland stability

Warning

The usual μ -stability is a stability condition in the sense of Bridgeland if and only if the dimension of *X* is 1.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...
Warning

The usual μ -stability is a stability condition in the sense of Bridgeland if and only if the dimension of *X* is 1.

Thus, in general, given a moduli space M of stable sheaves on X, we first need to find a Bridgeland stability condition

 $\sigma \in \operatorname{Stab}(\operatorname{D}^{b}(X))$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

2

Warning

The usual μ -stability is a stability condition in the sense of Bridgeland if and only if the dimension of *X* is 1.

Thus, in general, given a moduli space M of stable sheaves on X, we first need to find a Bridgeland stability condition

 $\sigma \in \operatorname{Stab}(\operatorname{D}^{b}(X))$

such that

$$M\cong \widetilde{M},$$

A (1) > A (2) > A (2) > A

Warning

The usual μ -stability is a stability condition in the sense of Bridgeland if and only if the dimension of *X* is 1.

Thus, in general, given a moduli space M of stable sheaves on X, we first need to find a Bridgeland stability condition

 $\sigma \in \mathrm{Stab}(\mathrm{D}^{b}(X))$

such that

$$M\cong \widetilde{M},$$

where \widetilde{M} is a moduli space of σ -stable objects.

3 1 4 3 1

Paolo Stellari A tour on Bridgeland stability

Paolo Stellari A tour on Bridgeland stability

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Paolo Stellari A tour on Bridgeland stability

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

<ロト <回 > < 回 > < 回 > .

3

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

3

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

<ロト <回 > < 回 > < 回 > .

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

<ロト <回 > < 回 > < 回 > .

Paolo Stellari A tour on Bridgeland stability

These techniques have been successfully exploited for moduli spaces of (Gieseker) stable sheaves on smooth projective complex surfaces.

르

These techniques have been successfully exploited for moduli spaces of (Gieseker) stable sheaves on smooth projective complex surfaces.

In particular, just to mention some:

▲□ → ▲ □ → ▲ □ → …

크

These techniques have been successfully exploited for moduli spaces of (Gieseker) stable sheaves on smooth projective complex surfaces.

In particular, just to mention some:

 Arcara–Bertram–Coskun–Huizenga: Hilbert scheme of points on the projective plane (i.e. stable sheaves with very special topological invariants);

<回>< E> < E> < E> = E

Paolo Stellari A tour on Bridgeland stability

◆□ → ◆御 → ◆臣 → ◆臣 → □臣

Bayer–Macrì: Moduli spaces of (Gieseker) stable sheaves on K3 surfaces (e.g. zero locus in P³ of x₀⁴ + x₁⁴ + x₂⁴ + x₃⁴);

▲祠 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

크

- Bayer–Macri: Moduli spaces of (Gieseker) stable sheaves on K3 surfaces (e.g. zero locus in P³ of x₀⁴ + x₁⁴ + x₂⁴ + x₃⁴);
- Minamide-Yanagida-Yoshioka: Moduli spaces of (Gieseker) stable sheaves on abelian surfaces.

日本・モート・モート

- Bayer–Macri: Moduli spaces of (Gieseker) stable sheaves on K3 surfaces (e.g. zero locus in P³ of x₀⁴ + x₁⁴ + x₂⁴ + x₃⁴);
- Minamide-Yanagida-Yoshioka: Moduli spaces of (Gieseker) stable sheaves on abelian surfaces.
- Nuer: Moduli spaces of (Gieseker) stable sheaves on Enriques surfaces (i.e. quotients of special K3 surfaces under the action of a free involution).

▲□ → ▲ □ → ▲ □ → …

Outline

1 Moduli spaces and stability

- Curves
- Stability
- Recasting
- 2 Geometry out of stability
 - Fourier–Mukai transforms
 - Varying stability

3 Bridgeland stability

- Definition and examples
- Open problems and results

日本・モン・モン

크

Open problems 1

Paolo Stellari A tour on Bridgeland stability

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Open problems 1

Main problem

Is $Stab(D^b(X))$ non empty, for a smooth projective variety X?

(日) (圖) (E) (E) (E)

Main problem

Is $Stab(D^{b}(X))$ non empty, for a smooth projective variety X?

■ dim(X) = 1 (Bridgeland): Stab($D^b(X)$) $\neq \emptyset$. Namely, μ -stability is THE example.

(日) (圖) (E) (E) (E)

Main problem

Is $Stab(D^{b}(X))$ non empty, for a smooth projective variety X?

- dim(X) = 1 (Bridgeland): Stab($D^b(X)$) $\neq \emptyset$. Namely, μ -stability is THE example.
- dim(X) = 2 (Bridgeland and others): one can describe connected components of Stab(D^b(X)) ≠ Ø.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Open problems 1

Paolo Stellari A tour on Bridgeland stability

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Even more precisely, we really need to know if $\operatorname{Stab}(D^b(X)) \neq \emptyset$, for a smooth projective Calabi–Yau 3-fold X or a variety with trivial canonical bundle:

< 回 > < 回 > < 回 > … 回

Even more precisely, we really need to know if $\operatorname{Stab}(D^b(X)) \neq \emptyset$, for a smooth projective Calabi–Yau 3-fold X or a variety with trivial canonical bundle:

Applications to string theory and mathematical physics;

▲□ → ▲ □ → ▲ □ → □ □

Even more precisely, we really need to know if $\operatorname{Stab}(D^b(X)) \neq \emptyset$, for a smooth projective Calabi–Yau 3-fold *X* or a variety with trivial canonical bundle:

Applications to string theory and mathematical physics;

Counting invariants.

▲□ → ▲ □ → ▲ □ → □ □

Paolo Stellari A tour on Bridgeland stability

Theorem (Bayer–Macrì–S.)

If X is any abelian 3-fold or some Calabi–Yau 3-folds (of quotient type), then $\operatorname{Stab}(D^b(X)) \neq \emptyset$.

(日) (圖) (E) (E) (E)

Theorem (Bayer–Macri–S.)

If X is any abelian 3-fold or some Calabi–Yau 3-folds (of quotient type), then $\operatorname{Stab}(D^b(X)) \neq \emptyset$.

We prove much more: we describe a connected component as in the surface case!

크

Theorem (Bayer–Macri–S.)

If X is any abelian 3-fold or some Calabi–Yau 3-folds (of quotient type), then $\operatorname{Stab}(D^b(X)) \neq \emptyset$.

We prove much more: we describe a connected component as in the surface case!

An example of Calabi–Yau 3-folds (not covered by our result) is the Fermat quintic, i.e. zero locus in \mathbb{P}^4 of the homogeneous polynomial

$$x_0^5 + x_1^5 + x_2^5 + x_3^5 + x_4^5$$
.

Paolo Stellari A tour on Bridgeland stability

The special Calabi–Yau's we study are obtained by one of the following two constructions

Paolo Stellari A tour on Bridgeland stability

(日) (圖) (E) (E) (E)

Results

The special Calabi–Yau's we study are obtained by one of the following two constructions

 Quotients of an abelian 3-fold A by the free action of a finite group G (Type A Calabi-Yau's);

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Results

The special Calabi–Yau's we study are obtained by one of the following two constructions

- Quotients of an abelian 3-fold A by the free action of a finite group G (Type A Calabi-Yau's);
- Quotients of an abelian 3-fold A by the action of a finite group G such that the quotient A/G has a crepant resolution of Calabi–Yau type.

▲□ → ▲ □ → ▲ □ → □ □

Results

The special Calabi–Yau's we study are obtained by one of the following two constructions

- Quotients of an abelian 3-fold A by the free action of a finite group G (Type A Calabi-Yau's);
- Quotients of an abelian 3-fold A by the action of a finite group G such that the quotient A/G has a crepant resolution of Calabi–Yau type.

Example

For an example of the last set of CY's, one can take the product $E \times E \times E$, where *E* is an elliptic curve, and quotient by the diagonal action of $\mathbb{Z}/3\mathbb{Z}$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

æ

Paolo Stellari A tour on Bridgeland stability

Thus the result for Calabi–Yau 3-folds is deduced by the one for abelian 3-folds by inducing stability conditions.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

Thus the result for Calabi–Yau 3-folds is deduced by the one for abelian 3-folds by inducing stability conditions.

Let *A* be an abelian 3-fold and let *G* be a finite group acting on *A*. Let $\operatorname{Stab}(D^b(A))^G$ denote *G*-invariant stability conditions.

副 と く ヨ と く ヨ と

Thus the result for Calabi–Yau 3-folds is deduced by the one for abelian 3-folds by inducing stability conditions.

Let *A* be an abelian 3-fold and let *G* be a finite group acting on *A*. Let $\operatorname{Stab}(D^b(A))^G$ denote *G*-invariant stability conditions.

Macrì-Mehrotra-S.

There is a closed embedding

$$\operatorname{Stab}(\operatorname{D}^{b}(A))^{G} \hookrightarrow \operatorname{Stab}(\operatorname{D}^{b}(Y)),$$

where Y is a crepant resolution of A/G.

く 戸 と く ヨ と く ヨ と

Paolo Stellari A tour on Bridgeland stability

◆ロ〉 ◆御〉 ◆臣〉 ◆臣〉 三臣 のへで

□▶▲□▶▲□▶

크

Indeed, the non-emptiness result is known in other cases:

個 とう ほ とう きょう

э

Indeed, the non-emptiness result is known in other cases:

3-dimensional projective space: Macri, Bayer–Macri–Toda;

Indeed, the non-emptiness result is known in other cases:

- 3-dimensional projective space: Macrì, Bayer–Macrì–Toda;
- 3-dimensional quadrics: Schmidt;

個 とく ヨ とく ヨ とう

Indeed, the non-emptiness result is known in other cases:

- 3-dimensional projective space: Macri, Bayer–Macri–Toda;
- 3-dimensional quadrics: Schmidt;
- Generic ppav: Maciocia–Piyaratne (special case of our result).

▲御▶ ▲ 理▶ ▲ 理▶ ― 理

Problem 2

Study the birational geometry of moduli spaces of stable sheaves on 3-folds.

Paolo Stellari A tour on Bridgeland stability

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Problem 2

Study the birational geometry of moduli spaces of stable sheaves on 3-folds.

This is certainly a difficult problem.

・ロト ・四ト ・ヨト ・ヨト

르

Problem 2

Study the birational geometry of moduli spaces of stable sheaves on 3-folds.

This is certainly a difficult problem. But it could work in several interesting cases:

크

Problem 2

Study the birational geometry of moduli spaces of stable sheaves on 3-folds.

This is certainly a difficult problem. But it could work in several interesting cases: special Hilbert schemes on \mathbb{P}^3 .

・ 戸 ト ・ 三 ト ・ 三 ト

크